{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "(bcg_incomplete_final)=\n", "```{raw} html\n", "
\n", " \n", " \"QuantEcon\"\n", " \n", "
\n", "```\n", "\n", "# Equilibrium Capital Structures with Incomplete Markets\n", "\n", "```{contents} Contents\n", ":depth: 2\n", "```\n", "\n", "In addition to what's in Anaconda, this lecture will need the following libraries:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already up-to-date: quantecon in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (0.4.8)\r\n", "Requirement already satisfied, skipping upgrade: scipy>=1.0.0 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from quantecon) (1.5.0)\r\n", "Requirement already satisfied, skipping upgrade: sympy in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from quantecon) (1.6.1)\r\n", "Requirement already satisfied, skipping upgrade: numba>=0.38 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from quantecon) (0.50.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied, skipping upgrade: numpy in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from quantecon) (1.18.5)\r\n", "Requirement already satisfied, skipping upgrade: requests in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from quantecon) (2.24.0)\r\n", "Requirement already satisfied, skipping upgrade: mpmath>=0.19 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from sympy->quantecon) (1.1.0)\r\n", "Requirement already satisfied, skipping upgrade: llvmlite<0.34,>=0.33.0.dev0 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from numba>=0.38->quantecon) (0.33.0+1.g022ab0f)\r\n", "Requirement already satisfied, skipping upgrade: setuptools in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from numba>=0.38->quantecon) (49.2.0.post20200714)\r\n", "Requirement already satisfied, skipping upgrade: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from requests->quantecon) (1.25.9)\r\n", "Requirement already satisfied, skipping upgrade: certifi>=2017.4.17 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from requests->quantecon) (2020.6.20)\r\n", "Requirement already satisfied, skipping upgrade: idna<3,>=2.5 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from requests->quantecon) (2.10)\r\n", "Requirement already satisfied, skipping upgrade: chardet<4,>=3.0.2 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from requests->quantecon) (3.0.4)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: interpolation in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (2.1.6)\r\n", "Requirement already satisfied: tempita>=0.5.2 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from interpolation) (0.5.2)\r\n", "Requirement already satisfied: numba>=0.47 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from interpolation) (0.50.1)\r\n", "Requirement already satisfied: numpy>=1.18.1 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from interpolation) (1.18.5)\r\n", "Requirement already satisfied: scipy>=1.4.1 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from interpolation) (1.5.0)\r\n", "Requirement already satisfied: llvmlite<0.34,>=0.33.0.dev0 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from numba>=0.47->interpolation) (0.33.0+1.g022ab0f)\r\n", "Requirement already satisfied: setuptools in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from numba>=0.47->interpolation) (49.2.0.post20200714)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting package metadata (current_repodata.json): - " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\\ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b| " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b/ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b- " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\\ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b| " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b/ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b- " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\\ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b| " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b/ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b- " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\\ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b| " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b/ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b- " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\\ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b| " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b/ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b- " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\\ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b| " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b/ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b- " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\\ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b| " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b/ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b- " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\\ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b| " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b/ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b- " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\\ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b| " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b/ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b- " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\\ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b| " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b/ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\bdone\r\n", "Solving environment: \\ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b| " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b/ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b- " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\\ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b| " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b/ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b- " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\\ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b| " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b/ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b- " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\\ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b| " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b/ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b- " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\\ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b| " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b/ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b- " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\\ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b| " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b/ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b- " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\\ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b| " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b/ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b- " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\\ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b| " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b/ " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b- " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\bdone\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r\n", "\r\n", "==> WARNING: A newer version of conda exists. <==\r\n", " current version: 4.8.5\r\n", " latest version: 4.9.0\r\n", "\r\n", "Please update conda by running\r\n", "\r\n", " $ conda update -n base conda\r\n", "\r\n", "\r\n", "\r\n", "# All requested packages already installed.\r\n", "\r\n" ] } ], "source": [ "!pip install --upgrade quantecon\n", "!pip install interpolation\n", "!conda install -y -c plotly plotly plotly-orca" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction\n", "\n", "This is an extension of an earlier lecture {doc}`BCG_complete_mkts ` about a **complete markets**\n", "model.\n", "\n", "In contrast to that lecture, this one describes an instance of a model authored by Bisin, Clementi, and Gottardi {cite}`BCG_2018`\n", "in which financial markets are **incomplete**.\n", "\n", "Instead of being able to trade equities and a full set of one-period\n", "Arrow securities as they can in {doc}`BCG_complete_mkts `, here consumers and firms trade only equity and a bond.\n", "\n", "It is useful to watch how outcomes differ in the two settings.\n", "\n", "In the complete markets economy in {doc}`BCG_complete_mkts `\n", "\n", "- there is a unique stochastic discount factor that prices all assets\n", "- consumers’ portfolio choices are indeterminate\n", "- firms' financial structures are indeterminate, so the model embodies an instance of a Modigliani-Miller irrelevance theorem {cite}`Modigliani_Miller_1958`\n", "- the aggregate of all firms' financial structures are indeterminate, a consequence of there being redundant assets\n", "\n", "In the incomplete markets economy studied here\n", "\n", "- there is a not a unique equilibrium stochastic discount factor\n", "- different stochastic discount factors price different assets\n", "- consumers’ portfolio choices are determinate\n", "- while **individual** firms' financial structures are indeterminate, thus conforming to part of a Modigliani-Miller theorem,\n", " {cite}`Modigliani_Miller_1958`, the **aggregate** of all firms' financial structures **is** determinate.\n", "\n", "A `Big K, little k` analysis played an important role in the previous lecture {doc}`BCG_complete_mkts `.\n", "\n", "A more subtle version of a `Big K, little k` features in the BCG incomplete markets environment here.\n", "\n", "We use it to convey the heart of what BCG call a **rational conjectures** equilibrium in which conjectures are about\n", "equilibrium pricing functions in regions of the state space that an average consumer or firm does not visit in equilibrium.\n", "\n", "Note that the absence of complete markets means that we can compute competitive equilibrium prices and allocations by first solving\n", "the simple planning problem that we did in {doc}`BCG_complete_mkts `.\n", "\n", "Instead, we compute an equilibrium by solving a system of simultaneous inequalities.\n", "\n", "(Here we do not address the interesting question of whether there is a *different* planning problem that we could use to compute a\n", "competitive equlibrium allocation.)\n", "\n", "### Setup\n", "\n", "We adopt specifications of preferences and technologies used by Bisin,\n", "Clemente, and Gottardi (2018) {cite}`BCG_2018` and in our earlier lecture on a complete markets\n", "version of their model.\n", "\n", "The economy lasts for two periods, $t=0, 1$.\n", "\n", "There are two types of consumers named $i=1,2$.\n", "\n", "A scalar random variable $\\epsilon$ affects both\n", "\n", "- a representative firm’s physical return $f(k)e^\\epsilon$ in\n", " period $1$ from investing $k \\geq 0$ in capital in period\n", " $0$.\n", "- period $1$ endowments $w_1^i(\\epsilon)$ of the\n", " consumption good for agents $i =1$ and $i=2$.\n", "\n", "### Ownership\n", "\n", "A consumer of type $i$ is endowed with $w_0^i$ units of the\n", "time $0$ good and $w_1^i(\\epsilon)$ of the time $1$\n", "good when the random variable takes value $\\epsilon$.\n", "\n", "At the start of period $0$, a consumer of type $i$ also owns\n", "$\\theta^i_0$ shares of a representative firm.\n", "\n", "### Measures of agents and firms\n", "\n", "As in the companion lecture {doc}`BCG_complete_mkts ` that studies a complete markets version of\n", "the model, we follow BCG in assuming that there are unit measures of\n", "\n", "- consumers of type $i=1$\n", "- consumers of type $i=2$\n", "- firms with access to a production technology that converts\n", " $k$ units of time $0$ good into\n", " $A k^\\alpha e^\\epsilon$ units of the time $1$ good in\n", " random state $\\epsilon$\n", "\n", "Thus, let $\\omega \\in [0,1]$ index a particular consumer of type\n", "$i$.\n", "\n", "Then define Big $C^i$ as\n", "\n", "$$\n", "C^i = \\int_0^1 c^i(\\omega) d \\, \\omega\n", "$$\n", "\n", "with components\n", "\n", "$$\n", "\\begin{aligned}\n", "C^i_0 & = \\int_0^1 c^i_0(\\omega) d \\, \\omega \\cr\n", "C^i_1(\\epsilon) & = \\int_0^1 c^i_1(\\epsilon;\\omega) d \\, \\omega\n", "\\end{aligned}\n", "$$\n", "\n", "In the same spirit, let $\\zeta \\in [0,1]$ index a particular firm\n", "and let firm $\\zeta$ purchase $k(\\zeta)$ units of capital\n", "and issue $b(\\zeta)$ bonds.\n", "\n", "Then define Big $K$ and Big $B$ as\n", "\n", "$$\n", "K = \\int_0^1 k(\\zeta) d \\, \\zeta, \\quad B = \\int_0^1 b(\\zeta) d \\, \\zeta\n", "$$\n", "\n", "The assumption that there are equal measures of our three types of\n", "agents justifies our assumption that each individual agent is a\n", "powerless **price taker**:\n", "\n", "- an individual consumer chooses its own (infinitesimal) part\n", " $c^i(\\omega)$ of $C^i$ taking prices as given\n", "- an individual firm chooses its own (infinitesmimal) part\n", " $k(\\zeta)$ of $K$ and $b(\\zeta)$ of $B$\n", " taking pricing functions as given\n", "- However, equilibrium prices depend on the `Big K, Big B, Big C`\n", " objects $K$, $B$, and $C$\n", "\n", "The assumption about measures of agents is a powerful device for making\n", "a host of competitive agents take as given the equilibrium prices that\n", "turn out to be determined by the decisions of hosts of agents who are just like\n", "them.\n", "\n", "We call an equilibrium **symmetric** if\n", "\n", "- all type $i$ consumers choose the same consumption profiles so\n", " that $c^i(\\omega) = C^i$ for all $\\omega \\in [0,1]$\n", "- all firms choose the same levels of $k$ and $b$ so that\n", " $k(\\zeta) = K$, $b(\\zeta) = B$ for all\n", " $\\zeta \\in [0,1]$\n", "\n", "In this lecture, we restrict ourselves to describing symmetric\n", "equilibria.\n", "\n", "### Endowments\n", "\n", "Per capital economy-wide endowments in periods $0$ and $1$ are\n", "\n", "$$\n", "\\begin{aligned}\n", "w_0 & = w_0^1 + w_0^2 \\cr\n", "w_1(\\epsilon) & = w_1^1(\\epsilon) + w_1^2(\\epsilon) \\textrm{ in state }\\epsilon\n", "\\end{aligned}\n", "$$\n", "\n", "### Feasibility:\n", "\n", "Where $\\alpha \\in (0,1)$ and $A >0$\n", "\n", "$$\n", "\\begin{aligned}\n", " C_0^1 + C_0^2 & = w_0^1 + w_0^2 - K \\cr\n", " C_1^1(\\epsilon) + C_1^2(\\epsilon) & = w_1^1(\\epsilon) + w_1^2(\\epsilon) + e^\\epsilon \\int_0^1 f(k(\\zeta)) d \\zeta, \\quad k \\geq 0\n", "\\end{aligned}\n", "$$\n", "\n", "where $f(k) = A k^\\alpha, A >0, \\alpha \\in (0,1)$.\n", "\n", "### Parameterizations\n", "\n", "Following BCG, we shall employ the following parameterizations:\n", "\n", "$$\n", "\\begin{aligned}\n", "\\epsilon & \\sim {\\mathcal N}(\\mu, \\sigma^2) \\cr\n", "u(c) & = \\frac{c^{1-\\gamma}}{1 - \\gamma} \\cr\n", "w_1^i(\\epsilon) & = e^{- \\chi_i \\mu - .5 \\chi_i^2 \\sigma^2 + \\chi_i \\epsilon} , \\quad \\chi_i \\in [0,1]\n", "\\end{aligned}\n", "$$\n", "\n", "Sometimes instead of asuming $\\epsilon \\sim g(\\epsilon) = {\\mathcal N}(0,\\sigma^2)$,\n", "we’ll assume that $g(\\cdot)$ is a probability\n", "mass function that serves as a discrete approximation to a standardized\n", "normal density.\n", "\n", "### Preferences:\n", "\n", "A consumer of type $i$ orders period $0$ consumption\n", "$c_0^i$ and state $\\epsilon$-period $1$ consumption\n", "$c^i(\\epsilon)$ by\n", "\n", "$$\n", "u^i = u(c_0^i) + \\beta \\int u(c_1^i(\\epsilon)) g (\\epsilon) d \\epsilon, \\quad i = 1,2\n", "$$\n", "\n", "$\\beta \\in (0,1)$ and the one-period utility function is\n", "\n", "$$\n", "u(c) = \\begin{cases}\n", "\\frac{c^{1 -\\gamma}} { 1 - \\gamma} & \\textrm{if } \\gamma \\neq 1 \\\\\n", "\\log c & \\textrm{if } \\gamma = 1\n", "\\end{cases}\n", "$$\n", "\n", "### Risk-sharing motives\n", "\n", "The two types of agents’ period $1$ endowments have different correlations with\n", "the physical return on capital.\n", "\n", "Endowment differences give agents incentives to trade risks that in the\n", "complete market version of the model showed up in their demands for\n", "equity and in their demands and supplies of one-period Arrow securities.\n", "\n", "In the incomplete-markets setting under study here, these differences\n", "show up in differences in the two types of consumers’ demands for a\n", "typical firm’s bonds and equity, the only two assets that agents can now\n", "trade.\n", "\n", "## Asset Markets\n", "\n", "Markets are incomplete: *ex cathedra* we the model builders declare that only equities and bonds issued by representative\n", "firms can be traded.\n", "\n", "Let $\\theta^i$ and $\\xi^i$ be a consumer of type\n", "$i$’s post-trade holdings of equity and bonds, respectively.\n", "\n", "A firm issues bonds promising to pay $b$ units of consumption at\n", "time $t=1$ and purchases $k$ units of physical capital at\n", "time $t=0$.\n", "\n", "When $e^\\epsilon A k^\\alpha < b$ at time $1$, the firm defaults and its output is\n", "divided equally among bondholders.\n", "\n", "Evidently, when the productivity shock\n", "$\\epsilon < \\epsilon^* = \\log \\left(\\frac{b}{ Ak^\\alpha}\\right)$,\n", "the firm defaults on its debt\n", "\n", "Payoffs to equity and debt at date 1 as functions of the productivity\n", "shock $\\epsilon$ are thus\n", "\n", "```{math}\n", ":label: payofffns\n", "\n", "\\begin{aligned}\n", "d^e(k,b;\\epsilon) &= \\max \\left\\{ e^\\epsilon A k^\\alpha - b, 0 \\right\\} \\\\\n", "d^b(k,b;\\epsilon) &= \\min \\left\\{ \\frac{e^\\epsilon A k^\\alpha}{b}, 1 \\right\\}\n", "\\end{aligned}\n", "```\n", "\n", "A firm faces a bond price function $p(k,b)$ when it issues\n", "$b$ bonds and purchases $k$ units of physical capital.\n", "\n", "A firm’s equity is worth $q(k,b)$ when it issues $b$ bonds\n", "and purchases $k$ units of physical capital.\n", "\n", "A firm regards an equity-pricing function $q(k,b)$ and a bond\n", "pricing function $p(k,b)$ as exogenous in the sense that they are\n", "not affected by its choices of $k$ and $b$.\n", "\n", "Consumers face equilibrium prices $\\check q$ and $\\check p$\n", "for bonds and equities, where $\\check q$ and $\\check p$ are\n", "both scalars.\n", "\n", "Consumers are price takers and only need to know the scalars $\\check q, \\check p$.\n", "\n", "Firms are *price function* takers and must know the functions $q(k,b), p(k,b)$ in order\n", "completely to pose their optimum problems.\n", "\n", "### Consumers\n", "\n", "Each consumer of type $i$ is endowed with $w_0^i$ of the\n", "time $0$ consumption good, $w_1^i(\\epsilon)$ of the time\n", "$1$, state $\\epsilon$ consumption good and also owns a fraction\n", "$\\theta^i_0 \\in (0,1)$ of the initial value of a representative\n", "firm, where $\\theta^1_0 + \\theta^2_0 = 1$.\n", "\n", "The initial value of a representative firm is $V$ (an object to be\n", "determined in a rational expectations equilibrium).\n", "\n", "Consumer $i$ buys $\\theta^i$ shares of equity and buys bonds\n", "worth $\\check p \\xi^i$ where $\\check p$ is the bond price.\n", "\n", "Being a price-taker, a consumer takes $V$, $\\check q$, $\\check p$, and $K, B$\n", "as given.\n", "\n", "Consumers know that equilibrium payoff functions for bonds and equities take the form\n", "\n", "$$\n", "\\begin{aligned}\n", "d^e(K,B;\\epsilon) &= \\max \\left\\{ e^\\epsilon A K^\\alpha - B, 0 \\right\\} \\\\\n", "d^b(K,B;\\epsilon) &= \\min \\left\\{ \\frac{e^\\epsilon A K^\\alpha}{B}, 1 \\right\\}\n", "\\end{aligned}\n", "$$\n", "\n", "Consumer $i$’s optimization problem is\n", "\n", "$$\n", "\\begin{aligned}\n", "\\max_{c^i_0,\\theta^i,\\xi^i,c^i_1(\\epsilon)} & u(c^i_0) + \\beta \\int u(c^i(\\epsilon)) g(\\epsilon) \\ d\\epsilon \\\\\n", "\\text{subject to } \\quad\n", "& c^i_0 = w^i_0 + \\theta^i_0V - \\check q\\theta^i - \\check p \\xi^i, \\\\\n", "& c^i_1(\\epsilon) = w^i_1(\\epsilon) + \\theta^i d^e(K,B;\\epsilon) + \\xi^i d^b(K,B;\\epsilon) \\ \\forall \\ \\epsilon, \\\\\n", "& \\theta^i \\geq 0, \\xi^i \\geq 0.\n", "\\end{aligned}\n", "$$\n", "\n", "The last two inequalities impose that the consumer cannot short sell either\n", "equity or bonds.\n", "\n", "In a rational expectations equilibrium, $\\check q = q(K,B)$ and $\\check p = p(K,B)$\n", "\n", "We form consumer $i$’s Lagrangian:\n", "\n", "$$\n", "\\begin{aligned}\n", "L^i := & u(c^i_0) + \\beta \\int u(c^i(\\epsilon)) g(\\epsilon) \\ d\\epsilon \\\\\n", " & +\\lambda^i_0 [w^i_0 + \\theta_0V - \\check q\\theta^i - \\check p \\xi^i - c^i_0] \\\\\n", " & + \\beta \\int \\lambda^i_1(\\epsilon) \\left[ w^i_1(\\epsilon) + \\theta^i d^e(K,B;\\epsilon) + \\xi^i d^b(K,B;\\epsilon) - c^i_1(\\epsilon) \\right] g(\\epsilon) \\ d\\epsilon\n", "\\end{aligned}\n", "$$\n", "\n", "Consumer $i$’s first-order necessary conditions for an optimum\n", "include:\n", "\n", "$$\n", "\\begin{aligned}\n", "c^i_0:& \\quad u^\\prime(c^i_0) = \\lambda^i_0 \\\\\n", "c^i_1(\\epsilon):& \\quad u^\\prime(c^i_1(\\epsilon)) = \\lambda^i_1(\\epsilon) \\\\\n", "\\theta^i:& \\quad \\beta \\int \\lambda^i_1(\\epsilon) d^e(K,B;\\epsilon) g(\\epsilon) \\ d\\epsilon \\leq \\lambda^i_0 \\check q \\quad (= \\ \\ \\text{if} \\ \\ \\theta^i>0) \\\\\n", "\\xi^i:& \\quad \\beta \\int \\lambda^i_1(\\epsilon) d^b(K,B;\\epsilon) g(\\epsilon) \\ d\\epsilon \\leq \\lambda^i_0 \\check p \\quad (= \\ \\ \\text{if} \\ \\ b^i>0) \\\\\n", "\\end{aligned}\n", "$$\n", "\n", "We can combine and rearrange consumer $i$’s first-order\n", "conditions to become:\n", "\n", "$$\n", "\\begin{aligned}\n", "\\check q \\geq \\beta \\int \\frac{u^\\prime(c^i_1(\\epsilon))}{u^\\prime(c^i_0)} d^e(K,B;\\epsilon) g(\\epsilon) \\ d\\epsilon \\quad (= \\ \\ \\text{if} \\ \\ \\theta^i>0) \\\\\n", "\\check p \\geq \\beta \\int \\frac{u^\\prime(c^i_1(\\epsilon))}{u^\\prime(c^i_0)} d^b(K,B;\\epsilon) g(\\epsilon) \\ d\\epsilon \\quad (= \\ \\ \\text{if} \\ \\ b^i>0)\\\\\n", "\\end{aligned}\n", "$$\n", "\n", "These inequalities imply that in a symmetric rational expectations equilibrium consumption allocations and\n", "prices satisfy\n", "\n", "$$\n", "\\begin{aligned}\n", "\\check q = \\max_i \\beta \\int \\frac{u^\\prime(c^i_1(\\epsilon))}{u^\\prime(c^i_0)} d^e(K,B;\\epsilon) g(\\epsilon) \\ d\\epsilon \\\\\n", "\\check p = \\max_i \\beta \\int \\frac{u^\\prime(c^i_1(\\epsilon))}{u^\\prime(c^i_0)} d^b(K,B;\\epsilon) g(\\epsilon) \\ d\\epsilon \\\\\n", "\\end{aligned}\n", "$$\n", "\n", "### Pricing functions\n", "\n", "When individual firms solve their optimization problems, they take big\n", "$C^i$’s as fixed objects that they don’t influence.\n", "\n", "A representative firm faces a price function $q(k,b)$ for its\n", "equity and a price function $p(k, b)$ per unit of bonds that\n", "satisfy\n", "\n", "$$\n", "\\begin{aligned}\n", "q(k,b) = \\max_i \\beta \\int \\frac{u^\\prime(C^i_1(\\epsilon))}{u^\\prime(C^i_0)} d^e(k,b;\\epsilon) g(\\epsilon) \\ d\\epsilon \\\\\n", "p(k,b) = \\max_i \\beta \\int \\frac{u^\\prime(C^i_1(\\epsilon))}{u^\\prime(C^i_0)} d^b(k,b;\\epsilon) g(\\epsilon) \\ d\\epsilon \\\\\n", "\\end{aligned}\n", "$$\n", "\n", "where the payoff functions are described by equations {eq}`payofffns`.\n", "\n", "Notice the appearance of big $C^i$’s on the right sides of these\n", "two equations that define equilibrium pricing functions.\n", "\n", "The two price functions describe outcomes not only for equilibrium choices\n", "$K, B$ of capital $k$ and debt $b$, but also for any\n", "**out-of-equilibrium** pairs $(k, b) \\neq (K, B)$.\n", "\n", "The firm is assumed to know both price functions.\n", "\n", "This means that the firm understands that its choice of $k,b$ influences how markets price its equity and debt.\n", "\n", "This package of assumptions is sometimes called **rational conjectures** (about price functions).\n", "\n", "BCG give credit to Makowski for emphasizing and clarifying how rational conjectures are components of rational expectations equilibria.\n", "\n", "### Firms\n", "\n", "The firm chooses capital $k$ and debt $b$ to maximize its\n", "market value:\n", "\n", "$$\n", "V \\equiv \\max_{k,b} -k + q(k,b) + p(k,b) b\n", "$$\n", "\n", "Attributing value maximization to the firm is a good idea because in equilibrium consumers of both types\n", "*want* a firm to maximize its value.\n", "\n", "In the special quantitative examples studied here\n", "\n", "- consumers of types $i=1,2$ both hold equity\n", "- only consumers of type $i=2$ hold debt; consumers of type\n", " $i=1$ hold none.\n", "\n", "These outcomes occur because we follow BCG and set parameters so that a\n", "type 2 consumer’s stochastic endowment of the consumption good in period\n", "$1$ is more correlated with the firm’s output than is a type 1\n", "consumer’s.\n", "\n", "This gives consumers of type $2$ a motive to hedge their second period\n", "endowment risk by holding bonds (they also choose to\n", "hold some equity).\n", "\n", "These outcomes mean that the pricing functions end up\n", "satisfying\n", "\n", "$$\n", "\\begin{aligned}\n", "q(k,b) &= \\beta \\int \\frac{u^\\prime(C^1_1(\\epsilon))}{u^\\prime(C^1_0)} d^e(k,b;\\epsilon) g(\\epsilon) \\ d\\epsilon = \\beta \\int \\frac{u^\\prime(C^2_1(\\epsilon))}{u^\\prime(C^2_0)} d^e(k,b;\\epsilon) g(\\epsilon) \\ d\\epsilon \\\\\n", "p(k,b) &= \\beta \\int \\frac{u^\\prime(C^2_1(\\epsilon))}{u^\\prime(C^2_0)} d^b(k,b;\\epsilon) g(\\epsilon) \\ d\\epsilon \\\\\n", "\\end{aligned}\n", "$$\n", "\n", "Recall that\n", "$\\epsilon^*(k,b) \\equiv \\log\\left(\\frac{b}{Ak^\\alpha}\\right)$ is a\n", "firm’s default threshold.\n", "\n", "We can rewrite the pricing functions as:\n", "\n", "$$\n", "\\begin{aligned}\n", "q(k,b) &= \\beta \\int_{\\epsilon^*}^\\infty \\frac{u^\\prime(C^i_1(\\epsilon))}{u^\\prime(C^i_0)} \\left( e^\\epsilon Ak^\\alpha - b \\right) g(\\epsilon) \\ d\\epsilon, \\quad i=1,2\\\\\n", "p(k,b) &= \\beta \\int^{\\epsilon^*}_{-\\infty} \\frac{u^\\prime(C^2_1(\\epsilon))}{u^\\prime(C^2_0)} \\left( \\frac{e^\\epsilon Ak^\\alpha}{b} \\right) g(\\epsilon) \\ d\\epsilon + \\beta \\int_{\\epsilon^*}^{\\infty} \\frac{u^\\prime(C^2_1(\\epsilon))}{u^\\prime(C^2_0)} g(\\epsilon) \\ d\\epsilon \\\\\n", "\\end{aligned}\n", "$$\n", "\n", "#### Firm’s optimization problem\n", "\n", "The firm’s optimization problem is\n", "\n", "$$\n", "V \\equiv \\max_{k,b} \\left\\{ -k + q(k,b) + p(k, b) b \\right\\}\n", "$$\n", "\n", "The firm’s first-order necessary conditions with respect to $k$\n", "and $b$, respectively, are\n", "\n", "$$\n", "\\begin{aligned}\n", "k: \\quad & -1 + \\frac{\\partial q(k,b)}{\\partial k} + b \\frac{\\partial p(q,b)}{\\partial k} = 0 \\cr\n", " b: \\quad & \\frac{\\partial q(k,b)}{\\partial b} + p(k,b) + b \\frac{\\partial p(k,b)}{\\partial b} = 0\n", "\\end{aligned}\n", "$$\n", "\n", "We use the Leibniz integral rule several times to arrive at\n", "the following derivatives:\n", "\n", "$$\n", "\\frac{\\partial q(k,b)}{\\partial k} = \\beta \\alpha A k^{\\alpha-1} \\int_{\\epsilon^*}^\\infty \\frac{u'(C_1^i(\\epsilon))}{u'(C_0^i)}\n", " e^\\epsilon g(\\epsilon) d \\epsilon, \\quad i=1,2\n", "$$\n", "\n", "$$\n", "\\frac{\\partial q(k,b)}{\\partial b} = -\\beta \\int_{\\epsilon^*}^\\infty \\frac{u'(C_1^i(\\epsilon))}{u'(C_0^i)} g(\\epsilon) d \\epsilon, \\quad i=1,2\n", "$$\n", "\n", "$$\n", "\\frac{\\partial p(k,b)}{\\partial k} = \\beta \\alpha \\frac{A k^{\\alpha -1}}{b} \\int_{-\\infty}^{\\epsilon^*} \\frac{u'(C_1^2(\\epsilon))}{u'(C_0^2)} g(\\epsilon) d \\epsilon\n", "$$\n", "\n", "$$\n", "\\frac{\\partial p(k,b)}{\\partial b} = - \\beta \\frac{A k^\\alpha}{b^2} \\int_{-\\infty}^{\\epsilon^*} \\frac{u'(C_1^2(\\epsilon))}{u'(C_0^2)} e^\\epsilon g(\\epsilon) d \\epsilon\n", "$$\n", "\n", "**Special case:** We confine ourselves to a special case in which both types of\n", "consumer hold positive equities so that\n", "$\\frac{\\partial q(k,b)}{\\partial k}$ and\n", "$\\frac{\\partial q(k,b)}{\\partial b}$ are related to rates of\n", "intertemporal substitution for both agents.\n", "\n", "Substituting these partial derivatives into the above first-order\n", "conditions for $k$ and $b$, respectively, we obtain the\n", "following versions of those first order conditions:\n", "\n", "```{math}\n", ":label: Eqn1\n", "\n", "k: \\quad -1 + \\beta \\alpha A k^{\\alpha -1} \\int_{-\\infty}^\\infty \\frac{u'(C_1^2(\\epsilon))}{u'(C_0^2)} e^\\epsilon g(\\epsilon) d \\epsilon = 0\n", "```\n", "\n", "```{math}\n", ":label: Eqn2\n", "\n", "b: \\quad\n", "\\int_{\\epsilon^*}^\\infty \\left( \\frac{u^\\prime(C^1_1(\\epsilon))}{u^\\prime(C^1_0)} \\right) g(\\epsilon) \\ d\\epsilon = \\int_{\\epsilon^*}^\\infty \\left( \\frac{u^\\prime(C^2_1(\\epsilon))}{u^\\prime(C^2_0)} \\right) g(\\epsilon) \\ d\\epsilon\n", "```\n", "\n", "where again recall that\n", "$\\epsilon^*(k,b) \\equiv \\log\\left(\\frac{b}{Ak^\\alpha}\\right)$.\n", "\n", "Taking $C_0^i, C_1^i(\\epsilon)$ as given, these are two equations\n", "that we want to solve for the firm’s optimal decisions $k, b$.\n", "\n", "## Equilibrium verification\n", "\n", "On page 5 of BCG (2018), the authors say\n", "\n", "*If the price conjectures corresponding to the plan chosen by firms in\n", "equilibrium are correct, that is equal to the market prices* $\\check q$ *and* $\\check p$, *it is immediate to verify that\n", "the rationality of the conjecture coincides with the agents’ Euler\n", "equations.*\n", "\n", "Here BCG are describing how they go about verifying that when they set\n", "little $k$, little $b$ from the firm’s first-order\n", "conditions equal to the big $K$, big $B$ at the big\n", "$C$’s that appear in the pricing functions, then\n", "\n", "- consumers’ Euler equations are satisfied if little $c$’s are\n", " equated to Big C’s\n", "- firms’ first-order necessary conditions for $k, b$ are\n", " satisfied.\n", "- $\\check q = q(K,B)$ and\n", " $\\check p = p(K,B)$.\n", "\n", "## Pseudo Code\n", "\n", "Before displaying our Python code for computing a BCG incomplete markets equilibrium,\n", "we’ll sketch some pseudo code that describes its logical flow.\n", "\n", "Here goes:\n", "\n", "1. Set upper and lower bounds for firm value as $V_h$ and\n", " $V_l$, for capital as $k_h$ and $k_l$, and for debt\n", " as $b_h$ and $b_l$.\n", "1. Conjecture firm value $V = \\frac{1}{2}(V_h + V_l)$\n", "1. Conjecture debt level $b = \\frac{1}{2}(b_h + b_l)$.\n", "1. Conjecture capital $k = \\frac{1}{2}(k_h + k_l)$.\n", "1. Compute the default threshold\n", " $\\epsilon^* \\equiv \\log\\left(\\frac{b}{Ak^\\alpha}\\right)$.\n", "1. (In this step we abuse notation by freezing $V, k, b$ and in\n", " effect temporarily treating them as Big $K,B$ values. Thus, in\n", " this step 6 little k, b are frozen at guessed at value of K, B.)\n", " Fixing the values of $V$, $b$ and $k$, compute\n", " optimal choices of consumption $c^i$ with consumers’ FOCs.\n", " Assume that only agent 2 holds debt: $\\xi^2 = b$ and that both agents\n", " hold equity: $0 <\\theta^i < 1$ for $i=1,2$.\n", "1. Set high and low bounds for equity holdings for agent 1 as $\\theta^1_h$ and $\\theta^1_l$. Guess\n", " $\\theta^1 = \\frac{1}{2}(\\theta^1_h + \\theta^1_l)$, and\n", " $\\theta^2 = 1 - \\theta^1$. While\n", " $|\\theta^1_h - \\theta^1_l|$ is large:\n", " * Compute agent 1’s valuation of the equity claim with a\n", " fixed-point iteration:\n", " \n", " $q_1 = \\beta \\int \\frac{u^\\prime(c^1_1(\\epsilon))}{u^\\prime(c^1_0)} d^e(k,b;\\epsilon) g(\\epsilon) \\ d\\epsilon$\n", " \n", " where\n", " \n", " $c^1_1(\\epsilon) = w^1_1(\\epsilon) + \\theta^1 d^e(k,b;\\epsilon)$\n", " \n", " and\n", " \n", " $c^1_0 = w^1_0 + \\theta^1_0V - q_1\\theta^1$\n", " * Compute agent 2’s valuation of the bond claim with a\n", " fixed-point iteration:\n", " \n", " $p = \\beta \\int \\frac{u^\\prime(c^2_1(\\epsilon))}{u^\\prime(c^2_0)} d^b(k,b;\\epsilon) g(\\epsilon) \\ d\\epsilon$\n", " \n", " where\n", " \n", " $c^2_1(\\epsilon) = w^2_1(\\epsilon) + \\theta^2 d^e(k,b;\\epsilon) + b$\n", " \n", " and\n", " \n", " $c^2_0 = w^2_0 + \\theta^2_0 V - q_1 \\theta^2 - pb$\n", " * Compute agent 2’s valuation of the equity claim with a\n", " fixed-point iteration:\n", " \n", " $q_2 = \\beta \\int \\frac{u^\\prime(c^2_1(\\epsilon))}{u^\\prime(c^2_0)} d^e(k,b;\\epsilon) g(\\epsilon) \\ d\\epsilon$\n", " \n", " where\n", " \n", " $c^2_1(\\epsilon) = w^2_1(\\epsilon) + \\theta^2 d^e(k,b;\\epsilon) + b$\n", " \n", " and\n", " \n", " $c^2_0 = w^2_0 + \\theta^2_0 V - q_2 \\theta^2 - pb$\n", " * If $q_1 > q_2$, Set $\\theta_l = \\theta^1$;\n", " otherwise, set $\\theta_h = \\theta^1$.\n", " * Repeat steps 6Aa through 6Ad until\n", " $|\\theta^1_h - \\theta^1_l|$ is small.\n", "1. Set bond price as $p$ and equity price as $q = \\max(q_1,q_2)$.\n", "1. Compute optimal choices of consumption:\n", " \n", " $$\n", " \\begin{aligned}\n", " c^1_0 &= w^1_0 + \\theta^1_0V - q\\theta^1 \\\\\n", " c^2_0 &= w^2_0 + \\theta^2_0V - q\\theta^2 - pb \\\\\n", " c^1_1(\\epsilon) &= w^1_1(\\epsilon) + \\theta^1 d^e(k,b;\\epsilon) \\\\\n", " c^2_1(\\epsilon) &= w^2_1(\\epsilon) + \\theta^2 d^e(k,b;\\epsilon) + b\n", " \\end{aligned}\n", " $$\n", " \n", "1. (Here we confess to abusing notation again, but now in a different\n", " way. In step 7, we interpret frozen $c^i$s as Big\n", " $C^i$. We do this to solve the firm’s problem.) Fixing the\n", " values of $c^i_0$ and $c^i_1(\\epsilon)$, compute optimal\n", " choices of capital $k$ and debt level $b$ using the\n", " firm’s first order necessary conditions.\n", "1. Compute deviations from the firm’s FONC for capital $k$ as:\n", " \n", " $kfoc = \\beta \\alpha A k^{\\alpha - 1} \\left( \\int \\frac{u^\\prime(c^2_1(\\epsilon))}{u^\\prime(c^2_0)} e^\\epsilon g(\\epsilon) \\ d\\epsilon \\right) - 1$\n", " - If $kfoc > 0$, Set $k_l = k$; otherwise, set\n", " $k_h = k$.\n", " - Repeat steps 4 through 7A until $|k_h-k_l|$ is small.\n", "1. Compute deviations from the firm’s FONC for debt level $b$ as:\n", " \n", " $bfoc = \\beta \\left[ \\int_{\\epsilon^*}^\\infty \\left( \\frac{u^\\prime(c^1_1(\\epsilon))}{u^\\prime(c^1_0)} \\right) g(\\epsilon) \\ d\\epsilon - \\int_{\\epsilon^*}^\\infty \\left( \\frac{u^\\prime(c^2_1(\\epsilon))}{u^\\prime(c^2_0)} \\right) g(\\epsilon) \\ d\\epsilon \\right]$\n", " - If $bfoc > 0$, Set $b_h = b$; otherwise, set\n", " $b_l = b$.\n", " - Repeat steps 3 through 7B until $|b_h-b_l|$ is small.\n", "1. Given prices $q$ and $p$ from step 6, and the firm\n", " choices of $k$ and $b$ from step 7, compute the synthetic\n", " firm value:\n", " \n", " $V_x = -k + q + pb$\n", " - If $V_x > V$, then set $V_l = V$; otherwise, set\n", " $V_h = V$.\n", " - Repeat steps 1 through 8 until $|V_x - V|$ is small.\n", "1. Ultimately, the algorithm returns equilibrium capital\n", " $k^*$, debt $b^*$ and firm value $V^*$, as well as\n", " the following equilibrium values:\n", " - Equity holdings $\\theta^{1,*} = \\theta^1(k^*,b^*)$\n", " - Prices $q^*=q(k^*,b^*), \\ p^*=p(k^*,b^*)$\n", " - Consumption plans\n", " $C^{1,*}_0 = c^1_0(k^*,b^*),\\ C^{2,*}_0 = c^2_0(k^*,b^*), \\ C^{1,*}_1(\\epsilon) = c^1_1(k^*,b^*;\\epsilon),\\ C^{1,*}_1(\\epsilon) = c^2_1(k^*,b^*;\\epsilon)$.\n", "\n", "## Code\n", "\n", "We create a Python class `BCG_incomplete_markets` to compute the\n", "equilibrium allocations of the incomplete market BCG model, given a set\n", "of parameter values.\n", "\n", "The class includes the following methods, i.e., functions:\n", "\n", "- `solve_eq`: solves the BCG model and returns the equilibrium values\n", " of capital $k$, debt $b$ and firm value $V$, as\n", " well as\n", " - agent 1’s equity holdings $\\theta^{1,*}$\n", " - prices $q^*, p^*$\n", " - consumption plans\n", " $C^{1,*}_0, C^{2,*}_0, C^{1,*}_1(\\epsilon), C^{2,*}_1(\\epsilon)$.\n", "- `eq_valuation`: inputs equilibrium consumpion plans $C^*$ and\n", " outputs the following valuations for each pair of $(k,b)$ in\n", " the grid:\n", " - the firm $V(k,b)$\n", " - the equity $q(k,b)$\n", " - the bond $p(k,b)$.\n", "\n", "Parameters include:\n", "\n", "- $\\chi_1$, $\\chi_2$: correlation parameter for agent 1\n", " and 2. Default values are respectively 0 and 0.9.\n", "- $w^1_0$, $w^2_0$: initial endowments. Default values\n", " are respectively 0.9 and 1.1.\n", "- $\\theta^1_0$, $\\theta^2_0$: initial holding of the\n", " firm. Default values are 0.5.\n", "- $\\psi$: risk parameter. Default value is 3.\n", "- $\\alpha$: Production function parameter. Default value\n", " is 0.6.\n", "- $A$: Productivity of the firm. Default value is 2.5.\n", "- $\\mu$, $\\sigma$: Mean and standard deviation of the\n", " shock distribution. Default values are respectively -0.025 and 0.4\n", "- $\\beta$: Discount factor. Default value is 0.96.\n", "- bound: Bound for truncated normal distribution. Default value is 3." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "from scipy.stats import norm\n", "from scipy.stats import truncnorm\n", "from scipy.integrate import quad\n", "from scipy.optimize import bisect\n", "from numba import njit\n", "from interpolation import interp" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "class BCG_incomplete_markets:\n", "\n", " # init method or constructor\n", " def __init__(self,\n", " 𝜒1 = 0,\n", " 𝜒2 = 0.9,\n", " w10 = 0.9,\n", " w20 = 1.1,\n", " 𝜃10 = 0.5,\n", " 𝜃20 = 0.5,\n", " 𝜓1 = 3,\n", " 𝜓2 = 3,\n", " 𝛼 = 0.6,\n", " A = 2.5,\n", " 𝜇 = -0.025,\n", " 𝜎 = 0.4,\n", " 𝛽 = 0.96,\n", " bound = 3,\n", " Vl = 0,\n", " Vh = 0.5,\n", " kbot = 0.01,\n", " #ktop = (𝛼*A)**(1/(1-𝛼)),\n", " ktop = 0.25,\n", " bbot = 0.1,\n", " btop = 0.8):\n", "\n", " #=========== Setup ===========#\n", " # Risk parameters\n", " self.𝜒1 = 𝜒1\n", " self.𝜒2 = 𝜒2\n", "\n", " # Other parameters\n", " self.𝜓1 = 𝜓1\n", " self.𝜓2 = 𝜓2\n", " self.𝛼 = 𝛼\n", " self.A = A\n", " self.𝜇 = 𝜇\n", " self.𝜎 = 𝜎\n", " self.𝛽 = 𝛽\n", " self.bound = bound\n", "\n", " # Bounds for firm value, capital, and debt\n", " self.Vl = Vl\n", " self.Vh = Vh\n", " self.kbot = kbot\n", " #self.kbot = (𝛼*A)**(1/(1-𝛼))\n", " self.ktop = ktop\n", " self.bbot = bbot\n", " self.btop = btop\n", "\n", " # Utility\n", " self.u = njit(lambda c: (c**(1-𝜓)) / (1-𝜓))\n", "\n", " # Initial endowments\n", " self.w10 = w10\n", " self.w20 = w20\n", " self.w0 = w10 + w20\n", "\n", " # Initial holdings\n", " self.𝜃10 = 𝜃10\n", " self.𝜃20 = 𝜃20\n", "\n", " # Endowments at t=1\n", " self.w11 = njit(lambda 𝜖: np.exp(-𝜒1*𝜇 - 0.5*(𝜒1**2)*(𝜎**2) + 𝜒1*𝜖))\n", " self.w21 = njit(lambda 𝜖: np.exp(-𝜒2*𝜇 - 0.5*(𝜒2**2)*(𝜎**2) + 𝜒2*𝜖))\n", " self.w1 = njit(lambda 𝜖: self.w11(𝜖) + self.w21(𝜖))\n", "\n", " # Truncated normal\n", " ta, tb = (-bound - 𝜇) / 𝜎, (bound - 𝜇) / 𝜎\n", " rv = truncnorm(ta, tb, loc=𝜇, scale=𝜎)\n", " 𝜖_range = np.linspace(ta, tb, 1000000)\n", " pdf_range = rv.pdf(𝜖_range)\n", " self.g = njit(lambda 𝜖: interp(𝜖_range, pdf_range, 𝜖))\n", "\n", "\n", " #*************************************************************\n", " # Function: Solve for equilibrium of the BCG model\n", " #*************************************************************\n", " def solve_eq(self, print_crit=True):\n", "\n", " # Load parameters\n", " 𝜓1 = self.𝜓1\n", " 𝜓2 = self.𝜓2\n", " 𝛼 = self.𝛼\n", " A = self.A\n", " 𝛽 = self.𝛽\n", " bound = self.bound\n", " Vl = self.Vl\n", " Vh = self.Vh\n", " kbot = self.kbot\n", " ktop = self.ktop\n", " bbot = self.bbot\n", " btop = self.btop\n", " w10 = self.w10\n", " w20 = self.w20\n", " 𝜃10 = self.𝜃10\n", " 𝜃20 = self.𝜃20\n", " w11 = self.w11\n", " w21 = self.w21\n", " g = self.g\n", "\n", " # We need to find a fixed point on the value of the firm\n", " V_crit = 1\n", "\n", " Y = njit(lambda 𝜖, fk: np.exp(𝜖)*fk)\n", " intqq1 = njit(lambda 𝜖, fk, 𝜃1, 𝜓1, b: (w11(𝜖) + 𝜃1*(Y(𝜖, fk) - b))**(-𝜓1)*(Y(𝜖, fk) - b)*g(𝜖))\n", " intp1 = njit(lambda 𝜖, fk, 𝜓2, b: (Y(𝜖, fk)/b)*(w21(𝜖) + Y(𝜖, fk))**(-𝜓2)*g(𝜖))\n", " intp2 = njit(lambda 𝜖, fk, 𝜃2, 𝜓2, b: (w21(𝜖) + 𝜃2*(Y(𝜖, fk)-b) + b)**(-𝜓2)*g(𝜖))\n", " intqq2 = njit(lambda 𝜖, fk, 𝜃2, 𝜓2, b: (w21(𝜖) + 𝜃2*(Y(𝜖, fk)-b) + b)**(-𝜓2)*(Y(𝜖, fk) - b)*g(𝜖))\n", " intk1 = njit(lambda 𝜖, fk, 𝜓2: (w21(𝜖) + Y(𝜖, fk))**(-𝜓2)*np.exp(𝜖)*g(𝜖))\n", " intk2 = njit(lambda 𝜖, fk, 𝜃2, 𝜓2, b: (w21(𝜖) + 𝜃2*(Y(𝜖, fk)-b) + b)**(-𝜓2)*np.exp(𝜖)*g(𝜖))\n", " intB1 = njit(lambda 𝜖, fk, 𝜃1, 𝜓1, b: (w11(𝜖) + 𝜃1*(Y(𝜖, fk) - b))**(-𝜓1)*g(𝜖))\n", " intB2 = njit(lambda 𝜖, fk, 𝜃2, 𝜓2, b: (w21(𝜖) + 𝜃2*(Y(𝜖, fk) - b) + b)**(-𝜓2)*g(𝜖))\n", "\n", " while V_crit>1e-4:\n", "\n", " # We begin by adding the guess for the value of the firm to endowment\n", " V = (Vl+Vh)/2\n", " ww10 = w10 + 𝜃10*V\n", " ww20 = w20 + 𝜃20*V\n", "\n", " # Figure out the optimal level of debt\n", " bl = bbot\n", " bh = btop\n", " b_crit=1\n", "\n", " while b_crit>1e-5:\n", "\n", " # Setting the conjecture for debt\n", " b = (bl+bh)/2\n", "\n", " # Figure out the optimal level of capital\n", " kl = kbot\n", " kh = ktop\n", " k_crit=1\n", "\n", " while k_crit>1e-5:\n", "\n", " # Setting the conjecture for capital\n", " k = (kl+kh)/2\n", "\n", " # Production\n", " fk = A*(k**𝛼)\n", "# Y = lambda 𝜖: np.exp(𝜖)*fk\n", "\n", " # Compute integration threshold\n", " epstar = np.log(b/fk)\n", "\n", "\n", " #**************************************************************\n", " # Compute the prices and allocations consistent with consumers'\n", " # Euler equations\n", " #**************************************************************\n", "\n", " # We impose the following:\n", " # Agent 1 buys equity\n", " # Agent 2 buys equity and all debt\n", " # Agents trade such that prices converge\n", "\n", " #========\n", " # Agent 1\n", " #========\n", " # Holdings\n", " 𝜉1 = 0\n", " 𝜃1a = 0.3\n", " 𝜃1b = 1\n", "\n", " while abs(𝜃1b - 𝜃1a) > 0.001:\n", "\n", " 𝜃1 = (𝜃1a + 𝜃1b) / 2\n", "\n", " # qq1 is the equity price consistent with agent-1 Euler Equation\n", " ## Note: Price is in the date-0 budget constraint of the agent\n", "\n", " ## First, compute the constant term that is not influenced by q\n", " ## that is, 𝛽E[u'(c^{1}_{1})d^{e}(k,B)]\n", "# intqq1 = lambda 𝜖: (w11(𝜖) + 𝜃1*(Y(𝜖, fk) - b))**(-𝜓1)*(Y(𝜖, fk) - b)*g(𝜖)\n", "# const_qq1 = 𝛽 * quad(intqq1,epstar,bound)[0]\n", "\n", " const_qq1 = 𝛽 * quad(intqq1,epstar,bound, args=(fk, 𝜃1, 𝜓1, b))[0]\n", "\n", "\n", " ## Second, iterate to get the equity price q\n", " qq1l = 0\n", " qq1h = ww10\n", " diff = 1\n", " while diff > 1e-7:\n", " qq1 = (qq1l+qq1h)/2\n", " rhs = const_qq1/((ww10-qq1*𝜃1)**(-𝜓1));\n", " if (rhs > qq1):\n", " qq1l = qq1\n", " else:\n", " qq1h = qq1\n", " diff = abs(qq1l-qq1h)\n", "\n", " #========\n", " # Agent 2\n", " #========\n", " 𝜉2 = b - 𝜉1\n", " 𝜃2 = 1 - 𝜃1\n", "\n", " # p is the bond price consistent with agent-2 Euler Equation\n", " ## Note: Price is in the date-0 budget constraint of the agent\n", "\n", " ## First, compute the constant term that is not influenced by p\n", " ## that is, 𝛽E[u'(c^{2}_{1})d^{b}(k,B)]\n", "# intp1 = lambda 𝜖: (Y(𝜖, fk)/b)*(w21(𝜖) + Y(𝜖, fk))**(-𝜓2)*g(𝜖)\n", "# intp2 = lambda 𝜖: (w21(𝜖) + 𝜃2*(Y(𝜖, fk)-b) + b)**(-𝜓2)*g(𝜖)\n", "# const_p = 𝛽 * (quad(intp1,-bound,epstar)[0] + quad(intp2,epstar,bound)[0])\n", " const_p = 𝛽 * (quad(intp1,-bound,epstar, args=(fk, 𝜓2, b))[0]\\\n", " + quad(intp2,epstar,bound, args=(fk, 𝜃2, 𝜓2, b))[0])\n", "\n", " ## iterate to get the bond price p\n", " pl = 0\n", " ph = ww20/b\n", " diff = 1\n", " while diff > 1e-7:\n", " p = (pl+ph)/2\n", " rhs = const_p/((ww20-qq1*𝜃2-p*b)**(-𝜓2))\n", " if (rhs > p):\n", " pl = p\n", " else:\n", " ph = p\n", " diff = abs(pl-ph)\n", "\n", " # qq2 is the equity price consistent with agent-2 Euler Equation\n", "# intqq2 = lambda 𝜖: (w21(𝜖) + 𝜃2*(Y(𝜖, fk)-b) + b)**(-𝜓2)*(Y(𝜖, fk) - b)*g(𝜖)\n", " const_qq2 = 𝛽 * quad(intqq2,epstar,bound, args=(fk, 𝜃2, 𝜓2, b))[0]\n", " qq2l = 0\n", " qq2h = ww20\n", " diff = 1\n", " while diff > 1e-7:\n", " qq2 = (qq2l+qq2h)/2\n", " rhs = const_qq2/((ww20-qq2*𝜃2-p*b)**(-𝜓2));\n", " if (rhs > qq2):\n", " qq2l = qq2\n", " else:\n", " qq2h = qq2\n", " diff = abs(qq2l-qq2h)\n", "\n", " # q be the maximum valuation for the equity among agents\n", " ## This will be the equity price based on Makowski's criterion\n", " q = max(qq1,qq2)\n", "\n", " #================\n", " # Update holdings\n", " #================\n", " if qq1 > qq2:\n", " 𝜃1a = 𝜃1\n", " else:\n", " 𝜃1b = 𝜃1\n", "\n", " #================\n", " # Get consumption\n", " #================\n", " c10 = ww10 - q*𝜃1\n", " c11 = lambda 𝜖: w11(𝜖) + 𝜃1*max(Y(𝜖, fk)-b,0)\n", " c20 = ww20 - q*(1-𝜃1) - p*b\n", " c21 = lambda 𝜖: w21(𝜖) + (1-𝜃1)*max(Y(𝜖, fk)-b,0) + min(Y(𝜖, fk),b)\n", "\n", "\n", " #*************************************************\n", " # Compute the first order conditions for the firm\n", " #*************************************************\n", "\n", " #===========\n", " # Equity FOC\n", " #===========\n", " # Only agent 2's IMRS is relevent\n", "# intk1 = lambda 𝜖: (w21(𝜖) + Y(𝜖, fk))**(-𝜓2)*np.exp(𝜖)*g(𝜖)\n", "# intk2 = lambda 𝜖: (w21(𝜖) + 𝜃2*(Y(𝜖, fk)-b) + b)**(-𝜓2)*np.exp(𝜖)*g(𝜖)\n", "# kfoc_num = quad(intk1,-bound,epstar)[0] + quad(intk2,epstar,bound)[0]\n", " kfoc_num = quad(intk1,-bound,epstar, args=(fk, 𝜓2))[0] + quad(intk2,epstar,bound, args=(fk, 𝜃2, 𝜓2, b))[0]\n", " kfoc_denom = (ww20- q*𝜃2 - p*b)**(-𝜓2)\n", " kfoc = 𝛽*𝛼*A*(k**(𝛼-1))*(kfoc_num/kfoc_denom) - 1\n", "\n", " if (kfoc > 0):\n", " kl = k\n", " else:\n", " kh = k\n", " k_crit = abs(kh-kl)\n", "\n", " if print_crit:\n", " print(\"critical value of k: {:.5f}\".format(k_crit))\n", "\n", "\n", " #=========\n", " # Bond FOC\n", " #=========\n", "# intB1 = lambda 𝜖: (w11(𝜖) + 𝜃1*(Y(𝜖, fk) - b))**(-𝜓1)*g(𝜖)\n", "# intB2 = lambda 𝜖: (w21(𝜖) + 𝜃2*(Y(𝜖, fk) - b) + b)**(-𝜓2)*g(𝜖)\n", "\n", "# bfoc1 = quad(intB1,epstar,bound)[0] / (ww10 - q*𝜃1)**(-𝜓1)\n", "# bfoc2 = quad(intB2,epstar,bound)[0] / (ww20 - q*𝜃2 - p*b)**(-𝜓2)\n", "\n", " bfoc1 = quad(intB1,epstar,bound, args=(fk, 𝜃1, 𝜓1, b))[0] / (ww10 - q*𝜃1)**(-𝜓1)\n", " bfoc2 = quad(intB2,epstar,bound, args=(fk, 𝜃2, 𝜓2, b))[0] / (ww20 - q*𝜃2 - p*b)**(-𝜓2)\n", " bfoc = bfoc1 - bfoc2\n", "\n", " if (bfoc > 0):\n", " bh = b\n", " else:\n", " bl = b\n", " b_crit = abs(bh-bl)\n", "\n", " if print_crit:\n", " print(\"#=== critical value of b: {:.5f}\".format(b_crit))\n", "\n", " # Compute the value of the firm\n", " value_x = -k + q + p*b\n", " if (value_x > V):\n", " Vl = V\n", " else:\n", " Vh = V\n", " V_crit = abs(value_x-V)\n", "\n", " if print_crit:\n", " print(\"#====== critical value of V: {:.5f}\".format(V_crit))\n", "\n", " print('k,b,p,q,kfoc,bfoc,epstar,V,V_crit')\n", " formattedList = [\"%.3f\" % member for member in [k,\n", " b,\n", " p,\n", " q,\n", " kfoc,\n", " bfoc,\n", " epstar,\n", " V,\n", " V_crit]]\n", " print(formattedList)\n", "\n", " #*********************************\n", " # Equilibrium values\n", " #*********************************\n", "\n", " # Return the results\n", " kss = k\n", " bss = b\n", " Vss = V\n", " qss = q\n", " pss = p\n", " c10ss = c10\n", " c11ss = c11\n", " c20ss = c20\n", " c21ss = c21\n", " 𝜃1ss = 𝜃1\n", "\n", "\n", " # Print the results\n", " print('finished')\n", " # print('k,b,p,q,kfoc,bfoc,epstar,V,V_crit')\n", " #formattedList = [\"%.3f\" % member for member in [kss,\n", " # bss,\n", " # pss,\n", " # qss,\n", " # kfoc,\n", " # bfoc,\n", " # epstar,\n", " # Vss,\n", " # V_crit]]\n", " #print(formattedList)\n", "\n", " return kss,bss,Vss,qss,pss,c10ss,c11ss,c20ss,c21ss,𝜃1ss\n", "\n", "\n", " #*************************************************************\n", " # Function: Equity and bond valuations by different agents\n", " #*************************************************************\n", " def valuations_by_agent(self,\n", " c10, c11, c20, c21,\n", " k, b):\n", "\n", " # Load parameters\n", " 𝜓1 = self.𝜓1\n", " 𝜓2 = self.𝜓2\n", " 𝛼 = self.𝛼\n", " A = self.A\n", " 𝛽 = self.𝛽\n", " bound = self.bound\n", " Vl = self.Vl\n", " Vh = self.Vh\n", " kbot = self.kbot\n", " ktop = self.ktop\n", " bbot = self.bbot\n", " btop = self.btop\n", " w10 = self.w10\n", " w20 = self.w20\n", " 𝜃10 = self.𝜃10\n", " 𝜃20 = self.𝜃20\n", " w11 = self.w11\n", " w21 = self.w21\n", " g = self.g\n", "\n", " # Get functions for IMRS/state price density\n", " IMRS1 = lambda 𝜖: 𝛽 * (c11(𝜖)/c10)**(-𝜓1)*g(𝜖)\n", " IMRS2 = lambda 𝜖: 𝛽 * (c21(𝜖)/c20)**(-𝜓2)*g(𝜖)\n", "\n", " # Production\n", " fk = A*(k**𝛼)\n", " Y = lambda 𝜖: np.exp(𝜖)*fk\n", "\n", " # Compute integration threshold\n", " epstar = np.log(b/fk)\n", "\n", " # Compute equity valuation with agent 1's IMRS\n", " intQ1 = lambda 𝜖: IMRS1(𝜖)*(Y(𝜖) - b)\n", " Q1 = quad(intQ1, epstar, bound)[0]\n", "\n", " # Compute bond valuation with agent 1's IMRS\n", " intP1 = lambda 𝜖: IMRS1(𝜖)*Y(𝜖)/b\n", " P1 = quad(intP1, -bound, epstar)[0] + quad(IMRS1, epstar, bound)[0]\n", "\n", " # Compute equity valuation with agent 2's IMRS\n", " intQ2 = lambda 𝜖: IMRS2(𝜖)*(Y(𝜖) - b)\n", " Q2 = quad(intQ2, epstar, bound)[0]\n", "\n", " # Compute bond valuation with agent 2's IMRS\n", " intP2 = lambda 𝜖: IMRS2(𝜖)*Y(𝜖)/b\n", " P2 = quad(intP2, -bound, epstar)[0] + quad(IMRS2, epstar, bound)[0]\n", "\n", " return Q1,Q2,P1,P2\n", "\n", "\n", " #*************************************************************\n", " # Function: equilibrium valuations for firm, equity, bond\n", " #*************************************************************\n", " def eq_valuation(self, c10, c11, c20, c21, N=30):\n", "\n", " # Load parameters\n", " 𝜓1 = self.𝜓1\n", " 𝜓2 = self.𝜓2\n", " 𝛼 = self.𝛼\n", " A = self.A\n", " 𝛽 = self.𝛽\n", " bound = self.bound\n", " Vl = self.Vl\n", " Vh = self.Vh\n", " kbot = self.kbot\n", " ktop = self.ktop\n", " bbot = self.bbot\n", " btop = self.btop\n", " w10 = self.w10\n", " w20 = self.w20\n", " 𝜃10 = self.𝜃10\n", " 𝜃20 = self.𝜃20\n", " w11 = self.w11\n", " w21 = self.w21\n", " g = self.g\n", "\n", " # Create grids\n", " kgrid, bgrid = np.meshgrid(np.linspace(kbot,ktop,N),\n", " np.linspace(bbot,btop,N))\n", " Vgrid = np.zeros_like(kgrid)\n", " Qgrid = np.zeros_like(kgrid)\n", " Pgrid = np.zeros_like(kgrid)\n", "\n", " # Loop: firm value\n", " for i in range(N):\n", " for j in range(N):\n", "\n", " # Get capital and debt\n", " k = kgrid[i,j]\n", " b = bgrid[i,j]\n", "\n", " # Valuations by each agent\n", " Q1,Q2,P1,P2 = self.valuations_by_agent(c10,\n", " c11,\n", " c20,\n", " c21,\n", " k,\n", " b)\n", "\n", " # The prices will be the maximum of the valuations\n", " Q = max(Q1,Q2)\n", " P = max(P1,P2)\n", "\n", " # Compute firm value\n", " V = -k + Q + P*b\n", " Vgrid[i,j] = V\n", " Qgrid[i,j] = Q\n", " Pgrid[i,j] = P\n", "\n", " return kgrid, bgrid, Vgrid, Qgrid, Pgrid" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Examples\n", "\n", "Below we show some examples computed with the class `BCG_incomplete markets`.\n", "\n", "### First example\n", "\n", "In the first example, we set up an instance of the BCG incomplete\n", "markets model with default parameter values." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.178', '0.503', '0.407', '0.092', '0.000', '-0.000', '-0.568', '0.250', '0.131']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.155', '0.487', '0.381', '0.073', '0.000', '0.000', '-0.518', '0.125', '0.021']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.144', '0.479', '0.368', '0.065', '0.000', '0.000', '-0.492', '0.062', '0.034']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.150', '0.484', '0.374', '0.069', '0.000', '-0.000', '-0.504', '0.094', '0.006']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.153', '0.486', '0.377', '0.071', '0.000', '-0.000', '-0.510', '0.109', '0.008']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.151', '0.484', '0.376', '0.070', '0.000', '0.000', '-0.508', '0.102', '0.001']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.151', '0.483', '0.375', '0.070', '-0.000', '0.000', '-0.507', '0.098', '0.003']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.151', '0.484', '0.375', '0.070', '0.000', '-0.000', '-0.507', '0.100', '0.001']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.151', '0.484', '0.376', '0.070', '0.000', '0.000', '-0.507', '0.101', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.151', '0.484', '0.376', '0.070', '0.000', '0.000', '-0.508', '0.101', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.151', '0.484', '0.376', '0.070', '-0.000', '-0.000', '-0.507', '0.101', '0.000']\n", "finished\n" ] } ], "source": [ "mdl = BCG_incomplete_markets()\n", "kss,bss,Vss,qss,pss,c10ss,c11ss,c20ss,c21ss,𝜃1ss = mdl.solve_eq(print_crit=False)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.10073912888808995\n", "0.100830078125\n", "0.98564453125\n" ] } ], "source": [ "print(-kss+qss+pss*bss)\n", "print(Vss)\n", "print(𝜃1ss)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Python reports to us that the equilibrium firm value is $V=0.101$,\n", "with capital $k = 0.151$ and debt $b=0.484$.\n", "\n", "Let’s verify some things that have to be true if our algorithm has truly\n", "found an equilibrium.\n", "\n", "Thus, let’s see if the firm is actually maximizing its firm value given\n", "the equilibrium pricing function $q(k,b)$ for equity and\n", "$p(k,b)$ for bonds." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum valuation of the firm value in the (k,B) grid: 0.10074\n", "Equilibrium firm value: 0.10083\n" ] } ], "source": [ "kgrid, bgrid, Vgrid, Qgrid, Pgrid = mdl.eq_valuation(c10ss, c11ss, c20ss, c21ss,N=30)\n", "\n", "print('Maximum valuation of the firm value in the (k,B) grid: {:.5f}'.format(Vgrid.max()))\n", "print('Equilibrium firm value: {:.5f}'.format(Vss))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Up to the approximation involved in using a discrete grid, these numbers\n", "give us comfort that the firm does indeed seem to be maximizing its\n", "value at the top of the value hill on the $(k,b)$ plane that it\n", "faces.\n", "\n", "Below we will plot the firm’s value as a function of $k,b$.\n", "\n", "We’ll also plot the equilibrium price functions $q(k,b)$ and\n", "$p(k,b)$." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAK8CAYAAAANumxDAAAgAElEQVR4XuydBXgjR7aFr8gye5jCMGHmTDbMzMycDTPTZDLhDTNzssEN027wZcLMTJNk2OMxW/S+U+2SW7Kgu9VSy/Kp9+1LYncX/FWyTt8+dcuXSCQSwkICJEACJEACJEACJEACFUrAR8FboTPLYZEACZAACZAACZAACSgCFLxcCCRAAiRAAiRAAiRAAhVNgIK3oqeXgyMBEiABEiABEiABEqDg5RogARIgARIgARIgARKoaAIUvBU9vRwcCZAACZAACZAACZAABS/XAAmQAAmQAAmQAAmQQEUToOCt6Onl4EiABEiABEiABEiABCh4uQZIgARIgARIgARIgAQqmgAFb0VPLwdHAiRAAiRAAiRAAiRAwcs1QAIkQAIkQAIkQAIkUNEEKHgreno5OBIgARIgARIgARIgAQpergESIAESIAESIAESIIGKJkDBW9HTy8GRAAmQAAmQAAmQAAlQ8HINkAAJkAAJkAAJkAAJVDQBCt6Knl4OjgRIgARIgARIgARIgIKXa4AESIAESIAESIAESKCiCVDwVvT0cnAkQAIkQAIkQAIkQAIUvFwDJEACJEACJEACJEACFU2Agreip5eDIwESIAESIAESIAESoODlGiABEiABEiABEiABEqhoAhS8FT29HBwJkAAJkAAJkAAJkAAFL9cACZAACZAACZAACZBARROg4K3o6eXgSIAESIAESIAESIAEKHi5BkiABEiABEiABEiABCqaAAVvRU8vB0cCJEACJEACJEACJEDByzVAAiRAAiRAAiRAAiRQ0QQoeCt6ejk4EiABEiABEiABEiABCl6uARIgARIgARIgARIggYomQMFb0dPLwZEACZAACZAACZAACVDwcg2QAAmQAAmQAAmQAAlUNAEK3rTp7e6JSCQSlerqKgkGAuq3z77yjjS3tMq+u2ym/juRSEh7R5cEAgGpqa5SP/vg02/li29/lh23XFeGNjU4XjSZ2ndcmcs3RmMx+d9bH8tPv/0l8VhcVltpSVlh6UUlHk9IfV2Ny615Wx3Geu+jL8lC842RjdddxZPOlMNa+OX3v2XKh1/JzNlz1RzvteMmUlsT9oTHMy9PkXltHbL3Tpt40r7dRjP9nchWBzi/NuUT+ccaK8gSi85vt6ms12f6zK61yjJ563/jnc/kp9/+lJWWXVxWWX4Jdf1Lr78vf02bLQfsvoX4fL68daRfYPVv5O9/zpD/vvWhNNbXyS7brG+7Hd5AAiRAApkIlJ3gffTZ1+X8K+7OOlujRw6VVx+9qmizec5ld8oTz78pN196kqy75vKqnX2OniyffPmDfPW60a+pf8+Uzfc8RZZbchH59y3nqZ9ddeujcvuDz8l/7rpQxi/i/AsrU/tFG6yNivHlfegpV8g7H36VvGv37TeS16d8ItNnNsv7z98sdbXVNmos70s7u3pktS0OU2L32knHFq2zv/85XR595g1Zf+0VZbUVl0xpx+u18N4n38hBJ1ya0id89vAZLFbJxWP3wyfKz7//LR+8cHOxmne13kx/J7I18MqbH8rx514vF51xqGy/+Tqu9CPbZ/bcE/bLWf/f02fLJrufpIT33decIU0Nder6w065Qt7+4Ev54tW7xO+3L3it/o2MxeJy5iW3qUDDzZeeKOuuuYIrPFgJCZDA4CZQdoL3kadfk4lX3qP+2M4/dmS/2Rk2tFEmnnxg0WbttgeeFUQ3TjlyD1lxmcUyCl5Eu0447wZZZMGxMunUg1wVvJnaL9pgbVT88Rffy77HXKQeAs476UAZNXyItLV3yjmX3yFzmlvltitOSUa7bVRbtpeWSvC+/8m3cuAJl8ipR+0p+++6eQoPr9cCxC5ELwT/emuvKB2dXVJfWyOBgL9o85aLx0ATvJn+TpRS8Gb7zDY1GgI2Wznx/Bvkpdc/kFcevkLGjRmRvKxUghcN4i3b9geeJRC/T909WarDxps0FhIgARJwSqBsBa+bkQ6ncPR96RHeTPVZjV4U2hev7n/8uTfl3MvvlEvOPEy23WyCV90oWbvlIHhLNtgsDa2+5RHSUF9T1Dcq6U1XkuC1M3/FiPA6+cwiggth+8/9tpejD9oxZQilFLxoGIGHI8+4So45aCc5Yr/t7ODktSRAAiTQj8CAF7xffPOzXHfnE+pVW21NtXo17Pf5JBgMqNeDKPCO3fnwC3LQHlvK6istlYSAV3cXXHWvbLb+asp7i/L0y2/LC6++L2ceu7csMG6U+lm64EX04dhzrlMRYP2HWAteWCHgP3vrvc+lta1T1ll9OTnruH1k5PAhyXYvveEhZQO47JzDBb5E9K+to1POOX4/eeejr1Lah3f4zItvV6/19tpx45QJPPmCm2TEsCY5/ei91M+/+u5Xuf6uJ2XnrdeT36ZOl2dfmSLf/zxV1ltrRTn5iN1k3JiRcvuDz8orb3yofLgrLLOY4PXm0uMXyvnRwKtFMMYrWtg4EGVHuXbSMXL1bY/Jn9NmydUXHK1+1tXdo6Lfqyw/XnbbbkN5/Lk35Mtvf5GG+loVmddjB7fr73pC3vnwaxk5vEm23/wfcvi+2yrryK33PysffvadVIdDstNW68nRB+0koaDhp85Ufvr1T7ni5kdUm4fuvU3KJYhKnjTxJllo/tGKE3hefO0D8u2Pv8vfM+aoqCXeJsAruNt2GyXbySR47ayjz7/+SW6692n5+be/FDeszeWXWkT23XUz2XDCyqqPuGbyNffLl9/9ot5mLLrQOPVzPY5MaxG/h+3nieffUvdjXPB9HnfIzimWEs35qAN3kBvu+o9ajyhbbLiGnHrkHmo+shX4Po8561p5893PVL+11WKrjdZMPuxY6cOTL7wlL7/xoZxz/L5qPcKjirWy/65byBor930OdT/y8dAR3odvPtfSmF6f8qnyYX/x7S9qLcGPevI/91DMrBTz3xZcv/kGqytfv/lvi/7M7bH9RrLAfKPUZ+6Hn6fK2qstJ7tus36/vxOoJxKNyW33PyPP/vcdxWWxhcbJuDHD5a33vrBsaUD09uZ7n5ZPvvxRjW3VFZaUEw/fVRaczxhbrs9sKBTMOvxdDj1PvvnhN5nyzA1JK4O+OJPgbWltl8lX3yet7Z1qDS61+IJZ67bzN1JXsuNBZ6u/Ye88e6M05lizVuaT15AACQxuAgNa8L770ddy8EmXqRmEkG1sqFUCCiJm2JAGees/16nfPf+/9+SUSTfJ5ef8U7baeM3kjEMobXfAWXLwnlvJiYfvpn5+/Z1Pyk33PiWP3TYxKQTTBW8mMaT/mOvKISKnz5wjc+a2KjHz7L0Xi/6iwRc3RA7EI/6pC6557r/vprQPUbbJbicq8XjeifunrFZE4PDljb6iQNQccdqVyWv0Fzu+VMEDIgf/jp/jVSGEGMTek3demPNTAHFz7e2PJ8eCegJ+v9x//Vly4AmXpvibYXNYc+t/Kp8nHgwwfhQ9H3rsukEzgzVXXlq9Qkcx//y6ycfJRusYIjFTgUDbcOfjVVvwd0Kk6YIHitMvulVOOmI3OWiPrQQe0S33Pk31D3MUCgbVwxLWDH6P61AyzbGddQSxd/aldyi+sL6gfggalBsuOl42mLCSfPT593LmxbepeQCf0SOHqd9PWG1ZtR4zrUUIWYg49H+NlZdW86mF7+O3T0raSjJxhv8V/cBDhLbiZOIJQbbPURcm16Z+INpt2w3UOrTaB/2ZwIMV+qgL2kYf0ks+HnbGdOfDz8u/bn5ENQGhio1QEHIorz12tYwa0fcAmokB5uqI0/6lfoV1CX/6ux9/0+9vi/7MgZGuH/fgLch5Jx7QzwcOX+3hp/5LrTnMOdjMmt2SZG3lzdZ/3/pIjjvH+Nu2+QZrSHdPj0DcozxxxyRZcrEF1ENRts9sNsE7Y9Zc2XCX47P61tMFb0dnt4oG4yH1tKP2lP3SLDnpXO38jdT33v3vF+Xymx6WfH8Dsv1t4M9JgARIQBMoW8GLDpqFi+6wFngQOdvtf6b6wofwWnm58eoSfFlvs+/phsDwQPDusMU/5OR/7q4yNaAvJ553vbz69idy6VmHyzabrq36qL+4Edk5/rBdVeQPkdHRI4aq6KZZcDsRvBBZk08/RJZZYmHV3qmTbpbn/veuEl8Xn3mYisLgi/ekiTcqr97rj1+dEoHO9PG459GX5LIbHpK7rjo9JTqX/jCgBS/qwIYvRPMWXWistLZ1qOiTHvtRB+6oHjTCVSHRDx6459iDd5YDd99CqqpC8t1Pf8hOB5+jIttnHbdvzk8tItCIeKVbLrQPVY8RQvavaTNlsYXnS9aHnf9b73OadHVHkhuiChW8EA/YyG6O7H/9/a+y62HnK5Fy5flHqvZzvcJPF7w//vKn8jXiYeCOK09NZsbQQgIiGUzNa+zI/beXg/bcWglhPBBgsyU+G5//7868XtxlNzhA7dC/77ozk6zs9EH3C59jeOLXXnUZCVdVqTnP5iPNZ2nAA2K+MenNYhChd/zr1GRb+iEEwgwCLVvp6YnItvufqR5EHrzxnKSXP9PfFvNDJt4uIIKOhxFk2GhqqO8nePF5g0cWb36umXRs8gFFP5jlE7yod8u9T1VviPCAjIcpFN0P1Hvr5Sern2X7zGYb9wuvvid4a5TNtmQWvJFoVI456xol3E84bFc5ZK+t836r6vVg5W+krgzZK7bZ7wwlpnPNWd7GeQEJkMCgJ1C2ghdRUbNY0DOFV/h4fa7FkDlTgr5mq31OUwLLC8GbnqXhs69/kr2OnJQSodWi79NXbk9GfXXf00WOE8ELmwIyKOiiv0zTI2taAFx5/lEqCpar2BW8sFHcdMkJ/arMtvFoo11PUBFhPWf6xnV3OEZFpp+/PzVbQHrFOnKLSP/dV5+ufq2FT6ZMCxC0P/z8h0yf1SzNc1vl/sdfUTYP/Sq3UMGr+ze3pU1++GWqzJzdInPntcnka+5LiarbEbzYxAYLyTWTjpFN1l01iQAp8tbY6ggVsdbR/myc9YYkK1HOTILXTh+0wHn4pnNl+aUXtfTHNp/gzZSlIX1Mdz/yolx+48PqIXPzDddIttvR0SUTtjuqn4hP7xhsCrsdfn7Gtyrpf1u00Dzln3uodF3mkmkN6b5ed+GxstE/+tLdWfXwIpqKh0ykSNRWJt0mNpXC6qBf/9sVvPp6cwDBPB4teD95+TY5edJNKkUhfL7w+1op2fY5ZPobqevDw8fKmx2q/j7h7xQLCZAACTglULaCN1+kQ0dKMm2uKCfBC4/bhG2PUtkN4O9FybXbvBiCFxFmRGPOP/kA2XWbDZJrRX/JXnjawUkPc7aFZFfwmqOY5jqzjR1eval/z+qXcip9LnMtdB3NffHBy5T/+pb7npFr73g8JbUR3gzcfM/TKoqeqbz91PUypKm+YEsD5n3iv+5WEfT0YraR2BG8Ok2ZObKn6wYnvO3QqfOycUYGFGRCSd+Bn4lFJsFrpw9ONnI6EbzpY9L/nW2t5EttqK0r6Z8X1JdN8KY/ZOLaTIJXz1O6R9aq4M328Ir2Lrr2AXngiVfk8dsvUG9x7ApePEzhgea///6XjB09vB8+LXhh10A/9t5pU7XXwWrJth4y/Y0014mH3oUXGJvypsFqm7yOBEiABDSBASt4kSsXX76IcugDIcxf/uUS4cXr8rW3OVJtHNMRz1ILXvj7jjrz6n6C99X/+1iOOftaKWfBC9sKNpqlR34zfYT1K1lEnQ7fZzv16hev7197/OrkISIQwBDCEJ2H7r2tLL7IfCrF2kXX3q9sH24J3j2PnKR8q4gu4yEDVhzYXCB48JZC+6btCF5tTXn54StkPlO6KLDQm3u+fO0udShAtjU26ap75eGnXnUseO30oVSCN31Muo/HH7qLYp1ecHAGHsiyFf3mI1PUtlDBC989Npmlr2erglfnKc9kO0BUG9FtHVG3K3j1fP3v0StlTK+f3MxIC179M1iy7rv+rH6b27JxzbYeMv2NpOClSCEBEnCbwIAVvDp9zpYbrSlXnPvPFC7pX0paCKW/0i/GprV0S4O2Xpg9aHYEL7x6eN2PqAq+5Mwl26a19GjTYBG88EGvu8OxKpUWXmcfcPwlAq8wPJ+6QECbrQv659g89tRLb+cUvFbXEbyyiEplstvg55kEr95UZ57f9Gi//m9YNszZRrABca1tjlTZLrT1o1iC104fChG8mXhYHdON9zwlN9z1pNx+xSmy9mrL2v6b+e7HX8vBJ16WcfNWoYJX25lgC4BPXRerghcHvxxy8uUZrQQ4uAL1aL+6XcGrrSAP3XiO2kyXXrTghf/8869/VuIaHu/brjjZUp7cbOsh099I3TZ80yttcjAtDbZXMW8gARJIJzBgBa8WgtjpjC95nWYJO6X3O/bilCgKUlztf9zFKZ48HIeL13+XXP+gq1ka0gWvfgVs9l3aEbzwta606SEq08MLD1yWPOFIe/nMvk3tJxysgheL25xBAGsk/dU9HhIQ9TWnOcIr1cNOvkLtlM8V4bW6jvSDFDZSwg+pC4Q2BLfZ0qC/7JHW6py0E7DSBa+e3/SHPBz5euL5N6pIMl7Do1gVh7n+JGayNNjpgxPBm4uH1TFpUQjRds/Vp6cIS2yqRCovfYpipvHrV+zYbPfwTeeoDY74HD754v8pm4o5A0y2zxzqzWRpwCmSiNKaI7R4YLnm9sfkjoeez5uWbHbzPFlvx2PVxrjn7rs0uentr2mzZNM9TlZ/J2DpQZTfruDVVg4EELDGsglenLSGcvrkW9RbkU3XW02uOO+fybco+B0yicBis84ayyczrGRbD5n+Ruq2kV0Db2oyeZb5dU4CJEACdgiUreCFkFt4gTH9xjK0qT65Y/+sS26X/7z4f8lcpL//OS2Z+sn8pYRXZhvveqISOtjMNaypQV5/59NkGiE305JB5CCvL74s33zvM7WxA5G+h246NylW7QheAECkEjlgYYtALtHPv/kpmYaIgjd1iWjBhJ+afdP6KghDCESIoQ0nrCQ4Des/L76t1gZKLsFrdR1BHCEqj0gvxAA2bH3/8x8qNyqKWfCi3fV3Ol61Dz860l8h8rf3Tpv0S0uGzBrYmISHHQiSDdZeSf74e4a6DsUs7q2KQ7uC104fnAjeXDzsjOnYc65Vnz1YSZBjGSfEff39b0qgrb3aMnmPi4b4vPIWI60ZxCUennQpRPAipyzsJyjwwMJe8cY7n6pcsyj59i7gGp2RBH9Xdt9+QyXGb7n/GdVH8wZUu4JXb5DN9NYM7aanJcOGMqRBRCpB/F3VRxbDJ7/ixger8Tx883kqCw2KXg9W/kZq1ghKwJuMjcr4LLGQAAmQgFMC5Sd4n3ldRVGyFfOGE+SBPP+Ku9SXGApE5j/3307+/dRrKWnJlBjoPate14tIyD47b6oivEipg9Q6KHgVileiOp8lfpYtDy/+AOsDF/SGD/jaEMnTBaLrojMOU1EhXXIJ3kztI2J45BlXq6wDepx45Ys8o4suOFb+fct56ufa5oF8vciXqos+seiCUw5Sh1LoojezWfHwImKD6Ok915yRPIggExudMcDupjUkvEdECHl0zQXiYNacFkseXjNfRGvTsxng90gXhg185vzHW2+8lmoDX9xTnr5BpbHS0TnzHNtZRx9/8YMcd861yTzEuPeoA3aQu/79osw/dkRK7mPMDzYLQciioD+XnXNExrXYMq9dJl6ZuhkOog7XQwDlW2PIEvHgk/+T/z5ypYwdZeT9zVYQ4TVnvdDXWe2D/kw8dddk5ZW2WrLxyPa5yTQm2FuQwxXCVT/MoH2wwqEn2222Tt7u4AHlhdfeU0IS/Uce4jMuuk2JVO3BzvaZQ+XZ1pCOpOoO4G/GhNWXk/see1kuPvPQvH2DoET6Qvyt0AV/+yA4zacgZvvM5hq4tvy8++yN/Q4nQV5i5CdGhNfv96lqsFdiv2MvUoJdpyeDdx0edjxUwh6hi52/kfqeXAdh5J1AXkACJEACJgJlJ3idzA6+WJrnzpMxo4arP8TZdvZDIP/x1wx1Yk+mXchO2s50D0QVIodowyx0C6kfX3J4vYevGZzohBOfWJwRgJ0F6wBCaNzoEVlzwmar3eo6Qs5UiHgUZI1ALtxcBesGEVSk49OCItv1eLBAKrbhQ5vyHqLgjFL+u4rdBzs8svUWPPEwA5GOh+VcJ8zlG7G2OriRIgvR0V+nTleH5WTaIJavL/g9IrtYA8FgUFkZAgG/ldtyXqMtGsgpjE1/TopOXZd+0I+5Lit/I3Ey39FnXtPPh++kT7yHBEiABCpC8KZPo51UVlwCJEACJJBOAMIPYnK5pRaVkcOaZOacFmUlgD/42knHqg1tlVq07QdRbNhv7BakB0Tu6f89cmWKf9pOPfBab3fAmeokxKfunmxpU5yd+nktCZDA4CNAwTv45pwjJgESyENAZyxIv2wwnPiljxhGRPyhG89VkXGrRds47BxIkV43ot9Hnnm1erjASXlrrbqM1eZ5HQmQAAlkJVCRghd+3Wg0lnGnMdcCCZAACeQjAPvCp1/+KH9NnyVdXT0yZtQwdZiDPso33/0D/fc4se3XP6bJ+EXmt3xKnh4zNnfC5+zUdoW9Cu9/8o3U19WqDcAsJEACJOAGgYoUvG6AYR0kQAIkQAIkQAIkQAKVQYCCtzLmkaMgARIgARIgARIgARLIQoCCl0uDBEiABEiABEiABEigoglQ8Fb09HJwJEACJEACJEACJEACFLxcAyRAAiRAAiRAAiRAAhVNgIK3oqeXgyMBEiABEiABEiABEqDg5RogARIgARIgARIgARKoaAIUvBU9vRwcCZAACZAACZAACZAABS/XAAmQAAmQAAmQAAmQQEUToOCt6Onl4EiABEiABEiABEiABCh4uQZIgARIgARIgARIgAQqmgAFb0VPLwdHAiRAAiRAAiRAAiRAwcs1QAIkQAIkQAIkQAIkUNEEKHgreno5OBIgARIgARIgARIgAQpergESIAESIAESIAESIIGKJkDBW9HTy8GRAAmQAAmQAAmQAAlQ8HINkAAJkAAJkAAJkAAJVDQBCt6Knl4OjgRIgARIgARIgARIgIKXa4AESIAESIAESIAESKCiCVDwVvT0cnAkQAIkQAIkQAIkQAIUvFwDJEACJEACJEACJEACFU2Agreip5eDIwESIAESIAESIAESoODlGiABEiABEiABEiABEqhoAhS8FT29HBwJkAAJkAAJkAAJkAAFL9cACZAACZAACZAACZBARROg4K3o6eXgSIAESIAESIAESIAEKHi5BkiABEiABEiABEiABCqaAAVvRU8vB0cCJEACJEACJEACJEDByzVAAiRAAiRAAiRAAiRQ0QQoeCt6ejk4EiABEiABEiABEiABCl6uARIgARIgARIgARIggYomQMFb0dPLwZEACZAACZAACZAACVDwcg2QAAmQAAmQAAmQAAlUNAEK3oqeXg6OBEiABEiABEiABEiAgpdrgARIgARIgARIgARIoKIJUPBW9PRycCRAAiRAAiRAAiRAAhS8XAMkQAIkQAIkQAIkQAIVTYCCt6Knl4MjARIgARIgARIgARKg4OUaIAESIAESIAESIAESqGgCFLwVPb0cHAmQAAmQAAmQAAmQAAUv1wAJkAAJkAAJkAAJkEBFE6Dgrejp5eBIgARIgARIgARIgAQoeLkGSIAESIAESIAESIAEKpoABW9FTy8HRwIkQAIkQAIkQAIkQMHLNUACJEACJEACJEACJFDRBCh4K3p6OTgSIAESIAESIAESIAEKXq4BEiABEiABEiABEiCBiiZAwVvR08vBkQAJkAAJkAAJkAAJUPByDZAACZAACZAACZAACVQ0AQreip5eDo4ESIAESIAESIAESICCl2uABEiABEiABEiABEigoglQ8Fb09HJwJEACJEACJEAClULAt+n8ngwl8cpUT9p1s1EKXjdpsi4SIAESIAESIAESKBKBchO8s+a0SF1tjdRUV1kacTyekEQiIYGA39L1bl5EwesmTdZFAiRAAiRAAiRAAkUi4NvMowjvy6kR3t//nC5HnHal/DZ1uhrpTlutJ+eeuL+EgoGsI4fQPf9fd6vfTzz5wCIRyl4tBW/JkbNBEiABEiABEiABErBPwLe5R4L3pVTBe9gpV0h9XY1MPv1QmTZjtux2+EQ594T9ZNvNJmQc1Euvvy8XXn2fzJnbKrtssz4Fr/2p5x0kQAIkQAIkQAIkMDgI+DZfwJOBJl76I9luS2u7TNj2KLn/+rNk5eXGq59PvuY+mTZjjlw3+biM/evo7JZ5be1y1a2PSnW4ioLXk1lkoyRAAiRAAiRAAiQwAAj4tvBI8L7YJ3h/+vVP2e6As+T1x6+WkcOHKGr3PfayPPXS2/LYbRNzUrzgqnslFotR8A6AtcYukgAJkAAJkAAJkIAnBHxbeiR4X+gTvJ98+YPsc/RkmfLMDdLUUKc4PPLM63LzvU/Jq49eRcHrycpgoyRAAiRAAiRAAiRQIQTKQfDqCO8bT1wjI4Y1McJbIWuLwyABEiABEiABEiCBsiDg22pBT/qReP73ZLuZPLyTrrpXZsxqzurh1TfT0uDJ9LFREiABEiABEiABEhg4BMpB8ILWISdfLo31tXLhaYfI3zNmyx5HXJDM0jCvrUP2P/YiOXTvbWWrjddUcKOxmESjMZl8zf0Sj8flnBP2k1AwWNJ8vExLNnDWOXtKAiRAAiRAAiQwiAn4tvYowvtcX4QX+JF/F6nJpv49U83GjluuK+eddIDKw9syr10mbHeUnH38vrLnDhur3z/y9Gsy8cp7UmZu0qkHqfy9pSoUvKUizXZIgARIgARIgARIoAACvm08ErzPpgpePYTpM5tVPt662uoCRlWaWyl4S8OZrZAACZAACZAACZBAQQR82yxU0P1Ob048+5vTW8vmPgrespkKdoQESIAESIAESIAEshPwbeuR4H2GgpGPUsgAACAASURBVJfrkgRIgARIgARIgARIoAQEfNt5JHifpuAtwfSyCRIgARIgARIgARIgAd92C3sCIfH0r56062ajtDS4SZN1kQAJkAAJkAAJkECRCPi290jwPkXBW6QpZbUkQAIkQAIkQAIkQAJmAhS8ztcDI7zO2fFOEiABEiABEiABEigZAd8OHkV4/8MIb8kmmQ2RAAmQAAmQAAmQwGAm4NtxEU+Gn3jyF0/adbNRRnjdpMm6SIAESIAESIAESKBIBCh4nYOl4HXOjneSAAmQAAmQAAmQQMkI+HbyKML7BCO8JZtkNkQCJEACJEACJEACg5mAb2ePBO/jFLyDed1x7CRAAiRAAiRAAiRQMgK+nRctWVvmhhKP/+xJu242SkuDmzRZFwmQAAmQAAmQAAkUiYBvF48E72MUvEWaUlZLAiRAAiRAAiRAAiRgJkDB63w9MMLrnB3vJAESIAESIAESIIGSEfDt6lGE91FGeEs2yWyIBEiABEiABEiABAYzAd9ui3ky/MQjP3nSrpuNMsLrJk3WRQIkQAIkQAIkQAJFIkDB6xwsBa9zdryTBEiABEiABEiABEpGwLe7RxHefzPCW7JJZkMkQAIkQAIkQAIkMJgJ+PbwSPA+TME7mNcdx04CJEACJEACJEACJSPg22PxkrVlbijx8I+etOtmo7Q0uEmTdZEACZAACZAACZBAkQj49vRI8D5EwVukKWW1JEACJEACJEACJEACZgIUvM7XAyO8ztnxThIgARIgARIgARIoGQHfXh5FeB9khLdkk8yGSIAESIAESIAESGAwE/DtPd6T4Sce+MGTdt1slBFeN2myLhIgARIgARIgARIoEgEKXudgKXids+OdJEACJEACJEACJFAyAr59PIrw3s8Ib8kmmQ2RAAmQAAmQAAmQwGAm4NvXI8F7HwXvYF53HDsJkAAJkAAJkAAJlIyAb98lStaWuaHEfd970q6bjdLS4CZN1kUCJEACJEACJEACRSLg288jwXsvBW+RppTVkgAJkAAJkAAJkAAJmAlQ8DpfD4zwOmfHO0mABEiABEiABEigZAR8+y9ZsrbMDSXu+c6Tdt1slILXTZqsiwRIgARIgARIgASKRMB3gEeC924K3iJNKaslARIgARIgARIgARIwE6Dgdb4eGOF1zo53kgAJkAAJkAAJkEDJCPgO9CjCexcjvCWbZDZEAiRAAiRAAiRAAoOZgO+gpTwZfuLObz1p181GGeF1kybrIgESIAESIAESIIEiEaDgdQ6Wgtc5O95JAiRAAiRAAiRAAiUj4DvYowjvHYzwlmyS2RAJkAAJkAAJkAAJDGYCFLzOZ58RXufseCcJkAAJkAAJkAAJlIyA75ClS9aWuaHE7d940q6bjVLwukmTdZEACZAACZAACZBAkQj4DvVI8N5GwVukKWW1JEACJEACJEACJEACZgIUvM7XAyO8ztnxThIgARIgARIgARIoGQHfYR5FeG9lhLdkk8yGSIAESIAESIAESGAwE/Advownw0/c8rUn7brZKCO8btJkXSRAAiRAAiRAAiRQJAIUvM7BUvA6Z8c7SYAESIAESIAESKBkBHxHeBThvZkR3pJNMhsiARIgARIgARIggcFMgILX+ewzwuucHe8kARIgARIgARIggZIR8P1z2ZK1ZW4ocdNXnrTrZqMUvG7SZF0kQAIkQAIkQAIkUCQCviM9Erw3UvAWaUpZLQmQAAmQAAmQAAmQgJkABa/z9cAIr3N2vJMESIAESIAESIAESkbAd5RHEd4bGOEt2SSzIRIgARIgARIgARIYzAR8Ry/nyfAT13/pSbtuNsoIr5s0WRcJkAAJkAAJkAAJFIkABa9zsBS8ztnxThIgARIgARIgARIoGQHfMR5FeK9jhLdkk8yGSIAESIAESIAESGAwE6DgdT77jPA6Z8c7SYAESIAESIAESKBkBHzHLl+ytswNJa79wpN23WyUgtdNmqyLBEiABEiABEiABIpEwO+R4I1T8BZpRlktCZAACZAACZAACZBACgH/cSt4QiR+zeeetOtmo4zwukmTdZEACZAACZAACZBAkQgEPBK8MQreIs0oqyUBEiABEiABEiABEkghEDjemwhv7GpGeLkUSYAESIAESIAESIAESkAgePyKJWilfxPRqz/zpF03G6WlwU2arIsESIAESIAESIAEikQgeIJHgvcqCt4iTSmrJQESIAESIAESIAESMBMInbCSJ0AiV33qSbtuNsoIr5s0WRcJkAAJkAAJkAAJFIlA6ESPBO+VFLxFmlJWSwIkQAIkQAIkQAIkYCZQ5ZHg7aHg5UIkARIgARIgARIgARIoBYGqE1cuRTP92ui58hNP2nWzUVoa3KTJukiABEiABEiABEigSATCJ3kjeLv/RcFbpClltSRAAiRAAiRAAiRAAmYCFLzO1wMjvM7Z8U4SIAESIAESIAESKBmB6pNXKVlb5oa6rvjYk3bdbJSC102arIsESIAESIAESIAEikSAgtc5WApe5+x4JwmQQIURiMbiIj6fBP2+ChsZh0MCJFAJBGpOWdWTYXRe/pEn7brZKAWvmzRZFwmQwIAjkEiI9ERj0tkdk86euCQSCakNB6UmHJBQ0Cd+H8XvgJtUdpgEKpRArUeCt4OCt0JXFIdFAiRQ8QTiiYQSs3PbeqQ7EpdYPJEy5oDfJ+GQX8JVAakOBRD4ZSEBEiABTwnUnupNhLfjMkZ4PZ14Nk4CJEACTgh0R2LS3hWVxtqQzJjbnbMKv98nVUG/1IYDUl0VcNIc7yEBEiABVwjUnbqaK/XYraT9sg/t3lJ219PSUHZTwg6RAAkUi0A0lpDm1h6JwKsrIiObwjKzJbfgNfcl6PfLkPqgVIUofIs1R6yXBEggO4G60zwSvJdS8HJdkgAJkEDZEoAf1/DoxqWjO6qsC/hvXewKXn1fVcgvddVBCQf9gggwCwmQAAmUgkC9R4K3LYvgnTWnRepqa6SmusrS8HNd397RJfjfyOFN4iuCh4wRXktTxItIgAQGGoF4PKFEbjQm0tUTE3h204tTwavrgcUBPl9scOPmtoG2QthfEhh4BOpPX92TTrdd8kFKu7//OV2OOO1K+W3qdPXznbZaT849cX8JBTO//cp1fU9PRM65/E559pV3VF2jRw6VayYdK8svtYirY6XgdRUnKyMBEvCaAKK6Hci40B2TSAwR3v5CV/exUMGLehCICAYMjy+yOxQhMOE1UrZPAiRQJgQaPBK8rWmC97BTrpD6uhqZfPqhMm3GbNnt8Ily7gn7ybabTchIKtf1z/3vXbnkugfk1stPlsUXmV8uuvZ+mfLBl/L0PRdJuCrkGnkKXtdQsiISIAGvCXT1xGVOq3VPrlnwQqjWhZGNwSdtXdEU64PVcaGOYY1hZXVgIQESIAG3CTScvobbVVqqr/WS95PXtbS2y4Rtj5L7rz9LVl5uvPr55Gvuk2kz5sh1k4/rV1++6/c5erKssvx4OfHw3dS9zS2t8o/tj5FHbjlfll1yYUv9s3IRBa8VSryGBEigLAkgehuPGx5diNRI1NiMZrVA8GITWzjkU+nHkJoMAWGkJEOd8Pxio5vdEgz4pKEmpLI7BAL0+Nrlx+tJgAQyE2g8wxvBO+/iPsH7069/ynYHnCWvP361jBw+RHX0vsdelqdeelseu21iv47nu373wyfKWqsuIycctmvy3mU3OECumXSMbLKue2nYKHj5qSIBEhiQBCBOO7uj0hNJSFckZnsMEKXDGqqkpzcHL3y+sECgQPBWV/klFPArEYw0Zj1R+8I3HApIVdCnrA4UvraniDeQAAmkESgHwfvJlz8IorJTnrlBmhrqVA8feeZ1ufnep+TVR6/qN2f5rr/n0ZfkshsekpOP2F3GjRkun331k+BnFLxc/iRAAoOaAKK68Oe2d8dU9DWXRzcTKCRVqKvGKWp+qQoGZNa87qxRXAhfCFZsSkNb7V2xfgdUWJkMiOuaqoDU1QS5uc0KMF5DAiSQkUDTmWt6QqbloveS7eqI7RtPXCMjhjVZjvBmux5/wx95+jV5bconqq6xo0eo/6alwZOpZqMkQAJeE0CWhY6uqMzriDrqCvy19dVBJXYhXFs7o7by8NbXBNT9HbjXoccXHW+sCSnhy81tjqaRN5HAoCZQDoI3kyd30lX3yoxZzZY9vLmuv+W+Z+T2B5+TN5+81nK6MyuLgpYGK5R4DQmQgCcE4KeNJRLS3WOcjObIT6uPCA75JRpPSGtHVLQ5wW6WBrhxG2qDgogt/L1OPb7I3YusDjXhoAT9PopfT1YXGyWBgUdgyFlredLpuZPfTWn3kJMvl8b6WrnwtEPk7xmzZY8jLkhmaZjX1iH7H3uRHLr3trLVxkZEOtf1sVhckJ8X5emX35Zb739Wjj90F9l7p01cHSsFr6s4WRkJkIAbBPCKC+K2syemPLbYQGa3hALGRjQIymgsLl0ZNqDZFby6D6hTeXyDftVPs//XTj9hmYDVAfl8URejvnbo8VoSGHwEykXwIv8uUo1N/XummoQdt1xXzjvpAJWHt2Veu0zY7ig5+/h9Zc8dNla/z3V9R2eXrL7lEeq6YUMa5NhDdpZdt9nA9cml4HUdKSskARIohAA2ibV1RgQpxvDvdgs8uvU1RhRW5+LNFhl2KniTwjfgEwjrwj2+8BPj9DZD+LKQAAmQQCYCQ8/2JsLbfGFqhFf3bfrMZpWPt6622tKEZbt+2sw5EgoGZfjQRkv1OLmIgtcJNd5DAiTgOoFYPC5tnVHlr3VSzB7d1k7DApGvFCp4zfW75fHFkcUNtSHhicX5Zo+/J4HBR2DY2Wt7Mug5FxqnoA3kQsE7kGePfSeBAU4AHt1oPC7dPXElUJ1EdGEvqAr51RG/iORiM5rV4qbgRZtueXxhdaitDqoDLEJBeHyZy9fqnPI6EqhkAsPO8UjwTqLgreR1xbGRAAkUiQA8utjwBX8ufLpOhK7ZoxuBR9eBBcJtwatxaY8vjhzG2Jx6fP0+wysMQQ+vL4VvkRYkqyWBAUJguEeCdzYF7wBZIewmCZBAWRCA0MXhDvDoRqIJQaoxRHntFO3RRRRUe3SdCGa0WSzBaxa+OHAC3txC8vgiq4M+vQ2RbBYSIIHBSWD4ORM8GfjsSVM8adfNRmlpcJMm6yIBEshKAMf+Nrf1OEothkqdeHTzTUexBa+5fYjehprC8/hC6OOEOG5uyze7/D0JVB6BEed6I3hnXUDBW3mriSMiARJwjUA8nlApxRCJhXXBSUFkE1FNZDGw69HN114pBa/uS2NtUB1drNKtxeISjSaSeYHz9df8e2SGgM0BXBABZiEBEqh8AiPOXceTQc664G1P2nWzUUZ43aTJukiABBSBeFykKxJTm9E6e6xvIjPjw2at6lBAvcqHaHbi0c03HV4IXvQp4BcJhwJKyMOOoQ+xyNff9N8j6q1Eb8ivcvnC88tCAiRQuQRGnueN4J05kYK3clcVR0YCJGCbgPbjzuuISEd31LY/V4vB+pqQioLiKGF4fp16dPMNwCvBq/uFMULQw+4AdkjLhvHaLdrjWxcOSrjKT+FrFyCvJ4EBQoCC1/lEMcLrnB3vJAESMBHAJrQ5rd0yvLFK5rVH1MlmdgreyjfVhVTU02oeXTv1Z7rWa8Fr7hOOGsaxxbG4SHNrj2ORD45DG8KKIwsJkEBlERh1/j88GdCM8//Pk3bdbJSC102arIsEBhmBTB7dofUh9Yq+ozu/Zxcv4JVHt9eLio1tdvLoFoq7nASvHgtOiYNYBQvYOPBP+zFfwzJRW93r8fUhl2+htHg/CZCA1wQoeJ3PAAWvc3a8kwQGLQFYDLAJLdKbR9cMorE2JDg1Ld+JaThUAd5TeHUhkIvh0c03QeUoeNHndI8vPMzwQzsTvoa/FyI6EPCrwzFYSIAEBiaB0RO9ifBOP48R3oG5YthrEiABRwTiCZHOrqh09MQkGotn9OjWhwPiD/hkXkfmzWo4lKG+NqiOzkUUGFaIYnl08w2yXAWv7jcYBYN+gd0BG9Lg8YX4tVtwYIUW0bBNcHObXYK8ngTKg8Doiet60pHp573lSbtuNsoIr5s0WRcJVCgBRBbbO6PS1hUV2BhyFYgzpMqa2x5JuQzWBUR/EdGFcMsXAS4FynIXvGYGiNA21oUEYd45BXh8jeOPQ1JXE2S0txSLjG2QgIsExlzgjeCddi4Fr4vTyKpIgATKjQCiuNqPCy+plQJBi2wBELzwjYYCeKXuFxyzCxsEcvKWSxlIglczgz0BDxWYG+XxzRJpz8cYJ8A11ITUwwkeRlhIgATKn8CYC9bzpJPTzn3Tk3bdbJQRXjdpsi4SqAACiN/GYgnp6ompXLo4IMFO8ftFhtSFlF1BH4qg8sz2xCRPcNhOM65cOxAFLwaOBwnkKEbUF8czF+LxhY96SF2VqhNp0lhIgATKl8BYjwTv3xS85bso2DMSIAH7BGBXgG0BYhei1+kmKQje7t4T1hAZLjehq8kMVMGr+688vgG/4NQ1BGnbumK2Pb4qHVx9KBl5h+0EdbKQAAmUH4Fxk7yJ8P51DiO85bca2CMSIAHbBHDowbyOHhWV1YdH2K0Er8UhdJEJoCcSk+a2VA+v3fpKcf1AF7xmRqGAT+Uxxga15rYedQyzlYJDK5pqg9LSEVEn5KHANoG6GPG1QpDXkEDpCIybtH7pGjO19Nc5b3jSrpuN0tLgJk3WRQIDiABehSOKi9fhyH2bbzNapqFl8ujCugCxRMHrzWIIh3xSG8YBFrCl5Pf4QvA21hiCN/1hBzmBq0N+lSmCmR28mU+2SgJmAvNd6I3g/fNsCl6uRBIggQFGAHE/I39uVG1IsxoJNA8TTk9sRAspISTSHUlId8Tw6EIEI9JLwevdwsAcwN+L/0HE5vL4IooLYduSllVD9x7zC8sEor7wZCOCzEICJOANgfku3MCThv88+3VP2nWzUUZ43aTJukigjAkkEgmV87a1M6JErtPctxBRddVBicUgmiGYUz26huCtUq/Vy71UkqUhewTep8Qq8h9n8vjmE7y6XlzXl1qOHt9yX9vsX2USmH+yN4J36lkUvJW5ojgqEqgwAhClOAgCm9GcFnhEh9ZXCbayIRrYE83sEYXgxXXIFVvupdIFr5m/9vjCYz17Xncysg8h21BjpJGzWmqqAtJYG1R+bRYSIIHSEaDgdc6aEV7n7HgnCZQ1AeNVdkzZDdo6rYsZ86BSPbo+6ehCqrLcacpwz7CGKmlu7Snb7Ax6jINJ8Ooxw+NbVx1SkXlYWuDl1nmT7S5oCOUwose9RxbT7WCXIK8nAXsEFrhoQ3s3uHT1H2e+5lJN3lVDwesde7ZMAkUhoISu8ujGpKsn6kh0pnt0IXIhjqxkcNCCt6UtItFyzUfWS34wCl4MXXt8kcsXHt2Ezyctbc4eUODpRcQXnm7k9OXmtqJ8rFkpCSgCFLzOFwIFr3N2vJMEyo4AhO68jojy5xbLo5tv0BDLyOuKo4gjFlNj5auzWL8frIJX84Twra8OSnU4IPFYQtqRg9nmQSO6LghnWBzqqwMq6kvhW6xVy3oHM4EFL/Ymwvv7GYzwDuZ1x7GTQFkQwGY0bEIzfLX2TkUzD8CqRzffoCF4G+uMgwwK6U++dtz4/WAXvGAIgZoQn8qdrHLvBvzS3Nqd1aNthbuxua1KRX1ZSIAE3COw4MUbuVeZjZp+P+NVG1eX56WM8JbnvLBXJJCXADyYELod3diM5kzoOvHo5u0YBG9tUIldp/2y0oYb11DwGinkuqMx6ew21lA46JO6mpDKywxbTCEn5eEhqqG2SvDPAI6CYyEBEiiIwEKXeCN4fzudgregiePNJEAC9gloIQJPLQ55sHaeVmo72qNr5FUV9RrbqkfXSo9xkAH8uzi5rZwLBa+xwRBWBsy/LlgfKo9vb4QW6eyQ4cOpJRvrTOfy5elt5fyJYN/KncBCl2zsSRd/O/1/nrTrZqOM8LpJk3WRQBEJYDc9bAL4XyRmbQNZpu5AyMC3GY3HVVQvPY+uG0PAQQYQ5hS8btAsbh0jGsPS0tGjcjSnF+MNgJHHNxTwq4gv1p+Thyx4ehHlxQa32uqg2izHQgIkYI/Awh4J3l8peO1NFK8mARKwTwAeXaQWm9fR4+hUNN1iVdCnPJoiPmluQx5W+32xege8mxA4FLxWiXl33YimsMrLmy8DB3y5TbXw+PrUxshC7CrwCTfUBqS2KujdwNkyCQxAAgtf6k2E99fTGOEdgMuFXSaB8icA8YEIaXc0Lu1dkYzRNyujwLkAeJ0cDgWUdQF5dFFnsQsFb7EJu1c/bB2zLAhe3SKEL94QCI6U7sHGROcZQbA2Ee0NBX3qJDgeW+zevLKmyiSwyKWbeDKwX077ryftutkoLQ1u0mRdJOACAaQT03YAbEjLF3nL1CReF+PVcSjkN4RzJK5y8zp5Fe1kSNXIx+pnhNcJu1Lf49THDLGKvLuwPBgbFGMSc/gsFVIPZX6pDRuHWLCQAAlkJrDoZd4I3p9PpeDlmiQBEnCJgM64AI8kTrCCiLBrCYAtsrY6oMQuIrmoKxbDYcClLRS8peVdSGujmsIyo6XbcRWI+EKs6jXX1hF1vN4gdqtCOOo4JNzc5nhKeGMFE6DgdT65jPA6Z8c7SaBgAvDnIgLb3hWTtq5osr666oDy2mL3vJWidtVX+ZVQRpBNHevrMNpmpb1810AAQbDYFez56nX7906jm273w8v6Rg0Jy4y5zgWvue9D66uUPaGtM6o2uDl5O4H6YL+pqw5KfU0Izgn13ywkQAIii12+qScYfjrlFU/adbNRCl43abIuErBIAEIXp5Dpk9HSb0OEFNEuswjOVDVEJSJi8OiiQCBn2m1vsVuuXQbBi8gfhHw5l8EueOEeGN5oCN5ILCKxWPb5CgURdTXWWa6COuurQ+L3i7I5YJ3j7YWTgjpQFx7mkCWChQQGOwEKXucrgILXOTveSQKOCCCRP4QpLAvZhAAEI3yNiJRlFrqiUkXBR4k6UJc5j6qjjrl4kyHYfdI2AASvnQ1bLiLytCqI286eLuW//XLq5zKjpV0i0R6JRvvbEXy9WrU6FE4RvEvPv4QMaxgmddW1GYUw1iaivfgn1jwivk49vlhLqAcHYqDPLCQwWAksfsVmngz9x5Nf9qRdNxul4HWTJusigRwEIEyRzglf/tiYlquEIRZC/QUvXu3Wh4Mq4qU9vk6jZ8WcLCV4cwj2YrZtp25EeJGSy+mBCnbaKodr57Q1y5MfvyAdXe0qmovMCC2dLdLV3ftglVDJF1KKL4Gf9F+vjdUNUhWskmAgIAuOXEBWWWxFCQVCMqJpeMr9aAPr1Q2PL95oGMcWh9QDIQsJDDYCFLzOZ5yC1zk73kkClghA3LZ1RKTdxqlj+mQqCGT4ICF0a6r8yteIV8QtbRHHG4MsdbrAixChRmqyedjA5OxtdoE9sHZ7JQte2GZ6oj0SiUXlvV8+kTe/naIiuDpiC0Lh3mhpJGKaJCV6M4tc3NNPAKfNb2Nto2yx6iYybvhYqa+uV9k6/D5DnA6pD6lIbaEeX9RVGw5KQ01AkNOXhQQGC4Hx//ImwvvDSYzwDpY1xnGSgC0CEHnKZtCTuhnNaiV4bVtXE1R5cwMBkXAwIBAw8MTiyN5yLxA1ELytnRS8pZ4rrJM57XPlt9l/yP+++T9pbpubFLlJsdsbycWDCbJ44H+qZIjwJvuvLoEUThXHuca3xhKryojGETJ22GgZPXSUigDrPL4QwoV6fJXwVVlJjFy+OOyEhQQqmcD4f23uyfB+OOklT9p1s1FGeN2kyboGPQEI3e5ITPkVsSEtn3UhGzB8eeO1bSJu+HON/5W/0NXjgWBHBK61M1LWdoFKi/C2dXfI2z++L7/Nmiq/z54qCaTqgIg1LR397/gnrAaRSNyYo1yR3USa0O0Vx33rN3tEGNcMqWuShUcvJOFQWNZbdoLU1dQl/b1ueHyRdxo5gcM4trgqyKwOg/4vceUCGH+lR4L3RAreyl1VHBkJ2CCAqFpXJKYissiSEHf4Hj/p0Q0bR/POa49IV8TD/GI2GJgvhW8TEWq8unYq+h02beu2ShG8XdFueeuH9+SrP7+TWfNmSzweN0RuWsQWPzOLX0Thu3sMUZy1pEd9C3zuGtE4XJZaYElZd9kJEg5VqfR16Ac8vniwK+StAD4/yOagc1Hz5DZbHwdePAAILOGR4P2egncArA52kQSKRMDQtEi5JNLS3l1QBDbdowuhC7+uOiGtBEcBu40ItkocHgDxQsHrNt2++uKJuMxsnS03vXmfdHd3KTGbLmrNEd2UniSQ6aNX8Jp/4cC64GiECZEtV9tMlltoaakJ14jf7096fJHFBDmcHT43qu5gU9uQOsNCgULx62iWeFOZEVjiqi086dH3J7zoSbtuNkpLg5s0WdegIQARh2wLOPq3CxEyhyWZRzcYUFFheHS1QMQhEgNV8OIVc1OdIXjLMYuEnq6BGuGNxqLy48xfZVbrbHn605ck6Av2j+j2RmbNEV01blPEFh7elHR2vdHbFCdsgRHdfh+NtPpqw7Xyj2XXlqUWWEKG1g9J8fjq9V/IGlI2h7CRwo+ntzn8Q8XbyobAkh4J3u8oeMtmDbAjJFASAjgVDdYFvAbGl7FT6wK+eGvCfgn6jfRikVi834ER+njhcsqvaxUyItbwICNSV4hYsdqe0+sGouCd2vyX2oz2w/SfJRKNSEACxmlk6T7dTBvQ0n5WHQqo9ayFsIqEmmG6LXZ7BXem+Vpo1AIyZuhoWW+5dfp7fGMJtcHN6VrCesThLBC/NSG/yhzBQgIDkcCSV2/pSbe/O/4FT9p1s1FGeN2kyboqloDy6PYYB0ZAnDp91aqFIF6zYmMbhHO2V/7qmODeqO9ABNtYG1SvpZ2KlFKMeaAJ3r/mTpNJz1wl9eFahmwXHQAAIABJREFUCfkR1fVl9On2y7aQKXIrIjWhgHT2vqGwk33B0dxYFM/w+K646PKyzjJrKZuD2eOLz0pLu/ONkPj8oT5EfLGpksLX0UzyJg8JLOWR4P2WgtfDWWfTJFACAviOhnVhbltEok6PiVL+QSNvaF11QGVxaGnPfIKaeUj4Ug4EfNLakf/aEqCw3cSAEbyt3YJkBuVaovGYsi5c89/b5Kup38ly45bKHNFNi/LqqG2uWCY2inWZ80NbFKW2WFmsM5G2c26NJVZTorexriGZxxc2GdgwEO3FhshCM/QNawwLDnlhNjNbM8qLPSRAwescPiO8ztnxzgomgKik4dGNKYHqtCA9FzbP4BhgCOa2rqhlcYUvdojk5rYep817et9AEbxz23v62Uk8BdfbeHe0R77++3v5cuo38sRHz0s4UCULDZtPgiqy29fDjJvSskR0tQjGP41UXgGVK7oop5g4FLrp7Ldfa2tZeoElpbqqWm08Q7/ra4IqGwPsGMiKUsjGTp0XGCcbIrsIN7eVw+pnH7IRWPqarTyB881xz3vSrpuNUvC6SZN1DXgCELrYiKby3haQDgxfooieQfAirRjEM05Is1NwcmpjXZXMaaXgtcPNzrWwNJSj4O2KdMtzn78iD773pLR3tskiwxeSobVN6tgHHbHNlHYsb1TXJIT9fiOFl0pL5maxt8wlPbKb3hUcX7zEfIvLquNXlkVGL5QUpOkPk4j6FpKrGg+mVUGfyo4S5Oltbq4I1uUiAQpe5zApeJ2z450VREAd/9uJjAsx5Zt16tFFBqTGupDyCXZ2x5TYdZqWC69Zh9ZT8BZzmaULXlhOMHewkdjUba5184up3yj7wsx5s6Szu1OWGjNeGsJ1fVJXbzyzsCnNHNHVHdSCGeNEtBQRUleLxeryCd30PjXU1Ettda0cuvmBEgoGk7/GOPA2pCYcUJHque0Rx585VAqxi3RtiCLz5DZXVwYrc4HAMtd6E+H9+lhGeF2YPlZBAt4QwEa0RMI43hRRvkIKhAMiQ/jSterRtdLesIaBLHhDKlpe7pvWWjoigicc5A2GCIMvFK+2kVKtVBkyIrGo/Dn3bzn7yUtkWvMMFcUN+vyy5JjxUl9VaywVC2nGsqn0TJkXECGFNi14fiwKXL3e7QrdvvuMfxvWMFT22XB39U8V8TYZcGGjgX0Ib2fcyAE9pL5KqpnVwcqfKl5TIgLLXLt1iVpKbebrY5/zpF03G2WE102arGtAEED0Fn5aiBlkXXAcge1Nbg/7Ar5kkb0B9bm5AWp4Q5XMHrCWhpB09cAeYlMRlWgVQQSOaApLBCeHiE/au6PJaCfEIB5gYomEEk/FFL5z2ufKw+//R/7z8QvqKGD0C37dBYfNL0NqGvvbGMx8TNHebNiypRnD8dVYq07Xf7I9i9PrVOj2av2U4Y0eMkpWG7+yrLLYihIKhlJ+p04rrA6qo4Zh11Bp/6JxxxF7I6d0lfqMc3NbiT6cbCYrgWWu80jwHkPBy2VJAgOKAKJZKrUYPLoFnGAGrx88ugFsnOnBxhn7Hl0r4CB453VEbPt/rdRd7GsQbQPjQg7mKFYfIWgRjcf/sB7aOjNvTER0D7lbdVq6QtZM+ljautrlsY+elZ9n/Crv/PihErp+lWnBJyMbRsgCw+brE7tZjvdVYjaL4MyXTxeeVTz4ObXv2FGQbopdM8dVFl9R1lpydZW/N73gQRSHTUCoxuJx6ex2/plHxhTUh0QtsDugXm5uK9ank/XmIrCsR4L3KwpeLkwSGBgEYrGEtHZGVKSukIgWvvSaakMqOz/SORXi0bVCbkh9SL1yhr94oBWVRziekHZz2iuPBwER2FAbVD5dZOCAT1M9UOSIQiPCB3EI0QNt2dIWsaP1+o0Yp6S98s2b8sRHz8nvs/6UeDzWK3SxrHxSX1Uni45aWKoCoX45dlVlZvHrUOyiGkR4Y9GEONqyZjGqa3TXxsVptPLe6ROZf/g42Wb1LZToRd7e9IK5xliR8QTzDwuLXRsH1jIeavF5N+rzC36Gf7KQQCkJLHv9NqVsLtnWV0c/60m7bjZKS4ObNFlX2RGA0G3rjBQsurBpGx5P4zVpTFpKlBsXm6iQOqp5ANoaVB7hXi+s1wsDQkdvRILFAocXoMAjjQchqxu3IJYR2ccDCA4OsRMdjSfi0tnTJbvccqhEuntSIro6Ghv0BWSlBZdPSTumRS7+mSuim/x9ryjOxxxRbgi/vKJSV2T5wuKL3Exj237NrWXFRZaTYKBvQ1v6dViTdRCvNjy+eODBRtSOLmSBSH08wGY55AYO+JnLN9964+/dIbCcR4L3SwpedyaQtZCAmwQgQnqixilmHci64DA7PcSFTlWEY0nxZac8uja++AsdF6wT2DgzY253oVWV/H68SoYg0OKy5B3oPfADfUD6LQgXbGQyz59dwatEZe+xyZB1eGOAdZZrSUDo/tn8t3w+9Ru57Y37pb2rPSWiq4VqbahGFhu1iPLvphSXIrrp/MFEWRqsTIyli4yKbEjofi3nbSbLKRr6Pnh6N15hfWmsbcg6KuMQGKxN4zMNj3Yujy8e2hDNxUNONMOHXx8qA3sMHiJodbCyoHiNUwLL3bCt01sLuu/Lo54p6P5yuJkR3nKYBfbBFQLwWUKAwDPaFSls8xhEktqkIhDPxqalQqwQTgcIkTZySLVMb+5yWoVn9+mcps1tRjS11EX7bzGHsC9k8t9C8OIhxsmmNO3jNk7jw9HTsX7isbljrvz7g6fUCWnf/PW9+GFaUALWyKdr/M8ntVU1stCwBaQmZByu0Ksc1T/cjOqa50B5eK1s5sqrQvtqLZrYzXFcXHr3kLN35UVWkGUWXDJ5QlumtYe3Nnh7gpPWkIoQfzcyrRHYmCCQ8bCUK6Kv06NVh4MSDlL4lvrzPljaW94jwfsFBe9gWWIcZ7kTQOAFXsyu7sIisPhyQ+5biFvk0UWKsVJGdNM543t+9NBqmTYABS+iXXjdO2teYSnf7K49PCQ0wGethK6RFi2bUIHg7eyGPcGRk9VIH9YriPwBv8xr71Ebm1Duf+9xefXrt2Tq7L9U2jMtcCXhMyK8vXIWuV5HNoyU+ZrGlEzsomlsvMqZvaAchG5S8WdeBdm6WBuukZ3X3l7Gj1s0b8TV7NHGXKR7fDG/yNhh9U2Frg9rEIxZSMBNAsvf6E2E94sjGeF1cx5ZFwnYIoCILsTFvM6IypWJKB1EqpOiPLq9X1B4dYmIYLmUccNr5K/ZneXSHcv9QMRraH3pBC8Co3XwaFYH1RHO7V3557BQwWuGgVfaddV+mTa3Re7+vyfloXefVBFdvymii+tVlLdX7OKfiOouOXaJpG+3WBHd9InLKnjLXOja6J7su8HustjYRSTgD1hat/B5GxvUsMnVSFlYU+WXYNCvDiOxW+D5xyZX3J8jSG23Wl4/iAmscON2noz+8yOf9qRdNxulpcFNmqyrJATw+hG+O7xC1huH8MoRr4LxetpqSXp0QzipKaBeaSIiaGcjktW2Crlu7LBqmTG3Kxk5LKSuUt4LvsMaq2R2kSO8iKhh/mAxQHDVjjBxS/Ai88KPM3+V7/7+QW598z6JRnGYBVKMwdSaal8wHw8c8PllufmWSb56L5XYVWs/4JceHY7GwrChJAuxLuRtKo8ytNFNtdw3XH5dlboMUV8rRT2EVPkF1oSeSEz5+BEJb7PwAJWpfjyIYX1is2O4Cl5ySl8r88BrMhNY4SaPBO8/KXi5JkmgZASw+awrElNiN32HfDjkU348q2KnKuST6lBA/H5f8mABLzy6VuDh+FtkEijHfLb5+j+isaqolgY86CBSiYcgROXtpptyQ/DG4jF59+eP5dY37pW/5kxLZl+AsFGCFz9JbjzT0V3D0jDf0LEysn6kdZ9uXrWYb0aM3+MhARH4SKxXPtpQkV6KXXvDNwZVFayStZdaQyYstaZl0asZwcvfWBvqPVQGFidn1hc9KxC9OkUa/vawkIBdAit6JHg/o+C1O1W8ngScEejAK+rumMRi8YyeWvhFkVN1bnskZ4QWfrwhdaGkRxebVLz06Fqh0VgTVOponoNXqlbqL+Y1xRK8ar5rg4K0cxC6+KcNzZYcMtYCfNpOPbx/zZ0m5z11ubS0z5Pm9uaUTWlKNClxaWSIwJsD/E9vVBvdOEpGN44Uv7oqe0nKIicDzFItxDhsPErw2qjXGWWjE3mbsaH/8taV1lpVqEqaahvloI33lfqaOltLHmsYb47wgAxrQktbj/ToBwVbNRkXI8AbDPiNo8h5epsDgoP7lhVv3t4TAJ8d8ZQn7brZKC0NbtJkXa4SMKwLCZnb3p33uN4gUgfV4hCBzEcF69RCiK60YnNbJP9XpquDKaCy2rBfRa/nepTtoICui9uCV21IqzGOjcVcFxpxw6Y6vLa2I3ij8ZjMapstN752t7zz/QeGiEkY3lz176bsC+ZsDFiDSvglIDYDsuDQ+aSxujEj3hTtV4Slir5AeEUtHPtciMh1W+jmry8NVgpIn5LBp+14vNRX1+bdzKYnBm9YZs3rVg8ryL6ANYN0vPPaIxnTlNn5vGAOhjWEVTozRnztkBu811LwOp97Cl7n7HhnEQjgSwVCV+XQ7Y5aPv4XWgIRXvh6cbCAFh5GHl0IRl8yL2+5eXTzYcThUU21VdLcVtpsB/n6ZeX3bglePNBA5OIVcyQWz3oUsJU+ma+xK3g7ujvkkY+ekYfee1Li0aiRXizFo9uXcsz4t75sDBA3hpUgIGMaR8nw2uHJ35r7VIyIbgqXhEgA+WJFLFlAChG8ObW6jYiuuf+Z68wtdM1CeUhdk+z5j51l3DBTVowsCwd/N3DgjNmHjm5jcxtOblN5fHv/5/TvCtaFOslPeXyNw1pYSCAbgZVu8SbC++nhjPByVZKAKwSU0EUqMAhWbEiL5N9hn95wfXVQiSFE/SCOakJ+pTYggHE6WrlbF7KBxBciUqXNGYCnrY1oqpJZLc6FOr768SADEQCPNR6CzPusCl18VgVvV6RbXv3mLfn8j2/kv1+/kcy0oHPqoh/p2Rf0Q5fOq6vdu8i5u9ToxYyIXgKnnfUd/pBv01qh49Vv+mFnQMnFcmAIXbOU7aWTIaqb5NYLePSQUbLTGtvmFb14awRUmU5WVJslIVJ7U4/hb1ahPnvUhwd0fUphwfPNCiqOwEq37ODJmD49/D+etOtmo4zwukmTdTkmAB8m0oHF4nHHWRLqqwPiQyQw6Fd1wPc7EDy6+aCVKttBvn44+T1eB89scXZKHFLNqWNgownloSzGpkIrgvenGb/K5S/dKH/PmSYdPR0qbotUY+YIbl/mBXNUF37NvhRkWgCPH7mY1FTVGF5OP+wNPvVqHD7k/EZXJ7PQ30CbS/AWInQzyM/+HXYQwMweKbYY2c0QNh9S2yRbrbKpLLPAUlmhYlMjHrJyCVmddxeeXMxlS3tP8i2Tk9nCukA9ddUhgZ2JJ7c5oVi596x8qzeC95PDKHgrd1VxZEUnAFGKDUPNrT0Ff89rjy4iJNhU0lXgbuqiD95mA7AGzAanIvg5bXbF1uUQvLPndduKrgdwdG9dSH3p45S2YghdPYhsgled2hftlsMfOF3+nDm172S0fl5dQ+qaNZxOO5UqdY3dSkrshqpTA44Cb6hffQYiEYtH/VqdhSzrJZPgLZrQdSBw9fAsCd20iG6K6LYQMt/zH7vI0vMtIX54h9IK3lDAShSz+MJJeXx7D67BQTh4WCu04O0O05kVSrFy7l/51h09Gcwnhz3pSbtuNsoIr5s0WVdeAhBseIWL3eH6JLO8N2W5QHnfAoavEx44iBSIDHxBFf4147RXxbkPkSZstkumkSpOM67XOrzR6Lf2VedqABt3MI84wAERf6eHiNgZBAQvMn+Yc6zO62yVD3/9TP7z8fPydYbjgFF/LvtC39a1VP9udbBaFhm+kAQDwT6BbFqoEPj4HzzsEPkFPdzk+QBon6h+mChE7Ob9rDkQvLnrNP02m9i1ZIQ2LqqrrpUtV95Elp1/KQkFjRP6dBk9NCwz5hob1qwW1Io1jAwMsYTxdw55fAuxVOnT3rB5Ff/uAKnV7vO6Miewym3eCN6PD6XgLfOlwe6VCwGIUeRI1R7dTGfW2+krNo1UVwXUK2DUhc1qePXXWBtU2QxsfD/ZadazayHM4E3GOAdSGVJfJT09UenIcXQvHlyUT9eHvLDGaXmFiAM7fMyCFz7dJz55Xn6a/rO88e07hnVBZWDok7BGDFDbFlKlrT5PID2yq19Jz9c0TobWDuk7eCBb9BU79nsljdnfa3lcFhY/RBMuM9K5WbghR+NZ73aoyiyJ3QxCF13sdZr09jZbTb03m+qAvWGTFdaXFRZcNhnpxQPYsMawTHd4rDesDvgbBYsV1gbeOhX6EId5Q51GPl8eW2z5M1FBF1LwOp9MRnids+OdFgnE1fG/PUqwxR3mS9VNIZoLcYTS3pnq0dWbu1SEt7DvcIsjK91l9TUBScRF5SIeSAXHNWMycExrplJXbXx540EIYt7NDWlWOGnB+9YPn8n1r96pDo6IRnqUKNWHRuhMC+k+XUP6Gj7dPhmso7qpP2+orpP5muZT0d2+Qyiy9xA1YlMbPL6w9kL4WioW1z3EHKKPhdhF3Ba6ScGacaDZoroG+eRvLVgYlPo0FX1vXbhWtl9tS1m219NbW22I1ULTAfZ5fANqXeHIa6x3pwXrDe6LcDAgjXVBntzmFOQAvW/V23fypOcfHfKEJ+262SgFr5s0WVcKAWRdaMWBEVnEjh1c+ILGjmkkbEf+y2weXfjdOntybzKx0265XIsNXBh7m42jk8uh7+oktFB/0YBjgJHuCdHFOa0RT7qKtw7BYFS+n/arHHb3GUmbgt8U0TXEbqpPV8ml5GY0He/NLHShiHH90NqhMq5xbK8wtjfcqoARIUT0O2Pk26LI7Ws1oU77Qi5ZfEbtFreFbiERXSWSU/Rrptr6R3Szi+uE7LWO4enF2wlsJuxweKRwJq5Y9+rgmwSOwDY8vvZnILVmPDTW1xied5bKJ0DB63yOKXids+OdGQggsoovZtgMkHXByReqrlZHRnCuPaJdKjdvTyxn9BaiGH/2B+KpZLkWlPIpD0DBC6GOiPyseT1qXvAaFmIL/0TmBTc29dj9IELoTp83U77481u58/8elNkts5XoQOYF8wY0FWVNnotmtJIroqvuVgLXULlafoQCIVl8xGLqxDWnksTI34uNbQl1CAt8vqrYVEtaXkF4wWJkR+/mbMrpwHIOobfFfnUbP7BmX+idtbQ6Mo/F+CkivVutvKmss9Ty0hP1ub5G0ZXqcEDw2cB6gaDuwcOMxSB+pvUOsVtbHTT2M/Q+INn9XPD6gUFgtTu8ifB+eDAjvANjhbCXJSEAkQuPGvJRqhRLDov6QqjCZrSA+oKHKMLrbitfzipyWJuaKN5hN8rqNuziD4X86iFiIBUV0erNIYxoL17pdvd6rr2yncxqnS2XvHC9fPLblxLE6+GUI3+1sO1z4mqtpMWuectQ8ndJW0Nq9Be1jWscI0NrhzkWu+b5hrAxskAYdgSrIik9joh5wQZIq3NQDLGbvc5s9oU+1Zo/qqsfT/qf7ZFL7OqnmiF1Q2SXtTaVRUeOl0SieF5ZbG7D2yvMKyxf+Pvp/C+nkc4Mohc+X7XHgaXiCKx2x86ejOnDgx/3pF03G2WE102ag7QufPG2tOP1XLwgTyDwIZqLfJaIYOkIoBWhq9EjEja80Xnu13KdQngJ8RAw0CLX2Fczckh175e5cRSwnfl0cz7au9vlshdvlN9nTpU/mv9SQhceWSgMCD9tXzCkUp+sNUd19e9Mcio1164psquu8flkmVFLuZ5LFd3WG88ieY7JThe7OtKOz6sVceW2hQFc7NkY0jy3eS0MhYldHakf1tAgh290iIr4FrOofMwBn+DgHAhWZCjB/wopeCgKBESG1BvHFrNUDoHV7/RG8H5wEAVv5awijsQ2AYiEue09Be88RsP4o4zcq/gin4Pcqw4jxPjTPnpotUyf22U5emV74B7cABsAjjKF788rwWhn2DpKDzsDvnynz3V2+ISdNjNdG08g5ViHvPL163Ljq3erjAsq80KvoMV6g2cXAiw9n67TiK75oIDFhi0i1aa8u47Hk0UhYl0gp240mlCeXF1yOUMNwevLmSquGBHdQoSuNfuCHa+uqTfqNpMoxJrwG9FSvF06c/sTBKfjleoACOTcRtF5fK08lORaV/DQD28Ip+/Vc7wUeaO3BCh4nfNnhNc5u0F/J/4Q49AIp6mytEcXr7pR3Ejbg3pGNiH3a7SiDp/Aly/EIzYAYiNNuRZEq5T9IgjftSgLxgikdvJA8EZiUZny4/sy8ZmrVDTX8OimClukQoOzFkjN1gW9Kc34WWre05SsDBkiulo+Ie/ugkMWMDIzFFIsTDcELAo88yqHb4728gneYkR084tdlf/N1Ots9oVMNaWK1fSh57VOmLM29FaFz5uxUTAhQ2ub1Ea2cUNGl0z0wpYAuwMezhDtLcTji7qQx7tUgr2Qpc578xNY/a5d8l9UhCs+OPCxItRa2iopeEvLu+JaQ8QxW8qpbIPFdwr+mOM1PawL+FKBaLbqJ8wHERvXIGJaOrzZ/Z+vf05+j4cDeJNxzKkXG72s9Fl5B0MBJRSQdgn2BZTRQ0oreLEpDQdGvPLVG/LGd1OkrbNdiVm9ZcwQvYaMVTvbTZYGJVazpRkzftlvU5qhidOOFBafjG0YI001TYUJDQtiV8+N2tjW+/oaojdbyjFtaciWCztjkwW8Fc87hGTd+spUAZt6f2ZRbMxB6iq13m7vfab7FUfkDu+Nmo8ZMkp2Xn3bkope9Aop+2B3wDrVeyTyjivtwwqLGNLvsVQGgTU8ErzvU/BWxgLiKJwT6InEZXar9ZOIEM1FGh3sEIdQNhLfu1sQ7ULKqzmtPe5W7HFtDTVBFbWG97KcCvQhUi2hIKKLuTXPaSkF75z2uXLUg2dId1eXtHa29h0JnDwswhzh9YmhD33JU/qM7Ap9yicZ9c2xKa1PIBuzgvsbwvUytnGsBPwONw7Z/lD0MdeeULVBMMMR2+hfKIgDW/Ju39IDKmi55R1KFjGdujFNd8Ewn6SUDPfbsmRkuB8iE1H/5EODz8jecNxmh0l9dV1BPJzcDNsKUo/h7Ul7d1Tl8rVahjfgaGKH69BqI7yuZATWuHvXkrVlbuj9Ax7N2O6sOS1SV1sjNdWGFSdfyXV9NBaT2XPmyeiRQ/NV4+j3jPA6wsabNAEI1hktuf2yyrqATRnqwAifzO1w7tG1Qr5SN65B8ELAFHpKnRWGVq4BZzy8YDc4Xrtm+xIutuBFRLcz0iXXv3anvPjFaxKIGwpGH/9rjujqyK4en3p1rQRv34jN+gdiNj3NmLoyQ0RX/bg3QtwYbpAxjWPtR3fzqsPUmcn1uIixqQMm4sZbFF3UkdxBv+BhNVNJ9ctaWQn9r7ElONNuzyx0M/SjCEJX91ulbUMWjAwDOWf7k6SmqtoZGBfuMuwJxsOllSOLRw+pTkb+XWieVXhMYE2PBO97aYL39z+nyxGnXSm/TZ2uiOy01Xpy7on7SyiY+eEq1/UQuhdf+4C8/MYHqq6G+lo5+sCdZKuN13SVNgWvqzgHZ2Uz53ar3LvpBVEJ2BYQXUjEcaxw6cTayCFh5S9GtLFSSrkIXn1kKiLpmPZ8qdLGDK2WaQ6PZ803dzgO+LVv35Yv/vhaXv7y9b7NaClZFvqOAk736cLDi59pYdM/opuaU9fQutrZa/QuZbMbdsf7/DK6fpQ01jTl637f7x0sU6vvRpCXFYPUx3srwRvwZ3xwKrrYNYBlLoa7JH/JFhHOdmem63OIZc0nEo+n2qx679lo6XVlwuKrS224Jn9fi3QFBDkeNJFlRB3XHs1sYcFndcww7/pZpOEP6mrXvMebCO97+6dGeA875Qqpr6uRyacfKtNmzJbdDp8o556wn2y72YSM85Pr+seefUMuveEheemhy2XYkAZ58oW35KJrH5A3nrhaamvce7ik4B3UHx13Bt/WGUlJl4UvjDrklwz6ew+hSGSNJrnTg/61DK0PKV8wRHalFAhePFh0eTgm+AH1oQX4orXyQFEMwRuJReSVr9+UD3/5TN74dkrfKWlJCWreoNYnUPW/6X1Kgd4TInSE13A49OXgNR8gkS52TVelnLxW5Q/KwsMXtR7dtaTyzNrY5g29GhO+VHUwhs+wcGTygluOrmb5UDmK7FoVurpNO15dC2I3vc8+v/FGKsXyYaqnKlAlay2+qqy/5ARPI73AYRw0YRzkgig+NrWax4O9Ejh9kqVyCKx1z26eDObd/R9JttvS2i4Ttj1K7r/+LFl5ufHq55OvuU+mzZgj100+rl//8l1/493/kadeeluevuciCVeFBNHgLfc+TV5++AqZb8wI18ZLwesaysFbEV6rzWwx0k5B6OIMerx6Rx7dDIHfkoDCZg8EttpseN1K0rECGoHYRMTG7ibBAppM3qp90bF4XLVv9cADVDB6aFhmtXS7thbauzvk4HtPlLaOdunq7lRi1zgaoE/YajuD8VNzRNZ0GpqyPYj4/D6V3SBX9gWzhSG1tr6Ir+7BQsMWlnAwnBm7SvhrUk/2tas6jMVaQTup1+InOMAE/t6eiOkwF7uiM60DeXuULarb72jgHCMrcmRXLyHtgU4+ECTb7etAMBBQgnfjZda1NhVFvgp/6/D3AZtGsbFV/90b1hhWJ7qxVA6Bte71SPDu1yd4f/r1T9nugLPk9cevlpHDhyi49z32shKtj902sR/sfNdD4O591IUyYliTHLr3tvLi6++pyO4lZx7m6sRR8LqKc3BWBo/g3LYeqa8OqFfDc9sjrmVccEpUWSlCfk/EodM+57tPn6CEQz5KVdS0/4zbAAAgAElEQVRmmeqgiiBB6GbaBJWvLyObwtLS3pMz72u+OhCRnNfVKn81T5OjHzhT5c5FMefU1eLWnI1B/0xrzFTxK+oBwocje/EiIC3FmLo3xb5gzsRgCGctcvU/cf3iI5dIHU4iIY0trbLfIy/I8l/9IDNXW00u2W4daWuoTxW/WSBYF7j5KBq/x1xCCEP06qPAnb4HcRTR7YWVVyTr4djx6lqI6KLalLbT7jGyXRhvp1JnuP9/brrs+rLBkhOsR/OtTVFBV+HtFvzb7d0xaaw1/p2lcgis7ZHgfcckeD/58gfZ5+jJMuWZG6SpwdjE+cgzr8vN9z4lrz56VT/Y+a7v7OqRUyfdJJ3dPfLzb3/J9JnNcs2kY2STdVd1deIoeF3FOXgr6+5B5K8wUeMmPUQk68JBdQKc5S9WNztQhLqwc7wJxyaXIPsE2tLHGSOCb2dXePrQ8Uq1qyfq2F7S2tUmb3z3jvz36zflyz++URHb/kK3z0ubmmUhNaKbIlCRg7f3Fb85D6+hYvunGTOLWrMWM9sgGsINMrpxbAqC6q5u2fPRF2StD79M2lffXWlpuWuvbSVRlf91s3XB2z+im2kZ4iACWFGQEhDzDOEO4YtNWnZSA5aV2M3hC05n0K/fafcGe3MaG3Yd0y8zWSl8IvuutYssNXZ875HPRfjgO6hSv5Hh8cIO4JX5LWvft7snPXxn338n29UR2zeeuEZFZVGsRHizXX/lLY/I59/8LHdeeZqyW6Guy296WJ6880JZYtH5XRsvBa9rKAd3Ra2dEXXYQ7kURDXgeVWpz8r4oAY7vCBMIB6LmW4NbSClG4QgIlzw6dqxL2QaT2NtUAksJ8el3jXlYfl5+q8y5cePkgdHZMqnm/Tm9nYA/52eTzcpdk1iFlFOY0NXX8/zbUpTdZva6fP8iiw4dGGpCqaK2GFzWmTi5BslHO1LJfX+kgvL3XttK9Gm7Bvb7AlddMjao124ysjQYI7qauGLKswZHTLNZ95W8ojPvPebn0rSOpDxXqdiN0s0GBFw/M1IWffZXCg+kfpwrWy74uay/HzuHyFt5+9D+rXMv1sIvfK9d4JHgneKSfBm8uROuupemTGr2bKH13z97odPlFVWWEJOO2pPBR4Ws+U3OlBtgtt9+41cmwwKXtdQDu6KuiIxmTOvfPLeQrDhdZ46pajM8tY6XSn4zh3aUDzBW13lV6njEK2H/9qt5wT4uiEi27qsPxB1R7rl7in/lic+el5i0WhairE0a4HJo5sUvkm7gdlx2ytUTanGlLsxKXh1NNiYoUzeX7MWM0d21dzUDpehtcP6vd5uau+U0+9+WoZ//0Ny6t9beRm5e6/tJIaEuBmKdbFrczXhJLwqf9aNj/qQA0R7sx3vnVWw5npz3vu7kojdfF7fPAIZEfBIxDQDWSK7ZvLLjltSdlhpC09y9GZbAUPqqtR+CpbKIjDh/j08GdCUfR5OafeQky+XxvpaufC0Q+TvGbNljyMuSGZpmNfWIfsfe5Hy4+rUYrmun3jlPfLfNz+UB244WxYYN0qlJzvx/BvllYevkHHctObJfFdkox2dXcovs8iCqa9h7Q4Wr71nzbN+AIXd+p1cD/GGfjnxnTpprxT3IIm825YGiBxEwyFK4bV1e6MhDhuBpxre7lwlnogLDo74ecZvcvrjk5VPV1kXEr0Ct1d49G1I6zMvpIrPPoVi/rkWsSknyfrg4zUfLZxqZehvbTBncTALaJGR9aOlobrRGGKasvP/8btUffCO+HoiEq+ulujyK0psMWN3sy7WRa4enyX5mAxH66vxYJMv0wdEnxHtNVJzFd2+kEMs57MgJAEWKHQ1KHjlu9MekpN9yCGWV19oRdl6+U0kHMqyYbEUfyB628ADP/L1VoUoeEuIvSRNlYvgRf5dpBqb+vdMNe4dt1xXzjvpAJWHt2Veu0zY7ig5+/h9Zc8dNla/z3X93JY2ufq2x+S5/72rrl1o/tFywG5byDabru0qU0Z4XcU58Cp74rk35arbH5P7rztLLTKnBa8gmtt6ykpc1tcElHjr7LZ+KpHT8ZfqPgheiFI3gtbw+YWDAYFnESnc8okgp2OE2IXozSZ44dmKxWPyyR9fymUv3iBzWuem2Bd8vWrDcB/o/zN6Yzei23eP8W8QBobgTaRFdDPl280udpGqakT9KKkO1WRVh762VvHNmyfx4SNEwqmiyLrY1SOwLnbTr8SufZzYl6/AFuQ3dK+K9maM+BfRvoD+uSJ281oeTA9IPhGIffNDck6xm1b3KguuIFssu6E0eHAam3k+YcuA/QkPsyyVRWAdjyK8b6dFeDVVBMyQj7eu1lq+3FzX4wAKnMQ2ZuSwokwaBW9RsA6MSr/+/jdlDP/0yx9kBzydnbi/447jS2Fee0S9Ci+XApGFP/jzyshbXCgblV84EpPO7vyCJVtbyqdbG1JiERFw+HTtbFayOwZkekB7c9v6R3gR1f1r7nS5d8oj8t1fP8pfzX/nPQ7Y7J/tOwUtLapr9vCmHRRhSEbDu4v4FwQv9icla0jm4dW5fDMI3bQMDvXhRiV4zRvmrHKyLnbtR3YzyWKrglcLTghfzCFKD0Cl7eXqN85i2Bcs2CXS+2FdqPZVjlzFhn+9j1zO3MTp/fL5ZMKiq8nWy20sfjwteFSQfxeWBvPbDI+6wmZdJrDOA4bPtdTl7b0fKnWTrrdHwes60oFT4dvvf6GepsLhKvnXLY/IZWcfnkwibXcU+HqA2IXoLZeCAxKwcQNCy2I8rFy6nrUfsGngdKV89oBsFSB1XG11UPlpu7pNeViLOHJ87yO7RHOa4G3rapfzn75Cfps1VZrbmk0+3VSrQt9JZuafm9OCpYpdvenMLGzNusQ4LtgoKoevz3TSWr9T1PqL3dT6RYL+oIxtml+C/pBtitbErn2hi45kW/PYuY+Ifq6S6d5AQNQDJN6aZD1wxE4+33wWBN1Bm2I3s9BFJfpVQZaKe6O70VhcbVizYmNIZWg8RAX9Adlk6fVk3cXXED9OsfCg4O8eNoua16oH3WCTRSDwD48E7/9R8BZhNlmlJwR2OOAsWXetFeXYQ3aSUDDzRpp8HcOXKNKAlUtWBAiZprpQWeQFzsfO6u/hL8SYZsw1DvqwWnAf8unGJSHNraV9KNHzAMEL+0JPtEce+/g5ueOtB8UfN8SnTjMGlYH/1qI05dhefYxvr7UhXbYksyvkiOhqkWuIYeP/4Xhhc1oy7fvV1yQjyuk5eXt/AaE7rmkBy+LGmshN9tBy9gWt4vM93OUSvFY2pMEKo6Kg0V6bg0mQ5mtbzVk+oZvvLXyO36v2U37f+x/qH7p3aRWY/jNTBot+n7H0sGm/KK/IYiMWku1W2ExGNbh3SpTVzzq614QNa2H6d60yG0jX/eNBbyK8/7cXI7wDaZ0Mmr7G43H59Y9p8svvf8v4RReQBcaNzPuk/9LrHwiO97vojENl2SUXdsQKr8cRecQ/y6Hge2hIfUiJcLcyDng9LgiNkU3VMn1uV96uYPzwI8JDiygrMlZkOk42b0UFXqAF79/NbfL+L5/ID9N/lofeeSJpXdCHSPRmCEv+vC9PQq93N6ldjH/JJkT7HQfc+wMlpFNOXTPsDCkRXlVx5s1wfSI5NdNvY7hRhtWNtETJmtg1KygLErL3cgtXqlfcyqOa4XhqK2JXDxLrSR1o4Ovz9+ZtP59QzSGGk3BzieVMQjdXnRnqUg8DkVjm6HjyetONGcSu7uv4UYvIjituKUNrs6ees7RobF4UDPjV3z187lkqj8C6D+7lyaDe2utBT9p1s1FaGtykWQZ1tXV0yXV3PC7f/vC7/PHXdFlgvtGyz86byqbrrZazd8ifd9Ylt8sKyywmh++7nXR196iUI3YKNq7NaetROT7LpcDzCqtFTzTv13G5dDlnPyBYRg+plmnNuQUvNq2oCE9C1I7zbvh0PRthQn5t/kHufetZ+fCXT6VDHQfcG8ntzcCArqmcuDqK29vX5E+yid2kmO07Js2sQVSEONO9ply88KfiNb05/25KHSYB3CeG+0TvAkMWFr8/dzTNmtDVE4TWLc6WDbGL2jFWnCJm/ozmbCmbSO39uR/+3t5/RyqzrA+W+cRujt/3Loqsq7e/xzaHIDUjTqsR6yRcFVCe9n5FVZnWyRxiV9+/6IiF5KC1d5dAnvXh5kcTQhcZGjA3LJVHYN2HPBK8e1LwVt5qGuAjeuaVKXLVrY/KLZedJLXVYbn4+gflo8++U/ntFl1oXPYvjURC7n30Zbn1/mdk/CLzqS/wi844RMb8P3vnASZJVbX/M9Np8sxmFsk5CSJJQIIkBQERFUERA4iKoqJ+AgKCBJU/KqICKoqSDIDkKJIW2EWy5GXZZXdh8+7MTk49M//nvaFuqFvV1T3V0zO7VT7fx0531b23bt3u/tWp97xnenHZknBqGE+uCNC84msfBSjWlW2DyTW0vNUNvDjXpvoMZVLc9xbZ5uVMSCs0p0hK+/yfv0n5wQFq62w3qqR58gVNwiBjsF70VgdaDYI5fwgcDpEwYA87qmuArZA06ElrXt92ux4kmyCxyaQtQp+gRIdd2W55YBdTBjkCq6qmJ2W5LmIYK2nvyZECemWFsv5Ba/xlhF0M3QTe0mAXI0bCGj43PgeLEmFXgvpOM7ej43c7esygF1FqAG+yrZszsH+FgHdWArzr5oKayGd17qV/psVLVtD1v/kRO43Wtg467usX0HZbbUqX/+SbgfpcWIVcff2d9PTzr9PeH9yezv/Bl0uaht7+vC85qaSGYjoIGelI4Ijbuzam4ZXUzMzJNbSirc+IpoHNarMpFtVFpM3liFBSZyUcBJ1uz0AvLVrzHv30nitoeftKQrVWJALBU1c+aHXZjPE4WkBUVgKvVjiC76+2QhFdfX+pE0YgzLspCJUzSMBWrWSrM7RB88a+WSoechm6RZvtYhLDrBazmSpmMRaoOooAumGj5PpeJLahD/eeoa4H+nhDostmywUir/Yi0frQNb94KoK1y24GvCaLj+paC5Kt0AO32psO3W6/yDrvaAvBvRfkDHW50vIwRtNvcuzYzMD+//j82HRk9TLr+Jsq0m+cnSaShjhncxy0dfV1dxKivLf/+WLK5XjW+H0PP83sx3569qm09247sNfeXriEBgbytMM2m7K/5zz/Ov33hdfp0x8/gDbaMJoe0XW6yHBe1T5+ClBAazi1KVd0ktc4uJSBQ5jekmO6ZERvAY01mRSL3GGDfCPuwhHFzEXfYD89OvcpemHhy/TI609yFwT2KL2KhodkQhonEBl9VdFcZRdmqmT5CMKT0pT2NiiiK7lHRod5/3xsrgivKjphQo8eId6gcSPKWKWEi4fd6KCLc4i4t/OysaSsPHch8G0hgKnvW7D/KmKRUkwu+jGSWKPAeoEn8XFEdNk8Wv1ACsBlGTjDEiHaHrt4SjCzaTodvsNHaOtpmxfzcSpp36lNScGJkiZughx0QIWA9/EEeCfIClmPhvn8y2/Rt8/7DX3/1OPo2I/vz84cetzjvnYBHfzh3eg7p3yKvfad837DZAvnfOdEmjo5vqQK/FYsb+ut6GN0+3JvMKmGVq41I6ITeUnApYFF0IZGCBFsRKV6B4crqp3GGB6e+wTNfutZenzuHC+Sy6ByhPu4jiDCy8nVLzMIierqgMlaUHJdDsIhSWnmsXr/fAWowhMCqr3xyRWiJbBpj7bxT1hOzWiCHZmKpkWDXZuKCiCkQ0JQ6voF8CJhzegxQlQ3MmhrbWFuZWIbgr1BEd9iwDswshsR1mVfrigznEyg9fddDR/EBsy++ajBg2bZ3ozGqXT6/l8y1kup1zHoOPD1BpNqE//duCd2HLV3wD9PrMhoHv/sjRXpN85OkwhvnLM5DtoazOfp6z/8JbV39tDfrzqPMhn+Y/zHG++hufMXs1rXzU0NdPe/Z1NnVw8d94mPUBoGmzFurR39kSo5xdhlaFPTWnLU2TNYtkpiY3Uesh946TbUZqg/P0RdvXnKu36kx3BQ+eE8/fu1WXT1I3+h3v5epdMVz4sZ+FRx7SiPnVkuCGGwGzEpTYgNBAA7vHPlOwKWJZvYLg2mQ4NfwsB4WET/mmsnUWOu2Ys8R4Nd3gLfCsZK+W5i94h7O6+8PNZXVjgu2A0BTkBYRlSusEv2GoMtAK3q/CNEX/VptmbEBbvcvSLlrxQ5Stg1rnIVUUttE/3gI6eWDXoT/e4YfvFVqKsEeEuf+AR4S5+7cXskKqid/L1L6YvHfYy+cvzhrOLPz3/3N+ofGKSzT/881dWWt9Z7/+AQrekYGDfzA0BEQkp798ROXAM4Qo+MKkqAXDhiVGpDRLejr5OWti2n0276EaWkfy4kDIIopGQAUVYJvHK8YTrdYiK6viS3EgpHwLUADiPYEJFEKWP1xN9EaV0OMaluKtVl6yNga5ERXQvWRgO6NlYz4C3kolJMRLkAMOtjR9EKOGVBQ2wMoRTQjQjq3ucjTEohrOkgC/IS7uICXUc7n9nl47TLhjuwAhVxby31GVZYJtnW3Rk48ObKRHgfOy6J8K67q2qCn9m1f7+Pbn/gCTp0v92poaGObrz13/Sj75xIh+y3W9nPDI/bkVQ1Xjb80KLqUOsYF1yI6/xlQhp+kKGJ7OnPM2P51s7KAC9g953V79IV/7mGXn3vDaqWsMssxqQ2VxWPAJTKxDAOwVKTYEd6LQ2vgAXzSXG4zZjOijqcyjZ8EgfAeDWPPmMfVoCiilukMVjTspp4e3yMKDbRUjeFsukoN4/6GUTA1xgiumzoaMfqLhR4LTgrONLIoGp+EqS+F+07K7b5gDv+iC4bkdcsl9zgmg+6Eu0KnKfQ6XgnGSoXqSJqyNXTMTt9lHacsXVBf/Riv0Pg0S31/MUem+w/MWbgwJu/UJGBPnbcDRXpN85OkwhvnLM5jtqCbhfJai+++jZNbmmk3XbelvbZY8fY5QuuUwYQIXEtsPzoGM8TYGtyY45WdxRXnWyMh+nrDr+zdTVISKtmml1UskPhCLw+qXHsgRfXtau/h6585Fpa2raMXl/yFi8HzGDR1Lra5YC5JagIs5VUKY0fL50dDLCNENVl++v7CTcGn6RBIyEk20kvU85B6hzrsg3UXDu5ALCUBroeZ5e6AGU00yZWJDgiwmsXnYgLdMV4o7gw4FKk0nw+bZs0uUzU6TvufOy5CYFSJ7jL9SjaSXPLajPhsxDoeovQ3FF3fvCGabWFJLbjP3AUzWgsPUHYngJ8xmZMqokdoktdhslx5ZmBj9xSGeB99DMJ8JbniiatxjIDqLjW2zfAIFc6NsTScIRGEH0EoI2XbVozB8RKOhgUMxfp6irmp4uM8c4eOC+YP9tTmrJjKhvJD+Xputm30EOvPU6rO1YzUAHsst98UTxCj97qTglsX00qEOaLG5SU5iweYUOsDNpZ1mISdBWfwDmiilWfA2xhbHjM7ttPA2zsg6Q76HQxfga8dWEe1RWCXZcyWBtKTa6a+voti4a4gDdqZFrrD/9MoxJgFdHAEPeMdmp1g+BTv/NxQHAU2MVh8BBG397nLGp/VpnhKLArdeKHbv1hOmjrfYv5WgjdtzZXTZMaojxxiK3LpKEKzEACvKVPehLhLX3ukiNDZqC7b3BcaWbhTdnXP1RYv1jhqwo3JxTLyGSqqat3KPCmAdZDKONczig6IrooHPHG0nl0+j/OpZRwWeBeugJ2BWRKT1s9Cir3UH67MmmNT3JBmzEhfdD70o+TrMODdQ55hCOii12Zc4CILOK/0LhDw+uNV5Gx99QbrbNKuqyfFE1p3MDhqVok5GqwVlA+UGBdGlFVh6uWPDxI0lCw/wIAWPD4AmAKjbeETsMpIUqU1ZqbwAizFdXli5AfnE1z72CtHofZqj4Oqx3v3O2x+sau5Diy8SN3OJj22XS3WKKyjXVpaqzlVpTJtu7OwEG3nlSRk3vk09dXpN84O02AN87ZTNryZmA8Jq7hh6m7b/xEnfXlAggDjCCbHfZNcF8I22BNhnLBBROQSliTAN0hBrpv0VvL59NVj/zVKgWs4JLBqCZR4FFeThJ6VFa+zljMkCDEazPmhF+tQhrTEgvY9QpPwCOYRdDFefkkEoJchLYXNmTTm2YyPTWHHZtsIuCfdkiEvUOvYhQJARpARBvyGPg361vB/gtAZ8nHa1Mn5xH63ioRecfnwFklsFj49va3DpSXVfgGB5ZGDoFdnEIxUV1j4oWU/aTdPk3bTguv1lfoY4wli+pquUz8iXCF+k7eH9sZOLhCwPtwArxje6GT3ibODKAABSQE5YxAFjMb8NjMZqqZPGA8bfihQlQGMJLPD1PvwLBPvuAaL5LwMLc9/fEDfHtPB1356F/ozaXzmAsDfu+lVld3RQiK6iqgVaQAPSxel57+KnHNxMWiKqUxYFJJcpw9/X+zyKyAWVVTQEWoUyLCK5OP1KglAPMrIDEfwDuzZUN2Piwq6CviUAAB44LdKEUctMUDpxKWmKUNuGRYFedQ8HjX/YD1moyty6EyfW+KJ5FhQ8TX20qBb0t2IC6mahJlkVOYF8fZFIJd13iM1/w3dLJ/udvMphn0hQ8eyyzLSt3w/TGlKefZv5XaTnLc+J+BQ/71xYoM8j+fuq4i/cbZaRLhjXM2k7a8GUDErL1nkHrLAGSlTDMyl1FuExXKxssGCG+s5eDa0TNolAouNEZEgxEVjjNijcju2bf/lN5ZsYjWdLYy/mOgqCWlyddU8QcTMCXIqhgwB1rAC/6Hkge2U4LinxiT0kSEWTowSBcGCcWyT4wF+lwjwqvjrZVgh7emNsykdCrNzieX4W4Onp1VIZOyYkAxbBEUCbu4CIA6bPImNBRWC0RR0U5B2C0Ap6oNd+QV76P6GWAOMGrr2F0QbIypQGRXHo+IMgNeHazVopTVSnxXI0pkV9eFy7Un/D9Ee1h/1bTrhjvSx7Y9gOqzdYU++s738X0A5xYp1ympkeSgCTEDCfCWfpkS4C197pIjC8xAR/cgdfWNj4gqtybLMOAN/OEcoyuKhDSAbjXzBi5NhwtYhvwhjvkdHMqzSO5fZ/+TZr05h8sXLIsx9vuvSQN0RJGROBtyOTPwCJfcx5aXliOiy6FcsxYTAOsBjidd4CNkZY8NSQPf0zwf+fybaFrj+wz9LiytoD+FN7JzbcUV0RUQVhA09XWs9S1t7UIrnkWG1JAPS4Gopx3R9SlCrKYRoMV6x02LTGyzLql3hILQYIi2j0X76VQ1DeZFqL7YqK59vpqeXEE5duIJj4aSXasa+Jn3c39eHyRH+F6CPzc0vPJzFuGQZJcJOgOHVijC+1AS4Z2gKyYZ9pjMAB63t3cPjIsyw3isjR+Enr4h96PLMZgRAEcuXc10lNDejib6DXkGol+FtL5hpzU0PERzFjxP76xaTH954h+eTheFI0yXBRl5NTHQ2yuCzRiDUEQlBa1xRgiP6Aq+E0qDAklpOpCLR9heX5ZmmPUt/h/+w4FXzJQjomtHrac3baRNq1CfyjK6zMt3xGhP7lwUqNoXroSIrt0E1h/cKJyJWREiumiv4DkUfMTPsc/YIkA29sd1krUacB4uy1yuZ44Ou7JdRHkN+ZWrHeltHHBDwZe0fpsk15R8zbrdM0pk8zGfsd/JNLU+zP3D/YnGzTySXZNt3Z+Bw277UkVO8t/H/rUi/cbZaRLhjXM2k7aMGRjID9ParvGj40VUtW+Qe9mO5cacF+oy7GcYc9I7MDTqmwDAbi5buiZ50Zr36G//vY2efvt56u7r9uQLKCJh6HS95DOJqO6kNB0zXElpUsMLGFQAqaKoElF8hSEsiOAcYsGv5qkr42dMwqBBiwfYDihBdE9GZv1RajMprz7XRPg/vvnXER6/MxkFPF2HeLHhUa+2GGAXY4ATAaLQPslxBNgteA6RoNV8mB8a2Q1pj4GvcNpgemSNIwvCtKNd3Dzmh4etmxT/js7kQGM3vwuDE4DFh0UdqrTim7VsxIpSFAO9mAtUWENZ4WRb92fgoxUC3gcT4F33F1dyhqXPAB4To/ztQKFSpqV3UdSRKDGMBBhA51ht6BOlPhHt7unLF6XTDRsjosR1uWrq6MkXBc+wGXu3dSl9/5/n09qudgG6SsIgwVW5L5gAzHnRwEc2TA9YddcG8SL+Iy29EEnlNmXqKD3aK181YMCKhKnjOfzKAhHMw9UCXTV6JcXUcRn9QO7CgdeHIIYDBf6YVD+NMqkC1k8s2isek4dpT6MswphgF10BeHGz59a5WoPRQG70sGuBrr5gXHMQCZ75dUMiHpjXqUvW2wmB+myWyxnshEZ9aD7YtdsLjez659YFu3Jatpu+FZ3wgU84bO/cCwbSJhSikRrtKMsq2WfizkACvKVfuyTCW/rcJUcWmAEkQbV1DY6bAhR1uRQDr64xsCaDdAGPGIEX5ShpDB1wfW2aSRqiaJL7Bvtp4Zp36bL7r6JFqxb7QFcHVq8qmvTYFXAarfiD22bMK9drSBpsizIJpe4IrsdJGlywJJ0RVRLYRmkZEXZBuYRhtIE59Hr1STQUnkxumEEp+VxdX/8WAElIhPYUb8EKrCA4yvZihFx9iB7wRojo4riC4y0IpnyHYgHb97US2g9PHMTGEtvsQUc4VzwpUUmHZu+FQNevtw1wZRALMAx0xceMfer233wvOnirfSNBL9YYKkm6zCiSH6l1bwY+dvuXK3JSD3zyLxXpN85OE+CNczaTtnwzgKSs7nGSuAYZAEr1ru0qj1MDfsykthaRJ0R1yxXd5prkDIsaO+2UxJXATUdnfzfdMPsW+tfz9xIkCxinnZTGXvNA0gTOUiK6it2U/hcJNcpXVffp5Xt70G1rbvUIrydf0I8w/63rj3WPYOWzK/vjPeLmwXPqCoJdeLVWZ6mpdjLLqje2ANiV+2D3NKzPRkYK2/SVCXYxFqx/SKynIaQAACAASURBVAACQTZqVLcg6PLr4esn0nHWV4jrGO81BdRsjoULBa4luwmM0h9LiEv5vIlxbMHxO6K6zoQzMY6osIsZ2GnGNnTk9odEcm3AU6Sm+mzy67OezMDhFQLe+xPgXU9WWHKaJc8AClC0dgwUjhaV3EP0A/GYGdY98AeOe5O2Z2gXkAutsNM0P6aO8eOJJDz49nrZ5VrbAN3ugR669bl7aP7Kd2jOvOc8P10ySgH7JQp6tFdGSHV28IGpVahB4adKSuNALSUH+k9/EOj6o79oABW55OZOSlPOELrPQlD0Fm3JYh9OVwZ2MvwdaHdrMnVmFn0B2JVjxW7QWspyxj5/atFOwaiq3mDAWgpqAzdj7NG9fVzEc/AOC4VQB+xGiLL6TiX0GPNN5cwA/165RkZYARdXYpumv2F6axwzMKjNSkHYDfLWdSWs2dxt6nxNdufHw4/3sK0PoO2mb0nwfC60Qc5Qm+h3C03TOvP+EXd8pSLnct8x11ak3zg7TSK8cc5m0pZvBhBpWbm2r6zwV8y0T2nM0pqYgRdVz/C4GJ64cSSkRT0fJOHhUblLk/zColfo0vt/R+3d7ZQfyvPCESyyy4GEJZGxjuQPsBXVFVpcsYfYk4/MF/E1NLYcM13yBwCf6dJQnIRBeurqSUqRJQyCwl1JaVzDq2bdwBYt4ttQ00y5dC0//2IhUbuouDlCG6ZuNIKEoADshsJyVYCGV8yLbLpQG8616Yi4hsJxgfMoHJnVbnqs8cuFirWC64rzMZ6yqLs5tvazGW5Jl9fqtxQtY3Dpd8U5mjKDcNjFIZnqNJ2x3ylUl6l1S2ccF2B6S02i3436pbkO7PfxCgHvvQnwrgOrJzmFss/Aira+SDrTsg+EUI0oy5wj/NWxiusdP2S1GSSkpVgkqVwyibBR6cCLiC4S0pa3r6QTrz2dqoc4k3FPXeAuT8rikVbxXyN1TIGqHacqJqKL8SpfXhOQmdxWf9JsVUXzFaTQxonovLxmficHCaCOGG0EmzFD0uAAY35TUEUMeDM1xiWJHJG1LqQs84ubFZZsF2X5BUQ9o0Cq4TVbLKxHiOhi+N44wqKzLkCNBMAW5NrtBPSJqDbOHTfeyn9Y7Qz9LxJZfW4adnuOpxjqZtG6eA67MR18XVHdbCpDh2y9P31ok12jrARvH0SnZ7SYa7KoBpKdJ9wMJMBb+iVLIrylz11yZMQZQGIVKomNhw0leQFka0usuIYfrppMimSUrrs3r/2Qju0ZAngBTH0DQ7SkbRn9950X6bbn7qUV7Su14hGcDAC83DfXHdHVf7wNDWzEiK7kDx+MaqAggdfsK9hmjAE7dL/GtMq4tCIeaT+mgnfiXwFuEKaul7spwEKMbb5oHZ+vbLqGAa+u0YwEqa4locEUcxoQ5X6d/rhhgBiWWGYBG+YecOTSe0cBZsclMFwtyp2YpvdfKALrGyv017hjquLJjd61JiJUKIMnduj4S3Zg0OU1YnkZcM8/aU25Bjpwy33o/RtsR7l0cVpcyJpQmjzZ1p8ZOPLOkytysvd84s8V6TfOThPgjXM2k7acMwArpFXtfeNidjKpKprUkKWV7f1Fjwc/jvC6HBkeYT+SeFRaMvQU3bv/gIaaNPXn++nCu6+iZa3L6bUlcz2pAk9KEwlqMpJrJaX5IreGLZf8gVaALN/WWYojNO8oGJRFtLkaEV51tL9/AedaZTa8wq3G9OM06HUlmXm86z/Ghl2MGdCJ6J9fgSnPDU4ANUzDi3GM6pqLIeltMBit5vOMaKMbLs2Xi4VU6Q+sA2+xbfAbAoPY2B9jBbvOCHJYNFndAXEZj4B+jJmB7/AI+zxDhhQ25+7ywI4PcJTIrvywiMP33mQ32mba5rTVlM1K+kaY1pxjhWySbf2ZgaMqBLx3J8C7/iyy5ExLnwH8UC1b01t6AzEeiR89/EisWFsc8E5qyDAo6ejN02CFQRfTgSppt75wN9314gO0vG21Al3hwCDZhEd0/Y/6JTJyOapJDRyU1a+3T2qg639ZRwqu+Z8m1Mq/PA2uuJ4uCQOindifPWL2gq52e0rCoBhM0yBb/kzGuSjlsreq9MIT/EUF8fKvXKaW6mt4wYmSgFeb4qDjpXcvYIwlIgbAXCmgijLWWPtOv1r78+Xq13hN/RFJxhAFSvUxBEG13U7Udu31UM0jvkxTTqRsE33t+2+BohaSEB8L76zUKambtX0324MO2nKfwr7OId9/G0yuScoJx/j7MBGaOrpCwHtXArwTYXkkYxwPM7Cmo99v/VOhgc2cXEPLWgtHnAEIqFGPDOiegTx19VqRoAqMPz88RCs7VtHjc5+mP826kdKIOIKNNG2sjLqWajPmVSjzIqXqRKNGdBWIKgDW/X3d7/MoJy9OYUeC/ZFkD02LjOgKpvVAn/vwygQ6A3nZi9VVKWqqm0xVqD9b7OaI6BZqAolU6JhZiGl0Gwi6EcCP+RWzGyWr8IQTNLUXrYikD/iD+o4wJt88OECX9VcK6DrGLa+7PAfYtCG6j3k2pB4OWYt2/2cM25eUpi9seWOojQX/ROGSw7ben/YqUq9rzxeeVk1L9LuFPk7r3PtH33VKRc7prqP/VJF+4+w0kTTEOZtJW4Ez0NWXp44SdbNxT+v0lhzBHxgOB64NbIBHnXhUCODo7BksLaoX48CRkDZvxTv04uJX6I+P3ehFdCXwyt/ZUiO67Hiptw2zGeM7enIJ/Tg1BnHi1n7SpUGPduHfzEECcgdZJdYXIS4hoisGo2QWGjVZQONpeAWY2OMD6DbVTTHtyKJc22JhVxsi1mA6XU3DrJhCgL2WBVcmiZkDlMCrErdsqHWcUBCAyl1jh12zQQb4+ktRIToC7KJpAO/QyDCL9OJ/UuZgz4TTW9dbX+Zk+JLTLNjdYvImtM20LWifTXePsoJC90Fhm6a6RL876omcYA18okLAe2cCvBNspSTDrdgMILGqHP63pZwQkr2wdfbmfYfX16TYDyEe/cJLF/rjSm+A3UsfuJLmL3+H3lm1WJMvIOFJRETFg/jAqG4kmzH1K25yhnoMG5aUpvOJsZ9RLAKSAE1fzMx5/dpQ1SP379WFF96D5qDIbkjxCLMl/hciZRwEdSmDepzNIrz1U6IvA23yIq2eEJCTPrGwzvIlnEUEToxBj/D6TiQwguoA0DDILvU9VxS5lKiu179jYhw3H6iwJl0yAL2YI5lY6c21M2GNz6CxRrVzN+8T+F+4qfvw5nvSnht/gJprGqOvpZA9E//dWKZxwjVyzN1frciY7zjqmor0G2enSYQ3ztlM2gqcATw2XN3ePy78eAE4iI6g7LHc8GizGdGSKmIWY1HK9Zb7csNqbEXnajrj7z+mlR0rWXU07p9bJfx0OcgwSQP7wTXjmfKHt1CltCgSBm8fjU399mACBKwIsdxP1/DKcUsgjCphcLlJGBAbUhbY1F8KXEEkNaTSGvprrJ1EqVThAgAaBbF/RoLdApAo7wWYr2y6qnCJYgfrBQJvIDD73xhVYlrByKwF1uWGXdE+SvJKSzLvswLJQRr6Xp5A6CoeEyZjCIJdqddNR11HBb5cMIbJjVlWJS7Z1q8Z+GSFgPf2BHjXr4WWnG3pM4AAWlvn+NDxsh+LBl6AArCDiC8iPJBdBMkcSj/z4o9EQtqby9+mW569m56YO0eYiRFVC+cFyUjcYaCaGeebEVA96UxL5hJDMUHVXzVKd1sYTUTXYzkvwiscH+A7q0hX40QFobFEdMUAzNQj3fyfvwO7LuiG1WbOCZczhOh3LUCLBLohEBh0vPTuZSWKhXesDdnyHOw2jAivq29HlNWA9oLQ6ljnoRFoB1SXDLrBEd2gc4DdHawFfa4YwraPzbUoXIGnPMZDCD22K7pWoKvGgn9t0DiNjt3pCPbfOLdcNkUt9TyRNtnWrxk4tkLAe1sCvOvXQkvOtvQZwA8GtLDw5B0PG5waILPADwYeZ4+HcSGi+/i8p2lp6zL60xM3eYArI7r4aZOPURl+VVWxpDW9fCrbx4uwmj++/BANZ+0faxk9tkDRHynmVzDwdUeEFy+xghQj3BIqLKJr+kYEJat5gzRcJky5g99/gnOd9jqL8FZrEX2zGhbGEqrfHQvYtfpgHtDCWsulyXUBM6Aem/PJRamwWzIEF4DdQgynv+8au+uaWK+lUtVMDhSerAaPZi5zwIRD5sRv1AqXB8YV2mmDbekzOx9Zlq+7ulyKlUm3DCjK0lfS6PiagWPvObUiA7rtyD9WpN84O00kDXHOZtJW6AyMhwIU+PFqrMsww/ne/iFWDng8yBf6Bvvp3689Rn956h/U0d3JgIZXSdO0pJ7GVL0GGy/12JX/EPsxT0keJPTqwKr+LeEyWlJaoegvBoP59hCbjdUdK1Pc4kgzC9Hk6vFrFWWz50DX5mrvCfBFlB8uYIKFxRpWhNRcP9W9rjWIGm1UFx0U48KA6wwYwzVAIQUktoW1ATkEdvGt9fEGu/bCtGfeu8sK2NF1TWyAxo2i5lohL7yTs0W+JG4YuGVeFQ1oZRr1NSdXVnNNE+23+Z6004xtqS5bG/uvAq49PLjxPZZs698MfKpCwPuvBHjXv8WWnHHpM4CIKtwRKgWY0OxBp4uoWG9/nkUcu/srbzXW1ddNx//xG5QfHKD80CD7UWURXKt4hBmd5BCH/SDHYI/kBbwYTGBEfAUkGAb5QhMsMc+Ozopkt0JtykgT34+DN+bXsxnDqywjyMpRc1R+M5PHHPFeXwU1DVV8wO9IRLPmyeXDq1Z5FTXbCWsxR3UDQTUo0mm9jnUNmYP/8bxid0SFsUa8z55JasaH2ueOEASdrq8C15jD+vJFawO+XwpFdS3+DfQHljc5IuJtJCs6zlN1y9cyZA7cymyEV2yzbhgy1Wn6/K7H0uaTN6LqUmzsIny94nPVXJ+h2lyi340wXevcLp++92sVOadbP/6HivQbZ6dJhDfO2UzaCp0B/Ni2dQ2wCmVjteH3CD9QSFLDD1Z7d55XWMrAg7Oa6XYrsQ0PD9Py9pV0/t2/oAXLF6qqaCIxTf5+s5hSgcIRRtKV4F4Jx6wdh82YwFIj2c2DWp8tmJwhGUH26NiwJ9OlAizy7E0sb5kF1Ub464oTHDHaSBFdPVIbNaJrK525A4T04dXXgRwVik2kUiKSNs5AVx9vOgUtcjX7bHkSF2282TSX7vD33CQdCrpB8B3cnNaNdbAw5rCWR/DH0LjbcgxEe8kJug6nBSSmQfuuy4H08Riga50j1jGcXNAXk0SMENWkczSptoW+sfcXyv51gu+zyY059r2WbOvfDHymQsB7SwK8699iS8649BlAFKqtc2DMEsPwo4ToF4AG9kM9WjQ3m6lm0NvRM7bAi0f6q7ta6T+vz6I5bz9Hry+ZyyO1Uhsophc2RhJWvaippuGVwAgwQ4Uur3BCxIiuB9QlRXT9EC2hXHdz0EsCY7xyHw4luvAiQHLggbE+AxbcOiUcWpU4z47N7E8vJJAyNLxm+/W1GvCKazPW8oWgimsYjj4WWToX1yA/BK20eBeAlqpmcOYae2A0VN3nhH/oA6O6bjiN5Phgg7RLrBp0A2LztXUs1iEi3ojQ+oC3iPLA+Nzhu6UxV0/7bfYh2nmDHUdVNS3qNyu+1+DQgCc7ybb+zUACvKVf8yTCW/rcJUcWOQOAvc6ePHX35aNbNhXZB4dE4hZjRNQ/OMQA2/5hQ3QEVdTgxctdDsq/DQ7lmUb3tffepFffe9Pw00WlNA9CLa2u7pogIVhHRh7hFRhZoaQ0r4qalCxoj3o9XBUyB5a05k23G3blMfr5yhnSnyKbemWHfEG7AfCONziB6zkR/TTaEiBdX9tM1dXmo+OCq6UAhziPLzKCGjYGpjflWY1Mb4qmEdGUbgP2SvdVMtN3KHJc3iJ2UXoxkV2935Jh1+9AgvEBFCFNMOZD9KevS/ldIqfDe0+7SUxVp+iUPT9DW017H9VkstTRA8lWeb9LIGWY1JAtbydJ6+N2Bo677+sVGdvNR/y+Iv3G2WkCvHHOZtJWwRno6cszHW9BaCjYknuH+toUNeTS1DswHFohDUDQWJth8O0z9C+x77DDnnnnRbronsupv7+PIGfgfrqFdLpawpeMiVr6VTSRSVXTEAvxqqiwhGfzx7q4pDQJm/oPPYvUeo3y9qR8gUV0LUowotMYu5Zk5wFmCRIGZ4RYnLTerm8/NXjvctmSEB795TvqwBtpzcYJuwFtFU5uw4EjLIqJcxscAuRxX1nXFgi8ccGuaKdgJNlHluLu1R60K7Jrj9VZMILvxKrYCeBlL1iadr+GXBuAuNvCfw7YYm/ad9PdqSaTY6sFINpYl6a+/iFqL+OTo5aGDNXlIvpCl+G7LGmysjPw2QoB7z8T4K3shU96n3gzkB8aplUxF6DAjw0kCqiSBujSC0qEzRD8d8tZTQ0R3aVrl9PrS+fSZfdf7UGu7qfLfoCFTldCqoRE7+8CNmN20pURHNOqhwVHivksyeMKuS/I91lSmrDH8hem0M5Cgw/AsbANFn3qMTUT2BX/WBIF76KWFtHV1wSThKR4hNyOFuP8amuaqAq0GLYVgFwc6kPNEmAyGuj6Jbq5DO/MKKSg9T/qsQkI9E1RMaBrLlq3ztgFuvrCZf82ryJfZOZrEngHoL81epLrT52JOjW1nrOpDO2x0QfogC0+xGDX3iY1ZNi9Z0/fEJNSxf0AaVpLDYtQJ9v6OQPHVwh4/5EA7/q54JKzLn0GAKQr1iLKGSleVpAzoNEF7OIxJWzGiikcAeBFkk+/9KQq/bR8Ry5bu4IeeO0xuv/lh6m1s9VISvPAUkRt9aQ0+bPq/dcR0cV7/IeY74VolVk4gQ+HmyipH3wbaOWPvcEahkctP957X7zHXhN96zpdBQ9uEEVLiKxzSYMfdOVLCszFPoI6zJ941UdYRFdF75xHe/OnP4Zm7UH3mqmlTDrnzbNzeUTgjshAGdJWOOxaBzr+zGb5GkE78JPVt0iR16CxjQXsOvp2JthFgF3+eeHrV82Dglm1BrUZ0iUMVSk6bJv9ae9Ndwv9tkCSYE02xTS+fQPDzPN79N94fCluMKk28d+N8bt6ojV1wv3fqMiQ/3741RXpN85OE0lDnLOZtBVpBpC41jswOjsw6bwwMjxCfYPDNFhCJAVelvgBgY43rg1yhR/ffRm1da6lN5e+5VmMwU9XB0wPRo0IrCZhMJLJtB9kR1IaApDYQ95D6JFcGXkNglobgoOgWHrqIhrNC0fwammuyK7zNTHBHHh12BWzYsgaNBwukJSmHj9bSWnG0/Bg2MXE6YUnJOxiVNlMHaXTMPcPoL1Kwq7Rt35j4F/JeBc+vEynzB7n80IbzFZLRp/DziUUdtVtjtez2D8SSOuHF4Bn2b4fdt1aXWe0l11Xy6KtQCEJOcSdZ+5AO83YhrabvlXkrwvckCM5FjfkkE8FWsdFbBEV1qY0JvrdiNO1Tu6WAG/plzUB3tLnLjmyxBnAY77V7f0lHk3MgxLRk87eQfbYsNQNP0aAXpQYjmNr615LF979K3r53de8ghH8YXgVISnNg0lpNaYlquk/zqVUSsMTTm4LKqKyGjwEQq046SgSBlbCVFRJY2fka1+PkjlSycQgUBlOBhg9MLez6I0wmyMWLPr2OMyK7JmAGgC7Gkjj5mkIy8iCyFy2llIpB/BGAF0PJPWFVRAc3aswOEKsNRgyJgm5gyKMjV0zGb4y8VkMjTy62lUT76ZrXcIRFaQjJKZ5wGu16b8hCQBgQa4AUCSseTeIrmm01jckDIdveyAhSS3wBijkSwR9NtVn2I3Gmo7Sv2+mNGUpl0n8d+P4vp6obXzugdMqMvS/feyqivQbZ6cJ8MY5m0lbkWYAX/or2voi7St3wu9hbTZFKKmJSNXarsGijnftjDYn1WeodZRtvb3yHXph4ct0/ZxbWDngukwNbbPBFrzwQjWqjbFsLRoaytPCFe9S70CvxGDqG+BJbCZ0avAY0WaM8SjIRYCczgSmjy/nOru0r6/UrydfUDKE8IiuAHvvzCRNm/IFXcMbJGuwVZh61NVMKLJaCAAxoz1HgpzU8JreEUTZLI/welucoFugrXAZRDTQFZeCF0xIc49e/VwA+ohu9w8N0YiQO8hjnB+uINDVhuOUGtiNmYszEJp9b4jjeB/mZ0Sdl0vDy9+V3eJG13asME9NtT2ptpne1zSTjtslnhLB0Pfi5hHyq97BIacUKeyLbXoL/HcLaMpH/c2YNDCeZ+DzFQLemxLgHc/LIhnbeJ6B5W3RdLz46UH2MzLO8T8UirA1iKWeJ9qGn2WpEd43l79Ny9pW0DVP3ECbtWzMfsgYXKKkLvs3fpe5o66EXv5f4UlbRbRszUrqG+yjgYEBWtPe5uMNBat64pbOLfwHHv1ptqu8HQsK5I96lIguH7vbR0pHDR4IC47o2lDLqsKNmAliwRpcAdFi4Go/C2qswhz6etDbtm4jhL7ZX3iC3xBUM+BNpdJW5Dd8tRmgGgS1JcNuEaCrER4kL/AahuxHX2Di/ojBMC41PleyRHEQbDonQwdRnSxdU+UtwoAdXXNjv+aMBjtAV/Rv7g5tbbWh9bdhV/697bQt6dCt96PpDQGlpUv84sH3BCwRcV1wTfCUKoq+F98dG0yuKbHX5LB1ZQZOrBDw3pgA77qyhJLzGOsZgBwBnrxhGyIxiOgiIozEDzySlVAX13jxiLCje7Boa7J5yxfQrc/eRWu72ymTSotILrR6IgYJ6BXwK+FRwrAHiRIqRfS3o7uTgcdr81GMQgPcgGiWpwOu4vZT3GnAEb3VJstXtc0y2kdX+EGW81xsUho/N4lFPjRmjggqwU4lngm01UfqAakRI7a0voK3Jdp4xxtw67I90yAKUU7uw6uagZQhm601rkPYmosjMQ3tj1a+oAOtHC+ryIUkLQCvDadiJ6xbFjmsqqIB+Jjpm7yo9gRoc1hUZDdCe/7+tYvjAGDnPYR3o6SOxSmicAN0/2KpygxQY+0Ado/e4VBqzDXE9VXja0cmtmHee/rz7DsubIOMCzfoybZ+z8CJD36zIhNw40evrEi/cXaaSBrinM2krcgzgC/31s5gHW9LfYbpDOHZW85SxPDNROJbVxFa4PNvvZQgyh0aHuLRXBHRZZFOEW2sruZRMw6uIuIrfmEl+HryA3acAlVIHPC/RUvfpaUrV/h8QlXCm9LSuotP8MvhhGAt7CUBHHIDmYwG8mIRQA1OJESql1R6nA6LQZIEvM7L+FoR3igaXtGpAhs+VnWGaumFSRjYFbGO0+dOvolywgx4gxLWtJU+rmDXozg1QAAvblxk9NYZTRTzy4AwU82ivSwiHAFOC8JuoQitk1YdzmTOa6FfT+2iOLx18a5u0aaWgXF7RF/a7TjauGXmmFRNw5hwfZCXgLUWltsADTByDpJt/Z6BL1QIeG9IgHf9XnjJ2Zc+A7APW9NhAi+iTPW5NEtIg41PnO4JQSNFMkljXYZ5A4dtwyPDtHztSvrn03fQmq41lnRBSRnw08nkDAJ08Rst5QwSHqHr9SBUf19EZxlkiR/swXye/jf3Vcrn89Q/MCD4QyEda4cA1ELDa3GCT7/rSPCSY0G3iL7akKciyZymDOjUAEvhr/GicQSDSy9ZTycdPdqr9eFzaYgAugUiurZWl2t4zasP4M3l6kLXRBzyBXTgBmZtboKAUB9dyD4SYJ1yBQ9otVFUEeXS1Z6FmeEgWExUVwdU1/hGA7ouCzJ5Q2lcNROIWcLakPTGNUG3pbaZjt3xcNps8kalf7GN4siG2jTLU+gfGKLu/iGveiI7LeQbNOaY40Oyrd8zcFKFgPf6BHjX74WXnH3pM4AIEiK8+C8SrlA5iPnJjsAmbDB26ULQSNH3tOYcrVgbDryPvzmb3lw6j95ds4TBpRfBFRpdT66gRWv5ayrKq0sbVHRXAKZMEuP06UWKZbtd3V20bOVyWtW2hgYGBw1DAR5l5uQkdZlRk9K47IK8pKVoEV0Ne0Nsw3SckAhrShrkVXFIGxwRXVsqYR3N/3SNx4gMmpCD/XnUWVshkIiICK9r3cQV0fXBritiPRrYFcfmstU0MDBChh+D0Zd1RmK+MC/MwQIWZiMjxmeycFS3ALCXHXa12zLxT/xH6nelgAWv5dI52n76Vqxq2ozGaaV/qcVwJMYD8GWV4IZGqLuXl2HH3ygnDL11sq3fM/DFf3+rIhNw3WG/q0i/cXaaSBrinM2krcgzgMITAFtsMmsaUd2xKPOrDxI/MEgEWd7aF5g4ctNTt9Ab8NSt4n6aDC4Nja6I2MqkNUFmHvAKgMCx8pG6LWvwEtlEOIdBrBfxlYA5Qh2dndTT10uvz8d4FLyJIQlvXBPqXElq2EMmunnJbj6tsARRR1KaAy69Xl0RVrG/59LgXQQzYisDjr4eDUAyaclMTNNAR9NB21FdDsd8XymzkK+hPZ6w5rZ/KhjZjQCpsWh1xZw6P3TaGAC8/QMa7gbBrgO42RMKAb7QOcO7N7AUsXcHEgfs+jQJ4oYmIDnN0qJ7U6PBLl5DTkCP0MrKUR65/SH0gZk7UFZ35Ij8TVaeHQG4NZkU+25EYRx8XzbVZdi1SLb1ewa+VCHg/WsCvOv3wkvOfnQzMDIywh4vtnYMxF5+s5iRzZhUQx3dKIbhTxpp7Wqjyx+4WrguaC4MXkTW1uhqelxpEaYlr0lHAwnDHIAF9Glt4neNSQm0KLGMFuMnb/XaNnrhjVe8SK/cX0Z4FXv44ReyAuwnk8f0qC4HhaBksuAks1Do1ODY0wjrQgejupspmnBpbr1zk2dvJcmZx5hUyIHahAbABX/SIN01qimXq3euyUjFFAowSUHYjcI0Yfto4DpCIyyqaSREeedvyhjCHBgwbayiYRVRr25vZn/Q4pAxBGh1jfsXvV+HXtc1jKpqYhCpz8X39juV5aiTMAAAIABJREFUmmoaqBpvjsMN59FSn2Uyrwhy8nF4BsmQ4p6BLz10etxNRmrvr4f+NtJ+43mnJMI7jq7OmrYOAgROmdQUKVlmHA2dDaWvf4A6u3qopbmRMqjfWWBD5SE4JESx5CnU1mjeb6hJsQz1td3K2xea3RXtq5gTg67Z5ZFU5a3LNbq81JmnlzU0uioiLI/VYVdZlEldr2yHH+eDXmFxJuH31XlzaW1XO3X39HgJZ4G2Y0IvjIiu7r5gxUR9HqcmzCqAjBLRlQAtrw/TM3u61QDdrlX5ygaxILgOgmPFfw5KFJXWmFVaFXeQgMa6ubGJRTPxf8ZtUBBo+l7HC+bKDo4MW2HIsMUcoX/788SAl0GqPLgA6Dr6kFFdJLXhs50fGlb2gDaJ2cdHgnP/jYh3Y+MiPd+UaTd29nv8LofJAvCZGh6qpt032pkO2mpfqs1MDJsvRHchdUi2ZAa+XCHg/UsCvMnii2sG8kNDdN3ND9D8hUvp3O9+gepqJ8YXMc4/nx+ix2a/RC+8Oo/mzl9Mu+60NR15yN602cYbhE4PqjzBhcHzB41rMotsBz+EjbVpatMKUCCye/vz99B7rUs9B4UwnW6QVMGWNZhSBqXfteGWu/fyhDcJ0p4GGElqIqqF95DY9trbc2n5mlU+L14uvVBRU7t4hA6kggv8aWkeQPjQ2KeZ1WHUjtXibzaWKmV75tfc2ln37j5tkOZJgh4ieSsgHHb5eDDH0I570o7qKqrJNXBAEq4SeJwfuEWIyLphVzswQhuGcFsfjHEsovfmWDnwyte8jEHRgvsmQG/eJWGQWlK05vliu84hAqCzvpxQq0Gsdb5ms2I/13TKRY0IdbqaSQMO3GJfBrz12fCkxCK/Rsq2OyQ3LQ2ZpMJa2WZ4YjX8lQoB77UJ8E6shTIeRgs4efr512nq5GbafutNvSEhsvvAo8/Qn/9+H1398zNo2pSW8TDcSGO4/f4n6KbbHqKjDt2Xpk5povMv+yt9+sgD6KxvfS70ePz4ADL7bd/PSL3GtxN+ayc3mAUorp11I73XusRzY8DvJnNXEAAqYZQnmHH8kvo6A3IN6YNMYJNRYoFt0srMIV9wRXm5jM+MAA8N56l1bSu9vmABdfX2eMUgvIiqzjmGVjckysq7MQDYAE3LE1fnTafqVzApKz7hBRwtbwcHtPrg1oIj01VCB2TJdBZ1iXHLuUFzXtKaAHIAL6aMF23g193pA23BJu8xSmS3CNgNg2FrvmzYxfWTrifmXUBh0GVnEtI30/am+Q6AXt89wShhN/Bwx5w7lRTicyJ332fz99PmLVvQttO2ju/LYwxaws0F/HdZee9kW+9n4OT/fLsic/DnQ35TkX7j7DSRNMQ5mxHaal3bQZ877SKCfGHG1En0/a9/lg7YexeW9b/oveV07qV/ph99+0QDhiM0W7Fdunv76GMn/JCOO+oAOu1Ln6RUqpouvfLv9M7iZfT7S78XOi5E1No6+z0T+IqdBHGnBrhGAHxWtK+kPzz2V886jEkYPKsxVSXN1OPqOlyXjldWJOPUxyK3WlIaIrqeRjcC+Nr7Y3zZVBX1D+Tp7icf86zKuM1Y6RIGHTa9eFtIUpoNpx4ua/DBksRGrDQyR9KRXA9m1NgEcBfsmgzohwQcgzHIqC5y03SXhly2nqpAugL48R9esCBFfYNDXglntV71PmKGXW0Mvs+HdqIu0JUzXJOrpr5+UUxCi3ga7dnTZBfZszuXhMnWMlEum2J+2XB00OfN+ZnW+wqI7DrRTrxo39L4YNe6CcCf203fik7a8wgazmeLLudbye8l9I3I9NTmXKWHkfQ/TmYgAd7SL0QCvKXPXclHnn/ZtXTHA0/Rxu+bTj09fbSqtZ0O3ndXOvHTh9Hvrr2NttrsfXTuGSeV3H45D2xr76SVq9dSU2MdzZw+hTo6e+jIk86iXXbYkr755U+yrs/+6R9pt523oRM+eQhtOGMK1dYEf1l39ebH1IYsaG5g/A6XiO6+AfrZvZebsMtJVEkLNLcF6dZg24x5OlrrWM/dQTzFBcxJazA7aisBWEV5labXjvKiDfbIdgSuFylaumoVzXnlFRoYHHBrcjXwkSArOcGVxCYhxuHC64gCB/joij4BjzxhLoKnrlX8gh3lgyQPxQVsuSFXHou50yO6SOLTK61laxqcGnp0izkG0kGGo2qzhUCuB6zamKIE6sL2sYDOgF0LaKuqRth6AKgXSkqTn41QF4aApDS8jEgk5hauAr6KiIUgl18ct2ojoIiExtzWvYfZzk4ztqPP7XoUoXBDW+dAxXMGiv1+RhlifD8lWzIDmIFTHv5ORSbiTwdfUZF+4+w0Ad44ZzNiW8+//Badfu4V9MvzT6NcNsP0r3Pnv0vPvPgGQcuLyO99N15K2ez4+ZIbGBikp194g2695zF6bM5LtNO2m9O3vnIs7b7LtnTTv/5Nf7vjEVq6fDVNaWmirbfcmLp7emn5yjX09ZM+QZ858kAW+XVt0PGiAEXcJYMjXgpvNySuARafmPs8PfDKf/y6XfmDLMDXGd2VsgcP5KqYDEKCVlhE1w+1Jtzy5DU7iY2IR3oRsaxmYMMT0lAla4Rpel+a9wb19vcLkHDLF0IjqNJiTRKvVXoiUPKgQZkEaPmS9L1V7GTSXZTxCLLVRiUupSNiqDTQ3J3CW2uiW1VprYqqU2lKZ3J+4NWGmBFrGYluXkRTW3B+J4eYYDcMdH1gzUeBoabTKUKhF99WTFQ3AHS9NkVbeNIgH70jsY3Nta8fR8cBLmR+ZwZ/ZTXF+OaNz8bNG9KGzRvQx7c7iNl74f86CpQzL/Z7Yyz2n9yUZe4SyZbMAGbgqxUC3msS4E0WYCkzADeD4752AR3+kb3oG1/8BGtixao2evPtRQx8FyxaShedeTJl0uMnK3feO+/RmRf/gQ4/aC/actMN6flX3qJHnnyBLj3367TTtpvRrKdfpmv/cR8dcdBetP+HdmGODTfc+m969c136Lrf/Ijqat1RXuh4V6ztqzjwIrFncGiArn38n7R07XJRDphThAdMOrxa5YDDfHV1azEZzfUBrOW+oOBWRZYNGYQ3ripmFwV/W7wPH2OWmCb+t6ZjLXV2ddNzc1/l3OHT5CqAMKO33s6WhjfYmswlXxC0bzCPlBPo0Co/R8U6MCjOc4dEpRwFpOtpTK1dAbzDVE2pdJaqq2H/ZO3ga5qPEvpV7GqXvjaLMsQNu/yMw6K6noYYDhQpbpuXz9vODNY3V5iEodB8OKaeJfyh7xEi3NR619qxrz9i79pdHeiWMGjvE9G207akj25zAE2pm8SuJyqYQaXSXUQJ8VK+28txDGwTE/1uOWZ2YrZ5aoWA948J8E7MBTMeRn3NTffQvAXv0cVnnmxEcoeGhmloaGhcRXcxX3c++CT9695ZdPGZp9Am75tOq1vb6aLLr2dj/eUF36SF7y6n75z3W/rZj77KXBqw3XzXo/SPOx+hG393TqDrBKKRAF7pCVupa4NSqs8tfo7ue+lxBhO6dRiDT5msJqOsuvWYfMyuyx70ZDanJlezIXPJGqTGV4CtPwJczX4EEdXFT33/4Ahl00gGgzZ1xIv8SvRduOxdeubNVzl/iv+vBwyjSBVCYVQRqwJkQdgGiqCymXBF0K+18RDa1giXIGGQ7hS4CbDLBmv2vYLHq6i5qYlFxX1uDA7Y5eNWAImbJSRtSbcCLgmICXSNpnibfr2uPUglkIbMADeVZiU581NWioTBaMF1ryFe4969VW6ZAzs3h4xBHGsirEBm33vK4UHuP71hGn1tr89RJqWekKHgBG4EeweElrlSXzRF9oulP3NybZFHJbuvyzPwtUe+W5HT+8NBv65Iv3F2mkga4pzNItp6be479LfbH6ZvfvkY2nDG1CKOrMyuj8/5H119/Z3007O+SltsOpMN4uEnX6Cf/PKvdNl536CNN5xG3z7vt3T0YfvQh/d8P7W1d9Hfbv8PvW+DaXT6yceG+vJ2CT/eypwZ77V3sIuenPcEvbjoTfUjrEdxtdK/Cn5V4pn36FUrMsH0ubrMwWUzZhSX4HjKE+SkfIEnuEm9K94BMMI3GI/WWfQMxMI0vCkaGebZ8jwqrSXGURXNX7KYSRwgm7Ejvd7D4CBXBg80dLpxSyRsiLETy/TKZsUmpJn85wwXCv01nwPvRsrHn3xOM7laljCKG4pMhsMhwNVU5er9uO3JAHaYd0gcgiLJzvXtgkWLlyU8m1HdgAOtl1FlDXrjIAeFQLO1iBKGguckPkOYH+ZrPMxuJwO1uuapi1XpunfQbirk2y21zXTsjofTZpM38g0LHraQWBgFOCr5hROxb2h3oeFNtmQG5AwkwFv6WkiAt/S5W6+OXLxkBZ121uX0uWMPoeM/cTCDsq7uXjr30j/RkmWr6aYrz6W7H5pDv732NhoeGqZsNk3HHL4fHXvE/ixxLWwDYKxc21fR+Xz5vVfokTcfUbBjuCgoBwZlZWUmsvk0vQxuNfD0rLD4T7pb2hCu2wU8p1MoksF9bFnUbkRpe3lClSie4AEzBzuZ5DbvvYXU1tlBC5a+6813UOTWhFEbUhyw64roGharHE10zSx7weX6YICbh+N8zM7MfnWDIH1+ba2ugqkqSqUyTK9brZcPBvSm+A3FIIuK6gLUwj68AHnciCBKHOrbK2c+TtgNaAvAC8mF7QMcWuylVNi1x2BdJ0SbMUeyRLHxgS8mquuA3Q0ap9OndjqcZjRO832PYO031mZYdFfJKyr6dRO586lNWcom+t3I87U+7Pj1CkV4f59EeNeH5bV+nOPbC5ewSNcWm/Dorb1Bk/vbP99Gs597lW668jxPk/vPux6ly/94Cz18869YYhoi1+0d3TSppZF23n7LwGQ1vX3IGpa1VhZ4r5t9E7X1rKGhEaGB1csBy4QxTabAg65K38seoWs2YyxSa1mPmbpdlXBm6HXFccy6TIvQIimNAS2S0oaJ2XrZkV9EfBmsDXFJRjUbkeYuUcXLWQwND9PL8+fS64veFrpeCZTmf10wyqHRLPKg+MMSRngAZJIQgB1B5sD2DVCyYVdhq7eGpI8xSiZrBSTcqoIqSmdrKJWyombaEDGvADNoPiEVsX11/aCmDmZF91gEHk4ODm9ax/Bd4KdLIgpGdoPAmWAXVm0mrEW1GwsaZ1RId+3H5pWvW/zXm58CLgzGUBywe9g2B9DWUzZzwi6OxbVEhBeOMK4kw/H6DY+PAfS78iZ7vI4zGdfYzsA3Hj1jbDsUvV39kcsr0m+cnSYR3jhncwK2BYuxE75xIXV097Df9S0325Cu/dWZziQzJNOd/dNraKvNNqRLzv4qO9sHH3uWLvjlX2j2XVeOqhzyqrV9DNQqsa3qWE1/nXMjS/4aHkGEdIQXmdAssPjfIqorXRg0ba6zDLCAVr3amW415skUGJzKSK0oSsF90FifAF3ALOaH+ep6EKtXYePRM0TRENED7Mq+OIzzfSUAQ3v9/Fuv0VvvLvRdNx1ozbhuNAmDaTdmkhOTZAB4xTN2A5EdoGvCjoOiRHRY99WVIC3Xkjwqlc5RKp2JlJSGYwGt6XQ19Q8I7117cdpAL/7GKpa+vYgo+iCrIDSqHTzY1UDPDcjW4EQTDHgHRNKYNj7f56zUqK4LjJ0ReHMl4fPCZA5CQqLGI9eo/YqURZvtfOb9R9KOG2zDy3sHbHiiUFeTos7efMWTY4v5fsNnGf7gyZbMgD4Dp1UIeK9KgDdZiBN5Bvr7B+g7P/4ddXR20x8u+wFLogO84rE5JAou/1xUgvv99Xcyh4mPHbQn/e7a25mf8KXnfG1UU9HTP0RruwZG1UapB7+57C2699UHGCzitzoPiauM4GpRW/HsnUdctOityyfXi9q63BekvlZWHkPkVfybR4F5tBgRd1gp8Ux3+SRfRo4VvEqYxbhy6RQN5IVDrFfBTcSKdVszEf6c9fKztHD5EiPRLEC8IIKOAdDrsC9TwKkRHpLWZKU1sUNo8QhO6Oal1SQQUu9sVEqz2a8KGfopSmcteDCatSlU3XzhGoDPvRLYNnyGRE0BdZixgfxQsP+rBc4Fk9JCIrq2OFZGeCNpdV3wGvSa/boLcsW1cw5XrHc5P9zX2HeZ+Qta22grVZWiSXUtdOT2B9MWkzcp+LHHEwUkrU00SzLIMBrrEv1uwQu8nu1w2mPhBZ3KNR1XHfircjU9Zu0mEd4xm+poHb359mJ6a8G7dPRh+0Y7YBR7rVjVSt//ydV08glH0Ef23ZW1dM9Dc+i8y66lH552PJ1wzMHO1q+/5UFasHgZDQ7mafONZ9IXj/soZTKj+2JG0YfWzrEH3r7BfrrysT9wL9sU12Dix5dBmBbBlTpT9sja4YnLxQKigpqd4OaVAVZuD4ynRTtc+qC0uJAvYByQJ7AkKFaG10xAU0lppj9vbSZF/Qx4tf29THgZEdb7q6Zn3nyZ2rs7acmaFbbLrpcsJ8ijoLWZ3E/BriAjQT1c6iEtwtyFJxT/BUd0pVUckzBY8KWO4r66mWxNAEmZo1Q7+fEQ0IQoP/qTbgwcxkIFD3xNoDxxCnIU5eQgj7XnC3+rqK77/AM/8o7da3KpYGeCUqO6dj8BEV3rsqhhWxIGrH/cbGLW4VJjeHKLmwu9y702/iAduOWHqD5bF+nbryZTzaLJEw14WxoyVJcb3fdqpAlKdppQM/DNCgHvlQnwTqh1MiEGe+s9j9MVf7qVHvj7ZVRfa/1Qx3wG7R1d9L0LrqKNZk6jn/zfl1nrgNiLf30DvfT626wwBqq+DQwO0q9+fzPtvfuOdMDeH2D7DQzmKZ8fCvTXLXaoyKBe3dE/5vZkj701i15Y/D8WRELkEQkiMOnnwKv0r15FNQm1ll5XlyrIKK1fm2sXjlDJZNgXj2UhX2CJPUOiQIKWlOZBroAAGdmVEgT8XZPF+EeEflhFgXXXBimV8KCYqqirr5dmv/4CLVkN6OWoogKZWsw3xMfXsOLS0VmDXQ6AHBwNAvJ6lf9wwx475wCtrn5EVVWKUpkovrrBkV1jDYu1kEnz/RFF53BaYPPOHdDLHTiYW4Gf6rT2mM2Gv+GgyK7rdfEaA15ZVthr0SLOkOOdZ2dHxh0AHBiENrqW65P3wiQ5KV7yeVAL2ettfer9H6dtpm5OtZno342NtWl244inSBNlw00ACk7g+yDZkhnQZ+BbFQLe3yXAmyzEuGfg5Tfm02ln/ZrOOPXT9KmPHxB38772Lv719XTrvbNo1m2/YeWCsb23dBUd85Vz6TunfIq+8OnDaG1HF+13zOl01GH70jnfObEsIA7dbGvXgM/Ev9wTcMsLt9F7a5d6MoIcA0Y/8OrVuhicGnZiHFx1ja+t6ZUaXalv9aK6ApwR1QWsYh4GIV/Q9cMhCWgeXIvxwGCfjd/S7IqYrtLxyvGLWDD6G8gP0j1PP0pruzv5tOvRNV+kzYQVHXYNSYTD5gzQB1LksCja0S90gIRBOlsEecrqkd1sTX1krS7vupALgyJXDA8yB0BvYBJUCJziOuM4LpHgOwbwv3YdQj4JPuBU+8IjuFdqeOXLpUZ21eUS43KfpLOQhAb+9kkZwxFOGdBOQ4uOa41Dd5y+LX102wOouaax6FyByQ1Z6uob9G5Syv2dEkf7iEi31GfYk55kS2ZAn4HTH/9+RSbktwf8siL9xtlpImmIczZjaAuR00+dfB5ttOE0uvKn32U6znJuS5atos9982Lae7cd6eKzTmb6XWzfOOtXtO2Wm9B3v/pp9vc7i5dRc3MDTW5uLMtw8LgXjxy7+/Jlad/V6JquNXTfaw9Sa2+bB6u12TT1I7wqQdAoJmGCrrT7siO6oZpeD5Z5D7i+WcgXWFSXFwjQI7lcAsDw15GsZssWUFEqLYCd04kCYvtveawUY3B5QT4/THfM+Q+1d3d4XGJqeu3SrjpmmlSjH6dDkPw3rwgntoCIpmxDZqobTmHyUPZfPkfSV9e43j4us19wwK4amGpKvIa9mW9vmiddMW9Z2USkKCwimcQi1aiAxnI1RxVlNSbCg2dMKSKErKyw4yYifI60dx0RXN/nyVVAwnlp7RslfQ3I6widLp9fzOs2U7eiI7Y9mBpy9SV9N0xpzFJb9yC7mZwoG5Lsmuuzbr/iiXISyTjLMgPfrhDw/iYB3rJcz/W+0d/fcBe9Pnch/eLH3xiTimsoEPGHG+6mc777BTpw7w9QfjBPJ55+CR26/+5e6eOxuCiwDeroGRyLrlgfT7/zDD2z6FmhU+XPWgEIgBkUZMJPs+2XK+HTD7WmXEG5LugaW7UP2kH0Bhnk8NJlVmKeTELGY8Ep/IaHYSmDZb/7gq7vRdIabh6GhjlY8OOEeEG6Rugw70WCuZMDOukfHKBHX36a3l29TCWzyUisAwSNGK2rcIUFW6aO152UpgCfXwOwig6VJoMF++qaiykC6HrMpe2r/dNGJmh7PW/ZIKAyulV/4F6WWbSJghUBKgf/56EAHMsxIjiIJwcDtvtJSETYD7LWKwF6XSfnB0R1nQFmtq+xkljH+2y2K53wwY8xaIfOvxRmhZftmo6BwvKTMfvmKdwRbNSa6lSluMJHJHusLzOQAG/pVzqJ8JY+d2U7cm17F3X19DJt7Vhsg/kh+vU1tzCLsW222Ihpc5etXENX/ewM2njD6WMxBNYHftDauwfHzCvzvwufpf8uelZJEUTiGsoMS1mDDa4KIP0w7CWeee4IelSWwyteAeTAZgyAg4Q0WRnNi7UKf1/jbz1aK90WNFmChGG0zR4HD0CWIXx4LfmCl4AXAL4YY09fLz3x2nO0aNUSK3FNgYlcGFLKYfwt/ghyYADsyWQ8e4HJY6TW146e6jFlHFvIV9cdPg2I9mng5Y2rQGIazgVjxf/hMbyxuSLFmoRBasdhgQYw5XMS8pELgV0fjDO9MX9yoJ9LQahVF1Lb1WeWy98Liuw6tLpeszYIO2B305aNaI+Nd6EdZ2xDuXSaamtS7DODJ0AsYh1xQ7ntxroMA96JsmFNILoLZ4lkS2bAnoHvzPpBRSbliv1/UZF+4+w0Ad44Z3MCtzUwMEiPP/0/uu6fD9DHD92bPvHRfamuzElz9nTh0XBb58CYVEMaHBqkpxbMoVeWvWZEVhFwNXWw7FddKyIhpAhWEQqvyISAS1nZTCWzcYeEmkyKRQRR4lQ+rlcSBjMSy0GS74WENhn/YrZlLucFlvjGE9f6BlQBV8PRQUaRtcivLntQ2l84RAzRbbMfpNaudhN8xF9ePM4DGJ3G3A4MgpG8qK0fDrkemkV1UTXZgi8ddlPpbFG+uqqv4iUMoR9tMSh5s9E/OMSKg2h6DeNw21WCzUk1UdZL2AqDcWskom/XESiV7LlKFIgK+87PuJQBBB4JdvnnR15363J6OnG1F9H0hml06l6fo0x12tDrYl1Macqxc1rT2R/JUxeRUhw3kRwasI4mN2YT/e4E/j0t59C/WyHg/XUCvOW8rEnb69sMDI9w4C0mglPqHPUM9NLj85+g+asXeLIFqcltqMl4me1c0iAjtaZsgcfPeGQPmxcNlvt78IvH3tDqisfXzOfXw1fPUYG/5PDZtTS8rIKa56nLjhBAwcdZl8uwaLmp4VX9mRphAdLSGk2zR5PH/+PJe6m1c6031Z421wG6UT11lTWZmgt0gJsBwBuLdAoKMnEL16OalQROZzRfXR+TuSAtCHStfUMgUpuEwKUH71tAmXRykDu6QFeeo9wHEUloe1k54CBdsDZcJxqLtQVHCThC+OKhUSPILvmClkxpTIAdtdXC1D4Jg9e/d8vEmmrMNVB9po5O2+ek0I81Ip91NWke7S0gc4B+F/v1FREVLvU7Ja7joF3GuOX3SlztJu2sGzNwxhP/V5ETuXy/y5z9rm5tp/q6WqqtyUYaV7H7R2o04k5JhDfiRCW7jc0MrO0epJ4xSFxb0r6U7njlbi+6q5cFhvclMugBXTJSa2t5PfmCAETbS1dGdpEEKMupopwugxjLd1e3DLOjvaZMQiWhMRa0IFUCKoAAEWQbeD2bNC1yzJS7GqCzYwR4y2hvfmiIHnzxCVq48j1P/iFY1Hj+7oJdtZ+p1WXA6zGtuqnA9PA58nhXkS9uKmLy1VWgqdFfIZCUH4EgYNRehz4b8ygjrFFg12teS9hS9lzGNLA/fLBrAWo2w5PiDOAdFezKSoPWd0ExsMsXrteA/NcGjTPo8G0PpM0mbRTJhQH2ZYBeNIWbO77e/du05iy1do6dTCqOb0k8YZrUGA0e4ugvaWNizcB4Ad7FS1bQ18/8FS16j1tZHnvE/vTj732RMtBnObaw/X/0s2vozgef8h11/ve+SMcd/ZHYLlACvLFNZdJQHDOAx8EoQGH6tMbRstnGvJVv03/mPSxcDEyZAhK/sEH76EGi7q4gIq524ponMxCSA54AB2kA8UfcMnrqAaZKQFOyAgWcCqJVBJkXw9D+9vS5Is2rqorqc4hQ54VmWParJ8Lx2LSuR9alDJx31f7Yt7e/jx555WkGvTK6rADNpigzcufylJWlgNlIqrgvb5h8AVFdp6+u0XUQzVloaEUYbc1saC6/q4uA6LJ0SUAhCUR7/YAavK5xLNcFK2jWx1kIdnkCZhUNyn6jgq4FpIpMTa8OfeT+QLC4/j4QljcyZlsttc30+Q8cQzMai89ZgD0cwBcODEh6tW3iZkyqoZVr+8r+fRLnN1RzfYbqa5KCE3HO6brU1vcqFOH9lRXhPfX/fkEN9bV0yVlfpeUr19BxX/sJ/fiMk+iow/ZxTnfY/oj6dvf0ecf19PbRp796Pv3qgm/SRw/cI7bLlwBvbFNZ/oY6u3oIjgp/u/1hOu+7X6BD9t+9/J2OcQ+Iqq5gP1DltRB6Y8UbNGv+Ex7w6slpzAA/U02Dgwp4DU0u88WV7gt6pJX/GxXSanNpz2YMpyLhlfOEitTrkvxAAAAgAElEQVRK4JMOCUo+IV6x9uXQbEV6NejF+/U1GeoTJvtSB6za12QZwpVBRpH1iLDAZHb1ZX9DQ0N08+z7aI0mb5Dvq2Viwa4DoJgGWXjxYgiefIF3avGncM/IWb66AZBpLtcgLax1cJTIbiRg9O80wmXYhGpfSEqDxCA0KU3MgQJNHJtihSpkaeMosIvjGfAOOUDb/kzrw47BhcG+hub9hQm7J+56LG06aSPKpUuPaKL92lyKleFd2zXoSaKkFnbl2v4x/hYbXXfTWnIsQS/ZkhlwzcD3n/xhRSbmlx/+f16/7Z3dtM9R36Qbf3cO7brT1uz1S664gZavbKXfXvId3/iK3f8v/7if/nHnI3TvjT/3rFLjOOkEeOOYxTK0AeBb09ZBrWs7aP7CpXT19Xey/zY31VNPbz8decjedPGZJ5eh58o2CR3virbyR2T+OPsaTZurWYdBR1pVRdBhDkjgNSQICl5V9Jf/iDOdrojqMtAQJYGlpZgRxdW0srbvLndzkBFb3p+EUVwd428ZedaS0OqyXJLB2cr08WUV42TrmtuDX8ogkVcl0smY742z7qTWLqXp1QnOw1130NdL1JMR3jD5AsaaydaaXtSlgi4PW9tczv4uOqJrQ6lFsIBce0OkFmsjb/v2yh2DgFq8juMBQdzJQWg+DFD19xkKvIUgl51jQFTXdVMiupe8bAbe/TdBdZk6Om6XI2mLyZvE9oWDNTWpIcNcT2BviOhvLpOqSMnyUk8K8zejpSbR75Y6gevBcT+oEPD+QgPe+QuX0NFfOoce+9evadqUFjbrN9z6byZLuPWan/iuQjH7A44POe77dPGZX6GPHrhnrFc0Ad5Yp3P0jcEO7OEnXmDVzV54+S168dW3WWnfxoY6+vyxh9CO22xGdz80m955dzldd8XZ1NxYmhn76EdavhYgaeBJV+XZegd76abnbjLcGXikVUU/67Ip7hbBqrxaXrrSOUFAJgBUgi5+bKHV1fWyngTBiszqHrks6ilCY8brbFx+ezEvaU2IE/S/YeOEv6HfNMoI64CruTxIgPYQV0uo4/Oi+sc+Q8PD9ND/nqS3lr2jMvD1S2VHCTVvXjkvXmTX99ibv5BKZyiVSlNVtaYHMykqYHG4EtOCI7qhwFsAQvkA3FFd3+DEbuzpgZAaeI/fXf1Yr+GsEBRPicgfjvU8aQOOx5rEjU9BKYUvqhug1RWna3anLqB83YzoylWlZmT3jXam7aZvzUoEl2NDdTlExZH81dU76K80V45OY2oz0e/GNJHrcDP/99SZFTm7y/a91Ov3xVfn0YnfuoRm332lxyA33/0Y/f76O+mRWy73ja+Y/X99za30+JyX6F9/uij2G78EeCuydII7vfq6O+nPf7+PkCh0wId2piMP3YceePQZevalN+lPv/wh88l96plX6PsXXs0ivIfst9s4O4PRD6d/YJjZDpVrW9O9hu545XbhQiuBVpYH5n+zx8iAimHIGnhs01VBDQJ9JCiNsMgd11vasGvbfoGRXAUkuPzATEZTIKu0u6bNmCxIoaLAiDRzSYaduCbgw9LnehAqZ8SI/Krx6FHgvoF+euSV2TRv+SIT+RyPxBXww3OY4xAkDSxS6YgWZrO1VFXNk+lsXa9aEy7KK86FoSTYNRi3ONiVY2e2aynureErCuFgaOOsAL0oWgIHhmFiEeMguI4EvMVIGHzAq87f58TgnYcZJT506/1pz40/QNlUJlJyWqnfAYiIt9Rn2WcWri+dvWNXwbHUMeM42JHBVjDZkhkImoHxALwyYvv4bVfQ1MnNbKhRIryF9l++qpUO/sz3WA2AA/beJfZFkABv7FM6ugZfm7uQ6mpzrOhEJsMTF155cwF9+buX0ve/fhydcMzB7LX9PnE6ffLj+9P3Tv3M6Doch0cDhJa3KQF73EME8N716p0iwuuWKGDqAaVIXGMRUAFmUiIAYENyG/fU5dCh9Lfy4b8eGRbSAN1T1wNpAQWGXlc+BlaaXQN+JRzbpYfZ39WUhWbU0yDr1mMqii2jkxKgOaNIfbD2l0czfJxScgEavfGJO2hVZ5sTuiTqSHsl3WoMpWMVq8mobpbSaROE/PKACKDrDzH6ArGBMoZSorpBhSmC2hIwCKeBVAqV7YItyBTw+6PUkCxg/fVKhwJtF1wy3IhJ3a9xV+KCXL6A3fLiEiUMJrtX0fG7HEXbT9+6rKCrL0TIGyBtmNTA9cFwgDGKcMT9xRJDe4l+N4ZJXMeb+OFTZ1XkDP/fvj/3+nVpci+6/HpaubotsobXtf8Fv/grzV3wLv39qvPKco4J8JZlWuNtFHreAz/1XTrswD3oh6cdT5l0mn7z53/Ra28tokvOPNm7w4q318q2Bh2vnXEd14jeWjmX5ix8Sjk0aLZcLIqLCFp1NS8Zazs1VPFywHhcigiblC9IVOTyAL9lmOnCIMBRJpvpEgI9+mrYjonIqKbVlTFd0+aMR0ZrUC0uz4tP2BFc3p2EGw2oJfAakgZV/EIlzKmj0dI/Zt9LS9u4NY04eQ+cZF92WWC8zl+D72w1VVenKOP56qJPO9kqiB5jkjAUgFPt5Mxl6ILdsLZMCmTXBmtJ2Zfx8zGjusGSjKDSxgp4EUW3XSocAywWdjUINloz1hafqu2mbUVHbn8w89k1revi+kT720GEt7kuwyAXcwupQF1NilkewjGjXN8tozkjfPdsMLl2NE0kx64HM3BmhYD3Ug14Mc2n/OAyamqoo4vPPIVVZj3+6xd6Lg0dXT30xW//lL76+aPoiIP3YlclbH+8v2DxMjrqpLPpL5efRXvuul1ZrmQCvGWZ1vgbveJPt9Ib8xbTRT/8ChOJv7dsFT02+yVm2SFF4/H3WrkWO7oHqatMfrzXP3OtAEFLmys9dYlH3pAkBFsnCYyImMmSwIBdTiX+KK5L0sBlDBweDa2ubismtbIa6LIedBsz/oIavwRXC44hyeBlbv2+umLURvELL54s2pH9SrS1o8Dqfdi3DdED/5tFc5ct4Lyr9ekqnoC+cGPAdKnVaVZAQoGQJCkdeCNEdQ2QVLpSfQUXHdV1tak16EpOExMQ/MFxnQpusFL8OuHmFgmP3uaUHJjNc2jmDQ8yr+cRz9LMjGiOpjywNhlWM4JxnXruD2+2B+296W4MdsdyQ8IapAEoVS433MDWZnkiW08/L0ZRZjOYok4Z9mot9Zmijkl2Xv9m4MzZZ1fkpC/d52dGv/DfhdUYWATbJw/fj87//peYD297Rzftc/Q36dzvfsF7Kh22P47/3gVXEkD5T78oX2GNBHgrsnSK7xQ+dWva2mnzjWdSNpthP2pz336XevsHaOftt/CSWYpveXwe0ds/RG1dA2UZ3A3P/sXS5PrBFz+OXAPJJQ34kQSh8WQh+WhfxFglzBrwqssadEDVbckEHvo0tUpWoMWCPfAFUiqnBlvzy49FRItV67KAWAGpkljI6LP3niaX0IFevq8gWrwyUkXdA7300CtP0IKVi1l0V2p1dQDUFJ/MeaGmBtnoKfGY2YZUCbzFwK7+TN9cOkXDrj9sqUFogLNDEZFdBbRas8w7t5pJPZx2Yk5YVsdDOgJwBsTBxgxrJM/uzERGpuvTFCmya3bsc2JQxOtd7s0mbUx7b/pB2mbqFpTSEw/L8on2N4rENXyGu/v8ya+QguDzjMh6e/cAe1IzHrbEf3c8XIXxP4azKgS8P7eAV87UilVtzI+3vq4m0uQVu3+kRiPulABvxIkaL7sNDOZZBuPOO2xF19x4N8175z264sLTqaV5bCMo5Z4PVJhaVSb/zL89d53Q5HLQ1T14WXRWFI6oSacYMAJC4NgA+QI2z1NXJHfpNmG604NESqZ59RLBNNeDgEppMqLrKWplhJeRhgnPPvgV0I0fdET3eF6YBrd6BFd3hRDH2VCrH2tGi/menKU4lg9Tnm6YdSet7BCaXl+gVb1QU8PXK8ZZVTVCfYMKScMdmF1FJIJBF30UdCnQF3MB0C26PTVNqhcDEP3nDScGQBlbc67JCARr/gYS2rgTxDDBaMS3BUGuGKuFt+IaW8P3zks+G1DvT66dRCft9imaXMftiiqxodogth7hR+0aQy5dTZMaMwyKx0NS25TGHLNDTLZkBsJm4OzZP6rIBP1sn59WpN84O02AN87ZjLktRHHXtnfR4iUraVVrO/3zrkfouZfeZJrdk084gnbabgsW7YVzw7q2IZIKezIv6SamE+zs66B7XrtDAKgNr8o9gUGHKA87IJ6Kcmj1w6vEUN19QeldZTTWLDjBecEPr8qBgUfldM9c0bt4/G8lkOnSCgbpKYKnMaJXbE/NecH+m43F0hEbGl/tff11HAfYR2QRUg8AdldvH9367P20vJ0/5tJxCH1ksjyqyzf+bioFD2O4DginC+e1jgF0ZbsFIqW+DDexvxPEw6K6Qe+xuXYBvtIKQM+ZycDJgjsxGI/ene2KNsV7kOSwpLWhYeYHrY/dqaMNujmxgsNe1xq068PZpOV9dNIHP03ZdGUfzTfUpNi8BZUc1pcYktswP3iqxJ+KjP2G6wWHhqTgxNjP/UTr8ew5FQLevRPgnWhrZcKMd9Wadrr1nsdo/qKlNOvp/9Hklibae/cdafqUFtpt521ot523XedkDPrFAax19gw6H0mO5iICeO97/Q7hNmBKB1iVNFh6paqZ9RP+lsCgtLfcTirI39bw7PUkDpp1mBZhdRWQUBFcTz2rKqs59LgKtlUsliXdAdZJJt1J7BSRXoftmB4H5kCkMvZ1fa0OsOgDCXzsEbqwZMPUdPf10oOvzKL5Kxd5YCt9dTns+ujKS97CdYeMxNyKg91Y5QuCy2OBXQ8SHbAboNWFRCFdTQQ5dmiilRWZBkDJJmXypYwW+3g5BHZ127gw2J1WP4W2nbYlfWTLvSmTqizs4rwba9NMo8t17IU3uJogKgyHGHiAI7FtLDdU4mtuyLIbv2RLZiBsBn4055yKTNBP976kIv3G2WkS4Y1zNmNsa+mKNXTaWb+ivT64A+27x040Y9pk2njD6VRbkx2zTOcYT6fopgBRMI2P+1EjgPeB1+80ikxIuQFAF7o+FGyAlIFHW7gO0nRZMKOzODlVOpiDsufWYEGvHtXlLKWVCjYkAgrGTdmC7bpg+uRyFucuE4i8MpcJD141L1+O/IZnsLKlsmHXiNOy1jBPaB+lco3SwKKv9t4uruld9S5xX11IFwQ9Wr/pEi3wMn7wAXm40eDayuJg13EEX3uB0VZ9aVo7BUV2CzFJYAQ5ILJrw651PBwHWFIbEXPeMDfuaGFs7MaN32Th+uDfAGDpBGF/GP2sLa63/75EzKO+Hogm1TbTZ3c5mmY0TK2IXtc+H5xvQ22K3SwXY0OGKYN8qb42TfAC7+7Lj1m0t6E2TY11mcBlWvQXaHLAOjsD58w5tyLndsneF1ek3zg7TYA3ztmMuS1IGuzHj9Dw3nzXI3T1dXcxWcNXTjgi5l7HT3P4wYGPZpyZ1I+//RCt7lphOAmkqnhGN7ZBqSVl0MihF9Ee3aVAwa3Q++pWYaKohJQQcBgWlco0twUlMeBCBeNvUVpYl0UwPA3Q8JqaX64RRoQaP/xIfvL57BoRXAncEr+VvEEJElSEGONE6WJEG1UkVgKycoRg552poRtn30GrOtYEQmdQHK02J3XTvDiFQawBwBk5ChsU4pRLX3vftAcr8NkIBV2F4rxNh2NC4PG8X/j2Anyhd1YlmcUILWrFtcdLekIWdMGIyveIKoZmd+ovvSlz6k3QlRf1gkPP8Nb4ePj2wLnDgqyrN1/SdwfOH24JgN9V7f2aX3R5zg79MeCtrWxkvDxnl7Qa9wyc83SFgPdDCfDGfS2T9rQZgN3T8pWttHL1WoJLw1//eT+9/tYibjuUqqavf+Eo+toXjl5n5wz6XTg1FBOlKTQZswC83SsZ8AIKEakE8OJReh4lgTXZAAK8KNPbnxcRXt1f10o4syPANqyaEggFkD6HBMuH11dm2INrU/IgcVXeIEGagfPjPsJm0pp2pCbNULQnI7Ea5rI2WPS1Gv7DXGsrgcfbT9BRJl3DtLq1dU10x7P30QsL/mfwapSkNOlPC7cBRJDDNKyRQdcHtBEjuhZv+9ZYYPRYvmFJGCJYjQWF+nBoNpMS9mXCVsvRHsAYk27LIBAtxk0cX+96bF1cTS+qq0WjtfblGcFm7NCt96OdZ24/rmAXZ4Fzr8+lqKNndBFa5t2bS7GnDYgWl8u7F+NtacgywE62ZAYKzcC5T5enKEOhfi/+0EWFdhn37ycR3nF8iQC7v/rDzfTwky8wr11oeKdNbqZsJkOPPPUC7bTd5nTqiUetk4UncFmgp2vrGqR+mIvGtD3x9n9oTfdKyqR4lTRseOzLHvxrbghARERy4WeLSlguoJUaXJ98QYBfsHyBE5SCWZe1mLeHVwFLwbGIqDr9evk5AUwRzUOmv4e7HvjqsggdnP0Qi1e4rpkDlKmvlYlz/D1sNTWNVN8wyXsygZuzf7/8KD355tPs/Siw611qUS2MSRxQLMAR6i8Kdg0wdcOuc4xBQOsDaPGCERblIzQjxcF9s50D+5M0OsKcGLBeXTIFXHfcrEmXDuOjIwLL8nrCxYOBnFFIQgN1by2rVhqy9XT0DofRNtM2H3ewi1HCgxf/B+Ad7YbTh8SB66CHqadvKHaZA266kbCW6HdHe7XWj+PPqxDwXpQA7/qxwCp1lt09vTR3/nvU3z9Akyc1GRre/77wBn3rnF/TJWedQocdsEelhlj2fuHUgCSSOLbBoQH678LHqXuA22YhogtgYLhmR1bF35A6QNPr2XtZUKxDsqfsFUlhRpRXf02D60KRYBU9FXDpaW+1+KudhIbotZBj8CIGHEjttszXFGl5e1ZxSzYAPYBT8aZqix0F+Uc6R3X1zaxaGiQV+jY0PERPvDGH/vPqrIDL6MBWDRqlv6wZlSzSC7ccsBsxsuudXZTIbiDwKtiVUIx5R7IVXBhYcuUIor/8euFGxxUV14eM/djxI8T2V/xuyi30Yw7den/aYvImtGHTjHGbSwB5ADZIGuLaIG9Cu8zbF0UrZDnnGDrANZjSlEv0uzHM5frQxHn//XFFTvOivS6sSL9xdppEeOOczTFsC3Zl3z7vN7T/h3ahL332Y5SGt9M6uCFpDclrceh4M+k8PbNoFi1tW0UjKB4hoCqoiAPez2FeEd0RFddkApnniaBVUJMYGOa+wK3LBIBKUNU1uwwg+R4qqcz8Wwdr798iRKeiykTZFLdmYlCv6Xa9lDTPj9UPsOgfHrk4tpBWF4UFJk0Jt8ZDpPe+Fx+iOfOec6xSDXiN6KgZ7UQkDNFe2EdF1tZ6tOagU+2lyO0FAakBsybAjxRISpMA6/74Ftb6AsYYuOJpBeDXMt8NSkqTUV0WwYdv7+Aw16tKtjYGVEWHbLUvfXizPVnRkPG8wWYM+v9yOC3godD0lhrqGchTR3c8QA3tbmMdh/RkS2ag0Az8uELAe2ECvIUuTfJ+uWZgeHiYlq1spbXtnbTNFhtTJrNufmHisexqljhSmk0Qfrvx+LehJkO9A7308BuPUltPq1auV3NJ8ABURU+hd4SnLSyO8Gq1TDALSkALSDizbcx0UJUuEYbvLgMrD6uNhDU9IU4Hb11CgbFi3Jg/zjBaRNjTKQuo1mJLiKZC04xH3gBdBkDesRLCeVupVIYaG6dSOpONtMz7B/vpzufup5cXv16S+wI6AfDyZDzp4hAgAYgY0UWb5YDdoqK6BSUM2vQ69mVlsJn+s4qG2byI6+YDV+1gS8LAtL1prvlm11yblPc1zaRdNtye9tp413Eb1dUXIOQB5aygxmQONSnKZVPU2ZP3ouuRPgSOnTBemTRbahvJcevPDJz/3/MrcrI/2esnFek3zk6TCG+cszkGbXV0ddPjc/5H7y5dSa/NXUhvzX+XrvrZGbT1Olh8gsHICNGKtr6SgBeP41FiFEAJHW57Ty89u3AWdfSt5RpaGeHUE9CkvEG8hn2QuNLbP6ySvzQwtvWxDCytIg8qCUzTCXuVzQSm+mQQtrbWTDzT/jKKRqioMC8+wf1xdeRV0V4dZVkSnyhWgEfkgCZ5jyHFFILBmfq4praJcrlaSmdyRa16QO+D/3uUnpn/vDouJKord9KhVCa04TAkFPq2MNhVJz160JUTwgYQITFN69sbsxN2HSFWV4Ca+S3zwh/QlyK5D9CKiC+kLGaSlWrAdGFQfbGbQ9YedO18Dey8wQ50+HYHUl2mdkLALuZ1alOW1nQOxPJUKGxx47sFWmF85ljRCmdZu8IfjxktuXXaU73wDCR7FDMD5z9zQTG7x7bvT/asTL+xnQA+qSP81zDZxvkMPP/yW6zS2pJlq2nB4mXU09tHDXW11NvXT3+47Ae0xy7bjvMzKH14azr6GbAWs6HSErLZ8UPUNzjEfvz68/303KInGPDqj/7NyKhWJEJAcX1NmpUo5UljnFp0za9pF6Zit2o/8ZqUFciKbeyEzLZ0YJXvib3Mamgy6hrowMA9hUdktM/rS7am6ItpQdO8UAXz1VXhSXmUOm+qoqaW6Uyz66zYFeEidfV20c/vuoLvWSTs6qBow55qT+5lUWKcEgY2dtlgAQmDmmpzdsIiu/p7jv0AubhmEnT1ESBhDZUCMTxeeCE4smvPGXuKAdlNdTUdus2HaNeZH6SadE2Eqzo+dgGso0Qv7MTGYmOyp0w1wdEBSbbtRSbK4SZzRsvEmd+xmNOkj/AZuKBCwHtBArzJ0hyLGXjljQV0/DcuZDrdfffcic474ySaOqmZBvNDdM6lf6Kn/vsyPXP/H8ZiKBXpo7NngDp7oyWuIbo1pTnLAHltl6gJLEYN4H1+0ZPU2d9uFGOwI72eBldEXetrMtQ/wKHZkxno+lcdOh0Aq9rTEs+ccgUTjN2gyzW+BrZavrqyv2wKtlR67NGt1a2N6KtbV9fCrMZKBV25eHCP/caSt+hvs/+lQW/w0gqVHFQRgw08iofMwdmgBYwWzwd3HASkPlGsaBGuCXZrrjZGEdVF88w9JJdiMGtEcS25L4CY+/aaCWxKw+2efliOfXXPz9GGLZOoqS5NrV0DNCD9qSvyDRC9UzyNgZ7Z/uxHb6H0PVsaMmwtYr5QuCLKhopwKDiRbMkMRJ2BnzxTGWnB+XtWRkoRdV6i7JdEeKPMUoX3ASAgwrvzDlswSzJ9e+nVt+lb51xBnz/2YPrGF4+p8EjL0z2ScApFbPDDjh8b/Nh19+bZj7y9AXhfXPwUdfQJ4LWkCRIm7CITkAaAUVgRB88HtxC8SusvkXCmaX7NQhFa1JhRrBdvZsN3F42QUWS1vy8yjEIFiPCKsr+sLd6iF6mGPhmRPLP8qhBLePAEfSj31YULQ1wb1vTTbz9PD73yKA0MmTcm6CMSOMrBVPFzxcY0y4b+QY24HFpd3jqfrIJjHqVWl5eM5lIcFtmVHToUEPJqI+LJ/F1Rslm4kth2APqwNmqeScftfBS11DaJ9Uc0qSHL+kMimF7IIq61EGc7kxsz7KlOb0TgjLNvtIUc15b6LJM3YByFPMSnNee8tRv3WJL21s0ZuPDZygDvj/dIgHfdXFET5KyQuHb3v2fTJb+5kU445iA649TjJsjIixsm4Gh5W59Tk4dgG4vqpLnnbO/AkFXqVvU1wIB3NnX2tTMe8BLQrPK+MolMginPYgcYooiDDo16Kpjp42sIG7wIrFXVzINgNGqV/bV0wD74tV0XDNszPkYALXbjP7oKa1hZYESJR+R7Og6bjg45y1e3uCsXvjeu65Nz/0sPvvKIsWNBcNRAVx0oCmOkIcsYJltOWT7YVdKG0MhxVPmCuhTGnEDCICUq3GpO23xGDqZel2lzIVkBlBvXXK2KKXWTabvpW9F+m+9JdRnzETuOr82lvKQ2FGEYr9vU5hyt7Rxg7iSV2jDPuPmG1AHXqqcvH1itbeZkaKMrNdKk34k4Axc+Wxl7sB/vURk7tDivURLhjXM2x6it/oFB+ttt/6HZz71GCxYtpeWrWun2P19E22y58RiNYOy7cel48YOCbGkAHTS2haIpy9vfozeXv0TwheV6XBGllVFV8cuj9LmcJFCxLJdJezpi/X3Ov6KIhPBCUFFZfx9eKpoOrJYkwY7q6klwJvgK4Lbsxbxqa1X8kba0Z0JkkFWWq65i8O701RXgHOarG+fVzw/l6X+LX6Pbn7uXNVsq7MoxcbeBaqanlA4VkWG3BAmDPheBwDvKyC5cRnDtkJTmq/YVBLt2IQn8LfSmSErUE6xqM7X02Z2Pok0nvY/dCAVJVrCWmMftCFFn7+C4jPZOb8kJV5c4V2lpbcmnTvie6urze/fifVicJVsyA8XMwEUVAt7zEuAt5jIl+45mBhANe/alN+lnv72J3l64lBDdhaZ3u602obcXLqEpk5rob1edt85WXUNUCVZDcmupT7OkNJQeNqt/Bc/yu63zad7K17xH+lKUwDW8mruClQiG9xCxATjyQhXW/noym0h0k2DrshrTfXg9cYIXoQ1qX1KTkiRoPg6eZy8/e35mgBcWmc4Pi6px1bximV0WWANmHB3FV3c0a9k+Fmv7uQUv0R0v3C+HH9y8B48OitRewqNlRLiZfrXQYIM0tYEA7GjQljSERu0sSg0BbeYyQmQWOgiJ6Ir7LzFAeUNkjlf69nINMNGPPvItqinCbQOyIXjdQidbbDJpoUsxmvdxswOAXN7aN5pmYj8WYCtlIagcKbemugy/gUi2ZAaKmIGLn6tMid9zd69MSeMipqbgrkmEt+AUjY8dENW9/pYH6bHZL9EWm86kzx97KG212fsonU5R69oO+uRXzqODP/xBOvNbn6Ncdt1LgsAPa1tnP5MuoNQnCkF09AwWhhnt8r3buoDmr3xNlerVIrueOMGquCbhNpeuZnDAKq5pQBStofQAACAASURBVKzKA6tosa6TVXBsa34lmJpSBhkxNsQSMvLsFazQ3xXtaCCop6ax4hHMP5hbVfGorlTzymP538X66sb5yVi4+l3659N3UEdvp2Eq4PVhQKFFiNafEnABGjzCzZO2nODrgs2wZ8zO/fkoCyfDOcW2zvOV1eXwplFIIgx27aiunDxHtw25OtqweSp9btejKVtdW/DpiH2t4dMMWEOiIKqOFXq6EudaCWoLXraQN6E643jbcAkwX7iBQcljzBuAty6XAO94u1bjfTwJ8JZ+hRLgLX3uxvzIru5elmRUV+v3Pr3w8uvp1TcW0CVnn0Jbbx5e9WrMBx5Dh3hEzezFhrl8wadjjNDHewDeVa9rcobwqK4OwVl4PRE35vekELqXbkCRCAWwWjxWA1j5+NgDYztRzafV1cCZnbNKetNRliU4iQpa8FTVgUS2ICttjcZXN8K0R97lreXz6V/P3kNd/d3mMWGwq07aO0YHT1hsQcKB6J8qpBFQrIK1FRKaDYHdwsDroM6ArqTsBKBrSFF9TWgNuGDXfNubn1w6Rx/f7iB6/8xtqbm2hulzUc3QdnModOHQfF1NihUpwdMPlACvoHSW4HgAyQe+H8brhrnCfLPS3+kUuyFLtmQGipmBS567uJjdY9v3nN3Pja2tSjWUAG+lZj6mfgcH8/T4nJfoF7+/mVqaG+iSM0+hLTfbMKbWy98MEozmvfMek2b8f/auAzyKqu2eZPumJ/QqTQQsFBV777399gJ2RT8rdlSKvSCKigURbIiIKCKoWFGx9y4C0iG9Z0vC/5w7mWzJJtmdnd2ZTe79H34+ydwy597NnnnnvOdtrfG1N7PEWWpYq3P0htLV+Hfr7wEPXYWNhnjqhvy3+nMmgKXT0UAhvM36BBeuCEo2CyajIZKJEA/dxjWEJ62FySSaqrE1CRZUhwa1fxDdpW0VI7sNCtkLOFaokd1gZ4j4fXX1PCXrSzbhyQ9nBYaMIbLbRDojcIjgCm2RSVmEEr7qKqKUNmxrkbtER3ZFYppFKRFMV4Rwt4nQ4QP/FcrRm8sYwvtdsNvp6J3bXUlcFBX50kVklPOXVXljJq2USLhIfK3pImHMKNJLCzUmrUYrcdLz3MYylvKgYBURX34+ZZMIxILA3d/dFcvlul17y6hbdRvLqIEk4TUK+Tjn9Xp9eGnBMjw/bymKSsrhdjlx0xVn4OSj949z5OR137CpEDfd/TRorfbZW9ORk5XR4uT88meiTFWt9vr1G0rXYHXhHwrBDSKzzW3Cgoih4JVKopdawUqkqDWrjBYkM2iWRNbcN7clyYKyrEYrs0bS2yym2xj1DaK4jfUb+Ao/HZRfUALCJCe+5g14goZaoDldOcJqLF5fXb1PTGl1GR5c+kTQsGGkIAJHCFJqtLwcZs8LiUcD6oJ9ZVuK6sZFdFsIr0aMEtNhQiGe1NWGR3VbIrpqhD74kSesxkQIhgcN2Eu4MFCjHanluG0i+lhUXtfM5SKaPWZyFrW9fCg1wslBndsM8oq28KKUgQSdDxmySQRiQUAS3ljQCr1WEl7t2BnSk6WEb5zyFNZtKkSPbp3QOT8HI3YahIvOOialtLtbi0pBGQYtvybdcH6rZJdAk9DwtStr12ttG0l4i/5skiQEtLbhZDXY/UARG4hXkBYl6UvxylVoRkDD2zhasONCs4IUKjVpTHprRb6gRoeDpQ6hEeNQuqtqPrke1ZWBVzhEeeFtYGBaXbPiq+uAOyNXK5QJ7cdo/s/r/sC8b95sPo8WshvWhw8BDcKXNsyzN3i2JJFdPmwokV1FqxuNt24w0Y2G7FrTrdiv3+hWya5661xHToZNvMnQ6sSQl2UXSbUkvckin+SNuZl2kcSq9Q1QQg912OCM7lLDK5tEIFYE7vnu7li76HL9zaNu0WUcIweRhNdI9DXMzajo28tWiAIU+4zeCf379EjJOuzLv/oZT8x+E1NuvAAD+vbAlsIS1Hm86N6lAPYWku6oEdTyylWFeWPZGqwp+qupylpwSWDFl5csJ+DAEHBTUGyhlFKuipepuLKJ0EZOWAt3YAhJNQvx2Q0uIBHqgxtqYxZMbxrpK63GWEBC2FaFOjDwav6M5UuFhzDS4HBmICMz33RR3fCPQmFlMV7/9m2sK9mo/KglotvCz0LGC+8rdL2M2itJiM1IWcQobPMPa6sShghzho8g3hpY0sQa+FDSRNSaKSDCYrwhwePmUozgq3fuNhQ9srtiz74jo95zPrNlOpXX7UyuijVay/kd9nTxdoHYxvNWJtpfkSTqLAFeXh1bImu04+t5HR9w+FBB5xfZJAKxInCvQYT3Jkl4Y90qeb0eCDB6wuS1VG4Ll36Gb3/6C/+78GTcPe1FbNhcBL/fj0H9e2HS+PPhdNib3R6/PBUbsujKdoYPsKnsvwDhDUscC4q5hmp6G0mtSnibnBoarb8ia4BVYhogpeESBvW/gyO5kTx6xUhNr9yD/RcU0qZqPutDopVBEeh06nnT4W+wwpWRB6vVnjJnp7iqBM9/Pg8l1aXNzkLbjghtJ6YRVptV2aPgqHizycLIa0xa3RYIOckk7b0Um7hQ/4jmCotQBhwQ3DSutAX1xIgeO+HQQfsgw+6OmuwG3ztJJKOmJL0V1b6YtblC2+tQErPoQ5tIbS3dDyjnSQa5jvf3rmpTplYHjHc82b9jIXDv9/cYcsM3jbzZkHn1nFRGePVEU47VDAGvz48nnn8Dbyz5DOeechjO+b/DYbdZRYW4F15/D7W1HqzfVIg502/FqjUb8cCTczHm1CNw4ZlHNyc52yAILyO9WhoJ79riv4UQQS3mwHFatRYLiuSyxDCjqA3bgiUPjTQ1RLcbbjUWcINoosJBJDZYFqGS3oB8IeDuoN6z4sDAiLMlTPMZui41LNqtW1/kZzlE9MtMvqnR7GGdz4PJix4OubRlwtmcAAY6tpyUlm4hloyCR3ZFaBpDEVhjWzODs2Yh2cjWasrTi5AviOIfjXZpYvwo7cbU89OyVle5Ynj3oThxxyM0Ed3wfclwWJDltqGkyhtWhjqaHeRbhjTkZztQXuNDXYIcFEisKXyq9Wh7GI7uTvS5ikS3U7ZDVljTB84ON8p9BhHeGyXh7XBnLaVuuLyyGsWlFdiuV1dDonrrNm7F7Q/MAp0kLJZ0bCksFR7Cd990EdZvLsIl4x8UhTLmPHaL0PD6/H7ccs+z+Or73/HpG49GxJrFJ2J9xaoOtLlsLdYW/xOasBbmjhBsOaZodQNyBZvF0lSqN5BIFm4L1pzsBifIKZxHlU5EIsuhEd0mgtMothCVxFhVQWTyt+yry0Q7m9UBV0YObDaHIB18jVrtqUdtgkhHoj4c5TUVuH/p41H43LYQ1Y3CaowaUBsj4Yy4RhKBhheWCGXBoQS3Bf0vX2UzsYsR3ZBoZ9Rkt7kDQyNXblpN18zOOGvEichxZulCdtWBuW7qTvmwyYemWLW5lI9QJsESx4wWa7EVbO18seIikzTp0mD2RnLOQhSySQS0IHD/9/dq6RZ3nxtG3hT3GEYPICO8Ru9AguYvq6jCI8/Mx8rVG/D0A9dH9O5N0NRiWCYezV34IeYt+gjPT7sZWRkufPX9H5g0dTYO2mckxo05EQ8/PQ8//bYSs6fdItbHPlMeeQHU974398GIy+OXbUmlR1NiyubytVhXvLIpeUuQ2eDIbFMhiqZ0tiALMghfWxJ3RVLRSIYbo35NkohmiWrBL6AVctxEloP/dxCBChDkAJ0RUV1LOqzU6obpTtXxmnx10ywiIc3pzAwhPaJYgNMKXwMjYfXNy9Qm8kDEMbav3o/Xv3sbP2/4o/VRIhLNFiK7Ea4l7tQ7k/z6GclvDBZGjii3oCMIZ6DKE47QC/P8MFkuhCxGSXYDEpgAqQ9T9mKHzgNw+Pb7oyAjLw60W+7Ke3A5rEIiQ+lAwO4u+ulofyZ0y/TLpW+vDgFZ4kAyzoh5KrzByM2UBSeiPzHyynAE7v/hPkNAuWHEjYbMq+ekkvDqiaZJxvp3zUbc/sBz+P3vNTj/jKNx2XnHiTLEyWwkr7NfexeLl61oIrT03H110UeY9sx8TLnhAvTp1RW33vss8nIyMfa0IyFI+tPzceFZR+PU4w6MuFxqVbeW1cVUYU0daEv5uibCG5JwJkhHuBVY4383EmISDup4WblM+VINi+QGa4LFhJF+Hu4GoawsmAAH/4saNlTnJTkISW4Kpu6NxNvtzoXN7hRa3Uh2YyRzTCZSig34U4IgEJNqTw0W/rgUv238q/m5aNFRoYUftHi9MrTqmkDSK/BuNmMLZLeFcR12i3iYC0TkGweMley2MK3L5sIxQw5B37yeyLJn6BrZjfQhZLSXxJXHr6wy9iQxnkEmmFHDXF7lEw8X8TSOl+W2oqZOW0GaeObW0pflj2XBCS3IyT5E4AGDCO94SXjlATQbAh989j1uu2+mcDy4+oKTce6phyf8C7AlDN775FsR0V3y4n3IynSLy/jFv+ex47Dj4H549qHx2Ly1BMeNuRXVNbUiCevqi0/Bef93RKvOE5tKajVFeLeUr8f6kpUBN4ZGkhiuoaUhf0hctlGCwDRBQXj9dDxQSW0QYQ0pKBFIWAvX5bZkNaaMqFJghQ2xwhsrMnl9jMiG0uGAzlcZ0eXOgcudHdV+q56pRRXemF9PG3XmvX4fnvxkNrZUFKpARF5KnL66IlJOVw5bujivgahhBK1uYNNC19K4BiZTsRfL76qtxaS0xrFUXtsU1W0xmKz84Mq9xqBzZkHStyU3wyYenooqPJrOEHXonXId8PjqUVrp07x+6qFZbryqJvbEOs2TxtGxe75L6nfjwK+jd33wh/sNgeD6ETcYMq+ek8oIr55oGjgW9boL3vkUz7+6VOhib7j8dIweOdTAFQHFpeW49d6Z2Li5CK89M7HJJ/iHX//BDZNn4LG7rhIV1vz+eoXwWixC2tCWA0VppVeTVm9r+XpsKPm3mYY2RFMboehDcATWabOKxB2+5g4mruKaCFZjzaUPAfobSliD6C69WYWEQYk7hzoIBGzTVHJMrW5WTmekt1BQoKVDoOoyqz1+eL1hCVuGnpyWJ2ek9653prWQFBZ/tTTuYXC8kVZ0jCDyIUdIe8OjuJGiuo1Jhc1szyLy5dB/DH7Qanz2CRDlEFjS0Mmdh/N2/T+h1zWqUd5AssnPBCshagnWUlvORpkNZQmxNn5OGHGmR3d8seJYZ479eiZHdspxxt5R9pAINCLw4I8GEd7hkvDKQ2gCBFb9txGzXl2CZcu/x3577Iwrzz8Jvbp3TujKSLA/XfETCkvKMGz77Vok14w4k9xefdEpOOeUw8Sa6CV82qUTcef1Y3HIvqNiXicTZ0oqvTH321q+ARuDCW+QXCEkQU0J8TUlrAUXmmAhB6X0q+JrK2hqUGlh9b8V+sqfh+l2G1lMIMoXajXGsYR3rihjDKF1VFqQkVljxNlqdcBud8HpymrzIaElsER0zGkRBJvWUbEmI8W8CTp0WPrbR/j0ny/DRtKH7EZyYaBu25IGkIqF62+b3U6jC4MoQ91qIYnQsG0wb24rsmu32DGix44Y0XMYumd1iSqirwPsLQ7BREpqw3mGGA3XkjimyiSYzFfr9Te9zYhm3dSms3IZXSDM3mjzJuQgskkENCLw0I8PaOwZX7frho+PbwAT9JYRXhNsgtYl0I/3kxU/Ycact7B2wxZcdeHJOPyA3ZGXm9iIz9aiMtww5UmUV9SguqZO2AGNOe0InHniIc1uxeevx2uLPsLjsxZi7GlH4MB9RuLhp+Zh/aYizHxovIhGx9qoBd5S5om1GworSHhXNxWNCI6+BlwXQgtKqARWJSEko/zDhJ1wwttES5sR6ciEVfnXwP9nUhrHpk6ZPDdgFhCs/VWuJ9nNzMyHxWqLm/BwDRkuC5w2C0qrfKZPZqtvaMCn/6zA+398qpyBKFwYQg5LxCit8o8RLccauTQ9ezkVo72RGhPeuIdcXwMLlKgXtabVDVu++qYgePzQ5abhjOHHY2BBX9gs5qnUxTUSn+wMO3y+BlGlLdZor/AmtqbB7bSKaHGwDKS1D7vbno70FPHg7ZrnFA+zskkEtCLwsEGE91pJeLVumeynBwKMlFIy8M1Pf2Le03eKSGsy2vhJT2LT1hI89/ANQms7fdZCzH/7Y0y8fqxwYIjUnn3pbUx9Zr740fb9euL5RxUrMq1Ni463sGIjNpWS8IY6LDT3wQ2zGgtyXuC1zFRXvIDVcUJVl8ESiaY4bwvFIxQZsRLV5Z+AF2yACgcXnuDlefk9YbFYtULXYj++nubr5aJKD+pN7u5EPe+iX97Dd2t/aX4/rfGJ0FBqY1966yp0V2ktiGbTIGQm/BPi2av6ItvS4fHUi0hw8DCB0VqK6gZ5MLSh171q7/MT5sKg14HKdluFtlcpEhO7yIDaXjoZUNtbWdv2QWSJXj5Y1wbppPW6F73H6VHg0ntIOV4HQ2DqT5EdjBINwzW7XJ/oKRI+vozwJhzixE1QW+fBfY+/gg+WfwcWeGDEl9FPNkY8FB2o8vqsU0EObr3qHIweMSTuBR1xxngMHdwPD995uRiLGtyLxz+IzAwXbr/2PBG15Vo2bSkRZYI7Fyj/XVlVK/7OzsqIuxyyFj/eooqN2Fy6JkSuoETUgiKo4e4Kgv80mY4JissM8xpPfQTJQiMFDvLZVbqHpyEFpBCKA0O6sGcKkIPmMgchdaCvrjtHuDAkqjH6xGQkL0vK1mrTZCZqbeHjsijFjOUvYGtlUeBHLZHdqKO6EYW2oRyYyYRWWowprhlqxn2TC0NrWt1GPt1MwtAi0WVFPSt27z0cB/TfAy5b4vZez31jsh4/J9TlUuYQXk2urbkIB63GmDhI316BbQud8rPsqKzR39u3rTXG+nPioeqVY+0rr5cIqAhIwqv9LEjCqx07U/T8Z9V6rF63CRWV1ajz+FBVXStK9JKkkfxu28Y/fN1oFfrenYcOiHvdjz77Oj775hc8NuUqdO2seH4yEe3Oh57HlWNPwsH7jkRFVQ0eeGKu0JbedtXZgvjq2bToeIsqNmFL2ZoAUQ0rAhFObFWiGkJ309Lgtiuen8or20hWY831to08J6DsFQSW8eI0sT8BbWhz+QKLSLjdOUKrG8lqTE9cOZaweXJZxRmqqqXEQe8Z9Bvvq9U/4M2f31UGTALZVVfOBxUWqqBWd1tDsJNDLFXTGvc6bN3hEobDt98Pu/UeDruJJAzR7KBaWpjnnBIFLR65fOsg3DIAYTsWiTgXZNlFNDlWCUU096DnNYx8Z7r0/T2o5/rkWKmBwCM/PWTIQq/e5TpD5tVzUkl49UTTRGPRTkn5o1iBsVF+oAdh+m/9Fpx84QRcxUS0k5VENLosPDhjHkrLKnDfbZeKeShz4NynHXcQrFZ9EzVIOIvKY9PxFgvC+19IMYlILgqBhDVVVhDqqcuSvmysFiXS0kIiuuGENZC8ph4PVkpTzfeZmBZozckuI7pMTGvJVzdRR4635LJbwEhddW09PBqy5xO1tvBxv/3vJyz4aUnk6VqI7IbGC1sJr0Yg0UoREMVJgwSMulOeBfHQEqW3bnASokrUw6faudtQDO85FAPy++ryuU3WfoTPoyakkZCyvHWsjQ9g9I2mJSAfdPl2RW3ErFOOA4Ux/i6IdQ16XM9INKUeskkE4kFg2s+hpdbjGSuWvlftfG0sl5vyWkl4Tbkt5l/U7Hnv4u33v8A9t1yEgf16CanCrFeX4p0PvsILjymV0xLZ/PWsuBabh2xJJQnv2mZFJlTSG2wrxrW3ZDVmEdFZS6OFUrA5WWMvRZgbkpCmjsUvbUa+aj1BvqyNbg6iV1Nf+upmCwmDHg8pWveCxK5Ttl2Uc66s9WsdJqH9WL2MpHfhz0uVeSKS3MAPmr0ajxQZjvhvyj8y6kjC7PU1jpQGOKzKvymylLAYbch/No/qNp8qDTt0GYAThx2RMhKGaDaYulye/+LyOmh5fqLNW0G2QzxklFR4RdTXaWOSm02Ta0s0a9brGkqFSHgZ7ZZNIhAPApLwakdPEl7t2Jmqp7++HqywVlRSDrvNip7dOgkZASuuVVTW4MXpt+q63vUbC3H1HdPRu0cXXHLOsXC7nGBiGrXEk8aP1V3CEL54khz6bvJVabStpHIztpatC4rKqsQ0rCpaiKeuSmID0V6hu7WmN2XrB9uPqYxLvVohsSwtmwZbU2lZdcXBEeQAIdPqqxstDrFexwgbv6zpTEG8A+4RsY6UuOvXFK/D3O/eQkVdZQTCG6CUEXWgLRLkoPUKb2RFu8u3Fk3eyEERXZHQlq74Jge5yQXR37bIbhq6ZnYSRST+b6ejDX3QSdRO6eHbm8Forz1d6IPtNgv48MsHMjM3JrpSvysNGsy8S6mxtkd/nmrIQv+38zWGzKvnpJLw6ommgWP9/PsqjJ/8JIpLK+Dz+7H3rjvilv+djRXf/YZ7HnsJzz18I4bvOFC3FdIfdsX3v2Ha0/NRV+dB1y75IkHu6ov/D4MH9NZtnpYGIungl1xFDN6bpZVbFMIbFEVVCWkQ9Q0pIBH4ecC4jASWFl7BFbhCfXUDDIrV40iE+H+q3Vg4KVbXo4evbqKAJ2F3Oy2KLZe3QZMeM1FrU8f9bdPfeOPnJajx1qoQN/5IdWEIW0E0RLfxgYVer2SuanlnMVKE5DTiRGsyPpBxvxWCHZ0LQ7/83qJEMAtKGBnVT/Q+6eHbSxkJZQ6UCDBhrSbojUmi169lfCasUcPbnvdVCy6yT+wIPPaLMYT3yp0k4Y19t2SPhCDAcsI//bYSl5x7HPKys3D7g7Nw7imH4uSj98fBp16Low7eA3dce56uc1PGQD3vfxu2CLLbv28PdO+Sn7Rf6jUev9AERhtx9HhrReEJn98ToWhEIzEJIcMBe7KmxLVGRwe+mqVmkwRIJawBDqREjJWIXzr8wRG/EAIUGF9PX11dNzloMELDBCLaQLFIBSNsZmr1DfVYWbgGs79+rZGMKoxUc1RXedpRJAzb6KLREJW3LqN43HuSX+HZ24bbGRc7sGA7HDv0EOQ6oysNbSbctayFOxPs28sH11gNzPi565KjSByo6w3W9mpZU6L68F6z3DbhOiGbRCBeBB775ZF4h9DU/8qdrtbUz0ydZITXTLsRx1punDIDpeVVuPvmi4Qt2Py3P8HiZStENTNGfmkZxihve2pMXCuromVRdDYC/nofNhb9C69fiQC2VDgi3EZMraQWrMvllzXrC/sblMS1QAkJJRLIimz890BZ4MBVapKb0isdufndE+Krm6i9JqEryHEI2zIzkoyJS6fC41cq8bWp121Fq0vNKDWXjNQ2uWi0kZQWfBIYFeYfWrypRzRM3SuKR1y2x9nId+eJJLiO2LJY9MRuQXm1P6bSwkSLhRy2ltch26VET/kAbDa3BmH116hf7oj7K+9ZXwSmG0R4r5CEV9+NlKNpR4DShclT5+Cy847HkQeOFpXXLrr+Qey12zAsXvYljj54D0y+8QLtE5iwJ2UVrAxGg/poGgnvpuJV8PpqItiJNRLScMeFEI9eZRZVk0uCohChQF9qOMUr7YbIVmNNiXFptFtywunOhs2W2AS/aLCJ9RqSQZaTZeSTpWTpUmCW5vV78eyXc7GubFNgSTEkpvFSNULLhyrxBiGCfCG8QEVgimBbOiUqTgkOI/0BlNLQPbsLjh96GHpkdzULdIatg04OfO1PFwZiHk2Ja+ros9xWFFUoDzfU9pI4U2fOhwx+Bs3Q+NBEDbyssGaG3Uj9NTz+6zRDbmLcjlcZMq+ek8oIr55oGjhWTa0H056dj69//BN7jhqGLYUl+OKbX8Ur2X123wljTj0CwwYnpxJbMmGgU4NS9azt5q/3Y3PxKnh8NUqNtMaIWnCkN2AiFihIEURfmuQLdGrgF5hiTZYG6hJZKW3bNsWqqrWywOn01c3Ig8OZkTT5R9voxH4FCR51lBlOi3BwiLYUbOwzxd5ja2Ux5v+0WCG9UWp1ubmqHIF76hM+1rGS3YC7h7pqQaCtjOUrZ8OabseefUZhWLft0SWjIKXPQOw703IPPkSRsArSyvPka52x8txxv4KrsfFBxWWnbj5dyG60VHrT8544Fsk8Ca/U7+qNbMcc7/FfHzXkxsft+D9D5tVzUkl49UTTwLGop5375oe4+9GXBCkbMWwQzjzpEKGrZXGI8DK+LA1MvW2qN0ZzKmroHNB2hFEQ3pJV8HprQ8huMx9d8dpaZUmNyWph1dJIWvnlykgU/Y0Z2eWr71B1hZqVH7Aoc7tz4XC4kW5pPwksTCCirreGHqkmyZbneVj02zKs+O/75ke8BRkD91Mp71wf8lq8udIgaIAQiUMrhSTSIAgvXR4uGH0KOjl7gGdIkqDm28PzxGgvP9Jlrfj2MgmMiaORClpQd80kS34my2uid3JJxO9DEvOcDHsihpZjdkAEnjCI8F4uCW8HPG0mvuXVazeJCmcDt+uBDHegZjvrzNNJYc36zZj5yjtY8e1vyM/Nwv23XYqdhvQ38R21vTQSzsLyuqgS10iCRITXS0lDoORvqK1YqK9uqN5W9BJ9KWcgeWGUl1/MHtWTNVBLLagIASOHFrjcWXC62mdSEiPcOW6beACoqvXHnIDU9k5ru+KpL17CmtL1rVRhU3af+0iixahi5KhuKMkNnISgh6PmlyiLbmTMtnQrxoz6P+zSq6/Ahw9qsZbc1YZCavaijReJKyUL4TjxzQIlNSUVHrSmpinItov9JXGORiaRCKRYGIO/K2STCOiBwJO/PabHMDGPcdmwK2PuY7YOMsJrth3RaT1erw9/rVqHrUVl+Or73/HWe1+I8sL9+3ZHXk4WDj9gNxy87yjh2ZvKjeRkc2ltVISX97m5iIS3uomEBKQNQVXOFJai8pSQaK9KlJVooBJBCi4L3Ngz/+1RbwAAIABJREFUxPrMZnMiM7sA6entu8qSWpKYmkUjCUb4eX7my1ewqmRt6D83klC6jXG9THSiC0Pj1oeXjgjpGxrxbcNbl44N6VZsl9cLe/fdDf3z+4iortthEX9orUcNtGyREXDY0pDhsIrkUEoUqMslbqwASBlNNJIFJdrLaHC9cBZJdlIbE+ukfleecL0QkIRXO5KS8GrHzpQ9/1y5Fp+s+BGbt5YKD96a2jqMHjkU2/fvhV7dO2PXXQajIC8H6e3IAb2wrC7qpKnNxasVwquoeBViE5aYFuzSoBJY5W8g3ZIuCkioxFexHFOEnqoPg2pTRqJL+YLDkYG0xj6mPDQ6L4qvo5moVVPnN4Vfb1ltBe776MnAXTbut+KZq+hq1bLA6j6HseMmIhz689YlDGqnwwbth9167QKHNfS1NrWdLN/M+UnESOpka44Af1XxTCm/sxR9PKUzseDFfaY2mK4Z1Jon6yGD83bJdcptlQjohsCM36brNlYsA1067IpYLjfltZLwmnJbtC+KcoUb73oKPbt2wnmnH4F+vbujW5d8ZLpdQmvaHhvJQmmVkqndVtsiCK+StKY6JoQUBmiK7AYIrEpuqe9UK2nxS1ckqUFxYwgnu3RgyMjMb1da3bawDf45o6aZTosgJayIZ2Rr2NaAL9Z8h8V/fCiWwQcakk0+qHDvgmlmuG1Y07pDXBraKCShPEWJrmcNPxEDC/rC0kJ0nxyO0Uq3wyokDnQokK05AnRkyMkg6WWFw3phRxiFbL/ZQCS8lEp4/A0iMS7RzxiZbiuyXTa5pRIB3RB4yiDCe4kkvLrtoRxIJwSYvFbn8YpSv2rz+fzi3yhxmP7cAjwy8Urk5mTqNKPxw5C0bC2ri2ohW0vWgAUomgiqQoGa5Atq5FcdTCXGjMTxdWrgFari0sDCEszmD/jwpp6vblTAabiIkW6RnQ40WUdpGEaXLr56H5b8+TG+Xvcj7LY00NJOeCQ389UNkNXGo9FM3hCexNZEkhuJLv/asetgUTXNZYsuukfSy8Q/vqY3W0EPXTYgjkEYJc3NtKO61odabwMyXRYRGY/VtzfwmQZIRFktsaTSE5ZoGsdCI3SV+l198ZSjAU///rghMFw8dJwh8+o5qYzw6ommicbiF/q//20Ufryff/ML3vngqyYN77gxJ2D3EUNMtNr4lsJI3eaS6AhvWcVmVNWUBZGYQLWzANUJODOopWLJaanXVVrg54wUMmEtjb66dhdcrixYU9BXN74daL03iwLwdTQdNYzy6yVJtVjq8fjnL2B9WSHqg8KDrUV1I3nrBjPgcLJLJEb22BFHDD4ATmts/sp8AcOKXDxdlbXGJVkl8izEOjb1t5QzsMBJsAxB8e1Vynvzj5aENNqXOR0W8RDLhwy9Ewh5NqjfbU/ysVj3T16vPwJP//6E/oNGMeLFQy+P4ipzXyIJr7n3R/PqPvv6Fzw683WsXL0BI3cahN2HD0Hvnl2EhpeV2NqbHVJRuSeq18E+vxdbi1YFiGtQVC64Wlqwr27ol2moVpdRom1pFtjs2Snvq6v5sEXRkRFMYsWqeFVJti4j2aWDBInq8pU/4ZUf3258bAleeMsuDCGSl0hODI1naFBBP5GUtlffUXF9vigFsdnSUedJntY0ii1M6iWUetCJge4GdP2I9KDU5Ntrs6Dao80HmmeDBSus1nRBqD1e/SQlXDsjvLJJBPRE4BmDCO9FkvDquY1yLD0ROO68W5DhduKSc4/H0O37oiA3u91qeIkbo4csK9pW8/u92FK0OkzCoERtlf+v6DuVwgPBBSTUn4YmuWVm5qFrQQ62bbOgotZYrWpb9270z6l/ZolV6nqpwUxGc1jTRNSUxUmqPfVC9/nLpj8x96e3gqYPM+YNkzmosha1Q8jVjWSXLgzHDTkMBe7cuMiuOge1ppkuxUGF1QQ7UiPZpc6WEVfVmaG1+6edHF0Y2LSeK+KdwfLEOuLNc5fVuIcdaf/kvSYWgWf/CErATexUIaNfOOSyJM6WmKlkhDcxuBo+6j7HX4GjDt4DN195VrMvYGp6/fX1cDnbT/TB62tAUYWnTdxJeLcWr2kktyqJVRgOvXWZHEPhgrfJVzcoea2JCDX31c3LVL6gqcHUkkzT5sLb0QUFWXY0YJt4QElk+Vf6tJLEFJfXITgXrM7nwb0fPwFffdADSjMtbyuJaUE6BrvFhjxXDi7b41xxfvRuoiRtGlBS5dP9lbvea9VjPCJI71zKFGL1c86hLtduQXGlV5PEgetnMQs+8DKBMFJBi1jukXvH9cgmEdATAUl4taMpCa927Ezd8+Gn5uHzb37FndePwU479BcFKdas24TC4nKh6d28tQQP3XF5uyG9fFVeHMGgPnyTSHgLBeENkBMSFbVammIzpvZqbjXGf7HZXcjMyg/x1SXXIcGi5tdIraqpD2XQ4vi6mvpMajPjJRbh98w9oFcrnSJIqiNpM9eVbcS8n99GSU15hMS1trx1lbPT2Z2Pk3Y8Et2zuyaE7Kr3pfjOUq+qVLJrr+ZljNQyKsqHVz44amnBvr38HIZWPoxuRDW6Tl9mFiLRog/m74NO2Q5xBmWTCOiJwMw/Zug5XNRjXTDk0qivNeuFkvCadWfiXBcJ7R0PPY+G+gYM2347bNhSiF//WI0tRaVC08uiE8ceuhcyMwIV2eKc0tDuTNIjuWnLX7O+vr5Jw0tawwxwqyVdZO3zy1GJzqryBuV/h/vqOl1ZEe+VvUjkmExDKy5+WcrWMgKMpGW5rUKrylfXejSSQ2bw8xxQxtCa7dRfhauw4NclqG6svKfM3xbZVa7pmd0NRw0+CD1zSHYTT2p4Tilx2Nb4ml8LkdMD30SNwQQy7hvLU9MnN55GSQTLCtNBhTZvfKiKtQXrg3mWYh2DZ5vOErLgRKzIy+vbQuC5P40hvOfvIAlvW3sjf24QApQtTH36Ncx+7V0RvSTpPe24gzCwX0906ZSHgrz2peklTyXJrKptXe8oygtvXSkicoy+kN4IL9agsFngZXaA7NKBITMzH2npljY1moxU5WXaUV7ji/vL26Djk7RpqeulzZRaajceOQgfNJjRT0/maCpw0Z/3iS/mYHNVYVDhkJDgfyMFDv63NJy+83Hont0Fuc7klokmkWMiFC21GOmNlYQlbVNjnEgk6bWSnBbjcE2X8yEhL8MmtPj8LGo5WxyDD2XbGiCiztE6OVBTTHlEImQuWvGQ/doHAs/9+ZQhN3L+DpcYMq+ek8oIr55ommgs+vG+/f4K1Ho8OHz/3YXvbn19Azxer4hm0sDd5bS3Sd5MdEttLoVkl9q7ttrWwn+FTk8pC6xeHURzRUi3Mcqblo68vO6igEQsja9FGeGpqPHp/so+lnWkyrUkqy67FWXVsesv1ZLGFkuaSFqKtZjA5GXT4G0IfVAKTUxT/suWbsWZw0/AgIK+hsLKt+T52Q6hcaWdVipLHPKzbOJ3UGmlN+Z9i3YT4vXt5TziYcphFb690dQGYbIa5RmySQT0RmCWQYR3rCS8em+lHC8RCJD8/v73f6LU8Fvvfo6i0gr07t4Zl513PHYfsQMy3O1D1sBX2GVVLX9xqtrOdRv+EVHdSFpdtfqa6qvrdufAYtX2xUXSK17ZexvafL2eiH1PtTEpR2CENpaHBEY86fzAaCcJoJZWVF2KaZ/PbOoa6q3Lf05DjiMLJww7XNiOmcHSj2eZkdG09DQR7U21Cm2M7IvI6TZojr7Gstd6+Paq2l4GDOj40ZK2l767jO6yep5sEgG9EXj+r6f1HjKq8cYMvjiq68x8kYzwmnl3dFrb8q9+wX3TX0JNrQe1dR6h33U67fj8619w9UX/h0P3GyUivqne+AVEwhvpy58aQYfNIqqirV77T9CtMrKrRnMVckNNJssC2x3uuMkNiQmjQyRJJGTRvhJN9b3Qun4SWOLFhCGS2JaitUKn6bDCZk0TWul4qpP5G/xY9McyfL/h10AqY6PdGO9j3+12R7+83iKyawayq2KrasapG+f9U2uq5bW91r3S2k/YiDmswp5O60OKlrn18O3lvPTtpQTDyyTCCHpj5gTQtUUmrGnZJdmnLQSe/+uZti5JyM/HDL4oIeMmc1BJeJOJtgFzkeCectHtsKRbcO+tF2Pq0/PRvWs+xl92Oh57bgF++2sNnn3oBiFvSPXGimt8NRqc9S88PTPtIhuNGjyS4pqaclRVlYjbVXhNwI0hw50riK7WqG4kDDkHk2hYeIGJdfyil61lBLhnjPSS/JZFcFngz/OyFOsqvSpk0ars7T+X4edNf6iHQizwhKGHY+duO8Aao6QlmftLnSnPlyUtTeBlZtLLPWVkl0RXb3eOaDHXw7eX5JmloKnRLanyhmDOe6S1mpkejqLFRl5nfgRmG0R4z5OE1/yHo6OvcNV/G3HapZMw5tTDMW7siXj1rY8wa+4SLHnpPix6/ws8OftNzH9mkihS0R4aI7xqMo9wAXBZReSrOqi6l9/nRWnpxpDiE+lpFrgzctCSA4Me2HAttJeiX7CZSYke96rHGHwt7HJYsbWsrgkvRnTzM+3ilbLe0cFaXx2e/eYVFFWXwGGx4+ghB2PnbkNShrgQL3G+yj0J08PGs6+UYPBBhuffDC4Tqm9vURR2hi3dN98cZbps4mGakio2VhXMz2o/Hufx7Lnsqz8Cc/5+Vv9Boxjx3O0vjOIqc18iI7zm3p+4V7d2wxacfOEduOTsY3DhWcdg/aZCnHj+BDx4x2X485//sOCdT7Fg5pR2Q3j5pVNZ4xNJaS1lftOLt6x0Y2NmfmRf3biBb2EAvg51UadaTemFjPS2hbNiM8ayrw1iPykRKa/yoj5B0C356yNUeapx1A4HIcPubmt5pvs5rb1cDtpxbUNNnd8UxFf1qOar/vIaJs2aBzb69gp5RT11uX5NaxNODi5ljDpfPTKdNmFPKJtEIBEISMKrHVVJeLVjlxI96zxenHbJRPTo1gmPTrkSNqsVJ10wAbV1Xnh9PqHfvfaS02C3tY8EC0ZOadDv8SqaxkjqAYXwboLN6oDDmZHQqG6kQ8Jqbi6nRRjsp3qWfTI+BG5HOnIy7EL/XBJHFa1o1+rxe+Gwpq7Eh6/bGXUk0aRVn5G6ca6BkWfqRMyqYVclNEw24+8OLT7AHIORXZJn2kBK/91oP23yulgReOHvQIJtrH3juf6c7S+Ip7sp+krCa4ptSOwiFi9bgclT5+D6y07DKcccgDeXfiY8ehnxPfrgPZCXG7mQQmJXFfvoK1evR0aGC927FLTaubDcI5KeWmokvDXVZSIxLT0KX93YV9p2D1FIwGltKkfcdo+OeQUtpUgi6NzA1/UkEqyoJ1vrCJBoEi9KCGo9/hBJT7Kwo6tBTobioJEKCXXqevm7g/aGWl4iUHLTOad9yMOSdU7kPLEhIAlvbHgFXy0Jr3bsUqrnhPtmorS8EjddcRZ6dCsAS/GmUlSXa5/40Gxs2FKEWQ/f2GqFOBYeiCdrP1kby6gQLbW2QfEhlS2AABP9mNzkoCa1zNNEPigJyXBZG904tFCSjoUyzxhL3PJVO6O9yUKMkiJGdkkcjUpO07rTXDcTz1isIpoCJsHzUFLChErZJAKJQuDFf55L1NCtjnv2oPMNmVfPSSXh1RNNE4/FCmP0j+TrtlRsGzcX4fpJT+KPf/7D5WNOwEVnHdPibdCWjIk7qdAYiWNVNu4PyYGRr5/NghfJBrW7PK+Vdf5mCX6MojFDnkSqujZ5JM4s+MS6Dp4xakzZ+Lo+0Z69JH3cP5aLTjWyq2Ir5Al2i7C84z1E+7lkQRCnLTV/x8Z6ruT1xiDw0j+zDJn4rEFjDZlXz0kl4dUTTTlWwhD4+991mHD/c9hhYB+898k3mHLThTh4n5ER56M92eaSuoStJRED03vWZklHdZ1flELtqI1EiRZbJLIkZy0hISQhLiu419SGmikRyqx7RyJGzMJdS/RcL4k194bnONWTMpVCNenic0lZBslvW61LnhMsqiGbRCBRCEjCqx1ZSXi1Y9duey7/6mfsO3pnU93fj7+uxIwX3sKN487A/U+8gg2bi3DgXsMxYsftsf+euzSzjqKVVUuVkEx1Y0GLYVSJmssqliPuYA4Oojyw8DVFk19yW/skik84rWBEkXZ0HflBoS2s1J+LCm0ui/CfppWWXvZg3AtKAeg9S6/p9mQ1Td9efi4Z5W2tdDmx7Zon9bvRnkV5nTYEXv7neW0d4+x15qAxcY5gfHdJeI3fA9OsgJXYHnn6Ncx960N8/tbjyMpIbsnhLYWleODJV/DNj3+hW+d83HrV2dhxh/5g9vRnX/2C95d/i5uuOBObC0txzDk3IS8nE3fffDH226M5OedrSGb0UyqQSk34zGbZhd5S9RNOpfVrWauqM63xavPWVcsLM7FNS4a9ljWneh964vJhoaTCG3chFEY0mZxGqQRJdHtsKqHnWSuu9DWTOLAABfX4TBSUTSKQSAReXmkQ4R0oCW8i91WOnUQEVq/dhCdmvwlGd0fuNAh333wRcrMzk7aCwuIy4SRB0n3QPiOw7NPvsLW4DNdfepqI4C56fwVWfPsr9hw1DE/MXojOBbmC+N5+zbktRqPpyUsSlGqRXsqsSSCYMEMdZIpx9qjPDLWlTG5SnATq4yL4jMJlu+2o8fhTwhEgapASeKGCvUVoVPmgEK1ONXhJJICM7CZSJpFACGIemrIQSm6CfY4Z2WWCpcvOCHfMQ8oOEoGYEHhl5eyYrtfr4jMGnqfXUIaNIyO8hkFvjonr6xvw2de/4PlXl2BLUSlOPmo/nH7CwUkvRPH9L3/j+olPivLHu48YguLSCtw17QVs3FyM56beKHS7D814FcN3HCSkDHuMGiai0Xa7Fbdfcx7sdltEQPllLsr56vXuNknbRtKb5bKJV8Mk7e2tqa/WSeZJlmLNho+Ehyix67AgLT1NFF3QY8z2hnv4/fCc8YGDRSFYsCUWWQiLKxBvYs3CIB2lETNa5am+vfzfMrLbUXbf+PucaxDhPV0SXuM3X65AOwI1tXV46oVFWLj0M7hdDky+4QLsPKR/i+RR+0xt9/zlz1UYd/M0PHzn5dh1l8GiAxPVbr3vWQzq1wv/u+BkfPXDH9h9xA5C7kCt4KatJaiuqUX/Pt2Rnt5yZjQjvMrrbqX0Z6o01RDfbksXtmXtRRdJssvXv15fParq6nWNYIuoMaOOGTbxoJOqLgHJPKMMSjLay8glC7ZUe1onr7yekWGeS2paU+0Nil7YMgGQXtokvrJJBJKFwNyVc5I1Vcg8pw8815B59ZxURnj1RDOFxioqKcdjzy0Ai1IMGdgXM+6/LulR3WC4qN+9YfIMIWc4++TDmuzTps96A8+98g4WzpqCPj27aka4vqEBZVWpSYBIRGiRRAIXSwROM1gJ7MhoIvWjfABJZFSQpDcn0wZ6MstIb3QbygeR/CybOGPlVb6IDhmqP7Io8Vzj67DuGHxAyM2ww2KRZDe60yWv0guBV/81hvCeNkASXr32UI6TJASYxPX1D3/iyTlvYv3GQpx18iE488RD4GhBEpCkZcFfX4/XFn2M2fOW4uE7x2Ho9tuJqantPfqcm4T37phTj4hrOZQ1MBmMr9BTrdHBgW4EXHsqJmap5W75Nx88khGtZuUsRuGoTa2uq9ekUU21cxLveknfGB1n0JJJk8ERckpGctw2+BsaK5GlVj5ovNA09ednkXIjm1X67eoGqhwoagRe/feFqK/V88LTBpyj53CGjCUjvIbAbtykDQ0NuPC6B/DNT39hpx364cC9RyAnK0NUXcvKdCMnOwMWiwXZmW64XE50ys/RpSLbyjUb8OmKnwSRpSwhkgSBut07HngOJWWVuPnKs7DTkP7YtLUYx4+5DWNOPVyQ3ngbyU9Vrc+QUqvxrt1hI4GzCWkGCVyqNL7+Jlniq28mpyWD7KrYBMtCKtpBhDxZey4kDg6L2DM6L6jFPuqYXOjVV4aSrHvSYx7xhsJlFSWuY2n83fbex9+IPIm+vbriyANHw+mUFdliwVBeqyAw798XDYHi1AFnGzKvnpNKwqsnmiky1qtvfohJU+fAZrXAalU0aJb0dCEjsNmsSE9Lh9VqET+fcM15GD1yiOY7Y+R2zmvv4tU3PxLR2uysDByw5y648/rIVVtW/bcRp106CV0752G3XQYLv92//l2H156ZiC4FuZrXEdyRiVLVdb5WPTV1mSgBg9ACKjfLLvSvrXmCJmBqTUPSbcJuSUOZwWSTkhCX04LKWh+8vg4amoxxB1X3AZ45PqTQASMV3y7EeNsRL6c2nMlpdGOgBVksjXKtB2e8iq+++x0H7zsSX37/Ow7aeyQuPudYEWyQTSIQCwJmI7yUR2a4XXBF+QDX1vWssLm1uBQZLqcIwunZJOHVE80UGcvvr0dZRZXwqPX6WKWqAV6vH9W1daiqrhUOCYysVlRU45D9RmGXoQOaFXaI9la//uEPXH7zVNx+7Xk44sDdsfSjrzF56gs45tA9MeHqcyJGeplMR8eG73/9B4fvvyuuuOAkdM7Xh+yq6yblYVY6q3SlYsvLtIlX9Iy+mdG2jBHd7EY5QXmNOTDmmljGmRHy9uoXq/dZ5ut7PrTwjHXUJECF7FoaC6PERnb5O/ahGfOw7NNv8eAdlwlf8Z//+BdX3z4dU268EHvtOkzvLZPjtXMEXvv3JUPu8P8GnBUy79oNW3DpjQ/jv/VbxL+fdNR+4nuegbJIra3ryT3ufvRFvPnu56L74QfsJuSNejZJePVEU47VDIFXFn6Aac/Mx5eLnxQ/4xcAk9DmzH8PU268oMlDt6y8Cv+u2YBB/XuJKLBKxm2NEehEQMsvceoUSXxZojaVGr+E+WqVKkLKG/zJ1Am0ARS9SjNYwjZOb91E7AdxI+llFEGpNJZa+54ITCKNyTf2PF98SCDRpW0ZX+d7fIqGvKPgxvOS0RjZpTNMrI2Wj7ff/xyuGHsijj9iH/EW7d//NuK6O58Q/8aAgmwSgVgQmL/KGMJ7Sv9Qwnvx+AeRmeHCXTddhM1bi3HqJROFL/6xh+0V8XZau56/j0+95E7xpvn8M47EvqN3EcG3Lp30DXRJwhvLSZPXxozAl9/9jnG3PIL7J1yKg/cZKfozqnzjlBmo8/hw+7XnonuXAlFU4pZ7n8XE68Zivz13iXmeeDqQ9FbUeFMu41xEnuwWOB0WEak22oJL8SelXjcdNXX18PjN6c1K2pLpVnSYxK2j2mq19JlRqoopHtDUu6vPBMTLZU+H3WZBdZ3x5y2ez3w0fenAQNsxEn0tjV/YJ5x/m/AVv+XKswQ5YFu2/Ds88sx8UdyHNpCySQRiQWD+qpdjuVy3a0/pf2bTWOWV1djr2HF4cfqtGLHjIPHv9M3fvLUEj911VbM527r+w89/wJW3TsM7L94nNO6JapLwJgpZOa5AoLbOizMunYiMDBeeuPeaJs3aD7/+g2tun457br1YVE/bWlSK5V/9IsoEs4pasptSoMKbkuTHbksTFklGltZVM/jrfPVJT0zTelaYmMUoZqolAWq932j60c6aEXDFjzdycpqo0EbcTBjBj+Yeo7mGONCRwuXQRnY5B4vlXHPH43j5iQlCFqa2s66Ygn69u+PGcWforlGM5t7kNamNwOsGEd6Tgwgv38YeN+ZWfPz6I03f1y/Mf0/IEeY/M7EZwG1df9/jr2D+258I2SMT3DsX5GDsaUc2kWm9dkwSXr2QlOO0iAAT0c68fAouPOtocYj5Wk/47k6ZgfNOPQIH7T3CFOh5/UpVNp9JI5OtgUQLLpJeeqPyPpLZOHdell1EA2vaKFqQzHVFMxejmV1ynaj1+lFebQ6tcTTrTsQ1LM+cm2FDWbW/zTPEaH5upuIyUFLhjejZm4g1JmNMRrKpW463etpjMxdgxgtv4dulT8HldIBVLe+b/hI+//Y33HvLxcKFJrxRysUgAf92OGywWiLrIZOBg5zDnAi8vuoVQxZ2cv8zmuZlwOrsK+7CF4sebwpizVv0MWbMeRMfvja12frauv5/Ex7FXyvXYezpR6JLpzy8+/HXePv9FXh7zj3o16e7bvcrCa9uUMqBWkPgmZcWg+4QF519jBCj//rnajz81DzcMO4M7DFyqGnAI9kl6U02adQDALs1ELFk1DLR8lQSA0oYaFlFaYDXn5p6WEocSHCo46YUw0x6aD3ORTRjcB+ZoEZdc7SFOlTPXiENYSlnX0PKE18+vAlnEVv8RJMJu+NumYYbLj8d2/Xuhp9//xePP78Ql513Ai4886iIicDLv/oZjz33Bpi4y9+TjHix0qRsEgEVgQWr5xoCxkn9Tm+aV43YfrJgmrAuZYsmwtvS9SS8Pbt1Fm892PhweMDJV4nPypknHqzb/UrCqxuUcqDWEKC37jMvLsLHK37CkO37orCoDLsNH4yzTz4U+bnZpgKPCTn0bE3FAhUkH3xNz7R6lu1NVHKRWtSB+lfqORNNrhN9QBjpZWEPB4t7eFicJLlR8kTfX2vjZzUmp/GhRUslP0ociB0fGMzqGhINvozoEgu9CkrQ/eat977AW+9+jn/XbERmhhOnHncgTj/+IDgczT14KyqrheZ31M6DRTLvP6vW48vvf8NdN16I7Qf0juYW5DUdAAEzEN5ImtzJU+cIaWK0Gt7g6xn8+nvVOsy477omwrvHMZdj3Nj4C04FHwlJeDvAB8Qst8gkDj4Zkvzm5mRi+/69hH+fGVsqk14ls9wiolSMVutNepm4RE9S1Zc1NeO6kU8diXw+5Rl1/pQq7qHlM8QIbW6WDQ0sLsGHljg4PjWvrD6mujqkUiIgPy8Om0Uk6nH9ejdaPNKDPCvDLcqjU9IVqdXWebDrEZeIAjvjxpwA/vfJF94uilRcecFJei9LjpeiCLyx+lVDVn5iv9NC5r3w+gdEgSra6/GMn37ppCasHIubAAAgAElEQVSXhoqqGpz3v7tx0VnH4qiDR4t+rV3/0+//4szLJ2PGfddi9IgheGPJclErgHrgIYP66na/kvDqBqUcqL0hwIhVaaVPWDGlYmO0ilGrogqPbl699P9lBKyo3JPyUd2W9pTRXmqSue+0fEsxx7qojqrwSXaz7LLir6tXYzXA3AwHKmp9InkxFRqlQHnZdlg02I5puT9Gbuk3eul5x4svd4/Xhw+WfwdaOP69aj369e6GaZOvRFp6Oo495yYha5g4/nwtU8k+7RCBhQYR3hPCCC/9d2k1tn5ToUD5xCP3xR3XjRE+vOUV1djruHG47epzcMYJiiShtev581lzl4gCLWqjbSnH1LNJwqsnmnKsdocAyQ7dDyhvoFdgqjVqM2mrxHuIx7aMCU3MWGcyTWWNP+W1mm3tI0mv22kFyZCiT44j/NnWZEn+ObW6PBe1noaEyHZIpvmwJUpJe+tN63xCfssHQiZ7Jonrip3++Y9VQt514ZlHY5dhA0UxnsdnvSGSdw8/cHc88ORcFJdUICvTJRJ4mOdA60bZJAJEYOGaeYYAccJ2p0aclwnotNzLcDujWldr19d5vOJtSLcuBS0WsIhqkhYukoQ3HvRk3w6BgChF7PGjShSoSL1bttsUgsOEPCZlxXILwrO2UePJiF2dr/0Qv2h2kuQwy20TJJ+JgKneMpwWobel1jaeB6C2cKDEwWVTPKLpc222aC/LqYvqaS5bUskucfP5/aiorBGvg1nK/YbJM+Dz12PCNeeIfAYmrk24/zlceu5xOO6wveF2OdqCW/68AyHwpkGE9/gWCG8qQS8JbyrtllyrYQiQ9DKZiZHSVCS9TGbLcltFlLoiylK/jHLSpirdkobSSq94/d0RWyBi2YDK2tQlvdx/ylHKuZexPPXEsemUq1ITzepsjJQnadpWV6xWKWRRCS3V0+KAI2LXJ55fiH9Wb8CEa85Ffm6WSN5h6eFxY07E0Yfsofd0crwUR+DNNa8ZcgfHb/d/hsyr56SS8OqJphyr3SPAKF9ZVeqVIubGkMDScomtrNrXqjaVmffUeDIyR7eHjt5IkpjUxKS2kkpvSj30cN8pMWBUs619T8Q+q5XbOH8ikihjWXN6miK3YOEMszRqem+55xnsOnwHnHvKYZi36CMsWLwc06ZcieHDBpplmXIdJkHgLYMI73GS8JrkBMhlSASSiEAqV2UTnrOZNqQhDZW1vmb6SkbknDbFnqsjlI+N5dgQOzVKSolDKuh6qb2mFlm1jzMyAY8SApcjcK6SvRZGt9VEzlj2PRnXrlm/GS8v+AAbtxSJ6Vhx8vjD94HDrjygyiYRUBFY9N98Q8A4tu8phsyr56QywqsnmnKsDoOA19cgMtH5dyo2kg8HCw3U+JtIryhc4bTAW79NlJbV4smailjEumbqeqmD5d6z/K5ZG9dJ/TV124zUm0FOQNLpcqSLBy5KHPS2zGtpL3i2qcXmmwuzNq/Xh/KqGthtVqHbtVnNE4U2K2YdcV2L/nvdkNs+tu/Jhsyr56SS8OqJphyrQyHgr29AaVVqliLmRvHLnxHLSpbUFa/srUpyVoqS+GQePmujJppz8gyYrTnF3tpQXuUVDzBmakJD61Qs84opD0mwKJ76deqI9SooYSYs5Vo6HgJvG0R4j5GEt+MdNnnHEoFgBOjVW1jmSVqkSm/0HdZ05GfbQfKulFQ2FznS+371HI8SB/r1UqNqJl0vo/QspMAESzNH6RWduE0UMKGTQyIkDkw4JNm1tlDsQc/zIMeSCCQDgbf/W5CMaZrNcUzf1C9+IiO8hhwdOWl7QoDetCVViryB/ztVmlp8gEtmtjpty1hhLIVuwRRQq7ZtTGikG4FRjZFMtyNdJKdV1SaurLSe96e6h3BMShz0rNBGQp2XaRd4yCYRaC8ILF5rDOE9uo8kvO3lDMn7kAjEhQC1iPzCriFhjGuk5HRmeWC+UmYCHqNrgni4rGLtelbeSs7dGD8LNaL0uBUlqaO0fdNz1ap1ms+/TXhGp9JDCyUO1ESToPrqaV8Wvy6ayXHZLhssCSgVrOe+ybEkArEisHjtG7F20eX6o/ucqMs4Rg4iI7xGoi/nblcIiKpstT5U1/pNfV8F2Xaxvorq0FfeqWy9ZQbAWWyBEUWeA0ocktWsnDfLLsog8+ElVZuQH2Ta4fHXo5y6co2NZDfHbZORXY34yW7mRuAdgwjvUZLwmvtgyNVJBIxAoKrOp5TfNVmol4lW2fThTQNKK7wtRqKZRc+IGyOVer5iNmIvjJgzy2URJYlZzSzRmmibNU2UxqXFnJFyCj1xzs20gX65vCdGrKNtaqSYXtNmKCgR7brldRKBWBBYsnZhLJfrdu2RfU7QbSyjBpIRXqOQl/O2awSqa32iYEOybJfaApNRLyao0Ts2miggCS9trTpiOeG2sIzm55SMuBxK4Y7aBJQkpiyVe0pizchuKngCR4Obek0AP8U1pK2HR+p06fzAghJSsRsL0vLaVENgybo3DVnykb2PN2RePSeVhFdPNOVYEoFGBEQpYq9fRHqNJL1qsQRmqVfRNziGiJmwLXNZBWEjqZItNgTsxM9pFWRUz2RARjK5L9xbMz1UxYZO21eTzDMJD2lpQibUkuOEqJ7mtoq3EjJBrW1c5RWpjcBSgwjvEZLwpvbBkauXCCQaAWbuJ1PPGXw/1ERSy0jLMb5e12J3Sjcn6lKZ3MYxZIsNAUZiGXW0WdJ1K6tLmy1619J2TMuexnYHxl5Ncs/Kfxkui9CcR3pgK8h2gBXlpIzB2L2SsycHgaXr3krORGGzHNH7OEPm1XNSGeHVE005lkQgAgIknEUViTfYD56a0S4SraoaX9yFJBhJpFeviFTWmk+bnAqHTnjj2i2C9GrVRTMpTiR1+epRqYOTQSrgpq5RfdvAB0hWt+MbFCVJ0GHq6mmphLFca2og8K5BhPdwSXhT44DIVUoEjEaAZFGJUCXWp5VRXZID/qEMgZFZPZoaqST5pQZYK2nTYy2pOgbLOVN3W13nh8fbEJN9nWojZ/ZyxoncG75tyHTZwOTLGm89MpxWoWGWTSLQkRB4d/0iQ2738F7HGjKvnpPKCK+eaMqxJAKtIECSWFbtFQUqEtFIckmqWECi1tugu3ZYzYInaRMOBAm6j0RgY5Yx6arA6DsbH0ii0XezsIXNktYuk9Ni3Rc+cNFpxO2UyWmxYievbx8IvGcQ4T1MEt72cYDkXUgEkoVAff02lNb44NU5c5+vzOkKkAx7KkbVaB3F1/N6RZCThb8Z5uGDAx0F+IDSVkni3Ayb0P+WVHmjIsdmuL9EroGJgHmZNlioZ5BNItABEXh//duG3PWhvY4xZF49J5URXj3RlGNJBKJEgGSRr7bjbZQa5GYqhSTKa3wgoU5GI/FgQhzvI9EyjWTcjxFzZDgsIlJZVuVt5kDAfc12K36ypVXJK2JhBA7RzEkcmJjGAht0ZZBNItBREXh//WJDbv3QXkcbMq+ek0rCqyeaciyJQJQI1Dc0oLpWqYzV0JbJaIQx+ZVP0kkJg7+xrLGGYaJcbeTLGKGkjpJJVLyPZM8f1+JN0plex267pckfma4LlD2QDNc3QEkSNMlajVoG+S3PeRarp0mya9Q2yHlNgsCyDcYQ3kN6SsJrkiMglyERSD0EaC1Fj1tGSWNt9GG1pKeJ/kbKCpgkR3LG1p49YWPdn1iuZxIWbbcYxfT7G+CwWVDtiT2xLZY5U+lannU6jmghu7V1Hrz4+vv4b/0WZGY4cdFZx6AgLyeVbl+uVSIQgsCyDe8YgsghPY8yZF49J5URXj3RlGNJBGJEgFFRRkij9eplgKsgyy70nCTKZvBh5ZqUjPk0lFWZY00xboPhl1PCwJK4TrtFSBjaS5ngeIGlhMFpS9fksUuye9lND2Pl6o04/IDdsHrtJmwuLMXzj9yILp3y4l2a7C8RMASBDwwivAdLwmvIfstJJQLtDgFGaUsrva3KG4K9SBlNNVvLdis2UW0lYplt3UavR3W/cDstqKmrB10ZKGWIpgS00WtP1Px8AKCEgVIGLQUl6jxe3Pf4K3j346/x1H3XYach/eHx+nD8ebfg4H1HYfzlpydq6XJciUBCEfhww5KEjt/S4Af1PNKQefWcVEZ49URTjiUR0IgAI7001afdFwtVBDfqdUmGSCZJgoyUMLR1e3QfcDrSUVHtl8lsbYEFQBA7l1WUzyXJZeSeMhE+PPj823QtSRzFckxxSRPZ1Wg9RqnQW+99jsdnvYHrLj0NRxy4u7gvf309Thh7G7bv1wsPTxxninuVi5AIxIrAhxsNIrw9JOGNda/k9RIBiUArCFDeQFmA6s9K/1VG/PglzgpTqVDwgYlY9Jrla3lqjGWLjAAlIJSC0OUiPOmPpJfRTepWq+r4ENQxUteEtCPT3uRVrOXsFBaX4ea7n8GA7Xrg2ov/Dw6H4mLy/qff4qa7nsb9t10ioryySQRSEYGPNi41ZNkH9jjCkHn1nFRGePVEU44lEdABAZLd4gqP8F9VXm/7BHlMJcpDwsbIJYkao9ayhSLAaD0LKLRW+pmRfcpYaE9WWedHrad9PzzwzORnOUSEO572z+r1GD/pSUy4+lyM2mWwGGrTlmLcdt9MNDQ04Mn7r4XTrpBg2SQCqYaAJLzad0wSXu3YyZ4SgYQhsG3bNhHlpUer159KVDcAieoRTNs1JthJ2zIFG0Z2FbLrR10U1epoU8aEtpraehExT83T0PpHxWalr7MVdpvi+BFP+3vVOky47zncef0YDBnUF0xee/rFRVj03hd44bFb0b1rQTzDy74SAUMR+Hjju4bMf0CPww2ZV89JJeHVE005lkRARwRYIpi6zlSWBTAhiwUq+HdFjaJR7aiNDwB0YXDY01HN0swxPMgw6tkkbakjju0HRTWKzXvUkqAWjsSWwlJMuH8m+vTsit1H7IA/V67Fex9/gysvOBmH7jcK6RGqtFXX1OGPlf+hvLwKGW4XBvbriU750r6s/Zyy9nMnH296z5CbOaD7YYbMq+ekkvDqiaYcSyKgMwJMYKO+k8Q3VRtfUJOskdAoSXkdj/TSMznTZUFDA1Dj0UZYydPcDsX+rbrO3MmL0Z5V6pSVs6FfqWDKFv76dx3mLvwAP/+xShDf44/YG3vvumOTnjd4fRs2F2Hmy4vx+Te/wmq1wOfzY9jgfrj47GNEhFg2iYCZEPjEIMK7vyS8ZjoGci0SgfaJAKUAJLyVtbEXqDATIi57uiggUF7la1ZK10zr1HstjOzmZdqFuwbLScdL9x1C4mBHRY0vKkmE3vej13gkulkuJfqfiFZTWwdGbp0OOzLczoiRXc577v/uRn19A64YewL69+2Bqpo6zH51KQrys3H5mBNgs1oTsTw5pkRAEwKfbnpfU794O+3X/dB4hzC8v4zwGr4FcgHtHYGq6lq4nA5Y4ohiqaSXGfvU96ZqY7JWLvWrdR3DZ9aaDrB4ApMO9UzeE7pet01E/4WuN4WOhCgV7LQiy2lFOp8GktS++v53XHPH45g66QqMHjFEkNx7HnsRC5d+jvzcLIzcaXuMG3sCenXvjMqqWqSlA1kZ7iStTk4jEYgOAUl4o8Mp0lWS8GrHTvaUCLSJAL9Ub7xrBg7dbzdR7SmeJkhvnR+VNakd6VUdHHz1DaiubZ9JWKRxdpvissGobiIqp1EmQScMEshUkYqIqnwOC7Lc9oRFdlv6jL353udC5jB5/AVCo/v1j39i3M1Tcfl5x2O34UMw/+1P8MmXP2LqxCswfNjAeD6qsq9EIGEILN+0LGFjtzbwvt0PMWRePSeVhFdPNOVYEoEwBPhKdfejLsV2vbth0vixGLWzYpMUT6up84vX2amc/6WSXt4DHRzaU1M1yySktBLz+BOXYca5MpxMhLOIM8FiFWZudJugDjlRMobW7p0Pn2vWb0b/Pt1Fctz9j7+CJR99hSUv3S9kD+WV1Tjjskno26sbHr/7qhYlEGbGV66t/SOwfLNBhLebJLzt/3TJO5QIaETA56/H5Idn46sffsfwHQehorIad1w7Bt265GscMdCNVdnKq70pna0vigxk2MRrbaWsctywmGKAvEybWAcJaLLcFOh0wGhynadeFCgxW+MeU3fstKUbQnYj4TF56hxRke2bJU+JH9O+7JSL7kBeTibmPHqLJLxmO0RyPQKBzzZ/YAgS+3Q72JB59ZxURnj1RFOOJREIQ+DXP1dj8IDe+Hv1elx7+3ScfcphOOcUfexdPCS9Nb6Udz2gewGLbKS6bRkl2iR1bKVV3qTrahlRJtn2N5jL95jrYqlkl8NcyV8rvvtNVF47+6RDccxhe2LOvPcwf/EnmHj9GBx18B7yd5lEwJQIfLb5Q0PWtU+3gwyZV89JJeHVE005lkSgBQRYGnjh0s/w2HOvY9L487Hv6J11wYqliKnf9EZRwECXCRM0iMthEeVkmYTF6HWqNbVMsK9+m6EWcoyaZ2XYkLYNQjvM9RjZWBo7y20TFeP08NjV+14+/uJHvLLwA/H2hYmle4waivNPP0rYk8kmETAjAp8bRHj3loTXjMdBrkkiYE4EqOedPmsBFi/7ErddfQ62FpZi1+E7YIeBfeJaMAtUkPSmIlEMvnGSItpU8T6YnJcqjV6yXDsT08xQJIS6Xj5AOGwW1HlZuCRxGuLW9kgUlMiwiei9mVthcRlYrCInOwPduxRIsmvmzZJrwxdbPjIEhb26HmjIvHpOKiO8eqIpx+pwCJRVVKGysga9e3aJ6t55/WmXTER5RRX223MXjL/sdHQuyI2qb2sX1ddvE5pRMxCueG6G3KhzrlNUItPTxiueNbXWl6/qSezKTOgtzKgzNdJ6W6JFgyUxobyDyYmySQQkAvohIAmvdiwl4dWOnezZgRFgtPb5eUuw4J3lojJTl4I83Hr12dh5yIAW/Xbpn/vjrytxw10zRNWn8ZefIQzx9WqUTVA7ygIHqdxIkfKz7aBGmRXFjH0pHxlJugxku6ywWS0oqfSYNuGOWHbKtsPrb0BFLT2cE38yaMfGQhvU7somEZAI6IvAii0f6ztglKPt2fWAKK8072WS8Jp3b+TKTIzAux9/jTmvvYcrxp6I/Pxs3Df9ZZSWVWLyDRdgxx36RVy5z+/H47MWYvCAXjhs/91gseivEyShKav2CjusVG6M9NJ1gKV4GbU2Uzlia3oa3E6LcJeoqDa/PRzJueLXq9ikkfwmonEep92CbLdNkt1EACzHlAgAkIRX+zGQhFc7drJnB0bgoafmwW61ispM6enpWL+xEJMfeQEN2xrwzAPXC2RIcN9c+jm2FpWKEqVstD5ickwiGyPJVbWMjvrRkIyQXoJuhgFCEihqZClvMEPkmq/oKWPgWkgeU8VKjbFWB0s7O61CI83Iud6NfsDZBhSU0Ps+5HgSATMj8OXWTwxZ3h5d9jdkXj0nlYRXTzTlWB0GgVff+hAffPYDJl0/tslX97e/Vgubox136I97brlISB0uHv8gfvljFV56YoKwJ0tWI+klqSFRTOVSxMRL0YPaRDS1zkC5hstOr1ub0EqbgXxrOUuMnOdnOYRcRJwNLYOE9VELbTAib0YnBh1uUQ4hETANApLwat8KSXi1Yyd7GohAQ0OD0CNaDMoA//anv/C/CY8KCcPB+4wUSJBY3jXtBby26BN8s/Qp2G1WlJRVoKy8Cv379jAErSqR/OVLinYzkTeokl4mhyXqlXxr66dlWobLivIqr+FWX/HiTOlBjlvxxK2srUd9HGFqUSrYaRUyBtkkAhKBxCPw1dZPEz9JhBlGd9nPkHn1nFQSXj3RlGMlDYGVazZg7fotws/WZku+oT2lCc+/uhRvL1uBByZciqHbbyfufc26zTj6nJvwypMTRAKb0Y0knK+wSWz8ySr7laCbFtXEnFbUehSrLT2ik20tlbIKWnzZrenCX9doX9u21hvtzwVRpXWZ3SLuS0vEmklpJLuUMsjIbrTIy+skAvEhIAmvdvwk4dWOnexpIAL0sn1t0UeYdMMF6BOlJZjey920tRi33POsiODSoWHEsEFY8M4nuHf6K3hr9t3o2a2T3lNqHo+Ehq/i6dmbyo0aWiWZTZFsxBOdbAsHOmqxaAIbX/8ncq621pKon7PULyPX1CPzT7QPEdwHJsI5HVZIL4ZE7Y4cVyLQHIGvty43BJbdu+xryLx6TioJr55oyrGShsBjzy3A97/8g8k3nI9e3Tsnbd7wiUh2T73kTtBfNzszA3Uer4j47rnrMMPW1NLEJLu0LTOT44EWkEiwSLasVvrfehOSOMYKYdQN13jrUZOABC8t952oPoxis0BEGtKEw0dbeY6ihHGWXUS9ZZMISASSi8DXhQYR3s6S8CZ3p+VsEoFGBK66/TFkul245aqzkeFywuevh9ViTPlS6omXf/Uz/lu/BaNHDMHgOCunJXKTSXqVIgmpHelVE6XoPFBa6dM1+mpjwQa3TUSQU72QR7RnSTxEuK2w2yworfS2iCcju0x6kwUlokVWXicR0BeBbwo/03fAKEfbrfM+UV5p3stkhNe8eyNXFoQASWVFZQ0KS8pENPWGSTMEsTz8gN3Ev1fV1GKnIf2x58ihhmh6U2mz+GqekVEtuk2z3Sc1pHRPYFEFrw4ODhyLmt1ajznKBCcTb5Je4snCETUePzxhOmnqffkgIMluMndFziURCEVAEl7tJ0ISXu3YyZ5JQuDn3//FzFfeQWVVDcorq1FdW4d1G7YiO9ON7l0L0LVzProU5GLUztvjoH1GIjPDlaSVpe40LEVM9waR/NXWO2yT3yaT2Zg4JXSoXm2Ra9VtgOV4K2r8KS/7iGfLKFWg9zE9nBVbO8XDN8ctSwXHg6vsKxHQA4FvCz/XY5iYx9i1894x9zFbB0l4zbYjcj3NEPD6fJg1dwm8Pj8G9u0Bj8+PKY+8gMvOPR5nnHiQKPxgSU9X/jbIpiwVt01UZasi6fWn4vJD1syoIzW3jFrTdSDWlp9lE1XdmNgXh0tXrNOa9nrqeoknq8nVeOqRk2GHrBTc9nbRPeazr37G4AF9MGqXwcKaUDaJgJ4ISMKrHU1JeLVjJ3sahMBPv/2LK259BHdcNwaH7DvKoFW0n2kpb6BWNcUDveCzTm6GXehPoyWuTMDKzbCJPuU1qe9XrOepJMHNZ3KaTf8S2Hqu04ix+Fbk3U++EXkEo0cOBd8QzF34IR599nU4HDbU1nnRr083TJ14haFJtUZgI+dMLALfFn6R2AlaGH3XznsZMq+ek0rCqyeacqykIDD3zQ8x8+V38OiUKzFkUN+kzNmeJ+GXN6N4lTWpXYqYe0SSRisxkt+Kaj/8rYRrHVZanNng8TegWqeqY+3lnBBHt9MqfI8Z5ZUtFAGWDX9oxjzMf/sT3HjFmejfpzvufOh5jBg2EAfsNQKr1m7E64s/hc1qwZSbLsTOQ/pLCCUCuiDwXZExhHdUJ0l4ddlAOYhEIBYEZs9birfe/RxzHrsVGW5nLF3ltS0gQL0mNbCMjKZ6pJe3SKLG5Kuyap/w7A1vLkc63HYrqj1+1GnU/bbXw8RoJSunuemxK7lui9tcWFyG6bPewIeffY+e3TvD6/Vh9rSbkZXphr++HnwTxWqMJMH33Xap/F3VXj8wSb6v74pWJHlGZbpRnfY0ZF49J5URXj3RlGMlBQGPx4v5iz/BWScdmpT5OtIkHl89iiu87eKWmXjFIhXFFR4Eu7DRw5eJbuXVtGeLttRCu4Akqpugx67TxuppUV3eoS/y+fy4+9EXMW/RxzjjxINx21XnhOAx/bkFWPT+Ctxzy8UYudOgDo2VvHl9EPjeIMI7UhJefTZQjiIR0BuBopJyOB126digAVjae7FARXuoLEZiy+QrtXyuWrCiNa9ZDZC1iy5ULpDsOuLQ7DKaXlFVDYfdBpfT0S5waesmiksr8Mgz8/H+p9/i7psuxD6jd25KVvvyuz8w4f5nMeXGC4TWVzaJQLwIfF/0ZbxDaOo/stMemvqZqZOM8JppN+RadEGAnr3jJ89A7x5dMObUI5Cbk6nLuB1pEK8oUJH6Vdm4Z6yapuh60xpdHKQTQ/hZpstFdgYju9qrp636bxOWf/0zfvn9X3Ttko8jDtgdO+7QD2kdIFS8tagUM15YhDfe+RTjLz8DJx65D/jQPfnhOaisrsUjk65A1855HelXiLzXBCHwg0GEd4QkvAnaUTmsRCAOBEh4X1qwDM/PW4oTj9wXl5xznEgekS02BEh6K6p94N+p3OitS8JrbSS81PXKFkDAYlGcKuKJ7JLsPjhjLtau34KTjt4fGzYV4o9//sODt1+GHt06dQi4S8oq8PSLi7Ho/c+x1647giT4r5Vr8fDEK7DHyCHCNlE2iUC8CPxQ/FW8Q2jqP6JgtKZ+ZuokI7xm2g25Ft0Q8Hh8eGH+e5g5dzEuOetYjDn9SN3G7kgD8RV1UbmnVbcDM+PBIgp8TV9W6RXEPTeTkd50FFV4zLzspK2Nbhadcpwi+q21VdfUYerT87Diu9/w1P3Xo3uXAvCh89o7n8DOQwfgorOO1jp0yvVjiXPKG5hYe/xhe+Gqi05Bl04ysptyG2niBf9oEOEdLgmviU+FXFqHR6DO4xVfPPvsvjOGDd6uw+OhFQDalpVUMtKbOl69pG9up0U4DVCaEZyclu22ivK4Hb2impOlgjMUqUc87Z0Pv8KDT8zFxPFjse/oncVQtXUejJ80A0O274NxY06MZ3hD+/6zegMWLP5EvCUqKavEZTc9jLtvvkhUdWypsfT58q9+wfBhA4SsSjaJgJ4I/Fj8tZ7DRT3W8ILdo77WrBfKCK9Zd0auSxcEGGmSrxLjh5IJbFW1PtR4zF+KmPSN7gx8VV/FMsERbMno4EDCV9NBbclcDgtEAl+clQlZ/fDYc2/G0YfsIUghk9X4gLTs0+9w7/SXMVTrJisAACAASURBVP3uqzFkUJ/4D6BBI8xf9DEeefZ17DZ8B6zbuBV9enTBhGvPQ57MCzBoR+S0PxlEeHeRhFcePolAaiNQWVWDb3/6CxWV1Ri+4yD07dU1tW8ogasn6a2p86NSQ+neBC4rZGhGKxnB5Vqr6+pbdZqggwO1vXVeP6pq65O1RMPnyRAFJSy6lOHmZ+e2+54VxHbgdj3FvW0pLMX1k55A317dMOGacwUJTtXm99dj6jPz8fyrS5CTlYEXHrsVA7brkaq3I9fdDhD4qfgbQ+5il4LdDJlXz0llhFdPNOVYKYMATeJff+dTPPvyYpSWVYJurKx7v8eooZg26cqUuY9kL5Q41Xn8KK0yX+IXZQp5mXbUeeujJuUMcHbJdQrbMjMTeb32OcttRZZLPwL6wfLvMfWZ1zBr6o3oXJArlnneVfeARJESB5UE67V+I8aZPe9dPDl7Ieq8Puy2y2A8dtfVcDr0w9CIe5Jzpi4CkvBq3ztJeLVjJ3umKAL19Q2YNfcdzJz7DnKzs3D0waNFdPfrH/4UXpqdC3Lw0J3j0Dk/J0XvMPHLZiliVmWLVMUs8bM3n4HRWsoYqutir5xGCQQT2+g/zMpr7aHSXDhC6Wkso2wFo7t6u4SddcVdcNqtOHjfUaLULquMXXXBKTh435FGHAVd5qQso6KqRlRPy83JAovdzHp1CWa/9i6GDx0ofHW7dckH9bq//bUGuw/fATabVZe55SASgdYQ+LnkW0MA2jl/V0Pm1XNSSXj1RFOOZXoE+EX22qKP8cCTc7HHyKG46sKTMbBfr6Z1//jbSlx126PYbcQQUTVJevhG3lLiqJYijiCRTeo5oB7VZbcIsuvxabNQo2NUltMqIv0k8/52VIFNkF23FRkJKhW8aWsJXnjtXWzaWizK6p5y9P7Cf7ct7bzP78fmrSUoK6/CTkP6J/XMBE/GdRQVlyMvN0sUq/F4fVjx7W949+Ovxb/vPXon7L3bTujTswtefP19vPLGBxiyfV8cfsBu+PzrX7F2wxZMm3wlOskHZMP2sCNNLAmv9t2WhFc7drJnCiKwcUsxjh9zK/r16Y77b7sE2/Xu1uwuln70NSY/Mge3XHkWjj4k9euHJ3KbSDDLq3zwN2gjmvGujXpd6nYpSYi3TDDNCtxOKxzWdFRwvBT3Hya2jObmsqCEPbGlgkkSa2rq4HY7hWa3sqoWwDZBgNVG15S/V60Tb1JIdAuLy7C1uEwkzlHru33/3vEeB039mYw24f7ncMwhewrf7pVrNuCa26cLAtynZ1csW/4thm6/nSgoMXRQHyz98GtMmzkfFZU1IkHv3lsvwX577Nwmwde0ONlJIhCGwC8l3xmCyU75owyZV89JJeHVE005lukRWPDOcky4fybGX3Y6xpx2RMT1MvP8gBP/hwvPOgbnn3GU6e/J6AX6/Q3CtiyZpJfklJZaJHScW89GcpjtsqC82g9PipPeTtl2UXRFbxlDa3hT5vLKwg+EvOGZB68Xkc9PVvyIe6e/gqKSMnTKyxEPkt27FeDuaS9iyMDeeG7qTbAblNxG6cIDT7yCJR9+hck3Xogffv4bazduFW94unTKxQ+//oNr7ngcPbt3xuxpNwv9LssJs8hG397dUJCX3SGqyen5GZNjaUdAEl7t2EnCqx072TMFEbjnsZfEa8kFMydj8ICWI0ovL1iGYw7dE9lZGSl4l8lfss+/DWXV3qRERZmcRrJLzS0ju5Qh6N2c9nRkOq3CqzcVK83ZrOkCIxbeSHajBy+LvqxcvQF3Xj8WVqsFL7/xAZ57ZTEmjj8f+43eGeWVVZj40GxRje3Vp+5AXk5WspcZMh8J7EMzXsXiZV/C7XLg4rOPxdjGYjW0Nnx72ZfCZu32a8/DEQekfra6oWDLyeNC4NeS7+Pqr7Xzjvmpq8lX71kSXq27L/ulJAJvLFmO2+6bKV5DHnuolCvouYm++gZUVvtQp1FHG81a1OQ0j7de2I4lguyq61DnoqaXzg+pksxGkpvttsFmTTMs8lhTq1SyI3lkYzW2+W9/LIjvmScegi1Fpfjyu98w8fqxhup3g88cJRaPznwd733yLc495TCMPf2opvXzZ9dNfBK52Rl4dMr/ojmq8hqJQEIQ+LXUIMKbJwlvQjZUDioRSBQCzKqmhrd/3x6466YL0aNrQcSp1m8qxILFn+LAvUeY5gs5UZjoOS79bytr/KKgg96NxSL4h/paRneT0RhNznBaBNllNNnoBL227lnIMdw2UUnObM3n82PFd7/jrkfmoLi8EuPGnIBzTzlcFz9gve6Vvx9mzHkT73/yHS4773ih6bVY0rFm3WbcdNfT4nfBrVedrdd0chyJQMwI/Fb6Q8x99OgwLG+EHsMYOoaM8BoKv5zcCARoI3TG5ZOw56hhuOO6MRFJ769/rsYNU2agrKIaD99xufDnlS06BEgOy6u9wu1Ar5bpssBps6Cs2pd0BwXqX7NdVqSlp6G82mfaSC/dKnLcNqTHWSpYrz2LNA71soefMR5ejxeD+vfCrEduhstpT+SUrY5dWV2LiQ/NQnFJBY48aDROOmo/VNfW4bGZr2Ph0s+EppcSjOmz3sDCJcvx/CM3Y/BAY5LrDANJTmwqBCTh1b4dkvBqx072TGEEPv6CSTQvobyiGtv16Y4rx54oMrELS8qYXI78vGyRgT156hx88uVPeOHRW2SkN4b9ZuISCzkw0huPFIDcjRHLtLQ04fvLCLIRjaSXpXgpF2DRDaPW0dK9ux1WUWHOzGSXa2dRCtqk3XTlmbDb7ejbs4sh7gb8bH/x7W+4ccpTwnqQa6K92kH7jBBvfvh7QdX09ujWCTyHV15wMg7bf1dD1mvEmZdzmhOB3w2K8A6VEV5zHgi5KolAWwgwEWXthq14+/0vxJfb6ScchGdeWizIrd1qwU5DB+Dskw9Fv97dRTR4UL9eeOKea0z1+rWtezT65w3btqE6jgpmNkuaKP2ryCR8ppATMNLssFmEbMMsyWyUefChwOxkl+eRUdNdhg1Evwh2gMk8r2vWb8at985E7+6dcN2lp4lyyLc/8JwoJnH/bZciM8MlbNOenP0m/lm1XhD0IYP+v707gfOp+v84/jEbs481S/ZEWlQK+UWL6IdIaVGW1N8WskTWIgqJiCiVUkSLpV2WH1FpVdqliOyMMfs+o//jcyaDGO58536/93vH6z4ev0e/h84959zn+Wrec77nnlPDFca+dKQt3wv8Gv+97xsVkfqlL3WkXTsbZYbXTk3qcp2AnrqWlZ0tG775WUY/MVd63N3WzPSu+fRb82cd2zY3B1VUqVheXnxqqAQHcZpSYQbZHOSQkWOWAhTm0heuNMTp4Rb6P2fmdU/dY32ZTU8s09nrjCzfrCUuyE6NvHF6WmHGyo1lV677RsZPf1UWznrYhNvHn15g9g8e1PM2s3fwtr/2Sr3a1SQnN0f27D9kfuHVbxm4EHBagMDr+QgQeD23485iJKAzT3r62nNPPCiXXFBL9C3zeW/oUaIrzP+//aZrzHpfrsILaFjNyMyVRItHEeuWYLp8QGdRvbnjQ+Gf5NgdOvscFZ4XyO1cq2y1T3lLLILNccFchRc4GnhfmT5CJs9+3XxzM2bwPVKlUjnZvnOf3D9iugy9/065oZn7N9svvA53+LPA5oQfHOneBTENHGnXzkYJvHZqUpdrBb798XcZNOYZuallU7mrw/USFBQkC5etNpvnX9OkgTz5SB/Jyc2Vjd//ZjbQf/25RyS0VN6WS1zWBI4eRVzQ+lcNcXpEsM5YJqRkFfnkNGu98rxU/n7AObp0w3dLLnTpQlRosOhLakw6Fjx+uiuEnqyoR//qS6h6QMRlF9WRyhXLSlx8soya9IKZyY2JijRbjdWpWcVsn/bSog9lw8afZcLwHnJezSqef0C4EwEvCPhb4D10OFHCw0Itv3xa2PJ2EhJ47dSkLtcKZOfkyKp138iCpaslOSXNbISvR462vq6RjHigs+i//+yrn8yLbrv3HZLeXdrJDc0bSt3a1VjXW4hR1/1sdT3uv48BDggQc9CDhjmd2fW3l8IKesSjL9Xpv9eX9Lzdbz1GWWeW9RcDroIFNLguX/OlvPz6csnOyTUvph08FG9+ae1w49Vy9603mBPU9DCJ0lER0qtreykZEiQbf9giazdskr7dbpabW18tQYE48znzL4HfEn50pEP1Yi45oV39RbLP8Gny1+4D5s91hxM9mEVPdjzVdbryhxOSpVmHB0667aVpw6TJ5fbtkETgdeSjQ6P+KKA/DPUvr37F+eOv26Rrx5bS7fYbzZq+DV//JBNnLpTaNSpLwwZ15etNm83s0cgHOkujS+v54+P4bZ/yDqjQ5Qp525YdPSZYw6Ib9rr9N6zOsuqsdHBggDltrii7Upxu0HSHiMiwIPPSHFfBApmZ2eaQi3lvrjC7Ltx47ZUSFREuh+IT5eMN38viD9bJra2bmX12NfTOnLtUDsYlSGBgoDlYok/X9tKiWUMJDysFMwJ+J+AvgbfXQ1PN+vcJI3rK/oNxckfvcTJmcDdp16rpKc1OV15POmx+ywCZM3mIVKtSIf/+CuVKW545tjJQBF4rSpQ5qwQSk1Nl5cdfyy1tmpmX1LZs2yndB06Wyy+pI6MGdJFKFcqav+ATZiwwX4muWDTlrPKx42E13CakZIvullEmMkRSMnLMyWluvvSACg2+ccmZkmvzoxw9Klj/yatTp/+UmPX4z74hvbq2k043X29eRjt6ZWXnyOxX3pH5b60wpy22bN5QdC/eXXsOiJQIkGqVy5sf4gH6lQMXAn4osCXhJ0d6VTfm4vx29Wdk03b95LVZo80yIb305+H+g4flmQkDT+rfmcofDbwfzJ8kNatV8trzEXi9RkvFbhfIycmVb3/cYr62aVD/PBk75J78v4y6xEFnhl5/Z61sXPF8/qPqkamvL1sjPbu0NeuauAoW0NCrs7safNOzbE6IDsHrDg66c4Iu27DrhTsNuaUjQvzy9DSHmAts9sfNf8p9gydLo8vqyaNDuovOEP370m9mdL3+pReeJw/1vavAr2D97dnoDwIqsCXRocAbfSzwbtuxR9p3Hy3rlj4t5cvGmIFZsGSVvLtygyx5cdxJA3Wm8kcD77VNL5WYqAg5v3ZV6fDfqyU6MtzWQSfw2spJZcVFQJc36DKGSTMXyq59sTJu6L1y203XHAu2sfEyduo82XcwTt6dNyH/zz9a+5XZ3uzVGSM5qMLCh0G//tcX1IpL4NVHLhkUIGGlAs0+vUWdtdYAHRMRIrp2l+vMAhmZWTJp5muy/ssfzbIFneUtVfLEk9y0zMyXlslPm7fJC1OG8vLpmVkp4UcCvyf+7Ehvzo++KL9dXQrUpf8E+fz92fmh9K3315ljudcunn5S/85UPiU1XWbMXWJ+QdX/v2z5J1KuTLS8MWfsCd/QFPXBCbxFFeT+YinwxcZfzFc01atWlD+275aL69WSUQM6S9nS0ZKekSmTnlkoaz/bJEP63CG3tG5m1vMu/XC9tGx+hXnZrVnjS076QVssoWx4qLxT2bKLHA5t6IptVZhDM0KDJNscmpHjUb16oEREaDAzu4XU0xdgZs9bJh99/I20vb6xDOuvs7jHtm/Tl1J1nX5CUoo8NbavrT9QC9lViiNQaAF/CLxHZ2zXL5thgqleVmZ4rZbXd2nadBkui559RBrUr11oo4JuIPDaRklFxUVAjx1tf88oqVW9ktmhISk5Te7o9ajUO6+aCcBbtu6SvQdi5a4OLaRPt/Ym2PYb9bRs/uMvmT6uf/6apu9++l0qnVPWrPnlOr2AzvTqMoBUPWTCW299+XgQdFJWZ2f1OpycVajWdcuxmPAQth0rlNqxwsmpaTJ+2quyat1GufnG/8gjD3bLD707du2Xewc9Iffc+V/p2rEVu6x4aMxtzgj8kfiLIw3Xib4wv91Trcl9bPp8sxOK1TW8pyuvu6w0atNHXp4+XBpfdoFtz0vgtY2SioqTQFx8omRn55qjRvVa/8UP8vyC9yQhKVVKBgeZl2Fat2gsGZnZMnryXNm6fbcM7XOntLq2kXlDXF+U0a9N27ZoIg/17VScaLz6LElp2ZKWkSt6LHFxuaLDg01wtbLdmp7mFa5HBYcfe9GquDj4+jn0m5hhj82RL7/bLHe2v056d20nui5/8uxFsmP3ARk/9F6zVpALATcJ+EPgVa8eQ6dIVESYPD68h1na16nP+PxdGpJS0uSeAROlZ+d20qZFY8N7uvL681VD7lVX1De/mOryhndWbJA1i6eZNuy6CLx2SVJPsRfQtUX6m21keKhERYbL9p375ekXF5u9O4f3v0tuuuEqs4dv81sGir5Kf2WDuuZ0tqqVj22zUuyRbHhAPblMtyfLyXX22F4bHiW/Ct3BQV8+0zCva3tPdemMsC5h0LIcY2uP/tE1vWs+2yS3tL5adu2NlW1/7ZGH7r9Lrm50Ebsx2MNMLT4U2Jr0qw9bO9bUeVEn7oeryw50q7Hd+2JNIV3apz/vdB/exKRUadq+nzw8qKv5JlSv05Vf/clGGTVprqSlZ5iyZWIiZcoj90uThvbtwav1Engd+ejQqNsFdM2uzhTpCU76QlvTKy6U3CNHZP7iVea305DgYHNyk259VP3cc9z+uKftf1ZWtsxfvFJiDyfKNVc1kKZXHHu5wdMH1wMqktKKT+jVV85KhgSYbcs09P77Jb2gwACJCA2U0JAgljF4+qEp4L6ja3qXr/nK7JzyxOhecvnFdQi7NjtTnW8E/CXwHn3aA7HxZis/q/tWF1ReXxSPO5xkqq1QLsYrv/QTeH3zGaWVYiagOzF8+tWPMmlUL/nPlRdJbu4ReePdtTLzpaVyTrnS8uSYPjLjhSUmBJ5qm5biwqG/yfce9pRZ0mGuEiVk9sSB0tiG03Eys49IfEqW6EttxeXS44jLRoWYU9k0+P5DZrYdK8XpaV4bZl3Tu2DxKrmp5VVSrUrx/gXUa4hU7BcCW5M2O9KP86LsW0vryAMww+sUO+26XUAD3p79cdK8Sd5xi7r/4NTn3pTzalaR558cYtbw6lc4epyiBmJd06T7CxanS9dcDXn0WYlPTJZnJg6UkKAg8xVX7OEE+XjJ07Y8ak7u33I4OVP0n8XlCgwQiQ4PMSfNZWUfkeiIELOVGZfnAvqiI8tAPPfjTvcIbHMo8NYm8LrnQ0JPEfCWwL4DcXJbz7FyUb2aZs3Sv9fsvvXex/L9L1ulS8eWckGd6sXmB/PuvbEy4JGZMnviILMbhV4vv7Fc5i76UD5/b7Zt3HoUcWJKdoFrX21ryIcV5Z2cFiSBJUqwS0AR3fXbFd3nMzAwwGxhxClpRQTldr8W2Jb0myP9qx1Vz5F27WyUJQ12alLXWSnw1abfZMDoGTK8311ya9vmJxms/ew7WbB0taSlZcjIAZ3NCU/F4dJZNX1h78pLj/2H8Jvvf5NBY2fJhndn2fqIOsObmJolusyhOFycnmbfKGrYHffUq3L91ZdJ3+4dJCgw0L7KqQkBPxP406HAW4vA62efBLqDgAMCeixii9sHy313tZE+XdtLSEiw/PLbdlnz2XdSr041cxjFnn2HZMLM18wShw8XPOFAL33T5NIPP5Gn5y6RT9+eaRr85MsfpFb1KnJupXJF7oAu5U1IyZSMLHeHXl3HWy66lDlWmatoAtt37pNuAyfJhXWqy5gH75HKFYv+OStaj7gbAe8K/Jm8xbsNFFB7rci6jrRrZ6PM8NqpSV1nrcD7qzbIgqX/M7O8hw4nyhOzFpr9BPXrVX17ddKonhIbl2iOI+52243S7fZW+Va6dZIG4to1Krveb+TEF+WrTb/K0hfHy/wlq+TLb3+Vh/reKZdffL4tz6azygkp2Wb9q9u26tW9eEsFB0pMhO7LS9q14wNx7+DJZl/shwd3k3MrlbejSupAwK8FtjsUeGsSeP36c0HnEPCZQHZOjsQeSjDbHrXpOlzOKV9GRj/QWUoElBCd9dSvXa9qeKGs/vRb6d3lJul8a0vTt5S0dHn2lXfkjz93y9SxffPPJfdZxy00pCEzLSNTwkNLnbH0nb3HmU3Ir250sSQmpcjAHrfZvrm/9idvl4McccsGDgElSoienhYVlncIBZc9Atv+2iulQoKlCmHXHlBq8XuB7cm/O9LHmpH2TFo40vl/GmWG10l92i52Ahp8m7brJ/XOqy6zJgyQ6KgISUpOlWnPL5alyz+RBhfWNi95RUeGm7A7bc5bsuTD9TJ6YFfp8N+rze4O/nS9t3KD6bduDdbw4jpyb6fW5plOdekpVnf0flT0a+Y2LZqYY5erVCznlZeI9CS29Ezdqzfb72d6NeBGhAZJWMkgCWQdgz99vOkLAq4T2OFQ4K1B4HXdZ4UOI+B1gfVffC8DH3lGbmt7jQzo0dFsSdZ90BNStnSUPPlwH3MQhS5j0D17X1u6WiYM7yHtWjX1er8K24AG3SnPviF333qDHPlnn2HdZWLe9OEFVvXKWytk24698tiw+wrbnEflNfTqXr3+fMWEB0tYqSBburh73yGJT0yS+nWqS+BZ8nLWmCkvy+Bet0vp6EhbDKkEATcL7Ej+w5Hu14is40i7djbKDK+dmtSFwD8Ciz9YJ6+/vcZ8va+zo+fXOleG97vbbF2Wlp4p895YLlrm/m43y503X+93brrV06RnXjNHKA/4v46mfyvXfSOTZy2Syy6qI48M7iYx0XkzvR+t+Uq27thjXtqzetqOnQ+clfO3xCdnSq6frW/Q2dzIsLyZ3aJcuoRj556D8tz8d0V3wdCz5cvERMnAnrfJxfVqFuv1wHpKWrtuI03g7di2ebF+1qJ8Rrj37BH4K8WZwFs9gsB79nzKeFIECiFw5MgRc/DEmCnz5O8jR2TEA51N2E1KTpPZr7wtK9d9LT3uvklubdNcwkJLFqJm3xTNC7wLJT0jUyaM6JHf6Aerv5DRk+dK3243S+9u7UXD2JgnXzbnqY9/6D6pWqWCbzr4r1Z0uzJd3pCd4x87OOhODFFhIVIyOKDIa3YPxiXIqIkvSlZ2tnS9rZXUqXmu+WZg596DMnl0r2I/89ml/wQ5p3zpvF+yitnhLY78ZaFRVwv8lbLVkf5Xj3D/dprM8Dry0aHRs0FAQ+/mrTslMjxMqlWpIAlJKfLk7Nflw/99KaMGdJZ2rf7jl2H36Ni8uPADeeXNFbLs5cfMccl6acBd9PYaeXflZ+ZY5drVK0ticqrs3X9I6tQ619E9ULNyciU+Odvxmd7AwBKiyxhCgjTsFv0Ntb4jp0t8YoqMHtBFLqxbw9S54uOvRb/q12Ori/tRuXqE97inXpGJI3tKo8vcf7zp2fDfPp7RewIEXs9tCbye23EnApYFUtMzzNHDS95fJ1PG9JH/Xtf4jPeuXr9RXlj4gSx+4dEzlvVGgZzcXLmj16MSG5cgn77zTH4TuvtC81sGysgHOkunDv61HEMDeWyic0cRa76tWCZUih5z87invfCWvL38U3l+8hCpX7eG+TP9RUpfdHxtyWp5adowKV82xhvD71idz7y0zBwicWHdmqYPund1jyFTpPudraXTzdd55SVIxx6WhhEopMDOlG2FvMOe4tUiattTkYO1EHgdxKfps0dgy7ZdZm/em264Sjq2veaMD/7xhk3y1Jy3pHzZaJnz5BDHdm/QsHH/iOlSo2olGda3k9nr9Nffd5g/043+W11zxRmfxdcFdM10vB5FrHv1+qhxnXXVZQxlIkNs24lBf+G4ufvDcn7NyjJtXP/82eIfftkqQ8Y/J/d1ai13tL/O0Vl1u3kXv79O5r35kaSkZch51StJl46tzAz28rVfyppPv5NXZ4zMXztud9vUh4AbBAi8no8SgddzO+5EwLKArok9nJBkXgI709ZjOrM7Y+5SswxiWL9OJmw6eWnAmv7CYsnIypYml9eXzzf+LI0vu8DMuOnOE/546QtsyWk5kp6V45Nty0JDAs0LakGBAbZxZGZly03dRpi10bqHs166n7N+U1CuTLQM73+3VD6nrG3t+UNFurWd/nL49febRT93X3z7q/klS//O/LJlh0x7tK+0aNbQH7pKHxBwRGBXyp+OtFs1opYj7drZKIHXTk3qQqCIAu+v+lymznlTalWrJGOH3CPVz61oyzrQonTr6C4Bn339k+gLVFUrlZeW11zhl4dkHP+culevht7UjJyiPP4Z79WwqwdK6Npdu6/ew6ZKTu4R6de9g+zZHycvLfrQvLw2Z/KDp127m5ub6+pty3R2OzEpVbZu3y3rv/hBVn+yUfYeiJOa1SrJspfGS0iwf+1Xbfe4Ux8CBQnsSnUo8IYTePlUIoCATQI6s/v4jAXm5Kglc8dLZESYTTWf3dWkpOeYHRy8cUWWCpLIcO+FL92vuWv/x+XXP3aa7l9xyfky96lhEhxc8FZnXftPMC9I6mEmTRrW98Zj+7xOfTFy1svL5M33Ppb5M0fLpRe6fz2hzxFpsFgI7E7d7shznBuet6bezRczvG4ePfpebAR0ze7k2YvMLN7jw//vhLCrx9LWrV1VKhWzr699NXh//y1mljdFjyK2aa9ePTAtPDRIIkKDbXtBrSAPne3Uo6cDAkpI7RpVzJpdfXEtIODUyye+++kPWfHxV/Lld79Kn67tpfX1jR3/lsCOsU5JTZc2XYZL/fNryKwJAyUoKNCOaqkDAVcJEHg9Hy4Cr+d23ImALQJH1+xGRIRKWnqGOamsQf3aEh4Waur/W/6W/1x5kXTp2FKCg4p2iIEtHXZhJbosIz0rb6/eooZe3YlBlzDogRI27DpWaM1DhxNl9Sffyg3NG0r5MtGnvD8rK1teXbzSvAC28vUpZmu84nCNnTpPfv5tu7zy9Ai+ASkOA8ozFFpgT+qOQt9jxw1VwvN2iXHzReB18+jRd9cLaDBp2Wmo2c9Wt/laESY7WQAAD7hJREFUsHSVLP3wE/lo4ZMSEpIXbnWGUk/t0heVCprVcz2EDx5Ad2zQnRvikjw/ilgDbnR4iOi6XSfCrjLpC4S6D6++zNb48oL3pdWv/6c+94asWDTFb18uLOyw6xpy/YWw0aX1JNDGFwQL2w/KI+CUAIHXc3kCr+d23ImALQJ6aEPZMtHmTfTHpr8qi99fLz+ufdmWuqnkZAF9CexgQqZHNOWiS5oDJZy8klPS5KtNm+X6/1x2yl+AdLnDxh9/l4kzFsiB2MOybtnMM+4M4uTz0DYCCFgX2Jv2l/XCNpasHFbdxtqcqYrA64w7rSJwSoEHRs8Q3Q1h0+q5CHlRICv7iCSmZkl2rrWdes1RweEhUirY2bD7b5Jlyz8xh1DoUhfdlSIrM1vSMzPlSO4RcyDF2CHdpUbVil6UpGoEEPClAIHXc20Cr+d23ImA7QLdBz1h1ihuXPG87XVT4YkCGnqT07MlM/vIaWmCgwIk+p+jgv3N8OXXl8uzr74jV1xS16zpDQwMlNLRkVKhXIzZtiwiPG8dOBcCCBQPAQKv5+NI4PXcjjsRsF3gi42/yOBHZ8uXHzxre91UeLKAHlCRlJot6Vm5p+TRsBsTHiz6T3+8srNzZM1n38m8N5fLXR1ukLY3NOHFRn8cKPqEgE0Ce9Pytij09VU5rJqvm7S9PQKv7aRUiEDRBGIPJxb49n3RaubuUwnoDg5JqTmSmnniARX6YlpMRIhjL6cVZrS++PYXefiJl6TfvbfIrW2aFeZWyiKAgIsE9jkUeCsReF30KaGrCCCAQAECulVZcnqOpJnQW0JKhQRIVKh3Tk/z1iB8/8tWeWrOmzJ70mCJ4tASbzFTLwKOChB4PednhtdzO+5EAIFiJKDbv+maXr3CSwa6cturPftipUql8sVoVHgUBBA4XoDA6/nngcDruR13IoBAMRMwezb8La5YxlDM6HkcBBCwILAvbZeFUvYXqRRW1f5KfVwjgdfH4DSHAAIIIIAAAgh4IrDfocBbkcDryXBxDwIIIIAAAggggEBhBQi8hRU7Vp4ZXs/tuBMBBBBAAAEEEPCZwP703T5r6/iGKoae60i7djZK4LVTk7oQQAABBBBAAAEvCRxwKPCeQ+D10ohSLQIIIIAAAggggMAJAgRezz8QzPB6bsedCCCAAAIIIICAzwQOpO/xWVvHN3ROaBVH2rWzUQKvnZrUhQACCCCAAAIIeEmAwOs5LIHXczvuRAABBBBAAAEEfCZw0KEZ3grM8PpsjGkIAQQQQAABBBA4qwUOpu915PkrhFZ2pF07G2WG105N6kIAAQQQQAABBLwkQOD1HJbA67kddyKAAAIIIIAAAj4TIPB6Tk3g9dyOOxFAAAEEEEAAAZ8JxGbs81lbxzdUvlQlR9q1s1ECr52a1IUAAggggAACCHhJgMDrOSyB13M77kQAAQQQQAABBHwmQOD1nJrA67kddyKAAAIIIIAAAj4TOJSx32dtHd9QuVIVHWnXzkYJvHZqUhcCCCCAAAIIIOAlAQKv57AEXs/tuBMBBBBAAAEEEPCZAIHXc2oCr+d23IkAAggggAACCPhM4FDGAZ+1dXxD5Uqd40i7djZK4LVTk7oQQAABBBBAAAEvCcQ5FHjLEni9NKJUiwACCCCAAAIIIHCCAIHX8w8EM7ye23EnAggggAACCCDgM4G4zIM+a+v4hsqWrOBIu3Y2SuC1U5O6EEAAAQQQQAABLwkQeD2HJfB6bsedCCCAAAIIIICAzwQOOzTDW4YZXp+NMQ0hgAACCCCAAAJntQCB1/PhZ4bXczvuRAABBBBAAAEEfCZwODPWZ20d31CZkuUdadfORgm8dmpSFwIIIIAAAggg4CWBeIcCb2kCr5dGlGoRQAABBBBAAAEEThAg8Hr+gWCG13M77kQAAQQQQAABBHwmEJ95yGdtHd9Q6ZLlHGnXzkYJvHZqUhcCCCCAAAIIIOAlAQKv57AEXs/tuBMBBBBAAAEEEPCZQIJDM7wxzPD6bIxpCAEEEEAAAQQQOKsFErLiHHn+mJCyjrRrZ6PM8NqpSV0IIIAAAggggICXBAi8nsMSeD23404EEEAAAQQQQMBnAokOzfBGM8PrszGmIQQQQAABBBBA4KwWSMw67MjzR4eUcaRdOxtlhtdOTepCAAEEEEAAAQS8JEDg9RyWwOu5HXcigAACCCCAAAI+EyDwek5N4PXcjjsRQAABBBBAAAGfCSRlxfusreMbigop7Ui7djZK4LVTk7oQQAABBBBAAAEvCRB4PYcl8Hpux50IIIAAAggggIDPBAi8nlMTeD23404EEEAAAQQQQMBnAknZCT5r6/iGooJjHGnXzkYJvHZqUhcCCCCAAAIIIOAlgWSHAm8kgddLI0q1CCCAAAIIIIAAAicIEHg9/0Aww+u5HXcigAACCCCAAAI+E0jOTvRZW8c3FBkc7Ui7djZK4LVTk7oQQAABBBBAAAEvCaQ4FHgjCLxeGlGqRQABBBBAAAEEEDhBgMDr+QeCGV7P7bgTAQQQQAABBBDwmUBKdpLP2jq+oYjgKEfatbNRAq+dmtSFAAIIIIAAAgh4SYDA6zksgddzO+5EAAEEEEAAAQR8JpDq0AxveAEzvIcOJ0p4WKiElgqxZFDY8pYqtViIwGsRimIIIIAAAggggICTAv4SeHfuOSB9hk+Tv3YfMBy3tmkuYx68R4KDAk/JY7X8+i9+kL4jp8uzkwbLNVc1sJWawGsrJ5UhgAACCCCAAALeEUjNSfZOxWeoNTwo8oQSvR6aKhHhoTJhRE/ZfzBO7ug9TsYM7ibtWjU9ZU1Wym/Ztku69J8gaekZBF5HRplGEUAAAQQQQAABPxDwh8CbmJwqTdv1k9dmjZbLLqpjVCbMWCD7Dx6WZyYMPEnJSvnYuAS59f8ekREPdJZHp74iU8fczwyvH3ze6AICCCCAAAIIIOBzgTSHZnjDjpvh3bZjj7TvPlrWLX1aypeNMQYLlqySd1dukCUvjjvJ5Ezl0zOypPvASdK8ySXS795b5MrWfQi8Pv9k0SACCCCAAAIIIOAnAmk5KY70JCwoIr/dTT//YZYefP7+bImODDd//tb762TO/Hdl7eLpJ/XvdOX/9+Y0GTr+WREpYUJuQEAJAq8jI0yjCCCAAAIIIICAnwj4Q+A9OmO7ftkMKVcm78hhKzO8pyqvL6ddd9sg89KbrgnWa/7ilXJt00ulfaumcuO1jWyT56U12yipCAEEEEAAAQQQ8J5AukMzvKHHzfCeak3uY9Pny8FD8ZbX8B4tP/nh3rJw2f9OAHv6xSXm5be2La6SZo0vtg2TwGsbJRUhgAACCCCAAALeE0jPSfVe5aepOTQob+nC0avH0CkSFREmjw/vIfsOxkmnPuPzd2lISkmTewZMlJ6d20mbFo3NLacr/+9mWcPryBDTKAIIIIAAAggg4B8C/hJ4df9d3Wps975YA3NL62Yydkh3sw9vYlKqNG3fTx4e1FXu6tDC/PvTlSfw+sdni14ggAACCCCAAAJ+IeAvgfcoxoHYeLP2NjyslCWfwpa3VKnFQixpsAhFMQQQQAABBBBAAAF3ChB43Tlu9BoBBBBAAAEEEEDAogCB1yIUxRBAAAEEEEAAAQTcKUDgdee40WsEEEAAAQQQQAABiwIEXotQFEMAAQQQQAABBBBwpwCB153jRq8RQAABBBBAAAEELAoQeC1CUQwBBBBAAAEEEEDAnQIEXneOG71GAAEEEEAAAQQQsChA4LUIRTEEEEAAAQQQQAABdwoQeN05bvQaAQQQQAABBBBAwKIAgdciFMUQQAABBBBAAAEE3ClA4HXnuNFrBBBAAAEEEEAAAYsCBF6LUBRDAAEEEEAAAQQQcKcAgded40avEUAAAQQQQAABBCwKEHgtQlEMAQQQQAABBBBAwJ0CBF53jhu9RgABBBBAAAEEELAoQOC1CEUxBBBAAAEEEEAAAXcKEHjdOW70GgEEEEAAAQQQQMCiAIHXIhTFEEAAAQQQQAABBNwpQOB157jRawQQQAABBBBAAAGLAgRei1AUQwABBBBAAAEEEHCnAIHXneNGrxFAAAEEEEAAAQQsChB4LUJRDAEEEEAAAQQQQMCdAgRed44bvUYAAQQQQAABBBCwKEDgtQhFMQQQQAABBBBAAAF3ChB43Tlu9BoBBBBAAAEEEEDAogCB1yIUxRBAAAEEEEAAAQTcKUDgdee40WsEEEAAAQQQQAABiwIEXotQFEMAAQQQQAABBBBwpwCB153jRq8RQAABBBBAAAEELAoQeC1CUQwBBBBAAAEEEEDAnQIEXneOG71GAAEEEEAAAQQQsChA4LUIRTEEEEAAAQQQQAABdwoQeN05bvQaAQQQQAABBBBAwKIAgdciFMUQQAABBBBAAAEE3ClA4HXnuNFrBBBAAAEEEEAAAYsCBF6LUBRDAAEEEEAAAQQQcKcAgded40avEUAAAQQQQAABBCwKEHgtQlEMAQQQQAABBBBAwJ0CBF53jhu9RgABBBBAAAEEELAoQOC1CEUxBBBAAAEEEEAAAXcKEHjdOW70GgEEEEAAAQQQQMCiAIHXIhTFEEAAAQQQQAABBNwpQOB157jRawQQQAABBBBAAAGLAgRei1AUQwABBBBAAAEEEHCnAIHXneNGrxFAAAEEEEAAAQQsChB4LUJRDAEEEEAAAQQQQMCdAgRed44bvUYAAQQQQAABBBCwKEDgtQhFMQQQQAABBBBAAAF3ChB43Tlu9BoBBBBAAAEEEEDAogCB1yIUxRBAAAEEEEAAAQTcKUDgdee40WsEEEAAAQQQQAABiwIEXotQFEMAAQQQQAABBBBwpwCB153jRq8RQAABBBBAAAEELAoQeC1CUQwBBBBAAAEEEEDAnQIEXneOG71GAAEEEEAAAQQQsChA4LUIRTEEEEAAAQQQQAABdwoQeN05bvQaAQQQQAABBBBAwKIAgdciFMUQQAABBBBAAAEE3ClA4HXnuNFrBBBAAAEEEEAAAYsCBF6LUBRDAAEEEEAAAQQQcKcAgded40avEUAAAQQQQAABBCwKEHgtQlEMAQQQQAABBBBAwJ0CBF53jhu9RgABBBBAAAEEELAoQOC1CEUxBBBAAAEEEEAAAXcKEHjdOW70GgEEEEAAAQQQQMCiAIHXIhTFEEAAAQQQQAABBNwpQOB157jRawQQQAABBBBAAAGLAgRei1AUQwABBBBAAAEEEHCnAIHXneNGrxFAAAEEEEAAAQQsChB4LUJRDAEEEEAAAQQQQMCdAgRed44bvUYAAQQQQAABBBCwKEDgtQhFMQQQQAABBBBAAAF3ChB43Tlu9BoBBBBAAAEEEEDAogCB1yIUxRBAAAEEEEAAAQTcKfD/ouN24yIk3hIAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 7, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/BCG_incomplete_mkts_11_0.png" } }, "output_type": "execute_result" } ], "source": [ "from IPython.display import Image\n", "import matplotlib.pyplot as plt\n", "from mpl_toolkits import mplot3d\n", "import plotly.graph_objs as go\n", "\n", "# Firm Valuation\n", "fig = go.Figure(data=[go.Scatter3d(x=[kss],\n", " y=[bss],\n", " z=[Vss],\n", " mode='markers',\n", " marker=dict(size=3, color='red')),\n", " go.Surface(x=kgrid,\n", " y=bgrid,\n", " z=Vgrid,\n", " colorscale='Greens',opacity=0.6)])\n", "\n", "fig.update_layout(scene = dict(\n", " xaxis_title='x - Capital k',\n", " yaxis_title='y - Debt b',\n", " zaxis_title='z - Firm Value V',\n", " aspectratio = dict(x=1,y=1,z=1)),\n", " width=700,\n", " height=700,\n", " margin=dict(l=50, r=50, b=65, t=90))\n", "fig.update_layout(scene_camera=dict(eye=dict(x=1.5, y=-1.5, z=2)))\n", "fig.update_layout(title='Equilibrium firm valuation for the grid of (k,b)')\n", "\n", "# Export to PNG file\n", "Image(fig.to_image(format=\"png\"))\n", "# fig.show() will provide interactive plot when running\n", "# code locally" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### A Modigliani-Miller theorem?\n", "\n", "The red dot in the above graph is **both** an equilibrium $(b,k)$\n", "chosen by a representative firm **and** the equilibrium $B, K$\n", "pair chosen by the aggregate of all firms.\n", "\n", "Thus, **in equilibrium** it\n", "is true that\n", "\n", "$$\n", "(b,k) = (B,K)\n", "$$\n", "\n", "But an individual firm named $\\zeta \\in [0,1]$ neither knows nor\n", "cares whether it sets $(b(\\zeta),k(\\zeta)) = (B,K)$.\n", "\n", "Indeed the above graph has a ridge of $b(\\zeta)$’s that also\n", "maximize the firm’s value so long as it sets $k(\\zeta) = K$.\n", "\n", "Here it is important that the measure of firms that deviate from setting\n", "$b$ at the red dot is very small – measure zero – so that\n", "$B$ remains at the red dot even while one firm $\\zeta$\n", "deviates.\n", "\n", "So within this equilibrium, there is a *qualified* Modigliani-Miller theorem\n", "that asserts that firm $\\zeta$’s value is\n", "independent of how it mixes its financing between equity and bonds (so\n", "long as it is not what other firms do on average).\n", "\n", "Thus, while an individual firm $\\zeta$’s financial structure is\n", "indeterminate, the **market’s** financial structure is determinant and\n", "sits at the red dot in the above graph.\n", "\n", "This contrasts sharply with the *unqualified* Modigliani-Miller theorem\n", "descibed in the complete markets model in the lecture {doc}`BCG_complete_mkts `.\n", "\n", "There the **market’s** financial structure was indeterminate.\n", "\n", "These subtle distinctions bear more thought and exploration.\n", "\n", "So we will do some calculations to ferret out a sense in which\n", "the equilibrium $(k,b) = (K,B)$ outcome at the red dot in the\n", "above graph is **stable**.\n", "\n", "In particular, we’ll explore the consequences of some choices of\n", "$b=B$ that deviate from the red dot and ask whether firm\n", "$\\zeta$ would want to remain at that $b$.\n", "\n", "In more detail, here is what we’ll do:\n", "\n", "1. Obtain equilibrium values of capital and debt as $k^*=K$ and\n", " $b^*=B$, the red dot above.\n", "1. Now fix $k^*$ and let $b^{**} = b^* - e$ for some\n", " $e > 0$. Conjecture that big $K = k^*$ but big\n", " $B = b^{**}$.\n", "1. Take $K$ and $B$ and compute intertermporal marginal rates of substitution (IMRS's) as we did before.\n", "1. Taking the **new** IMRS to the firm’s problem. Plot 3D surface for\n", " the valuations of the firm with this **new** IMRS.\n", "1. Check if the value at $k^*$, $b^{**}$ is at the top of\n", " this new 3D surface.\n", "1. Repeat these calculations for $b^{**} = b^* + e$.\n", "\n", "To conduct the above procedures, we create a function `off_eq_check`\n", "that inputs the BCG model instance parameters, equilibrium capital\n", "$K=k^*$ and debt $B=b^*$, and a perturbation of debt $e$.\n", "\n", "The function outputs the fixed point firm values $V^{**}$, prices\n", "$q^{**}$, $p^{**}$, and consumption choices $c^{**}$.\n", "\n", "Importantly, we relax the condition that only agent 2 holds bonds.\n", "\n", "Now **both** agents can hold bonds, i.e., $0\\leq \\xi^1 \\leq B$ and\n", "$\\xi^1 +\\xi^2 = B$.\n", "\n", "That implies the consumers’ budget constraints are:\n", "\n", "$$\n", "\\begin{aligned}\n", "c^1_0 &= w^1_0 + \\theta^1_0V - q\\theta^1 - p\\xi^1 \\\\\n", "c^2_0 &= w^2_0 + \\theta^2_0V - q\\theta^2 - p\\xi^2 \\\\\n", "c^1_1(\\epsilon) &= w^1_1(\\epsilon) + \\theta^1 d^e(k,b;\\epsilon) + \\xi^1 \\\\\n", "c^2_1(\\epsilon) &= w^2_1(\\epsilon) + \\theta^2 d^e(k,b;\\epsilon) + \\xi^2\n", "\\end{aligned}\n", "$$\n", "\n", "The function also outputs agent 1’s bond holdings $\\xi_1$." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "def off_eq_check(mdl,kss,bss,e=0.1):\n", " # Big K and big B\n", " k = kss\n", " b = bss + e\n", "\n", " # Load parameters\n", " 𝜓1 = mdl.𝜓1\n", " 𝜓2 = mdl.𝜓2\n", " 𝛼 = mdl.𝛼\n", " A = mdl.A\n", " 𝛽 = mdl.𝛽\n", " bound = mdl.bound\n", " Vl = mdl.Vl\n", " Vh = mdl.Vh\n", " kbot = mdl.kbot\n", " ktop = mdl.ktop\n", " bbot = mdl.bbot\n", " btop = mdl.btop\n", " w10 = mdl.w10\n", " w20 = mdl.w20\n", " 𝜃10 = mdl.𝜃10\n", " 𝜃20 = mdl.𝜃20\n", " w11 = mdl.w11\n", " w21 = mdl.w21\n", " g = mdl.g\n", "\n", " Y = njit(lambda 𝜖, fk: np.exp(𝜖)*fk)\n", " intqq1 = njit(lambda 𝜖, fk, 𝜃1, 𝜓1, 𝜉1, b: (w11(𝜖) + 𝜃1*(Y(𝜖, fk) - b) + 𝜉1)**(-𝜓1)*(Y(𝜖, fk) - b)*g(𝜖))\n", " intpp1a = njit(lambda 𝜖, fk, 𝜓1, 𝜉1, b: (Y(𝜖, fk)/b)*(w11(𝜖) + Y(𝜖, fk)/b*𝜉1)**(-𝜓1)*g(𝜖))\n", " intpp1b = njit(lambda 𝜖, fk, 𝜃1, 𝜓1, 𝜉1, b: (w11(𝜖) + 𝜃1*(Y(𝜖, fk)-b) + 𝜉1)**(-𝜓1)*g(𝜖))\n", " intpp2a = njit(lambda 𝜖, fk, 𝜓2, 𝜉2, b: (Y(𝜖, fk)/b)*(w21(𝜖) + Y(𝜖, fk)/b*𝜉2)**(-𝜓2)*g(𝜖))\n", " intpp2b = njit(lambda 𝜖, fk, 𝜃2, 𝜓2, 𝜉2, b: (w21(𝜖) + 𝜃2*(Y(𝜖, fk)-b) + 𝜉2)**(-𝜓2)*g(𝜖))\n", " intqq2 = njit(lambda 𝜖, fk, 𝜃2, 𝜓2, b: (w21(𝜖) + 𝜃2*(Y(𝜖, fk)-b) + b)**(-𝜓2)*(Y(𝜖, fk) - b)*g(𝜖))\n", "\n", "\n", " # Loop: Find fixed points V, q and p\n", " V_crit = 1\n", " while V_crit>1e-5:\n", "\n", " # We begin by adding the guess for the value of the firm to endowment\n", " V = (Vl+Vh)/2\n", " ww10 = w10 + 𝜃10*V\n", " ww20 = w20 + 𝜃20*V\n", "\n", " # Production\n", " fk = A*(k**𝛼)\n", "# Y = lambda 𝜖: np.exp(𝜖)*fk\n", "\n", " # Compute integration threshold\n", " epstar = np.log(b/fk)\n", "\n", "\n", " #**************************************************************\n", " # Compute the prices and allocations consistent with consumers'\n", " # Euler equations\n", " #**************************************************************\n", "\n", " # We impose the following:\n", " # Agent 1 buys equity\n", " # Agent 2 buys equity and all debt\n", " # Agents trade such that prices converge\n", "\n", " #========\n", " # Agent 1\n", " #========\n", " # Holdings\n", " 𝜉1a = 0\n", " 𝜉1b = b/2\n", " p = 0.3\n", "\n", " while abs(𝜉1b - 𝜉1a) > 0.001:\n", "\n", " 𝜉1 = (𝜉1a + 𝜉1b) / 2\n", " 𝜃1a = 0.3\n", " 𝜃1b = 1\n", "\n", " while abs(𝜃1b - 𝜃1a) > (0.001/b):\n", "\n", " 𝜃1 = (𝜃1a + 𝜃1b) / 2\n", "\n", " # qq1 is the equity price consistent with agent-1 Euler Equation\n", " ## Note: Price is in the date-0 budget constraint of the agent\n", "\n", " ## First, compute the constant term that is not influenced by q\n", " ## that is, 𝛽E[u'(c^{1}_{1})d^{e}(k,B)]\n", "# intqq1 = lambda 𝜖: (w11(𝜖) + 𝜃1*(Y(𝜖, fk) - b) + 𝜉1)**(-𝜓1)*(Y(𝜖, fk) - b)*g(𝜖)\n", "# const_qq1 = 𝛽 * quad(intqq1,epstar,bound)[0]\n", " const_qq1 = 𝛽 * quad(intqq1,epstar,bound, args=(fk, 𝜃1, 𝜓1, 𝜉1, b))[0]\n", "\n", " ## Second, iterate to get the equity price q\n", " qq1l = 0\n", " qq1h = ww10\n", " diff = 1\n", " while diff > 1e-7:\n", " qq1 = (qq1l+qq1h)/2\n", " rhs = const_qq1/((ww10-qq1*𝜃1-p*𝜉1)**(-𝜓1));\n", " if (rhs > qq1):\n", " qq1l = qq1\n", " else:\n", " qq1h = qq1\n", " diff = abs(qq1l-qq1h)\n", "\n", " # pp1 is the bond price consistent with agent-2 Euler Equation\n", " ## Note: Price is in the date-0 budget constraint of the agent\n", "\n", " ## First, compute the constant term that is not influenced by p\n", " ## that is, 𝛽E[u'(c^{1}_{1})d^{b}(k,B)]\n", "# intpp1a = lambda 𝜖: (Y(𝜖, fk)/b)*(w11(𝜖) + Y(𝜖, fk)/b*𝜉1)**(-𝜓1)*g(𝜖)\n", "# intpp1b = lambda 𝜖: (w11(𝜖) + 𝜃1*(Y(𝜖, fk)-b) + 𝜉1)**(-𝜓1)*g(𝜖)\n", "# const_pp1 = 𝛽 * (quad(intpp1a,-bound,epstar)[0] + quad(intpp1b,epstar,bound)[0])\n", " const_pp1 = 𝛽 * (quad(intpp1a,-bound,epstar, args=(fk, 𝜓1, 𝜉1, b))[0] \\\n", " + quad(intpp1b,epstar,bound, args=(fk, 𝜃1, 𝜓1, 𝜉1, b))[0])\n", "\n", " ## iterate to get the bond price p\n", " pp1l = 0\n", " pp1h = ww10/b\n", " diff = 1\n", " while diff > 1e-7:\n", " pp1 = (pp1l+pp1h)/2\n", " rhs = const_pp1/((ww10-qq1*𝜃1-pp1*𝜉1)**(-𝜓1))\n", " if (rhs > pp1):\n", " pp1l = pp1\n", " else:\n", " pp1h = pp1\n", " diff = abs(pp1l-pp1h)\n", "\n", " #========\n", " # Agent 2\n", " #========\n", " 𝜉2 = b - 𝜉1\n", " 𝜃2 = 1 - 𝜃1\n", "\n", " # pp2 is the bond price consistent with agent-2 Euler Equation\n", " ## Note: Price is in the date-0 budget constraint of the agent\n", "\n", " ## First, compute the constant term that is not influenced by p\n", " ## that is, 𝛽E[u'(c^{2}_{1})d^{b}(k,B)]\n", "# intpp2a = lambda 𝜖: (Y(𝜖, fk)/b)*(w21(𝜖) + Y(𝜖, fk)/b*𝜉2)**(-𝜓2)*g(𝜖)\n", "# intpp2b = lambda 𝜖: (w21(𝜖) + 𝜃2*(Y(𝜖, fk)-b) + 𝜉2)**(-𝜓2)*g(𝜖)\n", "# const_pp2 = 𝛽 * (quad(intpp2a,-bound,epstar)[0] + quad(intpp2b,epstar,bound)[0])\n", " const_pp2 = 𝛽 * (quad(intpp2a,-bound,epstar, args=(fk, 𝜓2, 𝜉2, b))[0] \\\n", " + quad(intpp2b,epstar,bound, args=(fk, 𝜃2, 𝜓2, 𝜉2, b))[0])\n", "\n", " ## iterate to get the bond price p\n", " pp2l = 0\n", " pp2h = ww20/b\n", " diff = 1\n", " while diff > 1e-7:\n", " pp2 = (pp2l+pp2h)/2\n", " rhs = const_pp2/((ww20-qq1*𝜃2-pp2*𝜉2)**(-𝜓2))\n", " if (rhs > pp2):\n", " pp2l = pp2\n", " else:\n", " pp2h = pp2\n", " diff = abs(pp2l-pp2h)\n", "\n", " # p be the maximum valuation for the bond among agents\n", " ## This will be the equity price based on Makowski's criterion\n", " p = max(pp1,pp2)\n", "\n", "\n", " # qq2 is the equity price consistent with agent-2 Euler Equation\n", "# intqq2 = lambda 𝜖: (w21(𝜖) + 𝜃2*(Y(𝜖, fk)-b) + b)**(-𝜓2)*(Y(𝜖, fk) - b)*g(𝜖)\n", "# const_qq2 = 𝛽 * quad(intqq2,epstar,bound)[0]\n", " const_qq2 = 𝛽 * quad(intqq2,epstar,bound, args=(fk, 𝜃2, 𝜓2, b))[0]\n", " qq2l = 0\n", " qq2h = ww20\n", " diff = 1\n", " while diff > 1e-7:\n", " qq2 = (qq2l+qq2h)/2\n", " rhs = const_qq2/((ww20-qq2*𝜃2-p*𝜉2)**(-𝜓2));\n", " if (rhs > qq2):\n", " qq2l = qq2\n", " else:\n", " qq2h = qq2\n", " diff = abs(qq2l-qq2h)\n", "\n", " # q be the maximum valuation for the equity among agents\n", " ## This will be the equity price based on Makowski's criterion\n", " q = max(qq1,qq2)\n", "\n", " #================\n", " # Update holdings\n", " #================\n", " if qq1 > qq2:\n", " 𝜃1a = 𝜃1\n", " else:\n", " 𝜃1b = 𝜃1\n", "\n", " #print(p,q,𝜉1,𝜃1)\n", "\n", " if pp1 > pp2:\n", " 𝜉1a = 𝜉1\n", " else:\n", " 𝜉1b = 𝜉1\n", "\n", "\n", " #================\n", " # Get consumption\n", " #================\n", " c10 = ww10 - q*𝜃1 - p*𝜉1\n", " c11 = lambda 𝜖: w11(𝜖) + 𝜃1*max(Y(𝜖, fk)-b,0) + 𝜉1*min(Y(𝜖, fk)/b,1)\n", " c20 = ww20 - q*(1-𝜃1) - p*(b-𝜉1)\n", " c21 = lambda 𝜖: w21(𝜖) + (1-𝜃1)*max(Y(𝜖, fk)-b,0) + (b-𝜉1)*min(Y(𝜖, fk)/b,1)\n", "\n", " # Compute the value of the firm\n", " value_x = -k + q + p*b\n", " if (value_x > V):\n", " Vl = V\n", " else:\n", " Vh = V\n", " V_crit = abs(value_x-V)\n", "\n", " return V,k,b,p,q,c10,c11,c20,c21,𝜉1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here is our strategy for checking *stability* of an equilibrium.\n", "\n", "We use `off_eq_check` to obtain consumption plans for both agents\n", "at the conjectured big $K$ and big $B$.\n", "\n", "Then we input consumption plans into the function `eq_valuation`\n", "from the BCG model class and plot the agents’ valuations associated\n", "with different choices of $k$ and $b$.\n", "\n", "Our hunch is that $(k^*,b^{**})$ is **not** at the top of the\n", "firm valuation 3D surface so that the firm is **not** maximizing its\n", "value if it chooses $k = K = k^*$ and $b = B = b^{**}$.\n", "\n", "That indicates that $(k^*,b^{**})$ is not an equilibrium capital\n", "structure for the firm.\n", "\n", "We first check the case in which $b^{**} = b^* - e$ where\n", "$e = 0.1$:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum valuation of the firm value in the (k,b) grid: 0.1191\n", "Equilibrium firm value: 0.1118\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAK8CAYAAAANumxDAAAgAElEQVR4XuydBbgj1fnGv/j1uy64uxbf4sWLFIoWp0WKu3axZfECi1PcWrxYaYEWFvjjtLi7LOt7XXNz83/eMznJZDJJJrmTTG7ue/rQ3U1mjvzOSfLOd77zfb54PB4XFhIgARIgARIgARIgARKoUgI+Ct4qnVkOiwRIgARIgARIgARIQBGg4OVCIAESIAESIAESIAESqGoCFLxVPb0cHAmQAAmQAAmQAAmQAAUv1wAJkAAJkAAJkAAJkEBVE6Dgrerp5eBIgARIgARIgARIgAQoeLkGSIAESIAESIAESIAEqpoABW9VTy8HRwIkQAIkQAIkQAIkQMHLNUACJEACJEACJEACJFDVBCh4q3p6OTgSIAESIAESIAESIAEKXq4BEiABEiABEiABEiCBqiZAwVvV08vBkQAJkAAJkAAJkAAJUPByDZAACZAACZAACZAACVQ1AQreqp5eDo4ESIAESIAESIAESICCl2uABEiABEiABEiABEigqglQ8Fb19HJwJEACJEACJEACJEACFLxcAyRAAiRAAiRAAiRAAlVNgIK3qqeXgyMBEiABEiABEiABEqDg5RogARIgARIgARIgARKoagIUvFU9vRwcCZAACZAACZAACZAABS/XAAmQAAmQAAmQAAmQQFUToOCt6unl4EiABEiABEiABEiABCh4uQZIgARIgARIgARIgASqmgAFb1VPLwdHAiRAAiRAAiRAAiRAwcs1QAIkQAIkQAIkQAIkUNUEKHireno5OBIgARIgARIgARIgAQpergESIAESIAESIAESIIGqJkDBW9XTy8GRAAmQAAmQAAmQAAlQ8HINkAAJkAAJkAAJkAAJVDUBCt6qnl4OjgRIgARIgARIgARIgIKXa4AESIAESIAESIAESKCqCVDwWqa3rz8q0eiA1NSEJRgIqHeffv51aWnrkAP33E79Ox6PS1d3rwQCAamtCavX3n7vM/nws29k9x03k9HNjUUvGrv2i67M5RsHYjH5zyv/k6+//1kGY4Oy/jory1qrLieDg3FpqK91uTVvq8NY73n4WVl68Unyq81+4UlnKmEtfPvDbHntnY9l/sJWNce/230bqauNeMLjqedek/bObtl/j208ab/QRu2+J7LVAc4vvvaubLrhWrLScksU2lTW6+0+sxv/YrW89b/0+vvy9fezZJ3VV5BfrLmSuv7ZmW/Jz3MWyiH77CA+ny9vHdYLnH5H/jBrnvz7lXekqaFe9tx5i4Lb4Q0kQAIkYEeg4gTvw0/PlPOvvCvrbE0cP1peePjqks3m1MvvkMeeeVluvuwU2WyjNVU7Bxw7Xd796Ev5eKbRr59mz5ft9ztN1lh5WXnwlvPUa1f/5WG57a//kMfvvEhWXLb4Hyy79ks22AIqxo/34addKa+/83Hyrn1221pmvvauzJ3fIm89c7PU19UUUGNlX9rT2y/r73CEErvXTju+ZJ39YdZcefipl2SLTdaW9ddeOa0dr9fCm+9+KoeddFlan/DZw2ewVCUXj32OvEC++WG2vP3Pm0vVvKv12n1PZGvg+ZffkRPPvV4uPutw2W37X7rSj2yf2XNPOihn/bPnLpRt9jlFCe+7ZpwlzY316vojTrtSXn37I/nwhTvF7y9c8Dr9jozFBuXsS29VhoabLztZNttoLVd4sBISIIGRTaDiBO9DT74oF1x1t/qyXWLy+IzZGTO6SS449dCSzdqt9z8tsG6cdvS+svZqy9sKXli7TjrvBll2qcky7fTDXBW8du2XbLAFVPy/D7+QA4+7WD0EnHfKoTJh7Cjp7OqRqVfcLotaOuTWK09LWrsLqLZiLy2X4H3r3c/k0JMuldOP2U8O3mv7NB5erwWIXYheCP7NN1lbunt6paGuVgIBf8nmLReP4SZ47b4nyil4s31mm5sMAZutnHz+DfLszLfl+QeulMUmjUteVi7Biwaxy7bboecIxO8Td02Xmoixk8ZCAiRAAsUSqFjB66alo1g4+j6rhdeuPqfWi6H2xav7H/3Hy3LuFXfIpWcfIbtsN8WrbpSt3UoQvGUbbJaGNtjxKGlsqC3pjoq16WoSvIXMXyksvMV8ZmHBhbD940G7ybGH7Z42hHIKXjQMw8PRZ10txx22hxx10K6F4OS1JEACJJBBYNgL3g8//Uauu+MxtdVWV1ujtob9Pp8EgwG1PYgC37E7HvinHLbvjrLBOqskIWDr7sKr75Httlhf+d6iPPncq/LPF96Ss4/fX5ZcbIJ6zSp4YX04fup1ygKsv4i14IUrBPzPXnnzA+no7JFfbrCGnHPCATJ+7Khku5fd8DflBnD51CMFfonoX2d3j0w98SB5/b8fp7UP3+GzL7lNbev9bvdfpU3gqRfeJOPGNMuZx/5Ovf7x59/J9Xf+XX77683l+5/mytPPvyZffPOTbL7x2nLqUXvLYpPGy21/fVqef+kd5Ye71mrLC7Y3V11x6ZwfDWwtgjG2aOHGASs7yrXTjpNrbn1EZs1ZINdceKx6rbevX1m/f7HmirL3rlvJo/94ST767FtpbKhTlnk9dnC7/s7H5PV3PpHxY5tlt+03lSMP3EW5jvzlvqflnfc/l5pISPbYaXM59rA9JBQ0/KntytffzZIrb35ItXn4/junXQKr5CkX3CRLLzFRcQLPS669Xz776geZPW+RslpiNwG+gnvvunWyHTvBW8g6+uCTr+Wme56Ub77/WXHD2lxzlWXlwL22k62mrKv6iGumz7hPPvr8W7WbsdzSi6nX9Tjs1iLeh9vPY8+8ou7HuOD3ecIffpvmUqI5H3Pob+SGOx9X6xFlh602lNOP3lfNR7YCv8/jzrlWXn7jfdVv7Wqx09YbJR92nPTh7/98RZ576R2ZeuKBaj3CRxVr5eC9dpAN1019DnU/8vHQFt4Hbj7X0Zhmvvae8sP+8LNv1VqCP+qpf9xXMXNSzN8tuH77LTdQfv3m7xb9mdt3t61lycUnqM/cl9/8JJusv4bstfMWGd8TqCc6EJNb73tKnv7364rL8ksvJotNGiuvvPmhY5cGWG9vvudJefejr9TY1ltrZTn5yL1kqcWNseX6zIZCwazD3/Pw8+TTL7+X1566IenKoC+2E7xtHV0y/Zp7paOrR63BVVZYKmvdhXxH6kp2P+xP6jvs9advlKYca9bJfPIaEiCBkU1gWAveN/77ifz+lMvVDELINjXWKQEFETNmVKO88vh16r1n/vOmnDbtJrli6h9lp19tlJxxCKVdDzlHfr/fTnLykXur16+/4+9y0z1PyCO3XpAUglbBayeG9Je5rhwicu78RbKotUOJmafvuUT0Dw1+uCFyIB7xpy645h//fiOtfYiybfY+WYnH804+OG21wgKHH2/0FQWi5qgzrkpeo3/Y8aMKHhA5+Dtex1YhhBjE3t/vuCjnpwDi5trbHk2OBfUE/H657/pz5NCTLkvzb4abw0a//qPy88SDAcaPoudDj103aGaw0bqrqi10FPPr100/Qbb+pSES7QoE2la/PVG1Bf9OiDRd8EBx5sV/kVOO2lsO23cngY/ojvufofqHOQoFg+phCWsG7+M6FLs5LmQdQez96bLbFV+4vqB+CBqUGy4+Ubacso7894Mv5OxLblXzAD4Tx49R709Zf3W1Hu3WIoQsRBz6v+G6q6r51ML30dumJd1K7DjD/xX9wEOEdsWx4wlBdsAxFyXXpn4g2nuXLdU6dNoH/ZnAgxX6qAvaRh+sJR+PQsZ0xwPPyJ9vfkg1AaGKg1AQcigvPnKNTBiXegC1Y4C5OuqMP6u3sC7hn/7G/z7N+G7Rnzkw0vXjHuyCnHfyIRl+4PCrPfL0P6s1hzkHmwUL25Ksnexs/fuV/8oJU43vtu233FD6+vsF4h7lsdunycrLL6keirJ9ZrMJ3nkLWmWrPU/M6rduFbzdPX3KGoyH1DOO2U8OsrjkWLkW8h2p773rwX/JFTc9IPm+A7J9N/B1EiABEtAEKlbwooNm4aI7rAUeRM6uB5+tfvAhvNZdY0V1CX6sdz7wTENgeCB4f7PDpnLqH/dRkRrQl5PPu15eePVdueycI2XnbTdRfdQ/3LDsnHjEXsryB8voxHGjlXXTLLiLEbwQWdPP/IOsttIyqr3Tp90s//jPG0p8XXL2EcoKgx/eUy64UfnqzXz0mjQLtN3H4+6Hn5XLb/ib3Hn1mWnWOevDgBa8qAMHvmDNW27pydLR2a2sT3rsxxy6u3rQiIRDoh88cM/xv/+tHLrPDhIOh+Tzr3+UPX4/VVm2zznhwJyfWligYfGyulxoP1Q9RgjZn+fMl+WXWTxZH07+//qAM6S3L5o8EDVUwQvxgIPsZsv+J198J3sdcb4SKVedf7RqP9cWvlXwfvXtLOXXiIeB2686PRkZQwsJiGQwNa+xow/eTQ7b79dKCOOBAIct8dn44D935PXFXX3LQ9QJ/XuvOzvJqpA+6H7hcwyf+E3WW00i4bCa82x+pPlcGvCAmG9M+rAYROjtfz492ZZ+CIEwg0DLVvr7o7LLwWerB5G/3jg16ctv991ifsjE7gIs6HgYQYSN5saGDMGLzxt8ZLHzM2Pa8ckHFP1glk/wot4d9z9d7RDhARkPUyi6H6j3L1ecql7L9pnNNu5/vvCmYNcom9uSWfBGBwbkuHNmKOF+0hF7yR9+9+u8v6p6PTj5jtSVIXrFzgedpcR0rjnL2zgvIAESGPEEKlbwwipqFgt6prCFj+1zLYbMkRL0NTsdcIYSWF4IXmuUhvc/+Vp+d/S0NAutFn3vPX9b0uqr+24VOcUIXrgpIIKCLvrH1GpZ0wLgqvOPUVawXKVQwQs3ipsuPSmjymwHj7be6yRlEdZzpm/c7DfHKcv0M/elRwuwVqwtt7D033XNmeptLXzsIi1A0H75zY8yd0GLtLR2yH2PPq/cPPRW7lAFr+5fa1unfPntTzJ/YZu0tnfK9Bn3plnVCxG8OMQGF5IZ046TbTZbL4kAIfI23OkoZbHW1v5snPWBJCdWTjvBW0gftMB54KZzZc1Vl3P0ZZtP8NpFabCO6a6H/iVX3PiAesjcfqsNk+12d/fKlF2PyRDx1o7BTWHvI8+33VWxfrdooXnaH/dV4brMxW4N6b5ed9HxsvWmqXB3Tn14YU3FQyZCJGpXJt0mDpXC1UFv/xcqePX1ZgOCeTxa8L773K1y6rSbVIhC+PnC39dJyXbOwe47UteHh491tztcfT/he4qFBEiABIolULGCN5+lQ1tK7A5XVJLghY/blF2OUdEN4N+Lkuu0eSkELyzMsMacf+ohstfOWybXiv6RveiM3yd9mLMtpEIFr9mKaa4z29jhq/fT7AUZIaesc5lroWtr7r/+ernyv77l3qfk2tsfTQtthJ2Bm+9+UlnR7cqrT1wvo5obhuzSgHm/4M93KQu6tZjdSAoRvDpMmdmyp+sGJ+x26NB52TgjAgoioVhP4NuxsBO8hfShmIOcxQhe65j0v7OtlXyhDbXrivXzgvqyCV7rQyautRO8ep6sPrJOBW+2h1e0d/G198v9jz0vj952odrFKVTw4mEKDzT/fvDPMnni2Ax8WvDCXQP92H+PbdVZB6cl23qw+44014mH3mWWnJy20+C0TV5HAiRAAprAsBW8iJWLH19YOXRCCPOPf6VYeLFdvsnOR6uDY9riWW7BC/++Y86+JkPwvvB//5Pj/nStVLLghdsKDppZLb92H2G9JQur05EH7Kq2frF9/+Kj1ySTiEAAQwhDdB6+/y6ywrKLqxBrF197n3L7cEvw7nf0NOW3CusyHjLgigM3Fwge7FJov+lCBK92TXnugStlcVO4KLDQh3s+evFOlRQg2xqbdvU98sATLxQteAvpQ7kEr3VMuo8nHr6nYm0tSJyBB7JsRe982Flthyp44XePQ2bW9exU8Oo45XZuB7Bqw7qtLeqFCl49X/95+CqZlPAnNzPSgle/Bpese68/J+NwWzau2daD3XckBS9FCgmQgNsEhq3g1eFzdtx6I7ny3D+mcbH+KGkhZN3SL8WhNatLg3a9MPugFSJ44auH7X5YVfAjZy7ZDq1ZrU0jRfDCD3qz3xyvQmlhO/uQEy8V+ArD51MXCGiz64J+HYfHnnj21ZyC1+k6gq8srFJ27jZ43U7w6kN15vm1Wvv1v+GyYY42ggOIG+98tIp2oV0/SiV4C+nDUASvHQ+nY7rx7ifkhjv/LrddeZpssv7qBX9nvvG/T+T3J19ue3hrqIJXuzPBLQB+6ro4FbxI/PKHU6+wdSVA4grUo/3VCxW82hXkbzdOVYfprEULXviff/DJN0pcw8f71itPdRQnN9t6sPuO1G3Db3qdbX5Pl4aCVzFvIAESsBIYtoJXC0GcdMaPvA6zhJPSBx1/SZoVBSGuDj7hkjSfPKTDxfbfpdf/1dUoDVbBq7eAzX6XhQhe+LWus+0fVKSHf95/eTLDkfblM/ttan/CkSp4sbjNEQSwRqxb93hIgNXXHOYIW6pHnHqlOimfy8LrdB3pBykcpIQ/pC4Q2hDcZpcG/WOPsFZTLRmwrIJXz6/1IQ8pX08+/0ZlScY2PIpTcZjrK9HOpaGQPhQjeHPxcDomLQoh2u6+5sw0YYlDlQjlpbMo2o1fb7HjsN0DN01VBxzxOfz7v/5PuamYI8Bk+8yhXjuXBmSRhJXWbKHFA8uM2x6R2//2TN6wZAtb2mXz3Y9XB+P+ce9lyUNvP89ZINvue6r6noBLD6z8hQpe7coBAwLWWDbBi0xrKGdOv0Xtimy7+fpy5Xl/TO6i4D1EEoGLzS83XDMZYSXberD7jtRtI7oGdmrsfJb5c04CJEAChRCoWMELIbfMkpMyxjK6uSF5Yv+cS2+Tx//1f8lYpD/MmpMM/WT+UcKW2a/2OlkJHRzmGtPcKDNffy8ZRsjNsGQQOYjrix/Ll998Xx3sgKXvbzedmxSrhQheAIClEjFg4RaBWKIffPp1MgwRBW/6EtGCCa+a/ab1VRCGEIgQQ1tNWUeQDevxf72q1gZKLsHrdB1BHMEqD0svxAAObH3xzY8qNiqKWfCi3S32OFG1D390hL+C5W//PbbJCEuGyBo4mISHHQiSLTdZR36cPU9dh2IW907FYaGCt5A+FCN4c/EoZEzHT71WffbgSoIYy8gQ98kX3yuBtsn6q+VNFw3xedUtRlgziEs8POkyFMGLmLJwP0GBDyzcK156/T0VaxYl39kFXKMjkuB7ZZ/dtlJi/Jb7nlJ9NB9ALVTw6gOydrtmaNcalgwHyhAGEaEE8b2qUxbDT37tX/1ejeeBm89TUWhQ9Hpw8h2pWcMoAd9kHFTGZ4mFBEiABIolUHmC96mZyoqSrZgPnCAO5PlX3ql+xFAgMv948K7y4BMvpoUlU2Igkate1wtLyAG/3VZZeBFSB6F1ULAVii1RHc8Sr2WLw4svYJ1wQR/4gF8bLHm6QHRdfNYRyiqkSy7Ba9c+LIZHn3WNijqgx4ktX8QZXW6pyfLgLeep17WbB+L1Il6qLjpj0YWnHaaSUuiiD7M58eGFxQbW07tnnJVMRGDHRkcMKPTQGgLewyKEOLrmAnGwYFGbIx9eM19Ya63RDPA+woXhAJ85/vGvf7WxagM/3K89eYMKY6Wtc+Y5LmQd/e/DL+WEqdcm4xDj3mMO+Y3c+eC/ZInJ49JiH2N+cFgIQhYF/bl86lG2a7GtvUsuuCr9MBxEHa6HAMq3xhAl4q9//4/8+6GrZPIEI+5vtgILrznqhb7OaR/0Z+KJO6crX2mnJRuPbJ8buzHBvQUxXCFc9cMM2gcrJD3Zdbtf5u0OHlD++eKbSkii/4hDfNbFtyqRqn2ws33mUHm2NaQtqboD+M6YssEacu8jz8klZx+et28QlAhfiO8KXfDdB8FpzoKY7TOba+Da5eeNp2/MSE6CuMSITwwLr9/vU9XgrMRBx1+sBLsOTwbfdfiw46ES7hG6FPIdqe/JlQgj7wTyAhIgARIwEag4wVvM7OCHpaW1XSZNGKu+iLOd7IdA/vHneSpjj90p5GLatrsHogqWQ7RhFrpDqR8/ctjew88MMjoh4xNLcQTgzoJ1ACG02MRxWWPCZqvd6TpCzFSIeBREjUAs3FwF6wYWVITj04Ii2/V4sEAotrGjm/MmUSiOUv67St2HQnhk6y144mEGIh0Py7kyzOUbsXZ1cCNEFqyj3/00VyXLsTsglq8veB+WXayBYDCoXBkCAb+T23Jeo100EFMYh/6KKTp0nTXRj7kuJ9+RyMx37NkzMvzwi+kT7yEBEiCBqhC81mksJJQVlwAJkAAJWAlA+EFMrrHKcjJ+TLPMX9SmXAngH3zttOPVgbZqLdrtB1ZsuN8UWhAeELGn//PQVWn+04XUA1/rXQ85W2VCfOKu6Y4OxRVSP68lARIYeQQoeEfenHPEJEACeQjoiAXWy0ZCxi+dYhgW8b/deK6yjDst2o2jkIQU1rph/T767GvUwwUy5W283mpOm+d1JEACJJCVQFUKXvjrDgzEbE8acy2QAAmQQD4CcF9476Ov5Oe5C6S3t18mTRijkjnoVL757h/u7yNj23c/zpEVl13CcZY8PWYc7oSfc7FuVzir8Na7n0pDfZ06AMxCAiRAAm4QqErB6wYY1kECJEACJEACJEACJFAdBCh4q2MeOQoSIAESIAESIAESIIEsBCh4uTRIgARIgARIgARIgASqmgAFb1VPLwdHAiRAAiRAAiRAAiRAwcs1QAIkQAIkQAIkQAIkUNUEKHireno5OBIgARIgARIgARIgAQpergESIAESIAESIAESIIGqJkDBW9XTy8GRAAmQAAmQAAmQAAlQ8HINkAAJkAAJkAAJkAAJVDUBCt6qnl4OjgRIgARIgARIgARIgIKXa4AESIAESIAESIAESKCqCVDwVvX0cnAkQAIkQAIkQAIkQAIUvFwDJEACJEACJEACJEACVU2Agreqp5eDIwESIAESIAESIAESoODlGiABEiABEiABEiABEqhqAhS8VT29HBwJkAAJkAAJkAAJkAAFL9cACZAACZAACZAACZBAVROg4K3q6eXgSIAESIAESIAESIAEKHi5BkiABEiABEiABEiABKqaAAVvVU8vB0cCJEACJEACJEACJEDByzVAAiRAAiRAAiRAAiRQ1QQoeKt6ejk4EiABEiABEiABEiABCl6uARIgARIgARIgARIggaomQMFb1dPLwZEACZAACZAACZAACVDwcg2QAAmQAAmQAAmQAAlUNQEK3qqeXg6OBEiABEiABEiABEiAgpdrgARIgARIgARIgARIoKoJUPBW9fRycCRAAiRAAiRAAiRAAhS8XAMkQAIkQAIkQAIkQAJVTYCCt6qnl4MjARIgARIgARIgARKg4OUaIAESIAESIAESIAESqGoCFLxVPb0cHAmQAAmQAAmQAAmQAAUv1wAJkAAJkAAJkAAJkEBVE6Dgrerp5eBIgARIgARIgARIgAQoeLkGSIAESIAESIAESIAEqpoABW9VTy8HRwIkQAIkQAIkQAIkQMHLNUACJEACJEACJEACJFDVBCh4q3p6OTgSIAESIAESIAESIAEKXq4BEiABEiABEiABEiCBqiZAwVvV08vBkQAJkAAJkAAJkAAJUPByDZAACZAACZAACZAACVQ1AQreqp5eDo4ESIAESIAESIAESICCl2uABEiABEiABEiABEigqglQ8Fb19HJwJEACJEACJEACJEACFLxcAyRAAiRAAiRAAiRAAlVNgIK3qqeXgyMBEiABEiABEiABEqDg5RogARIgARIgARIgARKoagIUvFU9vRwcCZAACZAACZAACZAABS/XAAmQAAmQAAmQAAmQQFUToOCt6unl4EiABEiABEiABEiABCh4uQZIgARIgARIgARIgASqmgAFb1VPLwdHAiRAAiRAAiRQLQR82y7hyVDiz//kSbtuNkrB6yZN1kUCJEACJEACJEACJSJAwVs8WAre4tnxThIgARIgARIgARIoGwHfdh5ZeJ+jhbdsk8yGSIAESIAESIAESGAkE/Bt75HgfZaCdySvO46dBEiABEiABEiABMpGwLf9kmVry9xQ/NkfPWnXzUbp0uAmTdZFAiRAAiRAAiRAAiUi4NvBI8H7LwreEk0pqyUBEiABEiABEiABEjAT8O3okeD9JwUvVyIJkAAJkAAJkAAJkEAZCFDwFg+ZLg3Fs+OdJEACJEACJEACJFA2Ar6dlipbW+aG4s/84Em7bjZKwesmTdZFAiRAAiRAAiRAAiUiQMFbPFgK3uLZ8U4SIAESIAESIAESKBsB3689svD+gxbesk0yGyIBEiABEiABEiCBkUzAt7NHgvdpCt6RvO44dhIgARIgARIgARIoGwHfzkuXrS1zQ/Gnv/ekXTcbpUuDmzRZFwmQAAmQAAmQAAmUiIBvF48E71MUvCWaUlZLAiRAAiRAAiRAAiRgJuDb1SPB+yQFL1ciCZAACZAACZAACZBAGQj4dl2mDK1kNhF/8jtP2nWzUbo0uEmTdZEACZAACZAACZBAiQj4dvNI8D5BwVuiKWW1JEACJEACJEACJEACZgIUvMWvB1p4i2fHO0mABEiABEiABEigbAR8v/HIwvs4Lbxlm2Q2RAIkQAIkQAIkQAIjmYBv92U9GX7879960q6bjdLC6yZN1kUCJEACJEACJEACJSJAwVs8WAre4tnxThIgARIgARIgARIoGwHfHh5ZeB+jhbdsk8yGSIAESIAESIAESGAkE/D91iPB+ygF70hedxw7CZAACZAACZAACZSNgO+3y5WtLXND8Ue/8aRdNxulS4ObNFkXCZAACZAACZAACZSIgG9PjwTvIxS8JZpSVksCJEACJEACJEACJGAmQMFb/Hqghbd4dryTBEiABEiABEiABMpGwLeXRxbeh2nhLdsksyESIAESIAESIAESGMkEfHsv78nw4w997bFyKFwAACAASURBVEm7bjZKC6+bNFkXCZAACZAACZAACZSIAAVv8WApeItnxztJgARIgARIgARIoGwEfPt4ZOF9kBbesk0yGyIBEiABEiABEiCBkUzAt69HgvcBCt6RvO44dhIgARIgARIgARIoGwHfviuUrS1zQ/EHvvKkXTcbpUuDmzRZFwmQAAmQAAmQAAmUiIBvP48E798oeEs0payWBEiABEiABEiABEjATICCt/j1QAtv8ex4JwmQAAmQAAmQAAmUjYDvdx5ZeP9KC2/ZJpkNkQAJkAAJkAAJkMBIJuDbf0VPhh+//0tP2nWzUVp43aTJukiABEiABEiABEigRAQoeIsHS8FbPDveSQIkQAIkQAIkQAJlI+A7wCML73208JZtktkQCZAACZAACZAACYxkAr4DPRK891LwjuR1x7GTAAmQAAmQAAmQQNkI+A5cqWxtmRuK3/uFJ+262ShdGtykybpIgARIgARIgARIoEQEfAd5JHjvoeAt0ZSyWhIgARIgARIgARIgATMBCt7i1wMtvMWz450kQAIkQAIkQAIkUDYCvoNXLltb5obid3/uSbtuNkrB6yZN1kUCJEACJEACJEACJSLgO8QjwXsXBW+JppTVkgAJkAAJkAAJkAAJmAlQ8Ba/HmjhLZ4d7yQBEiABEiABEiCBshHwHeqRhfdOWnjLNslsiARIgARIgARIgARGMgHfYat4Mvz4HZ950q6bjdLC6yZN1kUCJEACJEACJEACJSJAwVs8WAre4tnxThIgARIgARIgARIoGwHf7z2y8N5OC2/ZJpkNkQAJkAAJkAAJkMBIJkDBW/zs08JbPDveSQIkQAIkQAIkQAJlI+D7w6pla8vcUPy2Tz1p181GKXjdpMm6SIAESIAESIAESKBEBHyHeyR4b6XgLdGUsloSIAESIAESIAESIAEzAQre4tcDLbzFs+OdJEACJEACJEACJFA2Ar4jPLLw/oUW3rJNMhsiARIgARIgARIggZFMwHfkap4MP37LJ56062ajtPC6SZN1kQAJkAAJkAAJkECJCFDwFg+Wgrd4dryTBEiABEiABEiABMpGwHeURxbem+0tvAsWtUl9Xa3U1oQdMRgcjEs8HpdAwG97/UAsJsFAwFFdhV5EwVsoMV5PAiRAAiRAAiRAAh4QqBTB+8OsuXLUGVfJ9z/NVRT22GlzOffkgyUUzC5WIXTP//Nd6voLTj00g94Ps+bJjvufLs8/cKUsNmmc63QpeF1HygpJgARIgARIgARIwH0Cvj+u7n6lDmqM3/Rx2lVHnHalNNTXyvQzD5c58xbK3kdeIOeedJDsst0U29qenfmWXHTNvbKotUP23HmLDMG739HT5INPvlb3UvA6mBBeQgIkQAIkQAIkQALVSsB3tEeC98aU4G3r6JIpuxwj911/jqy7xooK9fQZ98qceYvkuukn2KLv7umT9s4uufovD0tNJJwheOctaFXCGcKXgrdaVy/HRQIkQAIkQAIkQAIOCFSC4P36u1my6yHnyMxHr5HxY0epXt/7yHPyxLOvyiO3XpBzFBdefY/EYjFbl4a581tk671OouB1sA54CQmQAAmQAAmQAAlULQHfMR5ZeG9IWXjf/ehLOeDY6fLaUzdIc2O9Yv3QUzPl5nuekBcevpqCt2pXHwdGAiRAAiRAAiRAAmUg4Dt2jTK0ktlE/PqPki9qC+9Lj82QcWOaaeH1ZEbYKAmQAAmQAAmQAAlUKYFKELx2PrzTrr5H5i1oyerDq6eDLg1VujA5LBIgARIgARIgARJwi4DvOI8svNelLLwYyx9OvUKaGurkojP+ILPnLZR9j7owGaWhvbNbDj7+Yjl8/11kp19tpIaO+LoDAzGZPuM+GRwclKknHSShYDAZj7evPypz5y+SHfc/Q5665xJZYtI4CYdDbmFT9TAsmas4WRkJkAAJkAAJkAAJlIZApQhexN9FaLKfZs9XA919x83kvFMOUXF429q7ZMqux8ifTjxQ9vvNr9T7Dz35olxw1d1pUKadfpiK34uywY5HSXdPb/L9MaMa5ZXHr3MVIgWvqzhZGQmQAAmQAAmQAAmUhoDv+DVLU3GeWuPXfmh7BSIrIB5vfV2NJ/0qpFEK3kJo8VoSIAESIAESIAES8IiA3yPBO5hF8HqEoahmKXiLwsabSIAESIAESIAESKC8BPwnrFXeBhOtDc74wJN23WyUgtdNmqyLBEiABEiABEiABEpEIOCR4I1R8JZoRlktCZAACZAACZAACZBAGoHAid5YeGPX0MLLpUgCJEACJEACJEACJFAGAsET1y5DK5lNDFzzviftutkoXRrcpMm6SIAESIAESIAESKBEBIIneSR4r6bgLdGUsloSIAESIAESIAESIAEzgdBJ63gCJHr1e56062ajtPC6SZN1kQAJkAAJkAAJkECJCIRO9kjwXkXBW6IpZbUkQAIkQAIkQAIkQAJmAmGPBG8/BS8XIgmQAAmQAAmQAAmQQDkIhE9etxzNZLTRf9W7nrTrZqN0aXCTJusiARIgARIgARIggRIRiJzijeDt+zMFb4mmlNWSAAmQAAmQAAmQAAmYCVDwFr8eaOEtnh3vJAESIAESIAESIIGyEag59Rdla8vcUO+V//OkXTcbpeB1kybrIgESIAESIAESIIESEaDgLR4sBW/x7HgnCZBAlREYiA2K+HwS9PuqbGQcDgmQQDUQqD1tPU+G0XPFfz1p181GKXjdpMm6SIAEhh2BeFykfyAmPX0x6ekflHg8LnWRoNRGAhIK+sTvo/gddpPKDpNAlRKo80jwdlPwVumK4rBIgASqnsBgPK7EbGtnv/RFByU2GE8bc8Dvk0jIL5FwQGpCARh+WUiABEjAUwJ1p3tj4e2+nBZeTyeejZMACZBAMQT6ojHp6h2QprqQzGvty1mF3++TcNAvdZGA1IQDxTTHe0iABEjAFQL1p6/vSj2FVtJ1+TuF3lJx19OloeKmhB0iARIoFYGBWFxaOvolCl9dERnfHJH5bbkFr7kvQb9fRjUEJRyi8C3VHLFeEiCB7ATqz/BI8F5Gwct1SQIkQAIVSwD+uIaP7qB09w0o1wX8W5dCBa++LxzyS31NUCJBv8ACzEICJEAC5SDQ4JHg7aTgLcf0sg0SIAESKJzA4GBcidyBmEhvf0zgs2stxQpeXQ9cHODniwNuPNxW+BzxDhIggcIINJy5QWE3uHR156Vvu1STd9XQpcE79myZBEigBARg1e1GxIW+mERjsPBmCt2hWnjN3cZhtmDA8PFFdAcebivBpLJKEiABRaDRI8HbQcHLFUgCJEAClUOgt39QFnU498kdqoXXOnKI3TFNEeXqwEICJEACbhNoPHNDt6t0VF/HpW85uq6SL6KFt5Jnh30jARLISQDW28FBw0e3s3dAogPGYTSnxW3Bq9sNBnzSWBtS0R0CAfr4Op0PXkcCJJCbQNNZ3gje9ksoeLk2SYAESMATAoib29M3IP3RuPRGY0X1oVSCV3cmEgpIOOhTrg4UvkVNEW8iARIwEaDgLX450MJbPDveSQIk4AEBWHXhn9vVFxOEGcvlo5uve6UWvGaLb204IPW1QR5uyzcpfJ8ESCArgeazN/KETtvFb3rSrpuNUvC6SZN1kQAJlIwAoix09w5Ie/eAa22US/CaO9xUG1LCl4fbXJtGVkQCI4YABW/xU03BWzw73kkCJFBiAgiwEIvHpa/fyIwGi66bxQvBi/4jdi+iOtRGghL0+yh+3ZxU1kUCVUxg1DkbezK61ulveNKum41S8LpJk3WRAAm4QgBuChC3Pf0x6Y8OqkNppSheCV49loDfJ3B1QDzfUNBP4VuKSWadJFBFBCh4i59MCt7i2fFOEiCBEhDAYbTOnqggxBj+XsriteDVY0McX0R0qK8xhC8LCZAACdgRGP0nbyy8LRfRwssVSQIkQAKuEIgNDkpnz4B09RYXcaGYTlSK4DX3HSmLG+tCwozFxcwo7yGB6iYw5k+beDLARRe97km7bjZKC6+bNFkXCZBAQQTgozswOCh9/YPKR7fUFl1r5ypR8KKPcHWoqwmqBBahIHx8Gcu3oIXFi0mgSgmMmeqR4J1GwVulS4rDIgESKCUB+Oj2wTc3Oqj8dMstdPXYKlXw6v75fT6pCfslHPIrX18K31KuStZNApVPYKxHgnchBW/lLw72kARIoHIIQOhGY4aPbnQgLgg1BiuvV6XSBW9S+Pp9orO3RUL08fVqvbBdEvCawNipUzzpwsJpr3nSrpuN0qXBTZqsiwRIICsBpP1t6ex3PbTYUJAPF8FrHiPcHcY0hnm4bSgTz3tJYJgSGHeuN4J3wYUUvMN0ybDbJEAC5SAwOBhXIcWQGQ2uC5VWhqPg1QxrEcc3jNTFfhXXl4UESKD6CYw795eeDHLBha960q6bjdLC6yZN1kUCJKAIDA6K9EZj6jBaT797mdHcxjucBS9Y4CybEr0hv4rlC59fFhIggeolMP48bwTv/AsoeKt3VXFkJEACBRPQ/rjt3VHp7hvw1D/XSeeHu+DVY4SFFz6+9ZGgRMJ+Cl8nk89rSGAYEqDgLX7SaOEtnh3vJAESMBHAIbRFHX0ytiks7V1R6Y2WJjuam9CrRfCamcC7YXRjRHi4zc2VwrpIoDIITDh/U086Mu/8//OkXTcbpeB1kybrIoERRsDOR3d0Q0iFHOvuqzyfXev0VKPg1WOMhAJSV5Pw8fUhlu8IW5wcLglUIQEK3uInlYK3eHa8kwRGLAHEzcUhtGgijq4ZRFNdSJA1rZwZ04qdiGoWvCnha/j3wuIbCPiFurfY1cL7SMB7AhMv8MbCO/c8Wni9n332gARIoGwEBuMiPb0D0t0fk4HYoK2PbkMkIP6AT9q7K/ewmgY2EgQvxoqEFQG/CKy+jXVB+viW7RPDhkjAXQITL9jM3Qod1jb3vFccXlm5l9HCW7lzw56RQMUQQG6Irp4B6ewdELgx5Cp1EWMbvbUrWjH9z9aRkSJ4zeOHhbexLiT1tUFaeyt+hbKDJJBOYNKF3gjeOedS8HItkgAJVDEBWHG1Py4SRzgpoaARLYCC1wkt764JBHzSWBtSDyeI8MBCAiRQ+QQmXbi5J52cc+7LnrTrZqO08LpJk3WRQBUQgP02FotLb39MxdLtLzDagt8vAj/e1k5aeIfDckAM31H1YXWoDVncWEiABCqXwGSPBO9sCt7KXRTsGQmQQOEE4K4AtwWIXYje3M4L9vVD8DbXhaSFgrfwCfDgDmjc5oaQyoaHgoeVIBx+WUiABCqOwGLTvLHw/jyVFt6KWwzsEAmQQOEEkDCivbtfhRLTySMKr8W4QwmoegreYvmV+z4krWiuC0pbd1RlyENBVAfMIS2+5Z4NtkcCuQksNm0LTxD9PPUlT9p1s1G6NLhJk3WRwDAiMBiPKytu/8CgdPTkP4zmdGgUvE5JVcZ1ELxNtYbgtT7sNNQGpSbkl2CQ2dsqY7bYi5FOYPGLvBG8s/5EwTvS1x7HTwLDjgDcFIz4uQPqQNpArBjHhezDhi/oKFp4h826gBUXwrYtS1QNPMDURgLK6osDbghxxkICJOANgcUv2tKThmf9aaYn7brZKC28btJkXSRQwQTi8bgg/W9HT1SJXCSPKEUxBG9YWjr7S1G9q3WOxLBkVoD5BK++HtchmgN8fENB+vi6uhBZGQk4JLDEdG8E70/nUPA6nCJeRgIk4CUBhBdDIggcRit1geAd3RCWRR0UvKVm7Ub9ELKNtYWFkasNB6SpLqgyt7GQAAmUjwAFb/GsaeEtnh3vJIGKJgB/zP6BmPRF49LZU74QYRC8YxrD0tLRLyUyIrvGnRZeIxRZoYJXTwDui4QDKqoDHB3o7eDa0mRFJGBLYMmLt/KEzI9nv+hJu242SsHrJk3WRQIVQEAJXeWjG5Pe/oGyi04teNs6ozJQ4YqXglckHPRJ3RAShcCnFxbfmrBfENPXT9VbAd8C7EK1EqDgLX5mKXiLZ8c7SaDiCEDotndHlX9uqXx08w0alj7EdUUq4qjLB+LytV3o+xS8OJDml1AgoNbNUAoOt8HFoaEmoKy+FL5Docl7ScCewFKXeGPh/eEsWni5JkmABDwmgMNoOISGU/YIMeZ1geBtqjcSGVRCf3LxoOAVJVDj4pOu3gHXlo5xuC2srL4sJEAC7hFY6pKt3ausgJp+OOuFAq6uzEtp4a3MeWGvSCAvARxEg9Dt7sNhNO+FrrnDONAEsVtp/bJCpeA1Qsj1DcSkp8/9NRQK+KSxLiz4MxBgOLO8H2peQAJ5CCx9qTeC9/szKXi5OEmABMpMAOl/4Z+LGLp9/bGi0v+WustIZAD/XWRuq+RCwWscMIR1F+upVAXxe3UsX2ZvKxVl1jsSCCx96a88Geb3Z/7Hk3bdbJQWXjdpsi4SKCEBZEaDmwD+i8YGh5wCuIRdVYkMIMwpeEtJ2Z26xzVFpK27X8VoLmWBTy+svDjgVlcTVCmoWUiABAojsIxHgve7LIJ3waI2qa+rldqasKOB4HcBbnhehDSk4HU0RbyIBLwjgC8HhBZr7+53PStaqUYF300IHAreUhF2r95xzRFZ2N5X1gco/Ng11gWkLhx0byCsiQRGAIFlLvPGwvvdGekW3h9mzZWjzrhKvv9prqK+x06by7knHyyhYCDrLOC37Pw/36Xev+DUQ8s+WxS8ZUfOBkkgPwGEFsOTcN/AoHT1Rktufcvfo8KuoOAtjJeXV8OtY0GZBa8eL1wdYO0NBX0S9PuYttjLhcC2hwWBZS/bxpN+fnvGv9PaPeK0K6Whvlamn3m4zJm3UPY+8gI596SDZJftptj279mZb8lF19wri1o7ZM+dt6Dg9WQW2SgJVBgBhBPT7gA4kAbxO9xKDeKx+mnhHQ7zVgl+zEhVHAn5pS5iJLFgIQESsCew3OXeCN5vTk8J3raOLpmyyzFy3/XnyLprrKg6On3GvTJn3iK5bvoJth3v7umT9s4uufovD0tNJEzBywVOAiOZgI64AB9dZLBClINKdwnINl8UvMNnJU9ojsi8tr6K6DDEbjiEzG8hlQGOhQRIIJ1AJQjer7+bJbseco7MfPQaGT92lOrgvY88J088+6o8cusFOafswqvvkVgsRsHLhU0CI40AfJpgze3qjUmnKQ5qfQ38oNyNjVpOtrDWQbBUumC3WjdhadRxjcvJy8u2JoyKyLzWyhC8mgOStdXXBKWhNsSUxV4uDrZdcQSWv2JbT/r09WnPJ9t996Mv5YBjp8trT90gzY316vWHnpopN9/zhLzw8NUUvJ7MEBslgQolAFGFLGQ6M5q1m7CQwtplFsEVOhTbbkHwIvkAhHwlF+W/2tYnELra71gprLio0G+Yn2HoUeIYObwHxjZVnuDVA/D7kRgjJJEwssHR1cHxxPLCqiVQCYJXW3hfemyGjBvTTAtv1a42DowEhkggqg6iDSiXBbgx2BUIRoiwzh73sl8NsdsF3W4Idp90DgPBq7PB9ZoELvjXhAMCB2rEp+0tYYzagsC6fHE46JOm+rAS/ZVcsJZwwK2+NqSSWLCQwEglsMKV23ky9K9OfS7Zrp0P77Sr75F5C1qy+vDqm+nS4Mn0sVESKC8BiNv2bkRcGBQcTMtVIkG/hELDXPBWsGCHuwX8pJEMYWE7wr0NinVKsK2O65rrQ8rtBA8fsMpXU6kNQ9gHpaWzf1gMC/NhpC0OqQdCFhIYaQQqQfCC+R9OvUKaGurkojP+ILPnLZR9j7owGaWhvbNbDj7+Yjl8/11kp19tpKZoIBaTgYGYTJ9xnwwODsrUkw6SUDBY1ni8DEs20j4tHG/ZCUDcdnZHpauArGM6MxUE8nCM0mBYSP3S3l1ZUSYgYmF9bqwLqYcPHI5CDNo8zx/Je3r6B5SbxnCcE7uFD+EICd/RHS3752KoDdZFgtJYGyjrD+ZQ+8z7SWCoBFb8szcW3i9PSVl4MQbE30Vosp9mz1dD2n3HzeS8Uw5RcXjb2rtkyq7HyJ9OPFD2+40RN/ihJ1+UC666O234004/TMXvLVeh4C0XabYzoghAEGGrHKl/i/HDxbYtDu109EQlVrqMryWbEwh2CN6OnsoQvLAMhhNhr2Bh1/2CD68TwatBIYMcxgbh2x+N57XUlwywSxWPaQhLb3RAuvuG4SJLMKirCUht2Ijli2QnLCRQzQRW/PP2ngzvy1OetW137vwWFY+3vq7Gk34V0igFbyG0eC0J5CEAodsXjSUPPOVzXchWnd5yh1jO5udbyZMBwQ4LHAR7PutpKccB+YPEBtgGx1zgAcTsllCo4EVfUVdNKKDcHZDuGXM0XC2+Y5vCCTeb4e2qgQhmeKCJIG1xOCjUvaX8VLFuLwmseJVHgvdke8HrJYtC26bgLZQYrycBGwKIutAbjUl3b0xlRYMQGkrBD3ZTbUi6+weGXZY1JQr9PqmvDSq/12JF/1D44d5I0KfCWul4xnb9KEbw6n5B8MIHGO4biJ1c6SHY7HiOa4rIos5+5aNcDQWfG0RzMKy+AWZuq4ZJ5RjSCKzkkeD9goKXK5EERi4BQ9PGZSAm0tbVJ/0D7ooGHKpChAAdRWA4kUYEKfjHwnWg3IIXZ5ngo4tMb62dcAnJPi9DEbx6PiCyRjeE1T/hCzucDraNb4rIgo6+YWuhzvWZwKG2UfUhZZFH8dHsO5y+QtjXLARWunoHT9h8cdK/PGnXzUZp4XWTJusaMQQgouALitS/vf2l8X8czoIXW8yIbgDBWy6XDPhwwtUAAgcxdJ3MixuCVy96hDFD1APo654+hJ1z9wGoFB8uHYe48nta/OiVm0MkoHyvmb2teI68szIIrOyR4P2cgrcyFgB7QQLlIoCtX7gu9PUPKuvrUF0XcvVbpxdGO8OtKJeMupCKN1xqwQuBiwN+cYlLNDooPQU8gLgpePUcYSs9GDAsinBxGahgdwFrprnhts6c9hfrMRIKKB/f2pBfWf9ZSGA4Elj5mh096fbnJ/7Tk3bdbJQWXjdpsq6qJaB8dPuNhBHR2GBZtoAheCGoKz1bWbZJb6oLKr/WUgleaBaI6gAsun2w6MYKPiBXCsELHobA8quDe5jD9i5vD+9lm6NKTCtcyi8RHVsZFl/MDYVvKWmz7lIQWMUjwfsZBW8pppN1kkDlEMBWL1wX4AuK5ATlLPhRhpjr6B6e2dZKJXhhm4P7AEKEwaVkKA8ESvB29MlgCae2LhyQeoj/XoT/qpwYvhB/E5ojMrfVnSxrxm5HunOET3wV7Ts7pikiSPJC995yfrOxraEQoOAtnh4tvMWz451VTABWScNHN6bCjHlRtIVwuGTBsjJyW/Cq0FOJ+L5xgbvA0DOfQfC2dvWXPBIGfEfra4xQZrBGY5egzM9PGUsYriCjG0Iyvy1/lrXYIPqMB6+49A9EZVbrbKu2lc7eLonGkMDCl3gvLqPqmyF509oOBUIyadQECfoD6vWasLfxO8GhoSaoMhsiuggPt3nxbcc2nRJYdcZOTi919bpPT3jG1fq8qIyC1wvqbLNiCUDowmqIyAj9HvvOItpAU31YFnXkFySVCNRNwYvDYHgAUA8isbjyn3ajlEvw6r5CsIdDSI/rV+sLh+uGGMGuaAzgCSs5UivblZ7+HumPDcjb370rXfh71Liut79Xvpz7jaiOa4OuybCr5K3Z0Jv8u/GXSDAiy01YRqUVRamP1Mm4prGy3MRlJOgPSlNdY9FjGsqNiOoQDhr+4JgfFhKoRAIUvMXPCgVv8ex4ZxURUOl/exBxAX6gcc9EiBmpDnc1kgWvYYUMS/9ATLkuuO0PXG7Bq+cX49KRA9q6vAllhhjC4YBP2hIuM519XdIT7ZUnP3peevp6JBaLSXxwUBZ1tao4vVrI+qBmM70X1NB82YQuXk8aen3p1wks92FpiNQr62ooEJQlxy8hv1h2LQkFQ0oMl7NA7CJLIB4GmLmtnOTZlhMCq13rjYX3k+Np4XUyP7yGBCqSAA6ixeM+JXKxrV2JZUzjcLbwhpS1vBiRiq1/WIhhdWvr7Je+EoX48krw6rUGQyLmGIzau8ubRhouFv0D/fL1/Dny2dyv5KWv3hAfDOew3CYN6BCnCRWbtOgm4tomXk636JqsvmkfKJNjQ5qbr+kf+q+WAApNdU2yw7rbyGJjJklNKCLhUFi5SZTD9WBUQ1hqGNWhEr8aR2yfVrv2156M/ZPj/+FJu242SguvmzRZ17AggN9tHEDDtjiiLpQ7MUIhkMY2hmXhsHVpCElvf2HxaJGSGOGj4E+JNMDwdy1ljFhkGmvrLr0Pb745RygzHMSDJRuZ+kqZbKSrv1t+ap0tA9Ij//78NZnX2mJYXBE+zSpilSVXC15jFFq6poRu+vvWsfri1hBgNiI3KyDcm74CdlxvW2moqZfJoydJc32TBBK+wPkYF/u+EVM6rOaHh9uKpcj73CKw2nUeCd7jKHjdmkPWQwJlIQBLmgotBh/dAXf8QEvZcQheWP6GU/YuzQMWWjB2kgAClk6IvnAwYMQ5jsbKcqgL1tWOnmjJD605WSMQVhD7EFY41Iadh2Ks43Zt4TBZT7RP3vrxPZnbsUA+n/u1BGRQBgYGJR5L98VNuiWYfXRNHgkpAZvNmpvoQTwljtNEq0tPMEuPX1LGN48TWIDXX2FdqQlHxO8rje8t3E/ghoKDhnB3gC92OSzMTtYNrxlZBFb3SPB+TME7shYaRzt8CcRicSVsYNWtZIuulfCohpASPfAvHm5FxREejEtXX/YoF7DfwVcyHPIra26556eSBK+eX8SGxTY6RBZ4YO6HohG/WfiD/PurV6Szt1ta4I+LB714XMIBv8QGBpMh2bIJXcOqC0Ortu3mELpmC7F5wQ5lAHYL31QfLLyjG0bJ2suuIRus+IuSRH3AWsZDcm90UEXagKsNXsOfLCRQTgKrX79zOZtLtvXxsU970q6bjdKlBuzZ4gAAIABJREFUwU2arKviCEDodvZEc4quiuu0qUPwswyHAtIyDN0aVBxhv0+lF7YrEHWNygocFxzc8qJUouDVHCAym+vxMBBQD2uwlDuJ6ADf9IHBAZnbuVCumXmr8nmFuwL8c5WPbmJjA9EiBgZE4jo+mj6IlvBAgADOiLighK/9TCUdF4Yibodyb6JbYxpGy35b7KlEMMTwUC2xKsFJfUhlzbPuCiHSBVJoB/yM5evF53cktrmGR4L3IwrekbjcOOZKJwBRAF9IpP/tRtSFCk7tmo8lwiTh4Mw8l5ID5GvPzfexNQ9BYBazKgOZCs3lVyfgIeS8jEdbyYJXzwUEV2NdSCBkIbhg9c0mfBFl4eM5X8iHsz+VT2Z/KWF/UAlcw0c3UWNCyGJtwV84bvLdxRUQrhniNYcQtRXFTheSCwI3W1PrLreWCnW29MSlpKG2vmh3Bzy0wZoLS7tdmmisaWRtQ9QL+KAPVWA7RcfrRiaBNW7YxZOBf3TMU56062ajtPC6SZN1eUoAggBiAJaw3uhASbNnlWugEDvjR9XI3JbecjXpWjs6pmlLZ1QJKAhgvAY5BT9dxKEtod5xNA4IXvh0uxXX11GjRV4Ev9HaiF+JXQhV+Phqfn0D/fLmd/+TH1p/lv/+8IHUBCPiHzQSQKRcFQzrrA4rhvqwTa/Fsxa5aaHFzBZdmygKGdeaxzaUyS3mXuvZuERfVlxseWXtXW3JlWXpCUsVLEh1CDnsVOSysEMY4wGvJhKUSJDCt8hlztvyEFjTI8H7IQUv1yYJVAYBGKlwuKu3b0AdNq+Wgt/wiaNrZM4wFLywdmG7F4K3CRZKiSezoznZmi/HHELw9vQNSE9/5R9g1NZXCDBlTQz6pb0rKh/9/KX89X+Py2AsLrHYgOBQmQolpj8HiJKghG96NIVIKGHhTbgypOlF82fI5vOURVsaU1bs56/Y+xwulMbaBqmL1Mrh2x8iwUTSCye3gjeSUTh1u8FDqvLxrQupw20sJOAmgTVv9MbC++HRtPC6OY+siwQKIgCLLrbD23ui6pAPrHQ4+FRtZbGxtfLzwp5hN6xQ0EgagdLZO6B8ICutDDfBq/RkPC7RwQFp7Vkk05+bIfPbW2S5MUsbLgumGLrplt10NYnjZ3AtiWoru6sC18YUXJCYLehiswOGaXllr6OxtlF23WhHWWrCkirhRT4XBGT5Cwb90pFI0FHIGobrTnNdSN2f8yGhkEp57YgmsNaNu3oy/g+OftKTdt1slC4NbtJkXWUhgExo2A7Hlq5OzYoDUvjhwvZ0tZXJY2pkXmuvp76uhTCFRUz76eIHf25LXyG3l/Xa4SZ4u/t75INZn8pr37wtr3/zjtQiTe+4JQV2RIQXQwSSuMlX17C2WuLrik+UFRLpjVXEhgRyfa1FmtkKNSeaNO81eS8o6VpYYfJysuayq8uyE5fJ6eOLXQrE7Uamv2KK8lsPBVTYvUjY8F1nIYFiCax1k0eC948UvMXOGe8jgYIJ4PCZ9v3UQldXgu1ZdZq9CCtMwR0p8w3IBqZP6Ze56YKag4jCgwe2c/XhqlH1IVnQXplZ7DC44SJ4e6N98sIXr8pHsz6VV79+W8K+oCw+arLUh+qUPIX9ELGMIaZUlAZ1GE1PnyEszQkjMFfwOYUvcFIUJ2c7JcgypFlSFOuLDXeJwkrBNxRWfYFXr7j48rL6UqvK6kuvKqFAKOPuMY0hdWAN0USGWiB6sfOBQ24IP8dCAoUSWNsjwfs+BW+hU8XrSaA4At29Ayq0WCw2aOujC39RxHNt7Yo6Ct1UXC+8uaupNqiOzbdXsJiH0NVxY7sxTwlH6nFN4YoWvBDkSHJRyT68H/78mVw383ZZ0LZQevq6pT5cL8uNXVpCgaDa1VCuC4nDaTAeQkepJAmxuAyYjJLmyAtpgjdDsZrSAKdr5sS/0n2BTTEdsnxAhi4US/rJ84nUhGqkqa5Rdt9kF5k8ZlJac2ObwtLa2e/aDgvmKBjwK79gCGAafEs6u1VX+do37+bJmN4/6glP2nWzUbo0uEmTdblKwHBdiEtrV1/eiAtBhA6qCypROJwSSzgBVhdBGK+AtHZ6E6s2Vx9xKAfJMXDa3459pQtebFf3V5jgVT66sajMap0jZzw+Xdo625QFF/+tPGF5qQvXJSMvJEOCWU4B4vVQMCD4XEDQDyr/3pR6hXUXojeVwc8icu00qun+1JrITP3rZE27dk02LV2g8dRcDbK3HbbtgVIbrlEPFNhhWdDeV5IHaYjdMY0RFc6MFl/XVkVVV0TBW/z0UvAWz453loCAOnOD8GKIoduHbURnp+fx4w0LL/x63dh6LMHQiq7S7xdprgtLS2fluAYYIbICSjTBopstrBcFr/NpR2ixj2d/Lp29XfJ/X70lL33+mviV5RaZ18LKhaG5pkm5JqTFvs0IeZF6P+DzKWsvCtIV65jUELx4FXFl06RuTqFrHYuHltt8TRcgeO2qmjhqgmy48nqy4UpryeiGWllYQrcciF64AdUpH18jWQsLCWQjsM4t3lh43zuSFl6uShJwhYASuoNxdQhNHUiLFn5ApKEmqH7Uh0NM1UKg4QcR0Q4WVUC2NRVnNGSEWuobQNzjWE7L17jmsCxoqxyhbuVeCRbe2GBM3p/1ibz0xevyypdvSFdPt5H8IQ6rrqiYukuPWULqI/Wq+2kpgDMWUsLFIWXMVX+Df68SUonIJnobXSX9sLXc6tftxFc+tVnI6i7iWqfN59GNeavxiUxZ9Rey6WobSn1kTBEdLfwWCF48TOoshYXXwDuqncA6t/zGkyG+d+TjnrTrZqO08LpJk3UVTQBWQhwMiQ06S59q11BDTUC5M1SyP2YxgPC7PaYpXFIrU75+QTDBgg7RpDJOxeKO4h1jO3h+W+VGafBa8LZ0t8m5T18pC1rnS0tXa0LQGkJXuSUEgrLShOUlHIiYsp+ZYuwqBWz8X7rV1zyjKWmHQ23hgJEGF3OoModZD6LlVYL5VkuO91F3MQbMYvqUpR3HVSWyAjbWNck6y64jv1xt46KztRVCDHODz1l9TUjgzpQvbFohdfPa4U9g3b94I3jfPYKCd/ivHo7AMwKw6sJC2NLRX/hBb5tewyqC7dtKPtxVLGy4BiwEJ8e/1sW2lH4fNAOsuhCGnX0D0tVTmOUdgndhe58jcexOjwurxQvBC4vuou5WufbF2+WNr/4rASSKQLfjiLYgSuBAmIb8IVlp4vLqz+TEp80/snmZLLRWS63+d1L4pZwXIKiQ9Q67KUmf91KsLad15jEkI2lJ9mJzyC75IGBnwDbVlXhYyKg70R+sfZ0RcMOV1pNfrrqJNNc1llWEYneH4cwK+1xX89Xr/mV3T4b37hF/96RdNxulhddNmqwrLwEINsS0xGEZJImA4HWrIOZrfSSoTlQ7/Z11q+1S14PwWR3dUdMho9K2CL/hSDCgUtli2xvxjWERLLTghDv6Xal+1RC8iPzRWWSM1UJ44CDaez9+LF/N+1buePUB5Z+r0hFooQsrLaIu+Hwqvu4SoxdTERnsxK6y+unpSJsWi/VXCb/MA2kBHJJKqGyIa2WxRwzfwqfYHoFb9Sg9n6+yLKZc/bKVj7nHGbcmXkj8URMKZLhX7TllN1lhseVUZIdyWV91tjccXsXfizGSF7JWeW3lEvjFrd4I3v8dTsFbuauCPasoAio2KERuwkfX6WG0QgYBq1VTHQRvNO9PZCH1VsK1EGbwTcahvFIXhEvCj6qKe9wfG5LIHtUQlv7+Aemu0NS95RC87b2d8vW87+SlL16TFz97VXr7e42DZziQloihC/2qXvOJcl9YcvTi0gCxa0oaoefd/pCZSdVZ9GG6PDLeRFgsCEmELkMf1CE2ZS32KT/4nMWqP63qK58+dbiA8wvdnMrVgJvNPzkF09KblODVCSOsnzlkZ1txseVlyzU3kwnN4xyOxp3L8LmsCRtJLHDQjWXkEaDgLX7OaeEtnh3vdEgAIZHae/qVYBuMFfYz5rAJdZk+3IVoBq5ZqgrpQAmvbagNqEQCiEVcqhIJ+qQeMX9FpK1rwLD4DbGxxjpjO76jpzIz4JVS8Hb2dckV/75Jfpr/s3T3dcuirpbkYTR1KA1iV1lfE2JT4MYQlOXHLSuRYDgzoYO21GZYdrOLXUNGZ84iwmDhc2kO4aeiBWj/3oG4xOw+RENdEA7WU/GrLpvdM0unbS9XTx6qGKHb0h8AjJoMK/rohlGy3bpbq6QV5SzK5SWxA9NUH2TmtnLCr4C21rttD0968d8/POZJu242SsHrJk3WlUYAgqkDCSPKKHbg79bTPyC9FWpRLHaJIDICrHKdJUidjANpTXUh9QPf0hl1NY4x/KrhalKJMYQxF9gRwDp1y6VhMD4oHb1d8szHL8hdrz4g8VhM/HHluGA8lGUI3ZT91e/zy0oTVpAwfHaTxWESCLs7clg3IXhhyIXgtdN98F2F3kV85XxG0lwC1cnme8b9Gb7HTj415lE4UOVZfQJSghfiH6OHC1bWJz+fyG+n7CorL76Sekgpl4uDmUh9TUAaao3PL0v1E6DgLX6OKXiLZ8c7bQioH8nYoIqfi9P8Ou5nuWAh+QS+9qvt4BoECH6A3RS82B5FCKSasF96+gaVu4nbBUId0R0qNb1wY21QpeIdquDFQbQv530r3yz4Xq56/pakf64SfAnXBUPsGlZD7VerJQpS2i7evJg0hutToklnUdOTkssXNSGnk5Inm0pNvI70tnaRNsySCQIK/yEuNoRxKlVxapU4scZaXSqyylG7NxxpuHRn3dzH2/JFiTAJ3qBfid2s32Gmvq225Cqy5RqbyaTRE9z+CDmqD/NUVxNUB0y1ld7Rjbxo2BFY/3ZvLLzv/J4W3mG3WNjh0hGAyMVBNMTQhW+gFwUnz7GNXspA8V6MKxL0SyjkVw8RQy1GyCOkNIXoQYKP3LF0h9Ie5mNUfVjmVWhoMjcE789tc+Xh/z4l//vuA5ndOsc4iGby0U0TuokoDGCq9VLQH5AlmheXxkhDQuxaoi/gYquAzbCCmmRlLpNsUvD61YOp8lqw+aiqvqVt7RurIDqQutiJ2HW8dvKqVGc15f3WsQjoTD2dcgAxIjTE7I27GTf6ZPLoifLr9beXxcdOloA/4KzDLl+Fz7aKlR0OqP9Yqo/A+rf/1pNBvfP7Rz1p181GaeF1k+YIrQvWn7auqNr+9DqtL3b1xjZVduzXYpaJtsQOxXKN32g8DECEdvfGpK8M8wV3ibGNkaoUvB29nXLRM9fInNZ5Mrt1rgoppnRiIsyYdl9QkRdMfrqGVtJ+uyLLj11GakO1yYxnyW3xbL66GYfGChO7aB0PT9Fowl0hj0pMumEERKUqhkjGw21ecel0oeerKKeVF28mPWtzt5jXWpyyFKvDg0F/9iQ2aXWl/tFU1yjLTVpGdttwJ89ELyBgFyEQEBnVYKQtZqkeAhvc4Y3gffswCt7qWUUcScEE8MPX2tWvrLqVUvDVPnF0jcxt7a2qg2vYgq6LBFWIL+QKKKSACfxo4aeLh5LWrmghtw/52gmjIjKvtTKTTxRi4YXrQ3e0Vz6d86X86cnLZKA/qkSuP2HTNcRuyk83JXQTyYBTu+UJ46lPIoGQrDhhxXQ/WvP8OrDW5psgJXcS9eAP/BvrKRkqLq+PQbrLAIQgDk3B2jukB9x869iBTstXRZKNg7r0tahTZ6bDGDUz+7rsTcYrTFpOdtlgBxlV3+yJX695TeCzj4dOnV0v33rh+5VNgIK3+Pmhhbd4diP+TvwQIGlEOUJlFQJ7fDNivw5IbzRPeKVCKvX4WmxVwhcWBwBVdiwHBdZuwzJsbG3CdaEU4eDydWXiqIjMHcaCF0J3dvs8+WT2F3Lr/90vi9oXpcKJJe2yBgXE1jWsucZ/SgTrPxOgtD0WsXaXGbO0BANGZIxkyWbZtYJ2tgwyXBYyBC/qta0rewMYEqy92i0GD795u2MS3dnWjNmVIts1eduxu9Gh4NV1Q/AaERrSW8vsn6nixF+1q8cqi68kay69uqyx1CplydCWjRdcHBDH24sDdfm+G/h+4QQ2uHPPwm9y4Y63D33EhVq8rYKC11v+w751WBwrLeQUDq7Bj7Ktu7yWzFJOJsQr3BG6+wbS/CiztQm3BRxigS81fDW9jFoxnAVvZ1+33P/WY/L5nK/ko58+TcuGZhxG0w4KqZi6eCntdZNpTV8NMbVY02QZVWuyANpadrOq0dwKM4cqLFrw6jpNGk/F701socficGnKsiLTBLFNRfo2h8I08+lAPVrYN+6wzpRjhE8Q4hb/zhiPyUqfasz8YqZn8w7rbiObrLSB+GEW96AgrjbC77FUB4ENPRK8b1HwVscC4iiKJ4C0mws7+irKfQDbtY21IVnU0V/8wCrwTmy/w2oNt4RsBQIE1hwcRsODSDHZ0dweeqULXli+2i0PR73RPrnj9QfklS/elAUdC5WrAh6itIVPJ47QMksdVNO6J5nZLOVbm5LFhuVwdG2zTGqcZIggqzjNEKtZ1GsuU6d6z+4Co09pLg16wrO0a1eVdXtcWXwDfpW9Tfn3mupKD+drbiTTOups7eUauL2LQa56U0I3dZVKzKGiU1juTFRv58KbrVc4wLb2MmvItmtvJQ01SCZS3jK2EamJeYCtvNRL19qGd+1Vuspz1PzWIQ970q6bjdLC6ybNEVgXLIjz2irLX7ZaD65B8CJ5h51bgk49iuxLsLrjukoplS54/X6fOnSJGLqLulrl0zlfycX/nCHRKHx0jTBiCS/cVDzdhLpRIcYSB9DMVl2zlVeLYvyJ+mpDNbL06KVNYjdhFbQoppyGybxi1xC8dpfBzoh1Yqwjm1YSCjV5rwN9qWvBZw91I5QXXG+U903eLDC2ZlPL8rWTpalLzA8U6tUc8NJqsjU2I1yfCPAgOUey2NXp0HqMOtZbbm3Z8RfbSiQUKetHc+KoGkEqaZbqILCRR4L3TQre6lhAHMXQCMxv7cufjnRoTRR89/hREeVfXAkWzoI7n+UGO8GLE9g4lAI/XRweRCzdvPrCrQ45rGfS6BqZ09Lr8OryXga/aIjWj2d9L//94QP521uPy8LOFiOObsJSa3Vb0Hoq6atrcmuwCt30a1GnX1Yat6LFsmsveDUJW6mSV/BmDxqmRGlAC15rK4bvgVMjs1VY6r7qGL5wcxiMiYrlm7UkB5hNlOUWu+Z61Vw5EbvW7qQZm33KAg7/3WS3HYpdVJtLWq6z7Jqy5lKryQqTly9LhjTM9aQxteX9ULG1khLY6G5vLLxvHkwLb0knlpUPDwKdPdGKS/QwuiGkDtP1VFHGNQhe7Y+LQzWI2oAfZiSNgAuD9YBNpayeSha8g9Ir1754l3wz7yf55OcvE0I3cfBMuykkxJFZ+BqWXX1ALSUazdotYftNZlfD1ZMaJ8routHGDYl6k9I0r2tDbjGle2GItOwCU0Ug8PmkP3EgyyrQ3HpgQkRbIzwW0hjHlT+5ba8yFKL5hUKj/abCvZnXf6pdGzVv8U8wUiwn+GRTsPqe5BwmWsvnUeETqY/Uy87rbS+rL7lKyQ+S1UYCguyTLNVDYOO79/ZkMG8c/JAn7brZKF0a3KQ5QuuCT+n8CkssUBsOqNBCQ82gVUlTisMnOnsosqN19caUqHcYtMGzoUwcHZEFbX3ZDzR50LO+gT65642H5JUvX5f57QtVFjHlp5twX9BmOquvLrqaFLtm0ZvSvEl7ryF4U6J4XN04GVs/NiVyihC8pmayUoPvaa5iRFdARsQs1+W+3aZqq1+AqYKEYESbSvjiEGXeBZtSkwV3RT2FWHO7WR4Aclh3tXtKUvDagUT3rEI3z8SoEZnEcCRUI/tvtqcsO2Hpkq7+MU0RQbZDluohsPE9Hgnegyh4q2cVcSRFE0AszrkVtmWNcFwIx1NpESSKhYzfyrpIQIUmg2/kovb+/GGgim3M5fvGN0ekras/FffV5foLqW5B5yKV/vesxy8x/HMTAlYJXhtfXaVTtIXXZ7gkWLRLmpVOC1xDdxn148+AL6AOqTVEGozu2kUtcGDhzRv8y4FChDuDThds9CP9pgx/2AzAmY0kXzG/ZbO3j4yBENvYkcCBMAfdLWR6jWvtfAoshl2rADU3Ap9uuGSkPRCY6kw9T9j0PuM0n033TdsA2665hUxZaUMJBd2PooCuTID/rn5KLpwk76hAApt4JHhfp+CtwNXALnlCABbeXNEDyt0pbPXXR4LqMFJJflTLNCD8aNWEAsp1QVvJ5rcNr+gT2FLt7R/w1L0kNhhTh9Gm/2tGIuqCTx2mwtY+IiVAxGiLrBakWpekrLQ6EkOmJLReC1Wn7WoBn1/GN0yQ5tpRqVWTtiizmQvtPBNyXOtwTeJhEL7tyq/WRvDqatLtpHaVG33JHErCrJvFmRX6C1EQcCdEr13yCrPvbC6fWNshp3tE5HWjsNYfDBqvDOh8Oib3BZsRp3chn+C1GcxWq22qwpbVReoczqCzy3B4EA+bLNVFYJN79/FkQK8f+KAn7brZKF0a3KQ5guvq6ImqZA+VUmDVgM8rLLxDygbl4YCwFamSRvhEHUiDSEE8zeEWbq2pLqj6jsQXXpR5HQtUiLHPZn8lP7fOScXSVRm1jGBjKTeAhMzTAjghULT1F/23apaMCA6mLXVcWxOMyJKjlrbx17Q4gmaoxwStLOLY7kHOiTiMhP3S32+kBs7n75uKKGw/c2nW4TQzrwaXfcYNS6rB0yx8rS4ZjhImOBG5KSWfvVOJZC34zkhGaDCejUwlyyO01WxsNxm2Vu+wbLzSBrLpyhtLbbjGtY8I4++6hrKiKprikeB9jYK3otYBO+Mhgd5oTG2zV0qBFQmpdL3KLjYUDvhNHNUQUluR7d0D6qCatkCObgwPO8FbHwkosdfZW94Hos6+Lrnwmavlx5ZZsrCjRQldbcWFawL+rgyNgkNVKSGbZq3V4tWSLc24K2XpTd1j+Mea30MIsnAgkrQ05hSldlrKRmzlim2bT/RC8PZB8Do+nWY5CJZ0D7B0tmAFbvTU74tLMJHpwYjha6nIhn3a58sy4JzDygbH9DpcofqjdoflcuwVJe/PIfSztI3+hoJB2XyVTWTTVTaRsEvuDaPqw1JXw/i7Q/kursR7p9y3ryfdeu2ABzxp181GaeF1k+YIrgvuDAvaKysBBfxd0a9Kikmba4noyAsqxFj/gHT2ZFpEEUR+4TBLqAHfY2yjt3aVJ/Nd/0BUHnn3abnz9QcNgQuhq/1w4berrLpGwYMR/q5EUtJX15Cr1tTASuSaNI8hnlNiMGnpTWoen0QCYVlilOVgkqoj09k1aSDMKnoTG+oZ7+dWmhbjp9SEfdLbV2ScZohPi6J06jKUTWtqNwG4OUD3wrqKHYH0elN3W70G9GcqHau+29SqtQO2HfJJTcjnPC15EVbdjOk3np6S5dSdj5VRdU1DiuCAdY0ENOEQBW+1/SxT8BY/oxS8xbPjnSYCCDvU0tlfUeKyoTagtkrhDlDJBT9OCB8EnzuEbsp10A6CFwfAciRbq7ihQuxC9JZa8PbHovL29+/Jtwt/lHveeNgQp/F40qprFzcX4glGXh04ICVaE9bbhKAxayNt1zUEb8KamxDOyX8nXl9y1JISClj8KLOaIHXNNlMYNwlAW4WZTXam6tTCEq4ybqSadip0zaOxakzdJ/M1iJCA/6mDdRi3uij9TrPozTSAWy3ElvuzCF11lU/UYVdEP7E+lug+pmvcHII67YbUCNOm36YvYxvHyN4b7SaLj5lctOjFdwl855GQhqW6CPzSIwvvq7TwVtdC4miKJ4CfmPauqHSVeds6V48hsvCFD7eASiz4cYWfHX7gYdFC0oh8iTJUfOFoTMXeHS4FluvGupC0dpbGwost8A9mfSL/+Pg/SvB29fUkrbopS25CykKYmvSQYeE1xJVV7GoBZPZjTVp1tQRLJqcwRJUWQ/izKdIsY+rHiT95fC0xY3ldCazC1yYxRRGi12g9rsJUORW8mXZoXYubqy9zMCCJrMsIZQZc0QE7EWvXB1M4hjStl0uYpt4LBgyrf/9A9vi/KbGduM+Bpsz6cGB3r09kYvME2WujXWXyqIlFgcYDNFwaslnDi6qUN1UEgV/ev58n/Xh1/7950q6bjdLC6ybNEVwXvtAhdiF6K6WEEamhJqiEVjHWqFKOA3GC4XIBS1JXX0wF5ndScA+iNZTaWuqkL06vgXBprgtJSwkE76LuNjnu4XOkL9onHT0dhgzVvro6rq4pXq6h+cBauy0YSRjM+M0WPKs1F7cbx9xS8V6Trg8JIHgPIndcwwSpDzcYVjrz9OYVvGayqC1xcx5XB/Nd2YQqroHLTG+WXY/sqzC3BdnpWnAml1MqEH8LBIyoDnBPwo6NKhlCMdfnx3Jxxr36hbjKWqhDpmUdk8lHO2datZzpP7KETzP1DQkqTv31MUX59OJ7D4dFHR34K2zyeLXHBDb1SPD+HwWvxzPP5iuKAMQbwoBVSlQEWGoQ1QDisCCNUSKq+C1DyCNsNcJ1ob07WnB2NGy3YkzzWvtK1Ev3q9Xz4JbgjcYGZHbbXLn7rYfl5a/eUOJS6YSE5vFpNwYcTLNETDALT2Wt9RmRGpTgTQjlJIGENVhrELN1Vyc30D68SWGcuLgh3Cjj6idkJJlICj6TPsuQak6NmYZ6T3Y36xq3vFEbCardBNuSVTdarMzJDL4OzJupHto+eKbLW0uvTEZUhOZD0g8cbMN85bDB2o8tj0EWQ0dCF3Wgz/rMYVejWfia3s9EaJ3QfALcLOp9cupOxxTk04s13YwDaxH677r/beZ9jZv+1RsL7//9jhZe72efPagYArDAQFxWSjxe/Kwg2gFEuEMDaslYIuA+TsfrH+xiQ3RBPI5vrpG5rb0l66vbFbsleKPw0f3hffl24Q9y95sW4sQBAAAgAElEQVTI+oNYtymLLvqtDqgpIZsQwRYXBnWNKboCQmNhTqwWdkPcGiUzGkPCOmy8mXKFMP4hAfHLmPrx0hBpTEeZ1D0pi212zwS7d7SstlZrudb6T5PgxVxEQoH8h7LS6rDxHzZptvzxeg1hnm8PIzm6HBoa7jGYMxRYYjM/1zY3F6DJa8P+9HjR2e5Nvp45etMjSBbhnQYvpzjHghrbAJ/eXWXx0c58emENx/cefOdZqo/AZn/9nSeDeuV3f/WkXTcbpUuDmzRHeF0QDYs6+6U/Wjn+pfB5hasFfPK8KHCrqIsE1c89okXgv6FYm2G9mTiqRuZUWGa7XGzR51H1Q3NpgNj916cz5Y43HpCuvu5Uyl5t1U10wHA3gPC0CBGL9dYQxUaEBSV4LRZes1UXVev8ammvJw+qJaRawnVifD1cGRrtt5NVf41Om/5qUbCZkilddxljyymskpo6PcUYBCMEEayk9inJLDNpPiyX6nrarapvOZ1F9cGzPJ9AB1ZjTQ4h+5TwjSOBhjl5hQMxmaUb6sBa2KF/s0nwplWXnJgs3zdmTg7EtK4bB9j23nA3Gdc4Ju/XGIQuIjToB4O8N/CCYUVgs795JHj3o+AdVguFnS09AURqqKSoCPB5xe9KuVMM43cNiS8i4YC0dfYr14WhCF3zzE0aUyNzFg0fC+9QBS/i6J719KXS0dshvf39hrbSAtYUWzdpiU2K3UyLqH5FizRoJvynkwxYha5h6U2vx97yq7OwiSw1evmMdMPm+cuIM2vVRomFYn3ZKnozP83pfhImWW1cquK9GofAkJ5a6dScTqgFrNkcYlXZdvM9bzqwGNsJfNwGv1scOhzQB82KPKmlHwb68oVASZsIi8C2PNBkXpp4JafYTX8TYfQ2W3lj2XrVTSUYCOb9EoePNgQvS3US2NwjwfsyBW91LiiOqngCPX0DJTmcVGyPcCIdBzjKFbvW2DL2q6gE8GmG0HZL6GoGk8fUyNyWXs/dNJzOiRK8DWFpcRg/GIKwJ9ors9vnyvTnZshPLXMMcaaEbMKdQKsfHV3BYtE1S9R0EQurrjl2burQWvI6bTU2iTg7IWwWjLq9yU2LZ4Qhy9Bf2cSftso6WDD24tfOcpzeWCToU2I3efjLLHsTlebNvpZbiSdFtJ3gzrCG2i6iJPiUJdvExNy85oBoLMbBtpjE4lnUpOXlpJNFokKE8sLaS2eTzRCuK8uczLRXjCer5CizanHLdfqGhpp6OWSzfQuK1gB3BuwqsVQngc0f2N+Tgb287/2etOtmo3RpcJMm61J+dfPbKicBBSIEjGuKlPyQF4QuLCs49DIQE+nujZYsVu6EURHllzxcEmrgRx4H9SB48xn68BFq7+2QW1+7X577/OVkhrnk4TOTZVdLCR1fN11aGB/G9EQRpixopri55igNhkU3ca+dZVcfVDK5SGixGwlEZHzjJPH7Mg8LZeiZLCCS1l8noGy0mGFgzH4ztuyjUSe+rw47kE2wqteHUofJTSKL2LU2jXWmYvj6fTIYQwzf7D2wS4lsRGgwXCSSEjWbJdbUeKbANffMYgE2vZXehtWq65MVJi4n26+5lUxqnlDQL8u4JiacKAjYMLt4C48E70sUvMNspbC7JSeA36Y5LT2uWzWH0vFJo2tkXmvpLKJ14YDy/YPlDOGe4L5QyoIoDfhhrqSYx7nGqwUvEmZkWM9MN8Kq++C7T8p3C3+U17/7ryFYk/9LXYgoDMqlIWHxtQrdDI2SvNYkZBOCF7652odXi+pkVjbL7rPVtSEZ2izRtTF146QOvrs53ATShK9lmdhu/TtYShm2xjyCt98ahaCUi3UodZsGlhODZcLx8AlrL+YTDxDWz2O243PWlMJOPCMy+pXWF8sCysLCaMdkBfb7ZK0lVpOd1t5GYOEtpKCuSaNrGX+3EGjD7NotHjzAkx6/tM99tu0uWNQm9XW1UlvjzI0m1/Vd3b2C/8aPbS5JSD1aeD1ZOtXd6KL2vvynwMuIYPyoiHR0Rx0H23faNeW6UBtUYdjauqMSHxyyTctR0/U1AQkFypeq11GnclyEn3Jss3b2DNg+DAzGB+Xlr9+QO954UBZ1twjCjulwX0oKmLaolSxIRmLQtlXduJaa2rSXkp5aU1gjLuD1pIXXlERC12y2+KZkSbqkxb9qQ3UCwev3B0yLwH7v3070WrfXM3A6EL6pe7RvROak4MEMYbdKVey66cBIat+dxI0mt1jTU0+eEagMej4JhYy0H/2I6JD8fGb2EkIxHAyk75qkPCtsG0suS1SXbZBOVLMlru8BU/aUZccvLTUhS4Y+B5NG/10HkIb5JZUieH+YNVeOOuMq+f6nuYroHjttLueefLCEkL3FpuS6vr8/KlOvuEOefv51defE8aNlxrTjZc1VlnV1tih4XcXJykCgLxqThe39FQOjoSagMja1dbmTcQ2JHxrqgoKT4ki0UWqLrhWkkcghrFI5D5cCqzQOMxrRAYwCobuwq0U+n/uVTH/+2uQGeJqLgkntJC2vkMPJZBI2GsikZ+zi8OpEEErMQhj5fRI3HeIyuzTg/cxDayZrnGrepxJMjK4bl+pMXj9cq0LKLlLt1Vb2QF+5AmXhIS3pCpOx5a/Bpfctn2DN7cWa5e58lRazsG3rROg6UcIXxFQGNZvcvrAK40BfXzQxGktdqYcUn4MAa4nOWyy3ySFlsQLXhWpkfyV2lypm9OoeREOpq6H/btEAh8GNWz7kjYV35t7pFt4jTrtSGuprZfqZh8uceQtl7yMvkHNPOkh22W6KLcVc1//jP2/IpdfdL3+54lRZYdkl5OJr75PX3v5Inrz7YomEQ67NCgWvayhZkSYAiycOVVVKwYEWZB1a1DG0LHD4QYRgiAQRxzQm3b2xoXopFoVIuwgscngIrKhGXL4JlnCIXSMsG/wkB+X9WR/L1S/dKgs6W5L+nmY3hWQiCVNfDJGaLkGVi0NCeOpLU6I1V5QFnXjCpxKBpFt/U1EX9EE5vU9sFsRoDzbEUbVjpC7cYKGWUpT2tt4skB1Yc/NFPsjI7pZoyrDwGkknks1k/MUiePOI00wLrHkAzrb1i15ueYVz6gIjCoNP+fbCx9ccwxfZ3MDMNrW3nUk+X4eTzdopZ9yczmXJMYvJNqtvLitOXC5fzTnfR4xufE+xVC+BLR860JPBzdz73mS7bR1dMmWXY+S+68+RdddYUb0+fca9MmfeIrlu+gkZ/ct3/QHHTpdfrLminHzk3urelrYO2XS34+ShW86X1VdexrXxUvC6hpIVaQIQNDi4Zvvj4QEmWG/GNEZkQXtx2cnwQ9lQG1I/UVq0eZlNDv0Y3RiW4SZ4o7FB5VbS1tMht75+n3w272uZ1TYnpbxU+Fxf6qBZ0thm7Bkrsausu4ZgSPtZN1t1E5Zb432LW4Py5028nvg7LLwQQIm8EWl3Jdu0aVfXH/AFZGLT4lmzquU19iY+ExkyJYvwNV7OE+orqafSa0XUEsyB3aGttInQn1PT7db+ZXQvU0HrzBwFf+rT/Wwtc51Xz+kLbFwX8IASMJKNoKjdmbiRvhjF1sc8b3s2w0sTyWaXh0ygE5vGqxi7k0cVdjjN2iq+5yaOrimJ72PBE8gbSkZgq4e9Ebwv7pUSvF9/N0t2PeQcmfnoNTJ+7Cg11nsfeU6eePZVeeTWCzLGnu/6fY68QDZebzU56Yi9kveuvuUhMmPacbLNZuu5xpKC1zWUrMhMAGIMYbkqpYxvNgRirkNTdn1trAtKbTigDohhS97rjG26j2ObwhXlNpJvnuFWgoeE2a0tcsLfp8r8rhYVTSDNNqvdFPSLJsGblLuWeK9mLWK2vKb+rkWvUVnSWpvosDq0BsFrmliL/TiRuS31qrWOCY2LSShg2XZL81CwEadWFWzy9cwlfFMSzpng1WPW84MoIiqtsFULWv4dT/iP5I7Tmz7r2azO2v3Edo2YB2tllrxBP1okXsgAZKdI00hZajKeiOBqCFeneNyYf9wBS3/mxflWt+l9O8tuWvfSHYOD/qCcttMx0ljg4TS7HtVG/DK6oXC/3wJGx0srgEAlCN53P/pSYJV97akbpLnROFj50FMz5eZ7npAXHr46g1K+6+9++Fm5/Ia/yalH7SOLTRor73/8teA1Ct4KWHDsQn4CXb1R13xm87eW/wocmkIEhV4HWeAMfz6/NNQEBbawliG6QuTvXeFXIPQQ0jhXihU91whUbNN4r9zy+r3yz09eURE8zOLIB6dk8754RlY06yEx3ZrFeptwd0gkFTaFF7OKXuN+fTd8sbXgtVqFzZZl4x7DCm2+f1LTEuL3pdK4pmnHzP3+lHHWLHrNB5dMus7eipq08eY8JZnS0CnBaBW8mTZQO6tobjOvqTc5loFJtGazmDrIT2G2wmc/KZYnjbElZjNcAHT2ObudmyyGdmN9WcVsamlmsjDdgAekHdbcSjZZYf3CP/xZ7sDDeWOte/6OrnWMFblKYOtHDnK1PqeVvbDnPclLtcX2pcdmyLgxzep1JxbebNfjN+KhJ1+UF197V9U1eeI49W+6NDidHV7nKYFKPLiGH66u3uxWZwhdxOKsCyPywqB098ck6lFK4nyTh0Ng8MV0IuDz1VXK9/FF9u8vXpZP5n4h//niFZURKxFVLCEYDNmZtPRqEaituyZxkpK36VEY0iy7CeGoxZ4SqOaQTxisSVCrTGvKpSFFwSp61f22SSh8/8/edYBJUlXd2zlMns3kHJaMIBlRgoKCgJEfFVRUxASCoAKiBBVBBFQQERUkCCISJAfJOSxLWhZY0rJ5cu6e8H/nhar3KnV1d/VUz26VH+5M96sXbr2ePnXq3HMpm8xRW8MMYwRHcGRhc81fra198KkuVdgcxeQamYjH+NjfMe5W4gdcWjaGHeCVVlY47S0rEDfS79yQpdqJuNgmzrRbKdgq2dnOF1dY6YsltbHYxthnXzo6eE7J4SbFs3CdCGA2laV9ttiNdtn4Q5RJ+rNyKvUZRUxRXS2Tcs6QL3V+9P7UicC+IQHe+xXA66TJPet3V9GKVV2+Nbxe7S/7x230l2tvp4f/c7FvuzM/VzCSNPiJUtSm7AigAAUkBPXCQCLZDGC2b9DZqQHv5zMJNl/o+upJjuEUfCThYa6DI/UjG7HOc7g4TDfMu43+Ne82wYqC6RVIS4IFFe3KDpRywXj0bIAbl6fNePquMq+M4TUKS+iPw3WpAwfDYHjB7NmAsQKW1V5UED29aTalEgK0uKIjHV3q+LcEo2oNqiIDcf1QajoRk4TEOvEfdOhOxLOfD7nqslVpHzpLayGpLXP3mhPHjzpd7I9tNs/j+4Yns+HmFjc/8iYIf8NcJVAK+ne8EbBOXEwzEUvSAdvsQztvuH1FtmNu8cBDkmnNGWZXGB2rdwT2+/dRoSzwvs9cqY17zEnnUXNjns4+5RhauqKDvnjsmYZLQ2//IB31/V/SN448mA7adxd2nlf7sbFxgj8vjlvveYz+fPV/6fhvfJaOPHy/QNcaAd5Awxl1JiOAR8TwpoXutR4OPLZEuU1UKFMPAAAwI5gvfGINMFAPk/aYAx5NY+5ejHVYSwDDVhgr0DXP3US3vXIvjYE+jYFAQ2a8AJYC8GoAxaF6mdPTb9OejK9QAlADzFoKUqhsL4O4kj1WbMkkw2tld3n/OmhmrwiUM6NpDkGHaRzOFK+B6nS5gxd/aJY/VtnbUu4MXtccoA7TdrTR88OuymCrg/g9Tz3H6aJWslktDKtvsGusg0+EF6qIGQlsDJCzqm1xltw2VLRono3529ll29KUFwB2f/iJY5leN5kI1joMfw9aGtLsb0J0rN4RqBfAC/9dWI0tXrqSBfywA/eiM048mvnw9vQO0O6HfIdOO/7LdMSh+7L3vdoPDg3Tzgcey9q1tzbR94/5DH3uU/sEfiEjwBt4SKMOZQTgUds/HIz3bbVR5dZkKQZ4webhi6Exl2Bm831DwRelqHa+pc4HI40v5HqJr5wvwO3CFW/RKbefY0gV+INifoDdlBpYJ6cADl51ZKV+hbOfLcDYAKSCLVbZXisYZmBGVAyQ/Sbi8ZIaXrk+FRA35doon2pQsuKNVYrFmlfRG6gK1GhXOCjbAHcM8tcSKNPlbdz0oTgKKgLW/RE0btP60zsHO5qMxxngtYJmqefHjRqeqNgtfB0mankJ+zOfztNRe36eYD9Wi6MhmyRoeKX7RC3GiPqsjwjsHxLDe6+F4ZXRWL6yi/nxNuSzvgLk1n7Zyk5KJZM0ra3ZVz+VNIoAbyVRi87xFQE8bkc5Wb+2TL46rbARvria8inG4OL7CBWJiqPjNDAyyvR6U+2APCOdjDNWuh4OsLdvrHqbFqx4k6546lrNgUECXlbqVZ2sC4CzuiAY8NeWzGayu1b7MYPtNdhYE0ibeIRDZSQsqdn56rkm0FXP4qM159ool2pQEpckKNUBJd//fkSzFuArAHzV11cMnU5yv+Fq8W4ZqgP/Uw8a4BqbxryCbpNhzHdMMLyskf2GAG1wkwzQy0zdjCbKxF3W0JJrok/vcCBtuRb3K63FgZv5xlywrHEt5hn1WX0EDrjp6Oo7qaCHew7/ewVn1dcpEeCtr+uxWs0G4LK7vz50vLw6WYpp9FAwAvq8ya6QFuTFBdhFEQE3TXKQY5XqC2D3lWWv05+euIoWdy8RYMDkb4ENwDzhMbEj2BLowcrU8nFVJwaOMlSG1srmmjhHPU//2YqFwJQDyKjMss4q6+/gt1QiwwCv/mhanGURtxqAVw2kJ8nqg/Etg6SV4AyA12ApywGYyliOJHQ5fYkYqLVCKjjdeUvaOvLRc4xYMRnEhet13QMLIw7sY1iZQQI1qqq1XIZKxBN01B6fr7qghNdnEH/TUGENN/HRsfpH4OMhAd67I8C7+m+uaIWVRwBfCp39BSr4sAKrfJTSZzZkE9SQSTIWp2cQ/sBTkNK1LBO2aflMnHoHR0Nl0AF2v/3vk2lgZIj6RvrZLPGaFTawR61ugFesTcoP5FJNptVJxmAFwyY81s4zKrOpYgSTlJUMr5pcqbUUC7E6NeRSeWrKtrmb/FvdFLzkCI4YS2GEHYGc5SQPAMzx9wQB8KpyVB9w0Nh1Fgxv7ka7jLXkB9Jpqp5zcXvTSppbPJodJ+LQF56WFFEBUN4JOaJ6dckAvdzDF/IoDfgqgybiSTrxE8dSW57bNtXqwA0bCtGAhY6O1T8CEeCt/BpHDG/lsYvOLBEBAJ+ufuhjJz9xjQGZZIxQ0jYRi1NXf4G5NEDa0O9hTTZVLmoyHqOGXJJJGia76ptMSlvau5x+88AfaWnfCg50BbDSdZAmIgLmhYbUEfBIO7ESNmISk6ig1AC44gdDEiG1ukbfvIFV5wj9Jhh/2bdVRWx3b4Ams4kasy5aMwUdujoyeDG0Dli2PCjDkaB1iLRIzCrJ0vrH0trHxZijdbIuhLXbZ82zUIU4Sd9jsiexK8oJFhjeZJyXvBYbQD/dozPGDvPbNMij2NML2NzFEtSSb6b/+/ChtE6NNLtq7MBQo5KkxbBiqvwpi+ZZZgQ+8Z+vlnlGMM3vOuxvwXQUYi8R4A0x+GvC0EgSQ5WyyTrwR18mdIHxgEuE9KqFDCCfTVB3v+7UMFlzC3IcqUkeHB6ddGlG/8gAXT/vZrr9tfs0dtnEearYlut25Zcx80i1kpeKdy4HqxLOiiw3ETiVuVXbmJCEv6q7KojXhL0ZZ2rNFpzhjdHoKAe8LKnOAuOszDOYu/aGmR7srtqBJdHJvDUwG5WSJ7gxjp6srh3xYv8DmNlOszGjJkItNTXrnpbuFfrrTjFw+TQ4edtamnrOybjpce/f+g7+Xlj9rD0dkS0YmCW9JeLChSRGO62/Pe07dy9qyjYG+ZF37QtVDJsbgvHznZQJR4NUFYEDQwK8d0aAt6rrFp28BkQABSg6ewseyrjggoBHtrAew6NGw2JM+XaERSWse+APPNUPfOciK3uoMM5AzGQcrBrOi7fQ253v0dPvzTOGVB0ITOaNa3ZVcMI0vJIGU0Gsyu5a2FgD5BodmUDODm71KmgmQBYw2gBTfG4S1EgNr1GwQEgy1PP5dPkZkDJkU7nSIVfm7Jy4WSGV6jWyhnP1/g3A60Lx2olZP4l2lsk4AFabwEUwoe7LEFfGgVwtB4C7Ms5iYPSFJyVIRhtx+QwZwNeLNRbvAfjut9XudMDcPSkRy0xaURjIGVD+PDrWjAgcdPPXQlnoHYf+NZRxgxw0YniDjGbUly0CeNy+onu45jrTlnySUC2pf5B76bplok9rSlPHagB4EWjINfAoFuut9VEYLdD1L95Ct796LxXHRg0aVLK6/F8BRyxIA4CHvcS8ePW8IMkISvtQyfBKQKriDPazNqAJQ/V2CtOrMLt8DiaHLB+dS8ArY8hZaBXsKZ64FKNpjbNFKWH9WT16dixqazRzA5AKjCsH0blcdDcZBQe8mKHTIAqrrl2iSiak86NmD259WdCkC0tb0Uy0rs1fZAzA7nIdrkvvljLERsgdAPDem+1K+2/1EWrIpAmFYRBrlP+u9TGzNRvpd2sd5Drq/5MhAd7bI8BbR7sgmkrdRmB513BNdKZgVPLpBOUyCZaI1ufDomtac5o5R7hWUKrbKNonNhmAF+BvRf9KevydZ+maF/7NASezF1Mfe1uAnAUMSCghNbxyJRLsMqZWYQaZo4Mia5CaW/4afzzOZqCAZ53NFUCYDRAjs/KaHQijZSqRYHZdcdEnpL9m32I8gdjjsTi1N84yL4ZNAuGGQo0CuuzRNzt8IzgfDUuQsZh+KhGjQsmN70VlWtfmE8CG8ZlSlqHCbz5jc97ZlKLfNTamuDtTfveKCvYEKqd9fKt9KJc2mX98PsG8DhXGmKyrWjs4pzDiadasVn/+p2FchmjM4CMQAd7KYxoxvJXHLjrTZwQgL+gdDI7pABsICx6wM3hEDqDr98sEzAsA1GQwLz7DU3EzfKGC3QXLW4ujOFakFz54iX770CWsQhqHCfKrX7Eds9iKySYGrJDvSyAp+pFAV0oFdFaXs6oAq5KJ5fCVj2/IKFTwyIpa8DnKtjhX0/uqvwv2DklrM5f30PavL2ZV2Hoas/TY9hvzcYz++Wqa89MplUgZ4S4NDwVMl64NMo4qDesDz3pfXwHjPPqR1cRKPw0ovSJzLpMEePl9jvvhZ8paTWTzSYQEpGbnzmyzBQJrzT+8wQ6039y9XTW7+JsjSzrjxjzIJFPImppy5n6sxd+BqM/6isCnbvl6KBP676evCGXcIAeNAG+Q0Yz6cowAHu2t7BmuOjr4zspnUB2N+2ZW8jgfLFdbY5pW9IxUPZ+wO2jMJhkgG6hB+WbIFv731qN07bybaGBkUCAOCTZNaYFUGFgyvbTQSKwC0MXlAjxLygCiImlKQlOZWBY3kt3MxDMTzirJZZLpVcGvogvWZAx8YJEax9fTODZOp/7hv7T1ouXs96F0kq44fHe6b/e5JuhlY0xQc34aIWnNGQDpYMkJhzFBgQgaZ5HLQLueTcUNiEsbPA0B6MJncUodfsBsqQWJmyCnZijJ62hT6DKutas9Nv4w7bP57tSYbfCcBf7u4CYddoK46RgYGvVP8Hv0PKMlw/qMjjUnAgeHBHhviwDvmrPJopVWHgF8xS7tGKq8A+LOC6gmhC+Laqy4ALrwJbG8e+oDXnyBAvwHyZ7jIg0UBunk289kvrrDxWHji5knocXsj+Rt4EBRiSr4igNeuQ3MxCQT6PKkM+N3wcrx10yoa/6ulKWQ/YJBtVVk4yyxLnswgW9LYZT+fAq33Pn71jNpRT5FnRuuQ+/vugPD5hz1EmVTDZRN5Z2rpikMoh0rqa9IYIp5SllGlSDUUEi49DNBFE/EmCUf06pWOVxVH2Snk4MAtZ79Og+AJFa4K7AnJH7mINrInbT3prvSflvuRamkf4YVNx3wz86mk9Q3WKw6sW12ezYqJxz4hqzvDg8JCfDeGgHe+t4Y0ezqJwIdvSMVPXrHl1JrY5p9H/UPjwZSNGJOe5aWdlbPOIcdXbBGuAkIKglvfGKcugZ76Ds3n6zkbAEdmWjA0EBK0MQqqEl1rRoRE1hJWQADzAYYlRCWd6+CXKa5Vdhd83cT9kqmzYTHlsfehsxCktMqaNYZ4/TYGM259T4N8wxssC517bCN6adG0Is3UjqZY3KKCQcNjcn++WF6JdvNQe8EDIoFqNf3lQc6dXhLdcxQ+wHQwgLVEsq2/Wvtzw8ItHbiNN1K+vH6cGn9+elct8mTXfNCDe6FI4wpWIaAz+4O625Nn9p2P8qlK9PPys8u5oDPL65Lufch6GNGpN8N+8/wpI9/yK3HTPqYGPDWQ/4SyrhBDhpJGoKMZtSXawQAVnvLyFhmpXNTcVG/fjzQYhEzWzMEf+BaaV8naxsAw+BmoFqbNQBSgN2Xly+gy568kjoGu2xeueqXsfozA7uSiWUoVVm9ZB6F6wG009YqbBLCcvmCgL2qHEEocs0xJFjlg6nMr1YwwoIeoM01zlDlFBSjFE1Q2+PPUW5FB2szns9T187b01B7qya9aMg0UyqZEQltgqGVDhQOFKERCrdH6ozh5UCHs70GVVvmFtLPM25KZC8TvCoYDk/AW+aobs3Lws2l8KpxY2UdzeVEx5e1HWt0BCnA2JiLo4vHvHbegCeoNWa8ZQx+wgkPXbDMyEXA3yM3ezSnvhpzSXbDGx1rVgQ+HRLgvSUCvGvWRotWW3kEUG3NDzADa4HiEIl4nGU3jxTGfCek+Z0dkr1w+HF18NtnGO3wnQwPTj9x9ZrfcHGErnjmanqz421a1reSgV/z4CwYgwwKruIYTpcKyIIODP+qGEwAOQPwGvgDAgkpbZCJZiaQNcCsAai9tLy6ZEFdrwS7igBCq+cGWzLqH6Lsqk62pvFshoZnTtfAdCKeooZsM8Wh3/7HUskAACAASURBVFUSzzSgKgY11Q3eaE6GSfbh1JfnvnJVMFhlCxPsxpEBXqfsTj/UotdSlPPdunLD/I53SH4+TAGUFWMlhVGIQ3+I4Tn6npvuQh/bfA/KK24Mfqbr1QaXBnNBAh0uz+DIqC+tdeS/W23kp+b5h972jVAmfvPBl4cybpCDRgxvkNGM+nKNQHFsnFb1jHjm6CAJC0lpAyOjrEKaX+eFcsMOUA12BGWPp/rRXiXgBcj6wa0/pVWDnXoylQgMYx+NIAkgJRlShdlVy8G6YSPdlswEuxLYcqjLD1dnBebaYLbUGV77ufa6a+YVl2PApUECQZVJVkdJJ7OUzzQxFpqDf8mjCmbWDI3jlvJ6Cq8msTG2fbxK1w3DUcNMLgyW4VXuaJTVlsLN9n3h8DhA2XdOgTQvfSlquMQnW4DMgh+HEzHUXpvsQvttsRdlUpma/NlgwDcZY1XTQBDghtwtpxGfAXz2M6mo4ERNLkYdd3pYSID3PxHgreNdEU2triIA8NrVZ9fxgnmCfAEAFGwupA+1AroyIPiygFNDtcxoPQQYvsIdveVXjgOw6h7uoXMe+B0t6Vuus5aWhak1GPDdr4JbBgqVZ/deT5TxhY5ry/vQBQnqeSrY1SzGxGBWgGxyu6aowezPBMhWMC2XKQGvDp5lUhuHvelkhvKZZsdLzmUJimbZouzwu08MpldohK1GcO79WKNulvKVMgk7w1sKnvqcdQU5cM7lh83x7GpWb6hsnOmAnx1XCbu7GHyJuWOCqUZxB9EoE3zEzofSRtPX8xmYypshPrj5R1IqEtuKYxM2Zj6TTlBrQ8pg7isfLTpzqkXg8JAA700R4J1qWyWab1gRwBcP/njDYQGH9NLFH/XRsXHG6OIP+2Qd05vT1LUaFKAAcB8cgR65vNh1DHYyGcP8Za8xj11Z0EHGXwIlVcoggYENYAqcoL7O+rFMCTJS/pKUL6jQ1QpWra4Kskqaeb5xA6MUqVBlC1a2VntP0dyqldaMGQmrNJlOl0PCWso5QcnQzErwV47VmPXmQnr/Cl112ZlMSn8ShONflNDFPGuh4S0/3cq2U4xZl7OL3WUSvDuvvpAshr9B/G+OB1scI2rKNNJh23+C5s7ZbLL+PLFxMEc88eJOEmPaUy+8jjLpASg7JnVN0WDVR+Dw/36z+k4q6OGmT/25grPq65RI0lBf12O1ng3Abt9QkWnVZElPeGCWNsMPPixtjSnm+ACd8FQ+KtEjQ6N7zgMX0MJVbzFQIAGvQlIaCVR6uo/KmyrZRApb64Y0cCZjGY0OrWBX520ZC2y4NVg5X37F9Ff1V6yssw7S9bEALLikwcod83GQld+Ua6VYzNvv1AZ8K0Srxs0GkzcIUYkTenPFaUJyoABwSBrQb9CAtxyAav2cuQsafH4ijZsSe3s3Zle2xA0ANiMvPGcJpPJrIpagr+9xxKQwu26rTiVjlEslKJmMscS2wZExxgA3RQlrPjfK6tXsMyEB3n9HgHf12kjRamobAamTBKPbDSuear4tq5xqLh1n/pW1KNpQ5dTKOh3G+QC9K3v8yRoAdo+75WTmtSuBFQe8ONRH4XIaCrAVL3E8oABEK81kua7SgYGVCHbQulq9FjisVF5VqDwOhHWQYpNAiPZOEgYbdMaj7XicRoWOxg55IYlAjEsDXjNiuryhrAuqXQfTssxwcNA6U29A3EAfB8wc1IPhLaEPlpfV+tmUQymv1/zj60G8qqu1Mr1+5sUtyQTj7UKTAuz+aP9jqTXfUv4lrMEZwOh4ooObF0wZib3RseZF4LO3fyuURd/4yctCGTfIQSOGN8hoRn15RgC4qmegwBiKsI9sKs4eFUIzPJUPGAxMb87S8m5vX2EA3cU9S+jSp/5GH/QuFd6vBidpFFMwoK+KGpwe0SuFHJyITIlVAHIlyBSkmoDKdkZXwlzN5sw421mfa54jr6IVPjt4MyhyBZwFtk/FgdYH7vE4GN4239vEDJ34yQ8Cs/TOTmEkpCxQodiW+Z6J2RAsIaqsISGO9V2F7EL2WsGy/M3cJ9D115lDq1iMkLgK9lzedGtDoqJjKkdH7nwYbTxjg4qHqdWJyHmY1pyJ5Ay1CnCd9/u5kADvvyLAW+c7I5peXUUATGJXX6Eu/G9hAwTQ2zs4tQEvmJ5ZrVla1uUNeN/pep+unncDvdGxyAC7Eu5qpW4ZGOLbxplVtCetWQEvY2EdktKkTMHkjE3Qa8JiJxcGZ0MxjcG1VFKzw1+BIC3yC/SBpDUwvFbmmJ0RQ8JajrJpVFjzd+hA0IMS9QnsZDliw7ZMBat+RJzI/k9wwDvGAG8FmWba0pUbJXWxPtfDN5clluWc6+8yiDske8d4BTcAqDqnJsjKUGaTGdp/i71p5/W3o3Qy7Xe0SWsHwAuHhriwmpu0gaOB6iICEeCt/DJEDG/lsYvOLDMC+MLuGxylgeFg6siXObzWHI80G7JJZv3DdZJT90B50WUulePA7HYOdtHFT1xO73a/LyQF8otePjLXQZkXA6g5NFjCJuUGMgvfqrFFxTRZbc2aQMYfS9vZWQ5TdSiqpbNZ5AtOiWlGew2Em5CYM7z8WT5ABLpUtwTY3VL6XScMZ+6o6vaXyhgz+QmrzKb36YQXjRsLyDaS3HMW51dX5EKuSn06UMFnpxaA1w/4FzdjkvF2msZh2x1IO6yzVV2CXUQ6l0kwaUN0rJkR+Pwdx4ay8BsO+lMo4wY5aAR4g4zmat7X0uUdtKqzh7bafMOK2YXB4VFW5aw6CFB9oCEFaMqlGPieTHeI6mdu7wGlkgF4rTEFsLnoicvo9ZVv0GBx2PTZBaADojOqfFns/8uUMJi6WlktjcNU8/+l1wESwJA8xdcgW5SSMFh7M9hgDew6F56wAmn7zExJQ0J67AoXEQl6G3PtNis261UovZ9Lt3DdGwLNmky81Fr7oVe53zESnliRBbWqm+rXW87GNIatAvT6BbxWga5tnk5xtcB/668x7oAAxtt6fGmnw2irtTaneIkExXLCFXTb1sYU5TO8eE50rHkR+EJIgPf6CPCueZttTV0xtH/X3HQfXfWvu+nKi39Ka82aVlEokLC2skQBioo6ruAkJHsNF8d8VTWqoPtJO2VWW4ZJRQrKF3h/YYD+/cqt9ODbjzFwy1k9XjPN+FkBnr7kCxpQNZfHSwK7M7EGsGVAkgPechhdpwQ2E8PYga4BtS1aXRWCqz8D/GBpst6DfA95TbFYkvLZZtcbtCpgrLI/HKhy4107d6v6/vqxBGOyDQA8IViV158nKeoewpVuWn9x8CGlcAK4bnIHr6oMHgtBrhcSvlAMRz0+tdW+tMdGO9c12MV8Z7RmmQY5OtbMCHwxJMD7zwjwrpkbbk1c9asL36ELL/83PTPvNTpo313pnB8fU1EY8B2FBKt6kBEA8KLSUjn16ytadI1PQolRVGaClzGOvpF+unb+jfTk+88KsAsyl7N7HPyWZnStxSUk4lO/ZhnIVWQIGFu+71w8gggs6viEXtRB79MNlooeHbS6Tmc4VWOTl0GdG4g8sHlGpTXWyJxRS0MrJZNJ5hWtFkDzB/BcLrwNq/hgKbWuzFLPXI+rn+9EnnKGVxVHCFmEALyV57CJPn1gWb3etENsjM3jE8yxoR1ip0obHLqCPR5uvFTAu27rWvTZ7T9Js5tn1PjTWl33WNrstlyUsFZdGKf02Ufc+e1Q5n/dgZeGMm6Qg0aShiCjuRr39fZ7S2nRu0toyYoOuuRvN9PFZ3+fdt5+i4pWDDayHvxv4WWJLxDoeKfy0ZhLMMaqu79AvSN99Odnr6TXVixkek0w89zKFbpd03aM4QDB+FrXbquk5oApmMWYKktQOrEqcVX2F2CDgyv1fGtSGn9fA8+C+VPZYjuAFe9aWELdg5f3zRJ+BEiDhpcnrdmhdy7TxACvBEnwjA4W7DqBNj+Az+R2bey8RaqAS2VUFVOuE9sWAjBzprdEtQbXD4kOpN2b+YycTy2uZ91d/b5FmxL0zMyhQWhWZjROoy/tdHjdg10sAhXWpjVF+t2p/Pe62rlHgLfyCEaAt/LYrZFnwsfzoCNPofXWmUWXn39SRTEAaFjVM1LRuUGehOIXAL0dff48bIMcO8i+AMaa80m6bt6ddPvr99JgYUgAXQ5yGasrvtwBOSSccpIx2MCuBQRJVleFpF6srmzHMWiMkjGiMTC8DmywE4BmIFS1QLMCYWu5CAXsunHFTMIwYSamudqSwZ4q00ywJcORTBAlk3EaKYibiHIuoiuG9StmtQwm+lOLVFinI3uGWysYXlXyIplRqenlem7zhqicpZltRUKd28kW7a9rhTPrYwS1PzVcfiQNtrjHmDtLQWHszzzoRMrUoRuDUxhRSjyT4vsxOtbMCPzfXceFsvBrP3FJKOMGOWgEeIOM5hTta2BwmJau6KC2liZqb20qmaDz8oK36bif/I5O+Obn6LAD9yp71WBWlpew0Sq70wpOAJHU1pCizv5iBWfXzykgK19c9Rxd/PhVND42QcOFEUrEkgSHBgBdYF3ze98KaqQNmLkeyf6qK5Q2Y3aG1U1DayaqcRDNz4T00JyPMyTlIJfDX29GV7TxweiiJVhdxEpKN2XvnOFVYiTcHPB+NtvEJA8qzsqmIMvgZWlLSgF8AV0/jK64Gg5N1RsXztLqIJoxvMm4UdHQzrOabh0agLZooEvteLWUMWvrk9D17Ne6Xg3wusfE6JPfoWlDZFIxKhQnqDHTQEfs+GnaePr6pZZWN+/PbM0w//DoWHMjcGRIgPeaCPCuuZtudVh5cXSMHn7iRXr82ZfpjvufpB232ZSOOGw/2n2nrUu6MPzorEtpcGiEvv/1z9DzLy2kIw7dt6yQwDc2bB0vvgbhZznVGd7/vfMQ3fDKzTRSHGOVtDr6uqg522QDHFb/Vcm6ygtnwAIFVMg2HLLqANVkdlVwqrQzZA/meVzDawHXmpgAANyLAbaYlLlYjZkQh4NcCXpMhwizBQAEK7krXpIjpFM5SibSNsDEgDsSn8AUj3Pg63j4Ars8diUPJ6ArT7JoEayJbEaSFlC9clhnLe3KqvHpDRT0GmvGD6ZWuGSsrBtaAl7RHxjehlQLfXLux2jLWZvUfZKaXA5kRLAgjI41OwJfCgnwXh0B3jV740311T8/fyGdcf7f6FtfOYRymQzd/+hz9MyLr9Ofzv0hbbz+Wp7Lm/fyG3TCGX+kGdNaacP159C5p5ZX7rBvqMg8ecM+8Iiwd6A4Za3Jbnn9DrrjjXupOFqg3sEhyiTSLLnKRozZWD8VEjqjII4TrTDXXW+rsbEunrqQX+jzs7C4WmEIN6sxPenNhIx2QC7N+XWQrUaHV93ipYV1FW86ladkIuUIeNmYzN6KO0+wKmYSQXriVxVm+gC6LnhYA6taIQqV4OWtMEf4CMOWzAlbq0oD6eKB8xjbq2pgfH5YTZaY9VI+0+sVllKssdO5CuAF+J/W0EwHbr4/bT5zI0rGp469VzadYDfo0bFmR+BLd38nlABc/fE/hjJukINGkoYgozmF+sKX0t9vuItuvftxuuaPp1E+l2Eeuyf+4hIqFEfpuktOd13NilVd9H/HnU3JZIJ+ftLRtOPWm1I6nSpr9cOFcersC1/H25RPssf+/cPhlzsuK4BEdPdb99PNC+6g1xYvovWmzaFiEWvQ2VFuPaX2zCUMNlxgYV3dvHFtyWRiRM35QJEwWFlgtciDClRVJtkKPG3MMm9sLMoxKS3GJQx6yWDn86DptThUsb4Z4PWh7cRys2lIBiY0pli/ntVpddW+dCms+M2DAWZldCcg5SiFFmUSm25fVy5iVWUVThKLcvd51e0VwIsqZXOaZ9Kxux01ZZhduf7mhhTLOYiONTsCXw4J8P4jArxr9sab6qu/4bYH6Yrrbqeb/nImNeRzbDmPPv0S/eD039MZJx5FhxywB3sN+t7h4QKtv84sisfj9O7iZXT7vU/QcV89rOIQjBTHqaM3fMCLx5tN+RTzBp5KxyPvPkF/feEaWtXbTU3pRqaNZU/W5ZNfF0bXkTxTcBDYSo2ptfCeTu/5B6tmkQcD1PpldA1Vgs7iqqBZXj+wyDgkvtN5WzGyIl9AexMM8jcSiRRB0mCzZ3PbJMwJIcZs10bGxi03GWWyul7yBYxvYXQdp6T0AZCHMrqugNdpPMO1gXv1eh3O70rXh2rcH8SoJYXS+o2Mba7yWseINpwxh36w59douKjLO+r9s8/yDZoyLOEuOtbsCHwlJMB7VQR41+yNN9VX//pb79NPfvln+uoXD6KD99+NLadQKNIxJ53HWM+/XngKpZJJOv/S6+muB5+mC3/xXdp6iw0DWTa+gMHw4t8wD2CjGS0ZWt49dQDvv+bfSje8ejONjU5QJpHhAC3OcZDdXsqF0WXAyYy8c1KazhZb1LNMAOAf7PK+wPAafraKVldnaS3srUcBCQ51eHtcSwBUhvsN4lOXL5jksDmiCXjN9QLwpvwCXmWIZFzMQTCqpp7Wp3zBAbt5yRfcwa45nkzSKtdQjcfRrMhny9CzLMn2STYq+VWgv7UuzM+fCacnF0o/67WvTT/9+FHUN+iP7Q7z75J1bDyFQDlhJB9Gx5odgaPu+W4oAbjygD+EMm6Qg0aShiCjOcX6Ghkp0M8v+Ds99vTLdOc1v6GGPE+IuO+R5+i3f7qeLj33h7TBOrPpzXc+oMefeZn23fNDtPac6YGsEglrvYNFGhTFEgLptIJO8J2NRBCn0rwVdFfTU4aLI3Tl8/+ku974HyUoTikkVBmSAo5gbQlhmqWXMj3lSbhdp2sFuiYKwzsG0BVuCk5AWI5k5WPhF2wyr7yVE9g1ztMYYF2wofZtZ3V15GiMYekPraRLg3qGb8DrgmPRJ/SiuKHzoSSQgXDcP6aEwV2+YJxoInrjpUyaW6nJo3R1NkmJmtX5mG2ZI+jUX3Rq4mWd5vmBceiMzawCXfF6bWvTp7fen3bccANa0T1S2l2jpp/k8jvPpRPU0pAqmUxcfs/RGVMtAkeHBHj/HgHeqbZVovlaI4BiEl849kz6+D4709mnfJ29/eKrb9JJZ/6JLjrzezR3M27Zg+z/RMB2OAC8/XVQ9GFWW5Z6B1AMo34fcy5Y8Sb9/L7f0NjEmJJoo0DFiQmmzTXApMXpQLvuik0ZB7s6LNU5UR2SlmZ1dXBshbNm4Qlrv+p5ht7AAobtfaM/LFXX6uoo1LQ5s6qDeVSsPrx4LZFIUzrNZT6OhydhayIysKsYFRIez8NLxsCFsObpTmMbr9nfhL4Ymnl5eANeK03KW5cDWp0YaU0W4YetVYPlS9LgHt32fAt9ZefP0rptswhVCQF4p9qRz3DA61tiM9UWGM3XdwSOvvd7vtsG2fDv+/8+yO5C6StieEMJu/OgHV297ItlWlvzpP5hQ+Laby+7npUMPuhju9AJZ/yBdthmUzrv9NqWMBwYHmUOCeV+/wV9yRqzCeZt2T1QX368qJK2vH8l/eDW02h0fJTGaIxyqRzFBUBVQQSDVaKKmSMW0+QLHOJa1bryPCsrK3/n5KEVIDu7NqjQVJb5ZWPifCVxX+tbAm/FN9U6F37tOciF3thNvuDF6Mo+5BxtkoZYjDKZRufPoCvQddfp4j4Rj6S5jlbZvS592ThTL0bTgdG1fj5UhtcZ7Jo3GLbPlnjLDfByLF76E6y2K6UJdvt8G+xuqTEtcd1mzpb0fx86lAAaobPuqQN3mHL/hjXnU9SYixLWyo3b6tj+qyEB3r9FgHd13E7hrGl0bIyuvOEueuudJXTa8V+mfG5y/RZvvecxevTplwnzmDOznb771cMol+X60FodqLjWA0swiz9orcZz6xdgpCmXpK46KkDRMdhFj7z9JN278CFaObDKqPYl5QdW0MCSzQAAncCHi3xBB5s6DDTBbymdrgptBRg1Am09lxhYl0y0LT3OQ6urzpXpjRU/X8ekNGNa1net84X+2eLm4AR4SzK6ctHODXnxB65fRvKYG0Q0Xy8NImVxjlKfFwDe4YKbC0lpsKv2b2rES0sZtHmJfWnsTy+QbGOrlbHYHY7sWf7gfnHgswt2FweqEeJvTT0/yXG6ltifrY2pqMJaqY2+hrz/tZAA718jwLuG7LAAl1kcHaUnn3uVpre30JabmhV+8EVw1/+epiuuu4Mu/fUJzN92so/+gSEGeFubGydlaOh4ATJRMCHMA2CkvbF+ClCc9+Al1F/opwUr3mDf7XDG4HJZsKN2sCRBsA3waqwuB5smJFW5U7s21s7q2oGiVbtr44wF+2gdFeBc1/HKam+ufC6bN0tKA4s9rhtl2TTABoZzAkJ2AKxVWmNgOs4YXgW3e2xPd2bXdhJjpTnwBdOrJmyWBR9tgND70wNJw5Aj4HUBu57gvjx5gwaWhScvB70O/ry+1yXOLXFPsN1ac+nAuR+lFhRhIaLWhhT1D4+Gnihb7t86JKrBf1fq1Ms9P2q/ekXg6/d9P5QFXbHfxaGMG+SgkaQhyGj66Kuzu5f+77izCPKFWdPb6MRjv0Af2W07w+7rtHOvoJ9+/0saGPbR7ZRsgu+9rr6RurAIglMDXCOc/FgnK7iDhUG64JHL6KWlr8E9l8sOmEZVWDBYJmJKDPgbGuAtweqa8NUuSSgnKc0E0KYzLtfMmsBSB6QoLxxjFmoGYLY8lre2R0ucg269CkiYeMmd1VXXLaLG5AZapTUV8PpidksgRPW6iaYYEwAG2t6ywC6/0GVtyWwmTkNacqhyvvM9Qcn+y9H06p2piXAuw5SYnhEwwzrN7iu95axN6ZBtDqBmRZoC0Ng9UDBdQkqusj4awFZuekttn7bVx0qjWfiJQAR4/UTJuU0EeCuPXcVnnnHeX+nmux6jddeeSYODw7Sys4f23WMH+tJnD6A//PUm2mSDtem0E75Scf9T6UQkraHqmg8ZYE2XhYQQPPYtmVxUg1m80/k+Lep8ly576irDVgzgFUyoCdBMIafpqqBPBuyhtPxSbcakYlcHueZvXvIFJ2Bs4hGTuzUxq02oYEmJMyUEagKOnds1X0EJXwDdcqzGzMjoTLYEueq60L96o5PJuuh3K732LvgUgBfAF9IeXtTMg7K03BSUmorsixXFSCUEw+vC6NrvAuzdoyOHD6lfDa/aIS8/rPrzeomULVORsVTF25awpeJJ2m+zPWmvjXcxTgaLj8INXX2F0HMGSl076/sN2SRLWIuOKAKIwDH3/yCUQPxl34tCGTfIQSPAG2Q0ffb13PyF9L3TLqLfnnEcZdIpevDxeQRP3KdfeI1JCsD83nH1uWVXL/M5fF01w5c9ClCEDXiRuAZQNZk2acWxIj2zeB5d9MjlBthhEgYuUhWJZbpO0Q3s4lscygf+pDhG3K3T6r8g4Z4OAjXYqth2qUBY3TRWKYNkdFUIrWI86yxYeWFVbqFVTTN7qcZqzAnY2l6TbGscpYX5u7AjS6YywSWNuoBdFaOlWenfGBXHxp0tzCoEu2w9LGEuYd7IVcLouoBduSdKgl7rmPwE8ZlX7M488LjrHy0JfJWAfmKLfTSwi3MzqTj7r3cKJqy1N6fZTUt0RBFABL4REuC9PAK80QasJALDIwX6/Ld+Tgd+dBf69lGfZl0sX9lFC958lwFfWIWddcrXWdGH1f2Ajnd593DogBc6RwCsgUkqMfzaijfo1lfuotdXvkV9hQEBT4ULggPYldZaNryifNHLx/4Avc6CAlOra2N1FU9d6xhWwKoyvByL2VS05nocQDdLElMkF1YFMUoCo1/OeuogXfvNAEj2GcvPjf6OgPbaizFeDIPilEimWXJgYNZPPsCuXCHYebC9iAVuAo2jCrCLPuBKgOtTHFW86NQ/Ki5zNMd3ZnbNmwcVuvtItBMdC8xraHl1dtt9UvZ3RCU4IQveZ5PdaP/N97b92YSPLW4IJ+vzHeTfbdgmRvrdICM6tfv6ZkiA988R4J3aGyfM2V9+zX/pjUWLmfdtOm0+roLf7djY2BrB7iL+0AIC8BrVt0K6KJlknNKpOPVNgi/wV6//AbMYQyEJjb+VQJf9q0sYGK60xkbBF2CFGTNsvObM4sp+TFZXBazWc/TfrcBUB7u6btYJAkt7MgDzcUbpq/3zM6zyBT5fK2w1vWLtal3rnPXImfjR7BNxa2lqpuLYBI36rhLhsVE9QGQpvS6ADfYhpDVqjPx8LJwkEWkkyLGqbw49+AK77FNqP9kitzEBrJ+ZWuAykzc4JLE537XYBxDV4D6y0W60zya7UyphJwpgSYZmzsl7/uc82S0R5jntHn7Qkz2haLzQI/CtB44PZQ6XfezCUMYNctBI0hBkNMvo65XX36Zr/3M/feerh9Jas4KpXlbG8HXVFJnT8OMN8wAT1pBLUt9gsSaJa30j/QSt7t+f+ye9373EBnTl2iFFMHxr3YpHqHIAZP6L2mfMl9aCTexOCtKtgYNGM0HNjH5p9wVvRtcKUq1aXVRbgzWXCk2lA4OhQdZArjKeQ6U09VbAkdHVMK/OT6cyeZYwyt0T4oQnDnBP8M9VKrvWF6Mr27uMINaHghUgepFMV2ouDr4dBqJk/YxOGIw6e8MX0HWbn1NCoPWTW2rGVqZ9gpUyLymN8PgDkU/l6AvbHUIbTVvPsRU8bEfHxrUCHGH+vfE7NrS70PBGRxQBGYEI8Fa+FyLAW3nsojMDigAAxoru4YB6q6wbAJ6mfJIGh8cY0xfkccdr99EbHYvo8XefsdlxMfZM0I74R/rpyvE1bGIBuhysmvAUa5BEmc6dSvwj2hoSBGdG18REdgZWFn0we7T+5Oy+oPakVjaTyXWIgXNSmujPCIS7A4M32NXfTSZSFGf/6dpI3PjgGoyOj5d341MW2EXMnFhTHY1C4gB5B24OmIuEw+EFdtE8m47RSEG0KgV02fAeEgav6n3q1Et8fFSTCbFl2comPpegqQAAIABJREFUJnjynmNsWAvnBTSkcnTI3ANo7qxNHWPEPtu5FGN3NblIkB/yGvU1vTlN6Ui/W6PoTs1ujw2J4f1TxPBOzQ0Tzbq+IgBZw9LOcAEvvkrBAg0Xx7jeMYBjYGSQbnrldvrvq/eyR7aGfMEKKiRLKwGFE7BQNK9m4pruiGAWpZAgVP1XgcaW/h0lAwq8MN5XgLIKPZxS4yRLbQXP+F0CXp6cpyf/OwojlBsC/bI4yRcsI5oaBuPUVDpHCYfH3rIBABKAJjSfhaKPvVA22LWAOgXMW7edMReR1CZvCvisrHMTHSnzAeAd9rUG5STbYwK3OIvZ2ofVZuaGs/mlEe8K1wZmd+bgNS3j4tTX0Tt9njZqd2Z2cR5kIvhswxEGNw9T5UBooN+Vbi1TZd7RPGsbgW//74TaDuDS+6Uf/V0o4wY5aMTwBhnNqK+KI7CyezhwZrXcyYDhHSmMB8ICPbzoCfrbs/+koeIwjaFSgoYNVF5LYXU171pxggp0BUDA2RwY6kBEr2LGz9fali1h4D3ozhDOWl2NC1YoPJ0j5v3x5Cy7rtRRKOEoYZArc+L8JItth0jJZIYSyZTvpLRkgiiZjLM94eoiUi3YVUGfx4aF2wIkF1zbi4YqcFMmYZmPL8CrUq5OC9WSEh0maUqqfX3kTHxvmaxSjc1v+eEf7vVNas01e46LG6x8NsH0+WG7wfgKkGiE6w1/8OiIIqBG4LiQAO8lEeCNNmIUgWAiADuw7v5CMJ1V2Esj08pNUH+FTg1j42O0vH8lnXDrzxirlEmkmUWYVcPKi0rg0TkmGqfB0SELINbxjFFJTZEvuDGs6JN/qSvsb40YXW0UhUm18oEqkEVcMB2ZROXY1mAMndBkCUmDA6Mbj8UpHk9SMl0ZeIAOFiDTYP7dKEuPh/H6ljRlLOVsVVzWTJLHb0R49wohtnM38OBlZYWdMtYsBSwCYHW12w8Jgp0IVUv8rOHkJC9OdGdjodn9/Lafog09mF0ZFNxgIWltqlmSQYaBm/DoiCKgAd4HfxhKQC7Z54JQxg1y0IjhDTKaAfS14M33aOGi9+mQA/YIoLep0wWKPnT2hQt44dMJ+6LuChLo3u/+gJ5d/CI9//486h3uo2wyQ3MaplOMJUTFRMU0sLk8QSoRi1MyHqcJGqc3OxcbLOqSvg4aLvI4MHbWsCizM7p29pRXMZOAt/ykNAlhZalfvn8cHReMGfI5qofeXvTA3LHMGRtzVKC+yvzZMaX5inU0GStT4mm2gK9uKp2t+oMAtpdXsiNHJ4eyHpR7AGa3iaoSBqbtFXMpOj2iV/rHfrY5E1iulz3T0XobYpmVcUOiX3XlUupqW0PLY1+d83W2evTq0QXYPWTu/rTlTGfNrnWUbIo7sEw1wNvamKJ8JgK8VX94V7MOvhMS4P1jBHhXs51UB8u58b8P0UV/uZHuuu48ashV/0VdB0vyNQVkUK/qHQnVngyPjVvyKersL88x4sZnbqaukW56v2cJNabylE4mOVCFDhT/iv+YLhRlclFhi7GOHAwznaawFesc6iMUpEC7xb2r2H9WYGuFfvJ3AE1Z1MEJDDsBUQMsqs69BiAyz9D7U2bgwuzK9vgX61Y9da1uEjYNsRWQWaQbEobLjWU2N+cVjyUokQrQV5fb2XJfWyIqKDrvyQS7xi0IbpoSXJ+KpE/NdkwFvJmEpaywldlFj3o2pCced5QvKGeUIW/wuqmRcwLTayWfj/7Q52jD9nV9/V1Bo6Zckml3J7OojO/JuTTEZwQFJ1BWODqiCKgR+G5IgPcPEeCNNmLQEZj/2lt03I8vpBO++Vn6zCc/EnT3ddsf7KA6+wtUKLo8fp2EmQPQtDWmfTPNA8MDdNv8O+n9rsWUSKBgAVkYXc6UArxKcAsGFiAFDK8EuwDEeJ2zufKcOI2zalQTNFQs0L1vPqsQaDoDZ4LLGPexFSFUgbDOxemQ2W9SmgaOXYCu2oaZ5SvljuUc2E3ABBGfpmo5Vp4DgzGWMhfZYzrb4FurW3JrWZAZril8m8v27a2Y2VVBqR1R5tJxGpuY0EC4jA0kDUNS0mBjdu1g17x+DlEpl9l1CaxzGKw3UVKaY7K96O74PY4pqdm1DtvemKb+4aItPiWve4gNwEi3NqQoibvw6IgioETgew+dGEo8fv+R34YybpCDRpKGIKMZQF+F4ih95uun0zprzaA//vJ4BpTWhAPADo8cB4ZHQ13utKY0dQ8UPC2pimOj9OrSBXTPK/ex62MwuZLRxWtCisBALQAu0+wKsCveZ+8xMMz/Nc8xz+ev4XdiZaef/2Ah9QwPUPdwv8F7qq4N+H508rK1M74Ke+vA6KpQVDu3BKMrARNjdUW1NAusNbLODRsyF0bXDr6UmRj4SAXvMZK+uoFsIg+AKtleVtShlFdumUDX5FsdtABOfQnmGTEvjprliTFHMIQjVtcRB71ueayu3tp2+SoAus598HHwtyGfytJnt/5kWcyunAY+010DReaxPFUOJNm1NKRLWiZPlfVE8wwuAt8PCfBeHAHe4C5i1JMZgT/941Z69fV36PyffXuNqbiG1cM2qHewPDlB0PumWSSJuOn9Xl/2Bi3tWUbPvveCoc2VoBaolFttScaWa3bxFJz9KwCxlC/IfwFY4wLUcoZXBcAm82tqcmP0wpKF1DHQSx2DvZo21qv4hAkg1YQ29VUeTUcNLntDZ4atldLQhJG6rJKaeWWcbM9wHwdg7lzG136G7M3E2/pcoNV18tWteH94IEAVNuGJM1i4IiokWh9OlAl05VwdAa9bX8rr7MkByiRPTDBwx54cxGNUsHr4mnca4np7RCkgCYOXfMEOdvXW287egraYsTFtMWOTii4nvGw7egslC3hU1HmNToKNWnPerMBZo2GibqdgBCLAW/lFixjeymNXszO7e/qpf3CI1pkzo2Zj1GPHSFzrGUCls/CYGGTBNzekaWXPiBai0bFRennJq/TYm0/S8NiwALvQ4ZoaXQZUFU9dVbPLwa1MWJPaXiFrkOyuIWnggA+sL0CmIXUQYFT+3jcySPjv4bdfNObKdLxwQZBGAA4QloNGVZ/rBmQFo+ogGdAAqIDIVlbXDp7NcaTWWN+HKpesvmNldnVAVMpXt+y97hPsyn5ZEqLw7WVsKrZvBWBXB7pKBz7ArrpGAHBYcWEimA40vtqhzM91muINC5er3sX4XqIX2BVb0XKJzH330Q13p53X2Y4yyXTZlxEnoLRyUz7FAO9UOXADAHYXzhLREUXAGoEfPHxSKEG5aO/zQxk3yEEjwBtkNKO+qooAgG5XXyEQH9xKJwJJwPTmDC3v1gHvKx+8RvcueIDGaZxrb6VsAd/NigaX6VNZohYHs9DmckDECwCbSWrCvUEyujFRIFh65QrwywEBZ3wlSDV+Z+/FCWB85UA3/e+tF9iywTpytlEFkBVKGCyIRO+Rj8G0ukQerK7Fu1fExLyvsQJuefWsQNdcE1tnmb66JfdEmUDX2h+cHHSv3JIjGg10SFoCkZYC04IyTSf4tRly0MV7dlFTsKvsS8dJmGD30C0/TlvN3KwqWReYUmzPqeTQABeO9qZ0pN/1//FZo1oeHxLgvTACvGvUPosWW+MI4FEsAC/M9cM81pqWo6UdQ8Yj0BV9K+nqp/7JgSdj8rimVkoYDGZXShEUNwaV2TWlDAy+MsaXn8t/Z7BQyB8U0YGheTWT2vi7XA4g2GIWsBg9+e4r1DvcSyv6e0UIRU8ujC4/ywKM2a9WEKr+brb30up6JaQhFhLwujGA5jT0FtX66tr2VpVAV4Te6DbLfHu5nrbUswrH993m4xPoyonwMsl8n6iSC9duAgK6zv0r+8fWQH9v4/b16dNbHkAN6XzVfwag30VewHDIf1PKWQhumjBvfLaiI4qANQInPPKjUILyu73OC2XcIAeNGN4goxn1VXUE4IE7GHLi2szWDJNWAHiPFEfokof/bDK6QsIgmVyWsKYwt2Bcpc0Yd14wZQwS3MpkNbynOjMIjwbTe1eTONhBLoOlShv8jrnAu/OhN19mrO+q/m5FJ2thWm2GZwLm+tLq6mWBVcisgmgOBu3uC+6A15vVDcpX1wpSnTZuKbBqnOOASwA2uZZ5wi4pECe69u+Ec0phH4esLzC8kDPg9hE/48BTFEfFUEBgV79VkhHyD3Y/tNY29JENdw0E7GL0GS1wXQlXJlXuH0V4J7c1VSbhKHesqP3Ui0AEeCu/ZhHgrTx20Zk1iMBIkRegCLMEKBLXMP7K3n56fNGT9PLSVw3LMZaTZgBck0FjggSRlAZHBg5unf6T0gXJzJruDAwAq0yvSGTj5X0Zl6sUo3BOZsO4DZkkDRbGqHdogIHeR5nG19lTVwWnHDPpbK8OYDjDjUO9Pk5JaSYYdLYaA/7SgZcTKDJfq4Wvrtf2rQbsGjBP2JcBcBZGxw2727KArjOC1KfuYpOgAl5EEpculeSeyKqPsHiwoPSpo2u/LgzVgt091tuJgd1EPDjt6qy2LK3oHg7170m5fyZbGlLUwKo+RkcUAXsEfhgSw3uBC8O7qrOHGvI5ymX93aR5tYcTUUdnL82a0VaTSx8B3pqEtTad9vUP0rX/uY+u/c/9dPrxX6b99t6pNgOF2Csy95ezLyjfkCPw2UJDl01P0O0vPUovLXkZbrhKAQnpq8v5WF5YgldOk567MjveZHK5764Ewfw8bjdnFKUwTcY01pYBYAuLa2p4dbAswSu+LIdHALM42CyMjdHVz99pYlAnba8Lq6sCYuhB1QISVnistpVrs18cqXGGX7Buu2XALAV4yz5r6atrnaPvnVeKdRUBMnx7R1EgArvJ4QhIxqD2LAGvdbwUClYkElQYHWM3HfahlVd8FpLwkjF4WY5hvu35FvrCNgdTe641ULArtbArLHr8wP9gBNzhjNYMpSL/3YCjuvp0d+KjJ4eymN/u+Rtt3Pc+WE7HnnIBvbt4OXv98IP2pp/98ChKIZnB4fBqD6D7q4uvoXseeoad2dSYp+9+9XA6aN9dAl1rBHgDDWdwnQHwdXT1Umd3L731zhK69Kpb2L8tzQ00ODRCn9pvNzr7lK8HN2Cd9IRHwMu7wmVkwIS93/sm3fTCvSYgtTG7okCE1ODKAhNMM6lWUMPPZoKaUXnN8N0VQgaZrGY4NnC4yv4nE9hKJrRx2JFPpww/Vnk+wOUryxfRC4sX0Kgw6uW4UmFW2dnODG9cK2hhYQAtkMluNWYVPPDqa1qBDB3tipkE6KtbApz6BrlmiEp/YjCm6Jizq3FWlpiBXo9yuyXtD3xQrhgabO7oqAPAZjdo3KMXlmUTDISXD3LdQyGut2PM9fdmNEyjYz/8pdKxrKAFXA6y6YTvQjIVDBH4Kbi0s1qzkX438MiuPh2eFBLgPd8CeL/5o/OpsSFH5/z4G7RsRQd9/lu/oJ+d8BU6+IDdHYPt1R4VZs/943V093XnUXtrE/3nzkfolxdfQw/ddCHlA6w4GwHeOvscLF3RQfc/8jx19/bT8/MX0gsvv0mFYpHd8Rx5+H601WYb0G33Pk5vv7+MrrzoJ9TS1FBnK6h+OpA0wKIsrGOoOEjXPHe18dhXrYgmC0WojgsqS2vKGHhSmgF2RQEJrghQvHbFzxx7qgDX+jt/z/DiVVwcmPevCY8pnYKoghjYYYl1hsNDjN5Y+R6t6O+m15YvMsCuFY6qSWyY70SMM7vycFYCO2t1dQBt9gACC04SJpmrA+9EMk3xRJLiQTzeDgrs+mF0HTat5tubiBGYR1Rpc7Xf8xrHJ9jFNNIpJM5ZSvNaGFtYmOFaqOWJfQyh3BqpC1auoW0N+nvT8+206fQNaZ8NdqVkojaP75tzSSqMjdOwrDQX1h+UMsaN9LtlBGsNbfqjx04JZeXn7XGuMW5P3wDtfvB36Oo/nEo7bL0pe/2ci/5By1Z00u/P+YFtfqXaX/L3m+mWux+jW6/8JWXSKQIbfOCRp9A9/zyf1p49PbD1RoA3sFAG09GlV95CV1x3B6uq9ZFdt6VP7b873fW/p+mZeQvoL789mTbbaB167OmX6MQzL2UM7357fSiYgeuol5HCOHX06bZgkzm9m+bfQl1DKzgTJ4ojGEBW2oQZ1dGEbZismiay4k2wa9qRqUytUPIaCWXSqcEAwwJ1qAyv1NiavrymA4Oh/mXFBuKMTSwWxwVINrhiRuiOjY3TqyveoSfenS+Ai53lZcDcAnQFVFcuhQJ9HRLTnMEu74X58BrP03V0lE7nKBZHqeYKEaZ1s3h0UxNmVxnfqX8U3eBFSMheBa3Ukn3ERHYBD1oGeC2Y1DoE29uwMItZtL0eHzrnaZZmdtFlW66ZVU2b2TAtUAmDdbrQwg6OjLIYTJUDdmRgpaMjioBbBOoB8L71zgd0yNGn0oP/vpBmTGtlU/3Hjfcw0Hrj5b+wTb1UewDcI79zNk1vb6FvHHkw3fXgU4zZ/fVPvxnoRogAb6DhrL6zV15/h/K5DCs6kUpx5uOlBYvoq8efSyce+3k64tB92Wt7ffp7dNgn96YffvNz1Q9aZz0ACC3rGg5lVj1DvXTt89cxwAgQCdDrpM/lQNRMYGP6XaNUMD/XajvG3QrMZDUG/WR1NkO+AI1w3GRyhdeubKvKHCQA1QpTAPBSnNIpXlKW41YJr8UZApyOj4/TjS89QJ2o1qY80k4khFZX4IRKktL4SBakJX6VsbK6BSSTaQKzGwjQLQUcTbVB6X3moy/WiWwn4lZKqwsnB7C9I0o5YMfJlAFy5fk4Bf0zwCvm5XY9ZNIaQDjOwXzcJPReQJfvUesK7Kzvqft8z9Cwlw5+5S3aGlPUM4iSwpX3MdlnRvrdyY741Bvv5Md+HMqkf7PHr41xX3j5DfrSd8+hx2/7o/GU+YbbHqQ/XXULPfCv39nmV6r90HCBTj7rUhoaKdCid5fQ8pVddNFZ3wuc0IsAbyhbp7xBoefd5zPH0wH77EwnH/dFSiWTdPEV/6ZXFr5L55zydXZXtLod0PFOdsW1sfExuvPVu+iD3g8olUjwAg5jEpRyQKvKDqT9GAexHKjGUHDCSGYzQa8QJJiaXClfkMDZ8rtkek2G14C3pm0ZO5dzu6qTA+aZAeAtimQ70/vB8O7lUgLoFYhufeVhGioOU89wn0NZYB26quDXGZhaBRLW8zkwxLkSVEG2gP+SqUww27iOJAzGglzmhNxFaGnxGbexsRJFl1iP09vYj1I6YQ+qBfpaOsjI+ahaY9sNjAGt+Swd52gyvvlUjvbdeA/advaWkwJ2waK35FMEm8MQ81/L2s+4ZrPbc2WdEzVe8yJwSkiA91wF8ErG9qGbLjLwhx+G1639BZfdQPNfW0R/veAU9rcQfZ136T/pP389mz3VDuqIAG9QkaxxPxf95UZ67Y336KyTv8YeISxeupIefHwefXyfnY1HCjWewqR23ztQpP5J9uMdLAzS3QvuoY6BVSxLGmwXtI3SFYFrdblLA2N3ZaEJw35MlgoW/roKo4vgSWcGqbnV/xUqXAGqWXsJVC3aXkOva7xuTXCLU1ZheE0wzPheAbpNAI3kJvj13v/Gs7S8v0vBaCqK8Sdf0OGt+RsH2CZIwuNzAJFYIsWAbiCsrn1w2571/XDbL6trGaEUq6s1V8Zw9O2tgNmV/UvZhK2ssCU5zS1k0PVKVw7oje3hsDO35tr01o2ZPH18k4/QZtM3pFQiNSl/R3DDB2kA/LSnypHPJqm1YXLiM1ViEs3THoFTHv9JKGE5d/dfGeM6aXLP+t1VtGJVl28Nr9r+C9/6Be247WZ0yneOYGPgKe82H/sqS4L7wqc/Fth6I8AbWChr2xG86zq6emjDdedQOp1id0Gvv/k+ewSw7ZYbUWI1s7EZGhmjrv5CbYNq6X3B8gX09LtP0dj4KOGxfiaZoFFWo9esZmZakQkPXuGVa2h2tVLBDolnQk5geO5aikswAGK1IfNwdJAyCZUJRt9IfmEV61iVWimEECBXSDEg1YB0AweAUddgP9322sPUOzxgwWVWRtAKfxTw44DorGAXTeC1ms1kGLMbSBGsoFhdH6DZWCLGVBBupWDXuA0AM5+MsUIRzmyvvmFdl8xKWfP9qQNe5QwfdmO8JDbf+/gcOJaC9mB2gZL33WgP2qBtHVqraVZwNzU+/ipk00jGi9HAcHjJrz6mqTWJ/HfLjdia2f7HIQHeXyuAF5E/5qTzqLkxT2efcgwh2f6Lx55puDT09g/SUd//JdPjSmsxr/a/uOBKuu/hZ+maP55G6641k9mT/fDnl9C9/zyf1oqS1tbMjY5VF4qj9NAT82jbuZvQ5VffRm+8vZguOvN71NrSuFoFBaVQV06if2ZxrEjPvPc0LVyxgDGx+LIE4B0bh57R1OuqWl0JTE2triw0ARAp3RFECWGpknUpJSygqKa5NRwZLKys5sqgFKRQwS8YXlZli/mscimGkUQWi1FSrA+yB4aJFR/gjoEeunbenZqu1798Qa5EbEcd7bIXMVYmx/drNgk2fIKGir65V5+oz2zmq+dyGF3Z1k2r69WX53v8Tew9eOiiWMWYw+Q9pyqALPrAJYUkx3oP4nepsh3+zWYSVCiOM2cNdg1tndgZ349uuBvtvv5OkyJhsP7xgyUZjsGRqQN4pzVlKJPmN6DREUXALQI/efynoQTnV7v/UhsX/ruwGsPTZhyHHbgXnXHi0cyHt6d3gHY/5Dt02vFfNvKOvNp39/TThZffSLff/yTra/11ZtHRn/8EfWr/3QJda8TwBhrOYDsDi4uN8N4HK2hlZw9df+sD9Oy8BUwz8/UjDqKtt9iIsb1BalyCXUHlvUG/C3uyIipUTcKxuHsx3f/6Pcz/kksVYOuU4B6lzN2LA1gpa8BvUtMrX2csr2B8dYsxs0CE4cagaXal1lF1U+CvqZZiDLJq1dh0yzHRC5sj04WOC+svATrxTzwepzR7GsDlGhLsGoCX6XpjtLhnGd278CnqLww6MHPlM7ocJMUolc7ZrMZAMgOgcY/aMi52UKyuXwTIFmGyumVVTCs1hgVBMt9eeB9P6OWAvVhdOT38i3iirfbx8cHqqn3oVwJ7ilfaAxDXdbE62J3TOJO2nbMl7bz2dpPK6qrzbcwm2H6aKpZkeKIEh4ao4EQZn/81tOlPnggJ8O6mA14ZfiSYwY+3IZ/1dUW82sOdCk+zZ89o99VXuY0iwFtuxCap/cqOHrrxvw/SW+8uoYeffJHaW5tpt522opnTWulD225GH9p289VOxqCGFgUo+gaLk/ZI8n9v3EcfdC/WNLoc8AqtqaHdVZwWhPtBggt6uSuDSGDjMgjnUsDSXsxgahXwK4Gh6sYggaze3tTtcmZXsLTiZ3xxAhzLR9o4l7/GE9VGRTIeBzgipc6wFuP9vde1jN7rWUbPf/CaZddbfRtMmKQTuiYQggODl68udxUQyVtOtKY6g6CArju6c/6UlwK7bvMqE+yqg6fiMUokdJ9c2+RE/+owGuB1eN/rz5jRj7Fe5TomuFQCB/aQCvpxDbeeuTntt8me1JhuCA3sYh5NuSQNF8cZKz0VDjyRaWlMsxuV6Igi4BWBnz5xaigB+uVu54QybpCDRoA3yGgG2NeS5R103I8voF12nEt77Lw1zZrRzrQtqFcdWIJPgPMNuiswSP1DReobGg26a1t/vcO9dNtLNxnsrWRska2OL08zcU0koxk6XcbzauWBrcwuA6kCLBvOC24AVwGccg6q+4LK4Kq2aPZENKIk3CLAmo5NMF/edDLBWDkkIAGlGJ7AimbYEDYoAHp8Ypze6FhMdy54xJREuCAuE+zqX9p+fXU5A82tuqAZdWV7gwC85eAK2dan3ZgbIHXcyD4S05DgBwYQ0yhYPWUdWVvuc8z27rhTwpk7njfeMdYsdp0lXrhGjJVnBTS4xOEjG+5KO629LcGRIcwD82rMJdjNsj1pL8yZuY/dmEtSUz5Vsshefc4+mtVkRuDUJ06bzOGMsc7Z7exQxg1y0AjwBhnNgPuCpMEKbqHhveHWB+jSK29lsoavHXFQwKPWT3cDw6PUO1h7W6GuwU6667XbDLsvKVUAuwbWsTDKv9BV6YKZJCatx0ytrGR6pU+vNQlNyh50twWToTXdGWSfivWYImuwuy9wIIvXwTojkZEzuwlCEiAOK9BlrwkZhgS8Bl+sgJ63Ot6n2157SNkc+mNs/obyGh6rV+Grm8sg7uOmBtUnQC2p1/XZj7Ycr8S0SlhdBeQqpHFJnGz17bUPbb4iAbIfaz+tH/OuxYZ9zQmaIBjMJGQX283ehjkx1MPNOABvPpug/qHRKWFJhu3AAG8ucmion2+f+p3JqU+GBHh3jQBv/e6K1WBm0LOgVN+KVd1M1/L36++kVxe+yxwa4ok4Hfvlg+lbXz5kNVip8xKg34VTQ61Zmn8+d5VSRMIEhTJxDayaruE19bwGw2tYlZmV1bAqaUVmFocwvXw15tcoZMFZZcVozADimiMDR69SjCB+Ns+D+wLA+tjYhKHjtBatMBPr1JQ1CZplXyaQnbfkdVqw4m1a2rfKxIPa829+HYPw1WUShyQv/AFA5eWlWhLkyu1VIdgty31Bx/3OG1sw6G7z9pomfHsNn1yjiprlDMQuHmNyg1KA1w52zQU4z0O8KpjltZtn05d2/CTNamqjocJYXWhmwT43ZBLUOziqV5mr07+UmG9rY5rp7qMjikCpCJz25OmlmtTk/bN3Pasm/U5mpxHDO5nRLnMsgF0YMt//6PPMaxca3hntLZROpeiBx56nrbfYkL75pYNXy8ITCBW8+Lr6izRSrF2mdWF0hG6ef73BfLLkdqG9BVjNphKMaeTaXIukwUhiU3S9qoWYxT9Xsq8qO8z4WMHK2hPUOFtrky8IWzGDkRXnszkKVppJKaSEQXFgMGQVmuZX1eRKRwfD04G7NQgQXhwdpYfDhxmIAAAgAElEQVTffo7mL31dIXRVZjFAX10UTxASB7h2OEkcfIHdcoCuClhr5MLgxeqWxMviUgAkyeId2g2hiBmXG6hWYvY/PvZ7FZ2h18+wM/pzZ25Kn9xsX8qmMszeDs4I+MwOF8dCLecLD178B8A7FQ7EDglrkX53Klyt8Od4ekiA96wI8IZ/8VfnGQwMDtHrby2mkZECtbc1axrep55/jb576oV0zo+PoQM+svNqGwY4NQwXagd4+0d66a5Xb9EYXJ5wxoFmLpNkwGFi3J6EJttw5wZeYU1WEdPBq1KhjSEa4a5ggGNTDsHBpeLWINqLtDIOUxXAq1qXgdFNJuI0Cp2nSAKDnytHpvw8EyRLmYQiZDDIO97eAF9iPnyTAUiN0nOLX6XH3nvBaMes3FLcVzeQx9oKSJVVw8D0quDOF9gtiSCVj44cM2gJg7iGciqVMLtSLaJid8QZwA6lc3FDgH5hZ+bspGCu04b/LTIGL6kEemnONLDEtA3b1mN6XXm9eeJhjJrzKRosjNFgSB64kAfggKRhKhwoAz6tORPpd6fCxaqDOZ7+1M9CmcVZu5wZyrhBDhoxvEFGcxL7gl3Z90+/mPbedTs6+gufoCRSuVfDA0lrSF6rVXnQh968lzoGVhhOBdxnl8sSGKBIJAiPkZmrgfifvcSwZGGF+lWe7yZTUKQIqtRBdVsw2WCTAZYQVLo1SPjK5skS7GKCWePgNp3g1kzMVk0BvYqngw0Iq4lrEuCaYNsYkb31wFtP0/NLXtV8davegh5srNSwDhZ8ZN6Xw+pa2/K8Pg+E6PM9C9CVZ1kBr+dUXZLS1OmB7ZXlicGCA/y6HdWyuuj35D2/TZlU2nUM3KCgrG8iGaOOnsKkywraGlME/b8twa/qzVmbDqDdbcpzkB4dUQRKReBnIQHeMyPAW+rSRO/XKgLj4+O0dEUndff00WYbrUup1Or5BxOM3qqeEYJNWdDH+PgYPbroAeocWKlIGlTwypPWMqkkY5m5jpdrbE1ZgvjdKCMsmFOLz64hThByCZOplTIJE0xyEKz+Ln82dbt4RRbIgK8uMA7PyOdnYhawVWNeuyx0SvEM2buRPGWOxzGanC2PuBtATsSTlMg10XUv3EpLepZXf3l8gFTmDhAjKnp59vrox5is2rZcCUOpcUR8HYhjx+FtATQYd/UdZVDxI+LBK+bFCH8X5E2Oy1mOUhQvVhfLAJPbnm+lI7b9NGWTGV/XuiGbYBX/4JZQGB0rz2PZ1wjOjSAP6BkoTNp4VUyVnYr5ogxydEQR8BOBM546w0+zwNv8YpdfBN7nZHcYMbyTHfEqx+vtH6CHnniR3l+ygl55/R1a+Nb7dMmvTqBNN1qnyp7r83SAteVdwzUBvMPFIXrq7YepZ7hLAbBCziAAK9wOIGtggFexIOOaXhdmVwAdgGOtWprR3mSLNSCqAE1T2qCysyYMht6Pm9SLAhIOVmNgeJkLGUO8KmyV8gYJZ81+pVZXecU4VwXp2VwzZTI5SqYy1DcyQLe+dA8tXLGosk1UCjjqFXzZDQfYXpw24mDT5WsSfoAuD4/z4TVniwsDOnC6XXPtwo5pxRz0N3D1WenfeIzGoHGe4HHBtoD9nFEVzboCixVaKbCbSqRo/433om1nb0H4uZwDbG9DNsnmOTgyOazr9OY0dfQVavZUqJz1+2k7qzWzWnuq+4lB1MZ/BM54+uf+GwfY8hcfDmfcAJdAEeANMpo17Ou5+QtZpbUPlq6iRe8tpcGhYWrM52hoeIQuO+8k2nm7zWs4erhdd/SO0EgNDOTf7XiTXl36Io1OjJqWY0JDa1RVozj7wkYGuhA6GL67BstrY3NVza7pw2vKCsxENAP6Woo+aCyroqHFmZlUgs1FMnl6tTTJ5HKXBoBdaF8NqYLC4Kqvmrpbnc+V81OBe3PrTEomM4Z2E2MA9N75ygP06vI3yt8sJQCvG7cvvWDxCB86Vt8iyFISBi+gW+o99r6aBGgHuyXxvU3GYDkDvrxCoy0T09QYcc0zf/KgFV6w6xkcQmaOJXHx0Tt8jmY3zaRUovKnSGCgwfji6O4vlr9HfJ4RjxOhRO/KnhGfZ4TbDPZxs1r9VagKd6bR6PUSgZ+HBHh/HgHeetkCq/c8XnptEX3x22cyne4eH96aTj/hKzS9rYWKo2N06rl/oceemk9P33nZahuEvsEC9Q0Fn7i2cPkrtHDFK0aJYCeNLoLamE0x4DA+wcGkqvHF+8bvImmNp6+JBDbBBGucrmRy1QppSlKZ4bqruC9gHIAYaDV5kpIsKGCyzHwDcOYZ/0LqgKx5AF4roDWS0krIFyTQRc/5fCvl8s2uSWkAvn969B+0rI/XVnc9SiI+88ySQhY8bk/HGfgvqdl0GtevXrfUnC3yBXXtcg2eXTjKFyzoWrQBs4tH4MynmN/NaIccB7Zu2DO4WVSbeTG6bETRAIUkdl/3Q5SsAuha59bSkGKJdj0DcF/xocUu868anCKQBFZLUF3mlDyboyIcCk5ERxQBvxH4xdPhSAvO+HA4Ugq/cfHTLmJ4/UQp5DYAEmB4t527EbMkU495L79J3z31Ijry8H3p20cdGvJMazM8/HiDZmzgNLBg+Xx6v3OR0ORKba6u0ZVaWPzLQaZgb6VmV3VVkO4LalKaovm1++ZKiG2ygqqUQYJksFaonIb/CkKTq6l8LVIIyQ4zwEsTnP1kh64NNjP/OUC2yRjYCzFKJbOUSmcp39BS8gJjr/71yX/Se11L3NtWyOi6Iju4EyR5p9As2zCgA6OLtrVMTLP2Xz7YtesaAHRh0xYrYTmmjoW2zLcXNwTYO45EuM7qJuIJ2nXdHWmP9XaiTNI9Oa3kZnBpANkFQB7sBocLzqC90r7bm1KsyMqQn8TGSgcJ8LwZLdzSLTqiCPiNwJnPhAN4f7ZzBHj9XqOoXQ0igASV2+55nM65+Go64tCP0Qnf/HwNRgm/S4CoZV3DgWryBkb6af4HT1PPUJepxdU8dBlXythMPDpHtTIAbwl4OZMq3RwMaMq9EKSvriuTq4NLPUnM9MEFU8uALktKswJXAVJVT16LLALn4fE2bIwlmGUQ1pKsZj6AFz8p/WSzTdTQ2FaW1VhxrEg3z7+bXoZXr3qUYklF25KsLsfhtoPpmpNc02z1plUb2/IfveZVas4W+YIcR11DKbBbinHFWnEd2Q3MxAQvD+1yaH2JGxY0ZZrnWIxJXPRCLmJniBO3nrU5zWmaSbuss0NZ17zcvxJYD1jqbDrOwKmsBFhuP9b201sy1N1XYIz/VDjmtMPWbSrMNJpjvUTgzGfCsQf72c7h2KEFGfeI4Q0ympPU10ihSNfedB89/uwrtOjdJbRsZSf954qzaLON152kGUz+MEHreOHM8My7j1BMyBRsldAEW8uS0+IxVoBipMgrrpkODZaftaQ0pRwwA6Wqe4PgU13dGDg4gXwBI8hqY26sLk8mszO0AIAAvQDqJuQ1pRb8KvI1mBiS9wWNLhjdVApa3fIYKICqweIQLe5aSre/+gD1DPX61tf6gikeAIEBQ+ZNy4GhrT+/EgYXUG3sfIfENA1Ui19KgV37MJYzWNU0AN4YS0pzq5xmB7p6z/xGjEzfXqNKmylh2G72XPrYxntQg+KtW+tPOoA4ZAj4jMGCsNqqijNbM8LVpdYzr75/3EjPjPS71QdyDevhrJAA7+kR4F3DdlqIywWIeGbeAvrV76+hN99ZwuyHoOndYpP16M13PqBpbc107SWnr7ZV12BtBKuhoI4Put6hV5e+YAewEpxKfS2AbyzO7JWgEQU7aJYT5qCCM706s1tacuDsvoAeE3Fe4Y0xlcJqzOjP5uSggGkJYAUYg8MEHpcWirwQhYS3qnzBgLwKG4hH2m3TgnH96Bvup/P/V1pfXhLolsOCiWpjAFPDRV6QAf9njFGqr1Io1dEbt4yd6SMpTcJV6F0xHazD7TCma//BMY8PTw3SqRjTpUuyeNvZW9IhW+xfU1bXK0IAvc35JHX1FWmE3aCVf0D6AwC5rHO4/JNDOAMFOmSRjBCGj4acohE4+9lwSvyetlM4JY2DvEwRwxtkNGvYF1jdq/51Nz34+DzaaP05dOTh+9MmG6xNyWSCOrt76bCvnU777rkjnfLd/6NMevVLgkCCC1jeoA4A3teWzTPAKwMYktWVrgh4lCxkDZlkgmlDoYdV2WCZICYZVi6DUKCl6rtr9bhVtL4AoWBk8dgalS7AyuruC+a40h5MgcxKAQn9VTg6cADhoNE1ADKfbyKRoqam6ZT0KCpQSfw7B7vp6mdvoo6BLtvpJYGuRH5+B1bAKvSuqMeCanO4biUBb0kgrDLhfidkaVeqkIR4H0w19gP+V3ApJOGH1dVHN8/ANoOLx8ym6dSebaODN/94aGBXzhHrBejF5wdlgctleyGRAHBGdcapcLQ2piifqdz5YiqsMZpj8BGIAG/lMY0Ab+Wxm/Qz+weGKB6PUz5nN34/83dX0cuvLaJzfnIMbbphMOzcpC/QY0BWgKJ3hD2qDuL4oOtden3Zi4rFmNTs6oCWlw3mQBRgFo+UnSQNpqxA1cEqFl8ujgyyL4APgGcwyM6srs4IS+hlMssmMlShLZNiGIyZc2Ia1qX66gYRX7UPPJ1Y3LOM/vvKfbSsdwV7y/dVLAVC5UBO7Zg7BRGsn7iW2SGhzet8dREeLgy+4mUw7NbWysTFj6w8MKrmwW7NJVB2sGu+4hwy5X3x46bTNqBDt/oYrds+nVUzZGy47wvja9UVNQJoxeN+6JUHhsZ87xU4HuDzOTgSvKNLRQvxOAnbCeWEIVuKjigC5UTgnGfPLqd5YG1P3em0wPoKq6MI8IYV+YDGLRZH6aEn5tH5f7qBWlsa6ZxTjqGNN1groN7rpxsA3Z7BYmDJLc+8/RANjPTaXBc4OaskpInfU/E4kxqwEsOGJtfUzpqJZ2ZFM4NVtTC5JgPMNbbcL5dobIyYq4Li3SDszVzcHNjlkUUkLGBWSB+49hhFMyTgEZpdWS2OYmT11a3FVR+fGGcM77XP3Uwdg93+hqgS7KqMLmd7UXrZAUSWGqcmYNcOdAF9IEFhNz1jQorhECkvsMt3hDuoltLjjdrXo4M335+aMg3M11nqaLv7C64g299FC6YV2N58NsE+GyhYATeHUgfYYfhlg9Gv9wNAFwwvPv/REUWgnAj88rlzymkeWNuffujUwPoKq6MI8IYV+SrHLRSKdM1N99Hfb7iLVnX2UD6XpR9/9wj6zCc/UmXP9Xk6QEDfUJH6h0YDmeCDr//XALtMJamVC9YLR4Btg64VoAlMM5K4jFQvS7U1Q1HrkpDG8TM/G196+EKXzJrs00wSEwyxUXhCAbWKXlNLOtN8dWPcr9UAC3rCWi7XwhLTTNeGQELr2QnY3jPuusB7oFIAVJ7t1s5Drwst9sTEOA2XAkUlktJ8RcqR1bVMWkgYUEgC+4F565ZidX1qdY1ERcuQx374yzSjod22hJZ8inKZBK3qGaYKZbS+wlJOIzDzM1qzNDQyymQOXkdbYyqQxLdy5ldpW0gZANCRrBcdUQTKiUAEeMuJlt42AryVxy6UM1FK+JSzL6P3l66ktWZPpxntLbTDNpvSN4781Gqp3ZVBBgbAY9e+El96fi/KwwtvN5hULltgUFRodvnP+J+0HmP62iSsyYSyVpUoaL67QDBayppN04tkMsnscJ2iJlAQDDITKzi4L5jJcXyW5lydygJDe4zHvJCByjXCV7epZQaTx4RxjBRH6PInr6MV/R324f1+/7tIGErqdFnRBth7QeLg8gg/IEbXvD4OCF0Bw3w/uEsYbEsVe9Ud9+tnSOw+Ld9GR2xzCLXlW10vOxL9UBwC+xI3mC7y4UndNpg/qrTh5hDJq7gpsB7Aja2NaerqnxolhZGshqS16IgiUG4EfvXcL8s9JZD2P/nQTwPpJ8xOIsAbZvQrGPuDpSvpv/c9wQpQ7LnLNrTRemutMXXYhwtjFNQj10cW3lHCYkxytRx0JmKocpagMcXqSiaoKUpdAXZVJtaEpGBzkCEP8Ix+gHU1+YLNgUHr2VG+wECVAdBU4MzhFkACHuXDqQFWY+lMjnI592ppFWzJsk8By7tqoJP+M/8upu0VmN1/Pw5gV9OelgLNIiEM1wFz0XxtqwW7AuVaIKe+NvEmWF08NQBIB8B0exDvJWFwXqr5KpaTTqRohzlb07azt6BZjTNKMvo4pzGbZPsUNwUAmfVwZFNxxkAjVvhboF43AHWUAEcFt3oXNODvAG4q8LQhOqIIlBuBX4cEeH8cAd5yL1XUPogIwJIsLHYuiPlX2ge+6MDgcF/Z6o7H3rhLSBo4QuGyBgE/FQ9eKT8A04tHzmC8WKleK/tq8cGVml7eOwe60GdCizw2rgASqa5VZQtGMQl5tmSgzd/l6vWiFbpDA1sX8xCO09hEmvKN7ZRIIAu+FCKsLrZ+zgbQhHvDP569iTqHqtP0StuxksDZqiYQMgKcxyznxMSrio4PFwYMIyUMAG3VeOs6ImnhuSvfO2zuJ2iLGRtTMl6eIwBAJFhTgN7egWJdaHvB5MKqDeB2YHjUqKgG1h5PTYKSPPnZw5W2AZvf1piOKqxVGsA1/LxfP/+rUCLw4x1/Esq4QQ4aMbxBRjPqq6YRAIsHwAt2p5pjYKSPXnz/cZcCEsC9UqPL2V32G3NqgDUZMv11La3J0qoJZKZeNp/mQAOPYrEGg7fVmFlVViEhlz0hjUFej0ppBiRWHnvPnr0+tTdlGPsFe7d6Opim9+4qNL1Sr+uFUj3fE3ZwSe5LW5EJiE+tLr82nNXFfyMukgovRlf24QZ0+f4w3/3urkdTW650SWivPdGQSbBSwJ39BRajeji4hIEnfa3oHmHML7w/hkbqY35eMcKN7/RmFHSph0hGc5hqETg3JMB7SgR4p9pWWbPm29M3QB1dvbTBOrNWG0YYxSeqfcQKwPvS+09wNwaC760pLZDgVupnuQ8vfz+VTDDAwpwaBLLQk9cMuMmrlYlKZ6AOUd5XvquCVskUW31yraBW0/naGGCtZ2G1BkY5QzlRLU1qMwdGxgJzugjq08Q0vU+Vp+n1/di6BNiVABIASpYlLku36hPsohn+AzsJlr/gkplmB7s6xLUvR5cvoDXkNzuvsz3tvcGHKZ1IB8LoY97QneJmEzdN5XrkBrVXrP1gTukkjy4cGoIqUVyr+aJfgHMwvNERRaCSCPzm+V9XclrV55y844+r7iPsDiKGN+wrUKPxu3v76cLLb6Q33/6A/nzeSY7evTUauqbd4su2s2+kKr9QAN6XFz+lJ60xZkxWTBP/iqITHJSCmYMelheFUNW1qiUZFg/WCRZm6GV0XCZGGR4MShKb6cJgAl47g2tm2+saXYsRmaHxjcUSlG9opWy2UQM7AL3QZhbHwYSNuT5Kr+kFdOjc0PS+dDct7llqtnABq77Abin2zEGri1OkZy8AXUm2twywCwkD9gSEE5pmWIlHtVpd2dV+G+9JO6y1NWWTdr/uaq4tHLRymSSTyEA64FX9rZpxyj0XN5aQXoyNjzMP3np7imFdT1RwotwrHLVXI/CbF84NJSAn73BKKOMGOWgEeIOMZp309dY7S+hn5/2VXl34Dn3tiE/St486hJUhXh0OJHut6B6uKjEFgPeVxU9rFdPU6mlSxqBqegFGYE/GKpcVTcCrssNM9pAUfr3M79Wq1VXszwzNMK6K4pIrEtf4q/I9Uxiqp7EpLYSEIZ9vpVQ6S8mkM7MHJhNWZWCZAFrqCRzAp/cfz3lremsFdtXPBswrkOwHL1xHtldBpjqudn4jy7x1J9iNhlNhBxs2F9dSzskZu9uZ3e1mz6WtZm5G8NitpU4bbC98e7FBu/vCTxLDnobjAbTGSATjmuPRqv5G1PJvJcofQ8cbHVEEKonAeSEB3h9FgLeSyxWdU8sI3P/o83TauVfQ8EiBjv/6Z+grnw+/ZGjQ613aOVQVwzs40kevfvCskbTG3RZMKGloeBWpA5c/4JF0giU48UNJcmMJUEkGbCB50ACrxRtXjmWoeRVNrgp/2YxKyhfMeeTyLZTL+3NgAGiBb+mq3kLdPJ6W++Rnd//Wdct4Al4f8gXzunjvSuZukIqzknDaTYHPpDQ5FbChONzYUGPK9h8cCkjos1c1oJtN24gO2XJ/yqWyQX/cXPtrbUixmydUQAxT4gA3iYZckvoHeWJdUy7BPqfdA8VQ5+UWuDntuUi/O2m7dPUb6PwXfhPKok7a4eRQxg1y0IjhDTKaIfYFve5NdzxMf7/+Lpre3kInH/dF2mXHuSHOqHZDd/UVmF6v0uPZRf8z2F0ndwaD2ZXcq+Kzm00nWeKOcONlrC++cMEIolKalGYacgPDfcEsOKEyulIrrAFk9otEQA7WZAYQ5mdBq8t9dctj8aUuc2BklBWnKPkIv9KAl3neyGiBLn/qWkefXlfA6wPsVsKpQR8KpwuUZ+YJh9bDzuoyaQQqu8W4owdKRXucpXSqPhFwP8Oa7DR3xqZ0+FYH1pTVdbuEAPQAm/hMwDUhjD0EthSMMzy6ZaTZvLJJJnFgxTzCmJhD0LCfprdM3k1JmR+9qPkUiMD580ICvNtHgHcKbI/Vf4qL3l1Cf7v+Trrvkedp7123pe997XBaZ86M1XbhSJzp7CtUvL7n337Qot/llmRcdcvBJk+D4e4MBkCFpCGJSl0oAzzB9LzQ9eIA2NV4Xxura0tLMzCtHE0uyNlXV8oXzMITzFc3naNsrqnipETGjmUTDLj3D4/WDSO2sr+T/vMyfHpNTe9kg115PaDrBXiVfrn8dQv0VfS80Eojnni07oSzypcwWIQT4td1W9ai9VvXpn023C0UsCvjg48AtOFYM9jwam5GK/lQI96oXIbS4+qBvZ3LcP9slCceKbiXa65k3ErOgdaYyUGiI4pAhRH47bzzKjyzutNO3P5H1XVQB2dHDG8dXIRKpwA/3oeeeJH+dNWt9N4Hy+kHx3yGPr7Ph6mttanSLqfEeWNj47S8e6Tiub7w9kNaeWAuMTDdGCTrqmpoJQgFk4v/OLqFL6+p1VVZXc0R19Gj1wRNWvKZ0G+aY/N2BtwVEgeA3Ub46iZTVYMd9N2QS1A2laCuflTX8qWUrTj+fk/sGOzSfHodZ1UjZteYo+gftzWwk8J9zEjRMhPRBqCYaX+xJ8bNGyB1vdp0y5QxqMzuei1r00GbfZSmN7RXff39Xg+vdlgKXC6aG9JULI6zKm2TtY3y6TjFPTx4oauHZh1aX8gcnHTUQcTATx+z2rKM/Y+OKAKVRuCCkADvDyPAW+kli84LIgKounbqr6+gZ15cQDf8+ee01WYbBNHtlOijGh3vi+88qpXv5eWDTWApE9g48JWv85/BYuUzKRodHdesxiQzbOp6lf5k7xaZgtV9QQPJynzUUsV4ua19bVZAIugDj4FRAWpV3whjrOvlkJpeP2WDedhMNryiNdhVCqIblADmoBYSBwnopIQBwGqkMEZOTrB2oOslX+B7Rx5WCUNLpongr1uvxWea80mm7eVFYmp/88QS1kbHjCIUbte8KZekfJbf1IXlJ7zWtFxFWzI6KYqAjMDvXjw/lGCcsN1JoYwb5KARwxtkNCe5r6HhETr3j9fR/Y88R4XiKIHxBfuJA4wHwJl0Z5g+rYVO/cGXaZcdtpzkWdZmuEr9eEeKw/T6kucUyYK0IJOV1gTs1FhZ6HQhX4gxGUMiBs9PHmdT9qACY6thmP9KaRIwm5CHyyrwH/PVzbcwF4ZaHWCfkIxUQEnZoXA0mda1SU3v8v4OJxGt3ty4blVEqERiGh7hp6HZRhGScUhbYhRjXsvO5YG9wK4ObQ2I6wh227It9Kkt9qUN2tatYnGTcyoqn0FDC/s7yBxq+dSgvSlNfYNFV7s3dcW4dq0NaebAAX3vZCbbIR64oYyOKALVRCACvJVHLwK8lceuLs58Y9Fievv9pdTbN0DDI0XqHxii0dFRxnIB/E5M8GSbVDLJ9L3bzt24LuZd7SQq1fGOFIdo4ZIXtNLA3A1BqZdm6G85UE0lEuwxJOIIBwZYHyERBo+tzXOdgLIAwYIl1kCsSDyTMFmzJhNwXDaBr25DQxtlsg2T8vgaT1zBhmHx/UOQOFR7tao/f+VAJ91k0fRqvSo0aMUPjBUdrgVF236FxAEuDripRPU9N3u38iUMzszurIbpdOBmH6V1WuZMyh6o/orxinKQEkAKgoS2WlngTWtKMzbZr4QCWwWfYSRtwnEFc5uMA8x3Yy4CvJMR69V5jAtfdHexqeW6j9/uxFp2Pyl9R4B3UsI8+YPAHov/R+xfHGAna+nPOZmrBOBc1VO+jheA982l82yFI4zEMcWKDKwu0+siKQ2aTBZHnriGf5GUpFqLuRWC0DS4ZZYGBqOLxLRUKtgiAqWulQQFYOoGhsbYI/ywD2h6r3Ly6a1WwmDeifh2YYAzAJh+ODAg8x7srsoWlg90lUlYygNDq7t+6zo0Ld82JT+/0rcXgBTlrYM8EOfpLRlaWcHfAubukE4whh4Jm7WWX4CJhtQjOqIIVBOBi+aXKMVeTece5/5g2x/WqOfJ6zYCvJMX62ikACOAR5Jwaij3kWSBAd75mobX7ovL5QvI7gawnhAFJCSgZUA4GadCcULvR6xPOjuYEEacaQAzPSVN829QNMOolgZf3TAPgILpzWlWzrlvaHKYMK/19g730XkP/5k3CQjo2hlhyysW5hdaZ4gX1OQ17tk7oYOmMpPSlCUZIfjM3ANp7qzNwtwCgY2NCmPwx+3oGaag7p+yqRjls6mqXFvg8gAwCpeHYSFVCmzRoiM8IcIY+LsRHVEEqolABHgrj14EeCuPXV2dOTo2Rqiwtqqzh9KpJK09ezql0ylWca23b5Cu/sOpdTXfaieDx8jw3Sz3cSQA71vLXtKqmFjkjK8AACAASURBVKk2YNxTN8HeB5ieUFsKqQNUv2CtwHqaQggOb80kNwvcNUATfjArqxmaXUM3GqNUKktNzdPL9tWtNqZu50PigC9rFE9AvMPMcsccmXvDCzezf6uVL5hXSa7eDnblK7i2mWScSRjM4iMCe7OS0tyTGaWnTT68/OS0RCxOs5tm0l7rf5g2mbbBlGR13fZS0L69SFiDUwpuyKo58CCnMZdkNoO9PvXA5YyHkszQ70YGDeVELWrrFIGL5/8ulMB8f9sTQhk3yEEjwBtkNEPsa/6ri+hHZ11KHV29VBwdpT122pp++v0v0RPPvUK/+v019NcLTqHtt94kxBkGOzTkBfiSw5dTOUehOEyLVMArPXdjXL6Ax9R49MqTbDicZaBI8dVFJTZ8cfMCFEIM4ebAwE/WywcbKXMCLIn3AXTxX76hpZwlTUpbADlkuDNbrsJ4zfSYfhaDaw9/3tsW3E/L+lb+P3vXAR5F1XZPsjWbTu+9IyiiYAMLYgFpyqcg0hQEQUVFBEFAQERsSFMUqYogAoKC0gURC6AoSlF6ryG97W7C95y7bAghZcvszuzm3v/5HvyzM7ecucmeee95z+vKLVdf44ZW10mIGQXk2qliyS8By0lrWcGbpEkUnMiVxFZYFDmvC8NtVW7C7VVvgkmXf3lo9xesrTuU9O0tGcWENbs4iVGi0SOXUVi+1KRlZCmWbMeENWp4g0VSpgTWsg/PEJj6tzqE97lGkvB69sTkXYojwHLCf+0+gH492iM2KhKj3p2DHp1b45G2d6LVoy+hTatbMPqlnoqPq2aHNJOnJtCdiCMJ72ES3lyJaSS5RoOjoMQVicTVZDd3vTPey6NZXsss/StfYrn8cnNpda/EcwtybwhBZFRp6PVGEdXV6pciSRuP7hlVo+aRGfhqtexL2TiVdA5f7voWiRnJrk8jX7JbuISB0Xz6Lgt5Sz4j5dXr8ik7Nb75a5+vHi834e3U4AHUKVUDRl1wJzcRgdy+vXxx9cTArEy0CReSreL3UKnGKCwLWXCvc597a2HGtUZaDCKCLJtEwFsEpv79gbddeHT/c41e8Og+Ld0kI7xaehpezGXoGzMQn5iCN1/tK0oLL1m5GavW/4LXX+4tIr8R4WEiyhtMjQQkIcUmLIZcbSS8R87uvuzSAKHTZUSOX2rOFLQcmUIuPS1JSW7S60xmY9JS/pXS8tJcp273SrSYc9aF6hEVU9YnvrquYuLudSQEJaNNwraM1k5qtuTMFEzeOgfWrCIi/R4QXWE/pg8VLzb5acULS0zjZ9SB65nQZr+Uc2LgxOqa8sBl6ohCEma9SbMvPL56zpEsemLUITHVvUgtMWYhhzPxGT6ZmtjnUSbx98WbghXC6u+yftknE5WdFisEpqlEeJ+VhLdY7TNNL5bShXGT5uOZnh3w4N3NReW1vi+/i9tubohV639F21a3YNzQpzS9Bncnx6gOTeQzba6TLhLeo2f3CPmCXhcqorrMsL+SRuYsJ5xTQiKn1HBuRwZ+iTESSyKUt1JaYRFdrpH3hYboEBYeDbM5IiAJjtA8mvUCP5aSJYZqtfj0RCz88xucSSlA3lCEr25uIbCTxIrywKEhl5MWr17ZNfKEyy9GOWQ21+XOqLhzn/HfvGS3YZk6eKD2XbAYi29RAkbReexPu0G+yLqSjEo9daRFjwtJnpcZd2XPRoTpHMVGWDY5M8vtSDQlEtTAywprrqAtrykKgen/TC7qEp98PvC6QT7p15+dygivP9H24Vhp6ZmY/OkSbPtzH25t2hBnz1/Ez9v/Ed+udzRrhF6PPoCGdYOvEhudGvgl6Wq7lG3F8fN7BcdhYJgnobkJa/6+unmSzEIAJhaJBKXLRC+vrCFf0nuZGFks0UK+YDCGBSTZzU3s6LMabtYJBwdfZbgX9Wyp6f37zD4s+ef7ay8tiuyKN5Ar9SxIRilH4P/Rdi4/ucy1kd08EoVrZsGiIY4dwZe03O8GTEy7tUpTmPTGopYZ9J/zJYqRXv6PpwdMkiyscd8xCpuc7vrvv6cg8gWIe53PkC94eZMWC+uXZJ6EV6tSJU8xkfepg8D0f6aoMvDA655XZVwlB5WEV0k0VeyLVdYWrdiIN6csEBGkJg1r4/GH70WNqhVQtnQsoiPDr5rd6XMXUb5MCRVnrMzQdA1ISqNzQNERRiak6ELt2HVwV06UJle5iTxlhK+VJFyJzDk8WBkhvjox6Uqc2LG6K3ZkIm0tRIeIiBIwmixB9eVHH1rqetOsWSLRR42WYcvEyn0bsOvMPif0OdMokI7mkTmQ6DoieVkFFjHI6eva/yjAMeLynrhMqqkL5VYtH1Eed1a/FRWjykEfKr1Zc+8Z7idGe4kTpQQFNSaBMerqq4IWecd1FKFx7HW+3FHf60ojMY8Oly80rmAlrykagQ9VIrwDJOEt+uHIK/yHwOFjp5GUkoZa1Sog3HLleJR15jMyMnHkxBnMWvgdftmxGyViIvH2a/3RqH4N/03QByORcJ5PzCg0cY1fVNEWvaiKdSEpFUfOMMJbQFJaHq1uQVZj7ItHlYLwCq6dj2b3Msmhq4PJaEF4RAmEUBgahI3LirYYBB4p6Xa3j32VguTTHV/iWMLJPOSz8KQ0js1oPYkWo4p5352ulTAUHdHNvZ68EobKMaXQ75YusNv0irkAKIWflvqhjRfdUChZyOuMwWgrJTUXkzKvipj7Y/7Ovycs5MMTpqLetVkYg1pw2SQCSiDw0e6pSnTjdh/PNHzO7Xu0doOM8GrtiSg0H6vVhn8PHce5Cwn47Y89+Gbtz6K8cI2q5REbHYn777oZrVo0FZ69gdz4ZXMmPj3fLx2SMLNBJ44iKXtwenUePrXrCt0NoavuZcKaq8qaA5MCfHUvMxijLlR8ETsLUzgPxgWVvixfYIW0iMjS0NGvKsibsyQxXwQYmXNFh+kLSD7f+TX2xx3O1XUugponqss5c77cR/lZWxWWmObYIfm1Kz/NTXZZKa1kWAwea9QOFrMePHHgnuQRuWz5I2AyhCDcpBcV7RhRZTlv4sYKgJTR+Lo6WmHPhZFburXwRIAR3/zs6ng/E+ukflfucKUQkITXcyQl4fUcO03eue/AMWz+5U+cORcvPHjT0jPQ/MYGqFOjEiqVL42brq+LkrHRIiEnWNr5hIxrkqaomeSxaHbWpWuSqo6cym1LdrXHbk6qWq4j66sUvLmqpfH4m1/A9OzMWy0tNFSPsLAomMzhmikg4a/nTdx5dJ+WYffbcXPutdmz7Vi5byN2ntp99ZLzShhCQ0RZ2Sy6MORja+UV2c2jHS4TXgoP1LkLlaPLIzTEEe2jtjPMqBNEiclQ+c3BX89My+PwTxX3lONvluNEhdIZLeDFl2oScu4jPsO88grKZMrEmLUMr5xbgCEwY/c0VWbcv+Gzqoyr5KCS8CqJpgb6olxh6PiPUbFsKfTs8gCqVy6PcmVKIMISBh7BBWPjF018iiNTm1+JPArlF5CIAIniEFe3o6f/ucpiLHdRCdHHZY9eZ3+5q6E5fuagQkadTvTtcGq4/EkIEBlVBnqdAaG64ms0z6hphFknSAkLA/i7pWSm4pu96/HvhUNXhWGdJJZkk7pvJh0WLWG4shOu/q/cq8o/qssrIozh6HXj/xBtjhKymtyNHI7RSvq+UouuVAEFf+Pt6/HoyBAdTtLLCodZwo6wKCmBr+eUu3++YEeGOXTHdI5xtgiLHlFhwe2p7E+c5VjAxyoR3n6S8MrtpzUEmLyWkWmFJexKVMFms4ufUeIwbfYyfDDmOcRER2ht6h7Ph4TzXEKGiJjxS4cRs9xfOnk7PnZ6j5Ac5PbVLbos8LVFI+izypcIlpLl/fTUpU7XaCq+9lJXUcDLJYlJ8XxtHZXf5km3ZWD+zmU4nXz2qo/DjA4pSn7lga+60KXEtIKJri5Uhy6N2qN6bOUikxRJepkMxZc0NQt6ePxL6MMbGSWNiTAiNd2GdGs2aBPGyLi7vr0+nGJO10yk498hvuRRDy71u/5AvXiN8cme6aos+OkGA1UZV8lBZYRXSTQ11Bftjw4ePSX8eLdu/xvfbfgtR8M7sFdHNGtSX0Oz9W4qlBQwUYqJIXRtKCpr+7hIWmMroixwLvmCY4ZXk15HxbVQZMMEo9EMszkyaJPSvHlCUWGO42g+G3/79aZb0/Hl3ytxJOGEo/pZqMM7Oa/e0iv5grN6dC6QokwRuLdmC9QvXUtEJV1pPIBhRS7usuR09TTQrszVX9cwaY1yBhY4ya11dvj2Uj/rcGlQSy+eHw5Olwnqi1ldLZjkY/567nKcghH4ZM+HqsDzdIMBqoyr5KCS8CqJpob6+mnb35gyaykOHD6JGxvVRrMb6qNyxTJCw8tKbIHiCZmQlIJFyzcIgn5jozoFIky9aHKazaWM7RNn9uVKNspdaMJJaq8IMK+OAuf6HBBEpkyJWJjDopGa6Xq1Nw1tE79NhRFMJhCyalWKn63L0m1p2HR0C3ae3Jevt67SZPe2KjehWkwl1ChRxaPfM0pBDIZQZGRmF9uENko9mGzKl1i+zOb3opTj22vQITVTPR/o/H6JOH/KGSLMUs7gtz8yxWSgmSoR3r6S8BaTHRaAy2zfczjCLWb069EBDepURcmYqIDS8FJfufvfI5g6exnOnIvD9AkviqS7ghqjh4mFeHbmvu+k8Gp1OilckTY4r7lG0yvosTMm7ND4GgxhsITHwGQ0ifKjzNSmBlO2ghGgBIQlVqnrpQbTH81EbaXFgN9P7MOc7SuuGbIosut4xcnbCpYxsGJakwoNoQvReUR2nSPR75XRQbbC5Dn+wNDfY5AsUofPKLzTmaGwOTCiStcLNn/tK1cw4b6jxEo2iYCSCHy69yMlu3O5rz71n3H5Wq1eKCO8Wn0yXs7rjg7Pok2rW/Dqc92u+eKlpteelYUws8nLUXxzO+e2cv2veOfDhWhzzy0Y3O9RmM2FG7dbbdm4kJTp0oROnf33KnmCIDU5yUR5Y7q5ZAwhjmhwTGwF6HRXf5HFRji+oKnB1FIyjUuA+PmikpFGMJWQLyh0ufBVo09reJgecYkZoMx6/YGfsPXoDpHpf1W7bCGX+2eF2Y3l9dXlfUadEW3q3I3rytb1iujmxUKUpA0BLqbYioVnL3EvGWUUMgV3/Zzptc0qbXHJVk1IHPjsOB/ZJAJKIiAJr+doSsLrOXaavvP9jxdj6/Z/8PrLvdCoXg1RkOLI8dM4H5coNL1nzl3Ee6MHaJL0/vPvYfR+4S1RDrlfj/Yis/3kmQuw2uwiymsyXntMyKPyuHwM6vN7SKfO/pcrXnuF7OZNS8tdKY0JaSwJbDJH5EtoSIJIsKgRVUOrqunNmM/keFxNfSa1mUVprt1dG58BvVrpFEFSnVuvu+a/Tfj1+M4rXbpEdq+mv3kJb/3StfFgnbthMZgVJbvOSTp8Zx1+r7TjKrqmoLuIaeN6RmoZFeXLK18cPWm5fXv5e8jy4Wo07pFSUSaxB2WTCCiJwKy9M5TszuW+nqrf3+VrtXqhJLxafTJezouEdvR7c5GdlY2Gdarh5Nnz+GfvYZy9EC80vSw60a71bYgI156jAOUMr787ByfPxOGZnh1APfLOf/YjPSMTdzRrhP7d28OQp2AGk/RIblwx8T99dn8OukXJF0JDdTCHRYEFJIzGwrEiLSKRYzKNM0vby8cY1LcLVw2LXmhVXS3TWhQgJIfM4Oc+YLGRfOx1sW7/j/j5+O+Xu8pDZvMdoGAJw80Vr8ed1W9BmMG3XqtMuKPE4dLlY361iFxR+Hv6OZ0z+NxYnppFHLxplERYzDroQ0OFzRtfqvzduLfpLCELTvgb+eAfb/Y+dQjvk/Uk4Q3+3RWgK6RsYdInX2HeV2uEdpek97H296BW9YooUyoWJWO1oenNysoGo9G7/zuC6xvURM9H70eJmCgcOnoKr06YifMXEhBhMWPY892wd/9RLPx6Awb27oROD7a46skw6kWSmZJetDaUhFdEc3MKETg0uk5a4xQ1sGiEJSwaOr3BrcgdI1WxEUYkptm8/vIO0O3n8rSp66XNFJ8fNdDeyEH4osGMfnoyF1aBy5plw9Yj2/Hj0W1XXnzcJLq8vGW15ri1clMY9f5JTCKRYxIXk6EY6VWDyLn8YN24UCTpFZKc5kZXV13Kl4TYcINIeOPvojd7y905UFNMi7K8vsvu9iOvlwjkRWD2vo9VAeXJev1UGVfJQWWEV0k0NdQX/XhXrvsF6ZmZuP/OZsJ3l+Qy02oFo6F0GAgzG90ickovLz4xBcMnfIK/9x1G1Yplse/gMVSuUAZzJw1DVKQFC5dvwJHjZ3M0vOkZVrwwaqqIUi+f/cY10yHZdSVx7My5A9fQ29yWY8QmJraiV+WAmXTECE9Smk3xI3uln4MW+iNZDTPqkZDqvv7SWdKYxUaYtJRfVDfvGm1ZNnz/3yb8eTpPNTZxYeEShhJhMeh+wyOIMqvjZc1T8hJRJqFxpWdvIEscSkQ6Xibjk60uPTdP9qoavr1MVqM8QzaJgNIIzFGJ8PaWhFfpRyn78wUCJL97/jsqSg1/s2YrLsQnoXL50kIu0KxJPYRb1JE1rFjzEz6a9w0WTH8NJWIi8fvf/2Hse/NQo0oFvDO6vyjBSi2c08c0LT0TL46ehuSUNHzx4chroOIRdkJK0V+cZ88dvExrro7p6nQGGAxmREaVUuQxkPSKI3trdoHH64oMFCSdUI7ACK07LwmMeNL5gdFOEkB32s5T/2Dt/h+RmeWo0udoBcsX+Gn12Cp4uMEDsBQhb3FnHp5cy6NyRkZDQkNEtDfQKrQxss/fDUZd/RF99advL313Gd1l9TzZJAJKIzD330+U7tKl/nrVfdql67R8kYzwavnpKDS3Lb/9jYnTFoCEkTpY6nfperB12994oe//0LplU5fN8RWakuhmwbL1QnLx9ayxOaR71fpfMeqd2Rg+6Ak80qZlznDxCcki4vvtup8xuN9juLdl02umQvN5Et6ivvzPnjt0tQ8vQqDXGxEeHguDUdnEIxITRi8ZxSIhy1vwQEk8g6EvEljixep1JLEFRWuFTtOkB0u6sqKVp9XJ/j6zD1/vWV1kVLd0eEnhwHBTxcYw67XhbuLUjFM3zvVTt+zPY3tP95uwETPphT2duy8pno7J+/zl26vXhYKuLTJhzZunJe8tCIG5/85UBZxedfuqMq6Sg0rCqySaGuyLBLdz31FgmdO3RjyNSZ8sQfmyJTDkmS7C45Zet5++94qQN/i77fjrP5GcNnpwT9x8Qz0xPJ0Yxr4/D/sOHMPMd19GZIQF/V95D+cuJMBkMuDJLm3QuuVN0OuvtfthxTUejRaV9X/u3KGrNLtR0WUF4WWCmi8KcpCYMImGhReYWMcvetkKRoBklpFekt+EPC4LvIufx0Y6rKtI9Lx9iTiacBLz/liSM6G8LgzhhjB0bdwRZSNLiVMHrTVqVbm/dCEhAi8tk14+U0Z2SXSL+j31Fc6+9u3lGmmt5ou/Jb7CRPYbOAjMU4nw9iyA8F64mCgCVq5yCHevV/LJSMKrJJoa7IvJX4/1H4tej94vkr2+/OYHzFn0Pb5fMFFESz+atwJLZjLC6tss8/ygsVptGDJuBv7acxBrF74D42W7sfNxCWjbfRhefuYxPNrubhw8chJHT57D7Tdfl68lWe6+GeEtKpnn/LnDgvDSSzc8oiRMJv9IOqjro70U/YK1TEq0so15LBxm0uNcQkYOXozologwItUDCUNB66IryF+n92LVfxuQfemKQwBfEvUhOgxp0T8gyAvxEvsrMdNnelhv9gYlGHyR4f7XgsuE07f3got2hq6unVUFS0Rq4xTA1TnL6wIHgfn/farKZHvU6XPVuMdOnkX/oe/j6Imz4ucPt2mJUS/1hCGfYBQ/L+z64RNmYsWardesa/RLPfFo+7sVW68kvIpBqc2OuMke6TMa/Z54CH26PYQTp8+j05Mj8e7oZ7Bv/1Es++5HLJv1huKElwly/EU4dfYCYqMj0LBu9XwBOnL8DHoOmoCWzRvjxX7/Ew4NyalpuKfzS3jx6c54vNO9bgFLHS+jvIXFUM+fPwKT0QKzORJGP5Fd5yLCaZtFnWoqpRcy0lvUw3XYjIUi3ZotjogpEUlMsbpUQrqovnN/bs+2Y8eJXdh85FfQxSHcaEHrmi3QoExtcToSKI3WXmEm2nFdAstta+EwwelRzaP+xDQmzWoHTfr2CnlF1iVRnliJudGhhTIT2SQCvkBAK4T36SHvClvT8cP6imqoj/Ybg1Ev9kC7+27Ld9mFXc+ob2paRs59aekZ6Nx3NN5/fSDuv+tmxWCUhFcxKLXZUUamFY/1G4MK5UphyhvPwaDX4+GnRoKOB1abTeh3X+r3GIx5fG29Xc2iFRuFS8SBwydRqkQUnnq87TVWYs4xlqzcjLemfYEO99+OO2+9Htt27sX6n/7ApNcHon7tqm5NhQ4UZ3NFBPO7OT0tCeYwFpBQ53japKdDhk4Y7Ad6lr1bD8fDiy2mUESHG4V04aIPq2jZs+zYfvIv/HR0O9rXa42aJatCHxp4iUfUqkaE0f3AYdXnreTDw8cmbuMcGHnmiYpWNexOCQ2TzVjcw1sf4NLRsuCEN3tG3ls4Ap/9N0sViLrXeSpn3MTkVNzWbiA+nzYCTa6rLX4+fvJnoqDV1PGDrpmfu9fzFJocYtXnb0GvU+7lURJeVbaOfwddtf4XjJs0X0gEOj90F1as/kl49DLi27bVLYiNiVR0QpQgDBw+GX26tUWD2tWwdvN2LF/9E4Y9+zgeuLvZNWMxGrxy/c+YMe8bpGVkCt3uhFf74rp61T06Sj5zMQPU82q5iUICZn1OOWItz1XNudFSihE4OjfwuJ4RXlbU81VjpPdiWgKYpBbIGkwSTeJFCUF6ph2pGf4vvkCXkuhwh4NGICTUOefLhEnhCe3BJiPu5Uv4RyLlwfTkLUGAgBYIL7/j2/cagU1LP0DpkjEC1c+WrBWyhCUzx1yDsjvXkxzf++hgvDH0Sdx/17V8wZtHKAmvN+gF0L0jJ85CfGIyhj3bDRXKlQRL8Sod1XXCMW/xGqEPdm582qKNeX8e/jt4HG++2hfVq5QXl9rsWbDbs3LE7kywo5MELcq8IRssPOBp1r4/HykjS7TUugSHD6lsVxBgoh+Tm0zUpCZk5pAPSkLCw/SX3Tg8oSTFC2XuMZa4zbBliWivvxCjDRgjuySOaiWnefqkOW8mntEurbACJvn1T0kJEyplkwj4CoHP98/2VdeF9vtE7SdzPmfl0yeeHY+fv52O6Mhw8fPF327CjPkrsPGrSdf04871H8xcgs2//Imln44DT12UbJLwKommhvtiYg6P+1l1zdftx1/+woRpCzBj4mBUrVRWDHfw6Ck8/9oU/O+hu9C9833iZ1+t3CR8gae88TxKlYhWbFq0JWPiTiA0RoSo+ePzITlQ8/hZK3iRbFC7y/2anHFt9TUmrkVZDIJIpab7j8RpBR9358E9xoRJNh7XF2Xb527/ea8n6ePzY7noQCO7zrUw8cxi1AnLO67B1d9LFgQxG3z/N9bbZyTvD1wEFuyfo8rku9XunTOuM2K7ednknO9uVyK8RV1/5vxFtPrfS/hwwotC3qh0k4RXaURlf4iLTxSJcSS3/Xq0F5Fkm92O+YvX4OvVP2Hxx6NhNhmx6Ze/8Mv2f/B09/YoXVI5wks5A2UNgdToPWvQhSI1wy5KoRbXRqJEiy0SWZKzgpAQkpAwvZCuUBuqRLJRsGNOIkbMKC/wlcSBxJrPhvs40JMyKZ+hfpy/l5RlkPwW1crEmsGiGrJJBHyFgBYIb36aXMomz12Id1nDm9/1r787F/8eOo6F+RSWUgJPSXiVQDHI+tjy2y60aN7Yq1V9vnQdFixbh7dH9kejejVEX7/+sUd47H45Y7TQ6dKWjLIGX1ii0cqKmdeB1BhVouYyheWIi5mDgygPbDEIj93kdLtLz04UnzDrwYgi7eiK84uCq/tcVGgL04nCK8RZKXswPgtKAShFote0FtwhXMWkqOvo28vfS0Z5CytdTmzLxvrf3rGo+cvPgwuBL/bPVWVBj9fuddW4fV5+B1ERFrwxtA9On4tDl/5jc1waklLS0PP5N9G3Wzu0adVc3FfY9fz80LHTaNfjVcyZNExUgPVFk4TXF6gGaJ/Uz37wyVdY9M1GbP1mOiLDPU++uJiQhNffm4uL8clCshAVacEPW3eKZLnFH78u7Ex82XgMyYx+SgUCqQmf2Uij0FsW5SccSOsqbK5OnWma1f3ywOzXWV6YiW3eZtgHC6ZFrYOeuHxZuJhk9boQCiOaTE6jVIIkOhibk9Bzr8Ul266ROISGhAg9PhMFZZMI+BKBLw6oRHhrXU14aTtKqzFanbJ1erAFRg/uJXx4E5NScVv7gXjthe7o2rGV+Lyw6/n5S69PB4nyp+8O8Rl8kvD6DNrA6vjwsdP4cN4KMLp7Y6PaIrksJirCq0Vs/3MfJn+6BMkp6Wh950344+//UK9WFbzY938wKGyDlt9E6clLEhRokV7KrEkgmDBDHWSAcXaX9wy1pUxucjgJZHlF8BmFi7IYkZZpDwhHAJdB8uGFDux1QqPKFwVXdaq5p0QCyMiuL2USPoTA7a4pC6HkJrfPMSO7TLAMMzLC7XaX8gaJgFsILDwwz63rlbq4a62e+XZ19ny8CGC5elLr7vVKzZ/9SMKrJJoB2BctwX7a9jfmfvk9zl6IxyNtWqJLx1Yub97Clszo6v5DJ/DDz3+KksFVK5XBXbc1Eccg/mr8MhflfJU6u/XTxEl6I8MM4miYpD3YmvNonWSeZMndbPj88BAldk06hISGiKILSvQZbLjnXQ/3GV84WBQima4EbsiAWFyBeBNrFgYpLo2Y0SrP6dvL/5aR3eLy9NVf5yKVCG+XAgivgXNoLgAAIABJREFU+oi4PgNJeF3HKuiuZDWTjz/7VnjkWsJMGPfKU2hcv0ZOiV+lFmzPyhIZ9/xSDQ31fwYzI7yO427/e5F6g6HTEN9oCBW2ZcGiiyTZ5fGv1ZaFlIwsRSPYImrMqGO4QbzoBKpLgDf7xt17GZRktJeRy0wmtGUWTl55PSPD3JfUtAbaCYq7+BR0PRMA6aWttHWSUvOT/QQnAosOzFdlYV1q9VBlXCUHlYRXSTQDqC+W8ps6exlYlKJ+raqY8fZgRaK6WoUgKzsbCSmBSYBIRGiRRALnTgROi8+C0UTqR/kC4suoIElvdIQB9GSWkV7XdgJfREpEGsQeS0yx5euQ4fRHFiWe02zF1h2DLwgx4UbodFLD4NruklcphcCXB9UhvI/VlIRXqWco+/ETApQZbNu5Dx/NX4ETp86j2yP34vFO98JkNPhpBuoNQ1kDk8F4hB5ojQ4OdCPg3AMxMctZ7pb/8sXDH9FqVs5iFI7aVNpweaJRDbR94u18Sd8YHefpApMmc0fIKRmJthhgz75ciSyw8kG9hSbnfv4uUm5k0Pv/tEqxRciOAhaBLw9+psrcH6vZXZVxlRxURniVRDMA+mLVsz6D38H2v/5Fo3rVcfftTUSlFHrl0iosOiocOp1O6GzDwszCVNpXFdnUgIukJyXd5jMfUl+uyWQggTMIaYavfFR9MX8ef5Ms8eibyWn+ILvOdeSWhSQFQYTcF88nvz6FxMGkE8+MzgvOYh8ZTC60KitD8dealBhHnFCE6UWJa3daXHwS1m7aLvIkWIznwbubw2yWFdncwVBe60Bg8cHPVYHi0ZpPqDKukoNKwqskmgHS15crNmLspPnCPkSvd2jQdKGhogob3RNCQ0Kh1+vE5yNf7InmN9YPkJW5Nk0mSqVm2Ar11HStJ/9fRQuomEij0L8W5gnq/5nlPyLdJoy6ECSoTDYpCQkz65CcboPVVkxDk25uCqf7APccX1LogBGIpwtuLjvfy6kNZ3Ia3RhoQeZOY1b6uzO+xG+/70GrFjcKP/J7br8RT3dvl1OW1Z3+5LXFGwFJeD1//pLweo5dwN5pt2chISlFeNTSPYFRX6vVjtT0DKSkpoPRCBpJJyWl4t6WTXF9g5rCUD6YGikPs9JZpSsQW2yEQRzRM/qmRdsyRnSjLssJEtO0gTHnxDLOjJAHq1+s0nuZx/d8aeEeK65JgA6yq7tcGMW9v4P8G/vejMVY/+MOvDv6GVxXrwZ27T2IF0ZNE4b9t93UUOlHJvsLcgS+OrhAlRX+r2Y3VcZVclBJeJVEU/YVUAjwS5w6RRJflqgNpMYvYR6tUkVIeYPdnzqBIoCiV2k4S9h66a3ri+dB3Eh66RriqDQWWM/dF5jk1ydP7Lm/+JJAokuHFR7nZ9ocGvLighv3S/jlyK4nL/20fBz19mw827sTOjxwhzhFO3j0FAa//qH4GQMKskkE3EFgySF1CG/nGpLwuvOc5LUSAU0iQNKblGYNuIxzEXky6mA26USkWm0LLoc/KfW6oUjLyEKmXZverIzRRVgcOkziVlxttQr6ZXRUFXN4QFPv7nwnIF5hxlAYDTqkZqi/33z9x4QODLQdI9H3pPG0rOOTr6FZk/oY/ly3nOqS67f8jg9mLhHFfWgDKZtEwB0Elhz6wp3LFbu2c43HFetLrY5khFct5OW4mkLAUaDCGpDkx2gIERZJapbWdWbwZ9iy/J6Y5ulGYmIWo5iBlgTo6XpduY822YyAO/x4809OExXaiJsGI/iurNGVa4gDHSnCTJ6RXY6xdvN2vDh6Or74cKSQhTlbt2ffQPXK5TF0YFeRKCybRMAdBJaqRHgfkYTXncckr5UIaBsBq91Rlc2m0chkYejRgoukl96oXIc/G8eOjTSKaGBaEUUL/DkvV8ZiNLNMjBnpVjsSU7WhNXZl3r64huWZY8INSEi1F7mHGM2PiXC4DFxMsubr2euLOfqjT0ayqVv2tnra1FnLMOOzb7Bj9ccIM5vAqpYTpy3A1h278dbwp9Eon+guNb/pGVaRX2EyGaDX6fyxZDlGACGw9NBCVWb7SI2uqoyr5KAywqskmrKvgEeAZJek19+kUQngjPorEUtGLX0tTyUxoISBllWUBljtgamHpcSBBIc6bkoxtKSHVmJfuNIHnyMT1KhrdrVQh9OzV0hDWMrZlh3wxJcvb8JZxOA90dy2cy8GDp+MVwZ0QbXK5bBrz0FMn7scz/TsiD6Pt8k3EXjLb7swdfbXYBXM+++6GQ/c3Qy1q1dy5RHKa4oJAssOL1JlpQ9X76LKuEoOKgmvkmjKvoICASbk0LM1EAtUkHzwmJ5p9Szb66vkImdRB+pfqef0Nbn29cZipJeFPUws7pHJ4iT+jZL7en2F9R95OTmNLy2eVPKjxIHY8YVBq64hruDLiC6xUKqgBN1vvln7M75ZsxUHj5xCRLgZj7a/G1063AOT6VoP3qTkVKH5bdq4Llo0b4z9h07g1z92Y/zQPqhTs7IrS5DXFAMEJOH1/CFLwus5dvLOIEYgkEmvI7NcJ6JUjFYrTXqZuERPUqcva2DGdfPfvCTyJSjPyLAHVHEPT34VGaGNiTQgm8Ul+NLiBcen5pXVx5yuDoGUCMjfF5NBJxL1OH+lGy0ez8clIDLcgioVywqnhvxaekYmbnqgHwb06oiBvTqC//8jfUaJIhXPPfWw0tOS/QUoAl8f/lKVmXeq/pgq4yo5qCS8SqIp+woqBBixik+2CSumQGyMVjFqdSEpUzGvXvr/MgJ2ITEz4KO6BT1TRnupSeZzp+VbgDnWubRVhU+yhWWXHf66SjVWA4wJNyEp3SaSFwOhUQoUG2WEzk9e44zcvjnlc/Tv2QHNm9RHptWGDVt+x8LlG/DfoROoXrkcJo97DiGhoWjXfZiQNYwZ8mQgQCnn6AcElqtEeDtKwuuHpyuHkAioiADJDt0PKG+gd2ugNWozaavENXhjW8aEJmasM5kmOc0e8FrNop4jSa/FrAfJkEOf7EX4s6jB/Pw5tbrcF+mZ2T6R7ZBM82VLlJK2ZmnW+YT8li+ETPb0E9cVT3rX3kOY+fm36PN4W1zfsBZW/7AN0+d8jXtub4L7726Gdz5ahLiLSYiMCEOZUrF4ZWBXlC9T0s+7RA6nVQSWH1msytQ6VntUlXGVHFRGeJVEU/YVlAiIUsSZdqSIAhWBt0SjwUFwmJDHpCx3liA8ay9rPBmxy7AFD/Fz5UmSHEZaDILkMxEw0Fu4WSf0ttTaevMCVBQOlDiEGRwe0fS51lq0l+XURfW0MINfyS5xs9ntSEpOQ1SERZRyf2XcDNjsWRj5YneUiIkCE9dGvj0b/Xu0R/v7boclzFQU3PLzYoTACpUIbwdJeIvRLpNLLdYIkPQymYmR0kAkvUxmi7ToRZQ6ycVSv4xy0qYqVBeC+GSrOP4uju1KxDIbyemBS3r5/ClHSeSzdOetx4uHTrkqNdGszsZIuZ+GLXTGziqFLCrhSfU0L+DI99YP5y7H/sMnMfLFHigRE4n/Dh0XpYcH9uqEtvfeovRwsr8AR2DFka9UWUGHav9TZVwlB5URXiXRlH0FPQKM8iWkBF4pYj4YElhaLrElpNoK1aYy854aT0bm6PZQ3BtJEpOamNR2MdkaUC89fO6UGDCqWdRz98VzdlZu4/i+SKJ0Z86hIQ65BQtnaKVR0zt8wkzcdEM99Oh8HxZ/+wOWrdqCyW88hxsa1tLKNOU8NILANyoR3vaS8GpkB8hpSAT8iEAgV2UTnrMRBoQgBMnptmv0lYzImQ0Oe67iUD7WnW1D7JxRUkocAkHXS+01tchO+zg1E/AoIQgzXdlX/p4Lo9vORE53nrs/rj1y4gy+WLYBp85eEMO1vKUxOtx/B0xGxwuqbBIBJwLfHl2iChjtqnZWZVwlB5URXiXRlH0VGwSstmyRic5/A7GRfJhYaCDNnkN6ReEKsw7WrEuitKwnnqyBiIW7c6aulzpYPnuW39Vq4zypv6Zum5F6LcgJSDrDTKHihYsSB6Ut8wp6Ftzb1GLz5EKrzWq1ITElDUaDXuh2DXrtRKG1illxnNe3R5eqsux2VR9RZVwlB5WEV0k0ZV/FCgF7VjbiUwKzFDEfFL/8GbFMZkldcWSvdyRnBSiJ9+fm01/WRHNM7gGtNbN4tgYkpljFC4yWmtDQmh2WeXGUh/hYFE/9OnXEShWU0BKWci7FD4GVKhHehyThLX6bTa5YIpAbAXr1nk/I9FukSmn0TfpQlIgyguTdUVJZW+RI6fUq2R8lDvTrpUZVS7peRulZSIEJllqO0jt04gZRwIRODr6QODDhkGRXX0CxByX3g+xLIuAPBFYeXeaPYa4Z46GqgV/8REZ4Vdk6ctBgQoDetBdTHPIG/negNGfxAU6Z2eq0LWOFsQBagiagdtq2MaGRbgRqNUYyLaZQkZyWku67stJKrs/pHsI+KXFQskIbCXVshFHgIZtEIFgQWHVMHcLbtookvMGyh+Q6JAJeIUAtIr+w00gYverJPzezPDCPlJmAx+iaIB5hejF3JStv+Wc16o9CjSg9bkVJahdt35SctdM6zWa/JDyjA+mlhRIHaqJJUG1ZtC/zXhfN5LioMAN0PigVrORzk31JBNxFYNWxr929RZHr21bppEg/anYiI7xqoi/HDioERFW2dBtS0+2aXlfJKKOYX1Lq1UfegWy9pQXAWWyBEUXuA0oc/NX0HDfSKMog8+UlUJuQH0QYkWnPQiJ15R42kt1oi0FGdj3ET96mbQS+U4nwtpGEV9sbQ85OIqAGAikZNkf5XY2FeploFUUf3hAgPslaYCSaWfSMuDFSqeQRsxrPQo0xI8N0oiQxq5n5WhNt0IeI0ri0mFNTTqEkzjERBtAvl2tixNrV5owU02taCwUlXJ23vE4i4A4C3x9b7s7lil37YJWOivWlVkcywqsW8nLcoEYgNd0mCjb4y3apKDAZ9WKCGr1jXYkCkvDS1qo4lhMuCktXPqdkJMzkKNyR7oOSxJSl8pmSWDOyGwiewK7g5rzmCn4O15CiXh6p06XzAwtKSMWuO0jLawMNge+Pr1Blyg9W7qDKuEoOKgmvkmjKviQClxEQpYitdhHpVZP0OoslMEs9hb7BbkTMhG1ZmF4QNpIq2dxDwEj8zHpBRpVMBmQkk8+Fz1ZLL1XuoVP01STzTMJDSIiQCRXkOCGqp1n04lRCJqgVjau8IrARWK0S4X1AEt7A3jhy9hIBXyPAzH1/6jlzr4eaSGoZaTnG43VP7E7p5kRdKpPb2Ids7iHASCyjjgZdqGJldWmzRe9a2o558kzdW4G6V5Pcs/JfeJhOaM7ze2ErGWUCK8pJGYO6z0qO7h8EVh//xj8D5RnlgcrtVRlXyUFlhFdJNGVfEoF8ECDhvJDke4P93EMz2kWilZJm87qQBCOJ9OoVkcp07WmTA2HTCW9co06QXk910UyKE0ldtiwkK+BkEAi4OefoPG3gCySr2/EExZEkaNJ09bRAwljONTAQWKMS4b1fEt7A2CBylhIBtREgWXREqHzr08qoLskB/0cZAiOzSjRnpJLklxpgT0mbEnMJ1D5Yzpm629QMOzKt2W7Z1zlt5LReztiXz4anDRFhBjD5Ms2ahXCzXmiYZZMIFCcE1pz4VpXl3l+pnSrjKjmojPAqiabsSyJQCAIkiQmpVlGgwheNJJekigUk0q3ZimuHnVnwJG3CgcBH6/AFNlrpk64KjL6z8YXEFX03C1sYdCFBmZzm7nPhCxedRixmmZzmLnby+uBAYK1KhPc+SXiDYwPJVUgE/IVAVtYlxKfZYFU4c59H5nQF8Ic9FaNqtI7i8bxSEWR/4a+FcfjiQEcBvqAUVZI4Jtwg9L8XU6wukWMtrM+Xc2AiYGyEATrqGWSTCBRDBNadWKnKqltXekiVcZUcVEZ4lURT9iURcBEBkkUebXvbKDWIiXAUkkhMs4GE2h+NxIMJcVyHr2Ua/liPGmOEm3QiUpmQYr3GgYDPNcri8JONT/FfEQs1cHBlTOLAxDQW2KArg2wSgeKKwLoTq1RZeutKbVUZV8lBJeFVEk3Zl0TARQSysrORmu6ojJVdlMloPn3yK5+kkxIG++Wyxh504+Js87+MEUrqKJlExXX4e3yvJq+Rm+l1bDHqcvyR6bpA2QPJcFY2HEmCGpmrWtMgv+U+j2T1NEl21XoMclyNILD+pDqE996KkvBqZAvIaUgEAg8BWkvR45ZRUncbfVh1oSHifjVlBUySIzljC2ZPWHefjzvXMwmLtluMYtrt2TAZdEjNdD+xzZ0xA+la7nU6jnhCdtMzMvH50nU4euIsIsLN6NvtIZSMjQ6k5cu5SgSuQmD9ye9UQeTeim1UGVfJQWWEV0k0ZV8SATcRYFSUEVJXvXoZ4CoZaRR6ThJlLfiwck6OjPkQJKRoY05uPgbVL6eEgSVxzUadkDAES5lgb4GlhMFsCPXIY5dk95lh7+PA4VO4/66bcfjYaZw5H4+5HwxFmVKx3k5N3i8RUAWBDSoR3laS8KryvOWgEoGgQ4BR2vhka6HyhtxepIymaq1FWRw2UUUlYmlt3mrPx+l+YTHrkJaRBboyUMrgSglotefuq/H5AkAJA6UMnhSUyMi0YuL0hVizaRs+njgYjerXQKbVhg49h6NVi6YYMqCLr6Yu+5UI+BSBjSe/92n/BXV+T8UHVRlXyUFlhFdJNGVfEgEPEWCkl6b6tPtioYrcjXpdkiGSSZIgNSUMRS2P7gNmUyiSUu0yma0osAAIYhemF+VzSXIZuadMhC8PNvslRUsSuzAdTVySQ3Y9tB6jVOibtVsxfc7XGNz/MTxwdzOxLntWFjr2fg11qlfC+2MGamKtchISAXcR2HhKJcJbQRJed5+VvF4iIBEoBAHKGygLcPqz0n+VET9+ibPCVCAUfGAiFr1meSxPjbFs+SNACQilIHS5yJv0R9LL6CZ1qykZfAkqHqlrQtoRYczxKvZk75yPS8Crb85EzWoV8NLT/4PJ5HAxWffjDgwb/wnefq2fiPLKJhEIRAR+OLValWnfXeEBVcZVclAZ4VUSTdmXREABBEh245Iyhf+q43jbJshjIFEeEjZGLknUGLWW7WoEGK1nAYXCSj8zsk8ZC+3JkjPsSM8M7pcH7pkSkSYR4fam7T98AkPGfoSRL/RA0+vriq5On43DaxNnITs7Gx+9/RLMRgcJlk0iEGgISMLr+ROThNdz7OSdEgGfIXDp0iUR5aVHq9UeSFT3CiROj2DarjHBTtqWObBhZNdBdu3IcKFaHW3KmNCWlp4lIuaBuRsK/1Ux6OnrrIfR4HD88Kb9d+g4Rk6cjddf7oX6tauCyWuffP4tvl37Mz6bOgLly5b0pnt5r0RAVQQ2nVqjyvh3VbhflXGVHFQSXiXRlH1JBBREgCWCqesMZFkAE7JYoIL/JqU5NKrFtfEFgC4MJmMoUlma2Y0XGUY9c6QtGcQxeFB0RrG5Rk8S1PIicfZ8PEa+PQtVKpZFsyb1sO/AMazdtB3PPfUIWrdsitB8qrSlpmVg74GjSExMQbglDLWqV0SpEtK+LHh2WfCsZNPptaos5q7y96kyrpKDSsKrJJqyL4mAwggwgY36ThLfQG08oCZZI6FxJOUVP9JLz+SIMB2ys4G0TM8IK3maxeSwf0vN0Hbyoqt7lTplx95QrlQwZQv/HjyORcs3YNfeQ4L4dnjgdtx+03U5et7c8zt55gJmfbEKW7f/A71eB5vNjoZ1q+PpJx4SEWLZJAJaQmCzSoT3Tkl4tbQN5FwkAsGJAKUAJLzJ6e4XqNASImHGUFFAIDHFdk0pXS3NU+m5MLIbG2EU7hosJ+0t3TcJiYMRSWk2lyQRSq9Hqf5IdCPDHNF/X7S09Awwcms2GRFuMecb2eW4PZ5/E1lZ2Xi2d0fUqFoBKWkZmPflapQsEYUBvTrCoNf7YnqyT4mARwj8eHqdR/d5e1PL8q297UL1+2WEV/VHICcQ7AikpKYjzGyCzosolpP0MmOf+t5AbUzWiqF+NaN4+MzqQwEWT2DSoZLJe0LXazGI6L/Q9QbQlhClgs16RJr1COXbgJ/ab3/swYujp2PS2GfRvEl9QXInTP0cy1dvRYmYSNzYqA4G9u6ISuVLIzklHSGhQGS4xU+zk8NIBFxDQBJe13DK7ypJeD3HTt4pESgSAX6pDh0/A61b3iyqPXnTBOnNsCM5LbAjvU4HB1tWNlLTgzMJizTOaHC4bDCq64vKaZRJ0AmDBDJQpCKiKp9Jh0iL0WeR3YJ+x1as3SpkDuOGPCU0utv+3IeBr07CgJ4dcPMN9bFk5WZs/vVPTBrzLG5oWMubX1V5r0TAZwhsOb3eZ30X1nGL8veqMq6Sg0rCqySasi+JQB4EeKTarE1/VKtcDmOH9EbTxg6bJG9aWoZdHGcHcv6Xk/RyDXRwCKbm1CyTkNJKLNPuuwwzjhVuZiKcTuwJFqvQcqPbBHXIvpIxFLZ2vnweOXEGNaqUF8lxb09fiO9/+A3fL3hbyB4Sk1PR9ZmxqFqpHKa/OahACYSW8ZVzC34EtpxRifCWk4Q3+HeXXKFEwEMEbPYsjHt/Hn7buQc3XFcbScmpGP1SL5QrU8LDHq/cxqpsianWgM7WF0UGwg3iWNtRVtlrWDTRQWyEQcyDBNRfbgp0OmA0OSMzSxQo0VrjM6bu2GwIVYXs5ofHuEnzRUW27d9/LD6mfVnnvqMRGx2B+VOGS8KrtU0k5yMQ+OnMBlWQuKNcK1XGVXJQGeFVEk3Zl0QgDwL/7DuMujUr47/DJ/DSqGl4ovN96N5ZGXuXTJLeNFvAux7QvYBFNgLdtowSbZI6tvgUq991tYwok2zbs7Xle8x5sVRymElbyV+//L5bVF574uHWeOi+WzF/8VosWbUZY17uhTatbpF/yyQCmkTgpzMbVZnXHeXuUWVcJQeVhFdJNGVfEoECEGBp4OWrf8LU2UsxdsiTaNG8sSJYsRQx9ZtWFwoYKDKgjzoJM+lEOVkmYTF6HWjNWSbYlnVJVQs5Rs0jww0IuQShHeZ81GwsjR1pMYiKcUp47Cq9lk0//4mFyzeI0xcmlt7StAGe7NJG2JPJJhHQIgJbVSK8t0vCq8XtIOckEdAmAtTzTpuzDKvW/4rXXuiOc+fjcdMN9VCvVhWvJswCFSS9gUgUcy+cpIg2VVwHk/MCpdFLlnNnYpoWioRQ18sXCJNBhwwrC5f4TkNc2DMSBSXCDSJ6r+V2Pi4BLFYRHRWO8mVKSrKr5Ycl54afz/6gCgq3lb1blXGVHFRGeJVEU/ZV7BBISEpBcnIaKlcs49Laef1j/cYgMSkFLW+9HkOe6YLSJWNcurewi7KyLgnNqBYIlzeLITcqHWMWlciUtPHyZk6F3cujehK7BA16CzPqTI200pZormBJTCjvYHKibBIBiYByCEjC6zmWkvB6jp28sxgjwGjt3MXfY9l3W0RlpjIlYzHihSfQuH7NAv126Z/75z8H8Mr4GaLq05ABXYUhvlKNsglqR1ngIJAbKVKJKCOoUWZFMXUP5fNHki4DUWF6GPQ6XEzO1GzCHbEsFWWE1Z6NpHR6OPt+Z9COjYU2qN2VTSIgEVAWgV/OblK2Qxd7u7XsXS5eqd3LJOHV7rORM9MwAms2bcP8r9bi2d6dUKJEFCZO+wLxCckY98pTuK5e9XxnbrPbMX3OctStWQn33XkzdDrldYIkNAmpVmGHFciNkV66DrAUL6PWWipHrA8NgcWsE+4SSanat4cjOXf49Tps0kh+fdE4jtmoQ5TFIMmuLwCWfUoEAEjC6/k2kITXc+zkncUYgfc+XgyjXi8qM4WGhuLEqfMY98FnyL6UjZnvvCyQIcFdsXorzl2IFyVK2Wh9xOQYXzZGklPSGR21I9sfIT0fLYYBQhIoamQpb9BC5JpH9JQxcC4kj4FipcZYq4mlnc16oZFm5FzpRj/gKBUKSii9DtmfREDLCPx6brMq07ulzJ35jnvhYiLCLWEIMzscaopqRV3Pk8pzcfEIDzMjMkLZSoeS8Bb1dOTnEoF8EPjym43Y8NNOjH25d46v7u5/Dwubo+vq1cCE4X2F1OHpIe/i772HsODDkcKezF+NpJekhkQxkEsREy+HHtQgoqkZKso1woz0ujUIrbQWyLcne4mR8xKRJiEXEXvDk07y3OMstMGIvBadGBRYouxCIqAZBLRCeI+dPIv+Q9/H0RNnBTYPt2mJUS/1FDKv/FpR16ekpuPNKZ9jxZqt4nZWJn3/9YGK4i4Jr6Jwys78hUB2drbQI+pUygDf8de/eH7kFCFhaHXHjWLZJJbjJ3+Gr77djO2rP4bRoMfFhCQkJKagRtUK/oLmqnFSRPKXzS/aTV8u0El6mRzmqyP5wuZPy7TwMD0SU6yqW315izOlB9EWhyducnoWsrwIU4tSwWa9kDHIJhGQCPgegd/O/ej7QfIZoXmZllf9lMGciPAwjB/WF2fOxeHRfmMw6sUeaHffbfnOr7DrGdV9tN/r0IWG4smuD6JF8+tBAlymlPcJ3bknIwmvKltHDuotAgeOnMSxE2eFn63B4H9De0oT5n65GivX/4J3RvZHgzrVxJKOHD+Dtt2HYeFHI0UCm9qNJJxH2CQ2dn+V/fLRokU1MbMe6ZkOqy0lopNFTZWyClp8GfWhwl9XbV/boubr6ueCqNK6zKgT6/IkYs2kNJJdShlkZNdV5OV1EgHvENAC4WUZ7tvaDcTn00agyXW1xYIY7Dlz7iKmjh90zQKLun7j1p14bsRkfPf5RFStVNY7gAq5WxJen0ErO/YlAvSy/erbHzD2ladQxUVLMKXnc/pcHIZP+FREcOnQ0KRhbSz7bjPemrYQ38x7ExXLlVJ6SI/7I6HhUTw9ewO5UUPrSGZzSDa8iU4WhQMdtVg0gY3H/74cq6i5+Opzlvpl5Jr+poBbAAAgAElEQVR6ZP7P1ZcIPgcmwplNekgvBl89HdmvROBaBLad26IKLM3KtMgZ9+CRk2jfawQ2Lf0gx1bzsyVrhRxhycwx18yvqOsnTl+IJSs344G7m4HBrNIlo9H7sQdzyLRSC5aEVykkZT9+RWDq7GX44+/9GPfKk6hUvrRfx849GMkuj2LorxsVEY6MTKuI+N56U0PV5lTQwCS7tC3TkuOBJyCRYJFs6fX0v7X6JHGMFcKoG06zZiHNBwlenqzbV/cwis0CESEIEQ4fReU5ihLGkUYR9ZZNIiAR8C8C286rRHhLXyG8O//ZjyeeHY+fv52O6MhwAcDibzdhxvwV2PjVpGsAKep6ygP/PXAcvbs8iDKlYkEXpJXrfsHK+RNQvUp5xQCWhFcxKGVH/kRg0KipiLCEYfigJ0Q2p82eBb1OnfKl1BNv+W2XEO83b1Ifdb2snOZLHEl6HUUSAjvS60yUovNAfLJN0eirgQUbLAYRQQ70Qh6u7iXxEmHRw2jQIT7ZWiCejOwy6U0WlHAVWXmdREBZBLaf/0nZDl3s7ebSd+Rc6YzYbl42GaVKRIufuxLhLeh6Et6K5Upj6MCuoq+srGzc9cggPNOzIx7v1MrFGRZ9mSS8RWMkr9AAAiSVSclpOH8xQURTXxk7QxBLZnLy5ylp6WhUvwZuvbGBKppeDUDk8hR4NM/IqCe6TZcH8dOF1JDSPYFFFawKODiwL2p20zO1USbYTzCKYUh6iScLR6Rl2pGZRydNvS9fBCTZ9edTkWNJBK5GQAuENz9N7rhJ84UFp6sa3tzXv//xYvx36DhmTBycQ3hveWiAsP3s9egDim0BSXgVg1J25CsEdu05iFkLv0NyShr4i5aanoHjJ88hKsKC8mVLomzpEihTMgZNG9fBPXfcKDJHZSscAZYipnuDSP4q6gxb42AymY2JU0KHavUscu10G2A53qQ0e8DLPrx5ZJQq0PuYHs4OWzuHh2+0RZYK9gZXea9EQAkEdpx32Hb5u91U+varhuzz8jviO/iNoX3AfJYu/cfmuDQkpaSh5/Nvom+3dmjTqrm4r7Dr/9pzEI8PGIcZE18Sp6Rff78FYyfNF3rg+rWrKrZUSXgVg1J25CsErDYb5iz6HlabHbWqVkCmzY43PvgMz/TogK6d7hGFH2hnIv5VyabMV2v3Zb+iKlsKSa/dl8P4pW9GHam5ZdSargPuthKRBlHVjYl9Xrh0uTusZq+nrpd4sppcWmYWosONkJWCi35cTLj56bddqFuzCppeX1dYE8omEVASAa0QXkr4aDV24vR5sbxOD7bA6MG9hA9vYlIqbms/EK+90B1dOzokCYVdz8/5Hf/ujC9zoHpj6FOiTyWbJLxKoin78gsCf+0+iGdHfCB+ue5t0dQvYwbzIJQ3UKsa4IFe8F0nJtwo9KeuElcmYMWEG8Q9iWmB71es5D4lwS3B5DSD8iWwlZynGn3xVGTN5u0ij6D5jQ3AE4JFyzdiyqdLYTIZkJ5hRfUq5TBpzLOqJtWqgY0c07cI7Dj/s28HKKD3m0rn76979ny8OFUNt5hdmldh1zPp+3xcAsqVKVlgAQuXBingIkl4vUFP3qsKAotWbMSsL77DlDeeU/S4Q5XFaGBQfnkzipecFtiliAklSRqtxEh+k1LtsBcSrjXpaXFmQKY9G6kKVR3TwONUZArE0WLWC99jRnlluxoBlg1/b8ZiYaU09NnHUaNKebz+3lw0aVgLd93WBIeOncLSVT+KL+03hvVB4/o1JIQSAUUQ+P2COoS3aan8Ca8ii/JTJ5Lw+gloOYxyCMxbvBrfrNmK+VNHuPxWqdzowdkT9ZrUwDIyGuiRXj4hEjUmXyWk2oRnb94WZgqFxahHaqYdGR7qfoNzJ0BEK1k5zUKPXcl1C3zMjERNm/M1Nv70ByqWLw2r1YZ5k19FZIQF9qws8CSK2eckwRNf6y//VgXrL4yf1/X7hV/8PKJjuKalblVlXCUHlYRXSTRlX35BIDPTiiWrNqPbw639Ml5xGiTTloW4JGtQLJmJVyxSEZeUidwubPTwZaJbYirt2VwttRAUkLi0CHrsmg2snubS5cX6IpvNjjenfC48SLt2aoXXBnW/Co9ps5fh23W/YMLwp3FjI0dFKtkkAt4g8IdKhPdGSXi9eWzyXomA7xC4cDERZpNROjZ4ADHtvVigIhgqi5HYMvnKWT7XWbCiMK9ZDyALiluoXCDZNXmh2WU0PSklFSajAWFmU1DgUtQi4uKT8MHMJVj34w68OawP7mjeOCdZ7dff92Lk25+CCTjU+somEfAWgT8u/OptFx7df2OpWzy6T0s3yQivlp6GnIsiCNCzd8i4GahcoYzw8IuJjlCk3+LUiVUUqAj8qmx8Zqya5tD1hlx2cZBODHn3Ml0uosIZ2fW8etqho6exZdsu/L3nIMqWKYEH7mqG6+pVR0gxCBXTf3TGZ9/i6+9+xJABXdHpwTvAl+5x789Hcmo6Phj7LMqWji1Of0LkWn2EwE6VCG8TSXh99ERltxIBLxAg4V2wbD3mLl4tbE36dW/vk4xPL6YYELeS9Cal2sB/A7nRW5eEV3+Z8FLXK9sVBHQ6h1OFN5Fdkt13ZyzCsRNn8XDbO3Hy9Hns3X8U7456BhXKlSoWcF9MSMInn6/Ct+u24rabrhMm/P8eOIb3xzyLW26sL2wTZZMIeIvAzrjfvO3Co/ublHT46QZykxHeQH56cu4FIpCZaROlDmctWoV+3dqhV5cHJVoeIMAj6guJmYW6HXjQrd9uYREFHtMnJFsFcY+JYKQ3FBeSMv02By0PRDeLUtFmEf32tKWmZWDSJ4vxy++78fHbL6N8mZLgS+dLr3+Ixg1qom+3tp52HXD3scQ55Q1MrO1w320Y1LczypSSkd2Ae5AanvCfKhHeGyTh1fCukFMr9gjQ049fPHc0a4yGdasVezw8BYC2ZReTGekNHK9e0jeLWSecBijNyJ2cFmXRi/K4xb2impmlgsMdUg9v2ncbf8O7Hy7CmCG90aJ5Y9FVekYmhoydgfp1qmBgr07edK/qvfsPn8SyVZvFKdHFhGQ8M+x9vPlqX1HVsaDG0udbfvsbNzSsKWRVskkElETgz7htSnbncl83lGzm8rVavVBGeLX6ZOS8FEGAkSZ5lOg9lExgS0m3IS1T+6WISd/ozsCj+hSWCc7HlowODiR8acXUlizMpINI4POyMiGrH7br8Sra3nuLIIVMVuML0voff8db077AtDdfQP3aVbzfgCr1sOTbTfjg06W4+YZ6OH7qHKpUKIORL/VErMwLUOmJyGH/UonwXi8Jr9x8EoHARiA5JQ07/voXScmpuOG62qhaqWxgL8iHsyfpTcuwI9mD0r0+nNZVXTNayQgu55qakVWo0wQdHKjtzbDakZKe5a8pqj5OuCgooVOkDDd/d16b+KkgtrWqVRRrYyWll8d+iKqVymHkiz0ECQ7UZrdnYdLMJZj75feIjgzHZ1NHoGa1CoG6HDnvIEDgr7jtqqzi+pI3qzKukoPKCK+SaMq+AgYBmsQv/e5HfPrFKsQnJINurKx7f0vTBpg89rmAWYe/J0qcMjLtiE/RXuIXZQqxEUZkWLNcJuUMcJaJMQvbMi0TeaWec6RFj8gw5Qjohi1/YNLMrzBn0lCULhkjptlz0ASQKFLi4CTBSs1fjX7mLV6Dj+YtR4bVhpuvr4up41+A2aQchmqsSY4ZuAhIwuv5s5OE13Ps5J0BikBWVjbmLPoOsxZ9h5ioSLRt1VxEd7ft3Ce8NEuXjMZ7rw9E6RLRAbpC30+bpYhZlS2/Kma+H/3aERitpYwhNcP9ymmUQDCxjf7DrLwWDJXm8iIUGsIyynowuqu0S1i3Z8fDbNSjVYumotQuq4wNeqozWrW4UY2toMiYlGUkpaSJ6mkx0ZFgsZs5X36PeV+twQ0Naglf3XJlSoB63d3/HkGzG+rBYNArMrbsRCJQGAK7Lu5QBaDGJW5SZVwlB5WEV0k0ZV+aR4BfZF99uwnvfLQIt9zYAIP6PIJa1SvlzPvP3Qcw6LUpuLlJfVE1SXr45v9IiaOzFHE+Elm/7gPqUcOMOkF2M22eWajRMSrSrBeRfpJ5exBVYBNk16JHuI9KBZ8+dxGffbUGp8/FibK6ndveKfx3i9LO2+x2nDl3EQmJKWhUv4Zf90zuwTiPC3GJiI2JFMVqMq02/LJjN9Zs2iZ+fnvzRrj95kaoUrEMPl+6Dgu/3oD6dari/rtuxtZt/+DYybOYPO45lJIvyKo9w+I0sCS8nj9tSXg9x07eGYAInDobhw69RqB6lfJ4+7V+qFa53DWrWP3DNoz7YD6GP9cNbe8N/PrhvnxMJJiJKTbYsz0jmt7OjXpd6nYpSfC2TDDNCixmPUz6UCSxvwD3Hya2jObGsKCE0belgkkS09IyYLGYhWY3OSUdwCVBgJ2Nrin/HTouTlJIdM/HJeBcXIJInKPWt06Nyt5uB4/uZzLayLdn46F7bxW+3QeOnMSLo6YJAlylYlms37IDDepUEwUlGtSugtUbt2HyrCVISk4TCXpvjeiHlrc0LpLgezQ5eZNEIA8Cf1/8XRVMGpVoqsq4Sg4qCa+SaMq+NI/Asu+2YOTbszDkmS7o9dgD+c6Xmed3dXoefbo9hCe7ttH8mtSeoN2eLWzL/El6SU5pqUVCx7GVbCSHUWE6JKbakRngpLdUlFEUXVFaxlAY3pS5LFy+QcgbZr77soh8bv7lT7w1bSEuXExAqdho8SJZvlxJvDn5c9SvVRmzJw2DUaXkNkoX3vlwIb7f+BvGDe2Dnbv+w7FT58QJT5lSMdj5z368OHo6KpYvjXmTXxX6XZYTZpGNqpXLoWRsVLGoJqfk75jsy3MEJOH1HDtJeD3HTt4ZgAhMmLpAHEsumzUOdWsWHFH6Ytl6PNT6VkRFhgfgKv0/ZZv9EhJSrX6JijI5jWSXmltGdilDULqZjaGIMOuFV28gVpoz6EMFRiy84e9GD14WfTlw+CRef7k39Hodvvh6A2YvXIUxQ55Ey+aNkZicgjHvzRPV2L78eDRioyP9Pc2rxiOBfW/Gl1i1/ldYwkx4+ol26H25WA2tDVeu/1XYrI16qSceuCvws9VVBVsO7hUC/1z8w6v7Pb35uhKBq8l3rlkSXk+fvrwvIBH4+vsteG3iLHEM2a61lCso+RBtWdlITrUhw0MdrStzcSanZVqzhO2YL8iucx7OsajppfNDoCSzkeRGWQww6ENUizympTsq2ZE8srEa25KVmwTxfbzTvTh7IR6//r4bY17urap+N/eeo8RiyqylWLt5B3p0vg+9u7TJmT8/GzzmI8REhWPKG8+7slXlNRIBnyDwT7xKhDdWEl6fPFDZqUTAVwgwq5oa3hpVK2D8sD6oULZkvkOdOH0ey1b9iLtvb6KZL2RfYaJkv/S/TU6zi4IOSjcWi+D/qK9ldNcfjdHkcLNOkF1Gk9VO0CtqzUKOYTGISnJaazabHb/8vgfjP5iPuMRkDOzVET0636+IH7BSa+XfhxnzV2Dd5t/xTM8OQtOr04XiyPEzGDb+E/G3YMSgJ5QaTvYjEXAbgd3xO92+R4kbGsY2UaIbVfuQEV5V4ZeDq4EAbYS6DhiLW5s2xOjBvfIlvf/sO4xX3piBhKRUvD96gPDnlc01BEgOE1Otwu1AqRYRpoPZoENCqs3vDgrUv0aF6RESGoLEVJtmI710q4i2GBDqZalgpZ5Zfv1QL3t/1yGwZlpRu0YlzPngVYSZjb4cstC+k1PTMea9OYi7mIQH72mOh9u0RGp6BqbOWorlq38Sml5KMKbN+RrLv9+CuR+8irq11EmuUw0kObCmEJCE1/PHIQmv59jJOwMYgU0/M4lmARKTUlGtSnk817uTyMQ+fzGByeUoERslMrDHTZqPzb/+hc+mDJeRXjeeNxOXWMiBkV5vpADkboxYhoSECN9fRpDVaCS9LMVLuQCLbqg1j4LWbjHpRYU5LZNdzp1FKWiTNuy5x2E0GlG1YhlV3A34u/3zjt0Y+sbHwnqQc6K92j13NBEnP/y74NT0VihXCtyHzz31CO678yZV5qvGnpdjahOBPSpFeBvICK82N4SclUSgKASYiHLs5DmsXPez+HLr0vEezFywSpBbo16HRg1q4olHWqN65fIiGly7eiV8OOFFTR2/FrVGtT/PvnQJqV5UMDPoQkTpX4dMwqYJOQEjzSaDTsg2tJLMRpkHXwq0Tna5Hxk1vb5hLVTPxw7Qn/v1yIkzGPHWLFQuXwqD+z8myiGPeme2KCbx9mv9EREeJmzTPpq3AvsPnRAEvX7tagGBsT9xlGP5H4E98X/6f1AADWJvUGVcJQeVEV4l0ZR9BRwCrLpmtdmwdfs/GPHWp+jzeFsR6d2w5Xfxs0fathSFKiqWK42Z770Mg15WU3LnIYtCDhl2IQVwpzHhiiSOxS34P3XiuvnPmMlsrFjG6HWG1T9a4oKwI0a+qJ7mzrMKxGvXbNqOsZPmYcG01wS5feODz4R/8At9Owvv4INHT6FezSqwZ9lx8swF8cLLUwbZJAJqIyAJr+dPQBJez7GTdwYRAow8sfraR2+9hMb1a4BZ5nMWsZToavHf/3voTqH3lc19BEhWMzKzkOhiKWJaglE+wCiqLx0f3F/JlTsYfY4KdxByJbXKrs7JIbEwiHLBsrmPgJPwzp00DBOnLxQnN6Ne7ImK5Uvh8LHTeGbYJLz8zGO4t0Xgm+27j468Q8sI7E34S5Xp1Y+5XpVxlRxUEl4l0ZR9BSwCv+/6Dy+MmoqHWt+Grh3vgV6vx4Jl64R5/p23XI+3R/aHPSsLO/7cJwz0F340EmFmh+WSbK4h4CxFXJD+lSSOJYIZsUxIsXpdOc21WXl+VY4fsJ3SDf9JLihdiAozgElqMuhY8POjKwQrK7L0L5NQWSCiyXW1UaFcScTFJ2P4hE9EJDcmKlJYjdWuXlHYp836YhW27vgH44f2Qa3qFT3fIPJOiYAPEJCE13NQJeH1HDt5ZxAhYLPbsXbTdny2dB2SU9KEET5Ljj54dzMMe64b+PlPv/0tEt1OnL6Afk+0w70tm6JuzSpS1+vGPqCfLfW4ecsAh4ZCFHogmWNkV2tJYQUt0ZlUx8+ZpOfrebOMMiPLfDGQrWAESFy/2/ArZi/8DjZ7lkhMO3chXry0drz/Djz+8L2ighqLScRGReDp7u1hMuqx469/sXHrTgzo0QEdHrwDep3EWe4zbSGwL2GXKhOqF9NYlXGVHFQSXiXRlH0FNAL8Mjx64qw44ty15yC6P9IaPf53v9D0bd32N96csgA1q1VA0+vrYtvOvSJ69Opz3dDshnoBvW5/T95RoIJyBYdtmbNMMMliIHjd5sWLUVZGpQ26UFFtzhtXisKeBR0iIi16kTQnW8EIZGbaRJGLOV+uFq4L9991M6IiwnEhPhE/bP0TX63chIcfbCF8dkl6p3y6FOfiEqDT6URhif7d26NVi6YIt5glzBIBzSEgCa/nj0QSXs+xk3cGKQKJyalY88M2dGrTQiSp/XvwGHoNmogbG9fG8OefQPkyJXHmXBzGT/5MHImu/uKdIEXCd8siuU1IsYFuGSUijUjJsIvKaYHcWKCCxDcuORNZCi/FWSqY/8rUqcJ3idDjf7gIT3dvhy4d7hHJaM5mtdkxfe5yzF+8WlRbbN2yKejFe/zkWSAkFFUqlBZJbKE8cpBNIqBBBP5N+FuVWdWNaaTKuEoOKgmvkmjKvoIKAbs9C7/v+hf9h76P6xvUwujBPVG9SnmxRkocGBlauHwjdqz+OGfdLJm6cNkG9H2iLcItYUGFh9KLIelldJfEN92qMENUerIu9kcHBzonULahVMIdSW5shFGT1dNchMVvl+3aewhPvjgRzZrUw+uDe6FMqdhrxubJDPX6NzSshSEDusKglxFzvz0gOZDXCPybqBLhjZaE1+uHJzuQCGgRAcobKGOYMGUBjp8+jzEv90bnh+68QmzPx2P0u3Nw+lwcVswZn/Pz7zf+JuzN5k1+VRaqcOHB8vifCWrBQni5ZJM+FBazTvj0ehu1JoGOiTCC2l3ZikYgI9OKCVM+x+ZfdwnZAqO8ZtPVldx4zZRZy/D33oP45J2XZfJp0bDKKzSEwH+J/6gymzrR16kyrpKDygivkmjKvoIGgV927BaShaqVy2H/4RNoVK8Ghj/fDSVjo5GekYkJUxdg4087Mbj/o+j0YAuh5126ajNat7xJJLu1aN74mi/aoAFH4YU4qrLZvCaHCk/Lq+5E0YwwPWyiaIbdo75YUCIizCAju26idzEhGdPnLMP3P2xH23ua45VnGcW9Yt/GpFTq9BOSUvDe6AFXSR7cHEpeLhHwOwKS8HoOuSS8nmMn7wxSBFh2tH3P4ahRtbxwaEhKTsOjT7+OerWqCAL874HjOHX2PLp2bIX+PdoLYjtw+AfYu/8oJo15Vlgfsf3x938oX7ak0PzKVjgCjPRSBpDKIhO+yvry80NgUJbRWbaLyVa3RqflWEy4UdqOuYXalYuTU9Mw9v15WLtpBzrcfztGvtQjh/QeOX4GvV94Cz0fewDdH7lPuqx4iLG8TR0E9ifuVmXg2tENVRlXyUEl4VUSTdlX0CAQF58Imy1LlBpl2/zLX/j4s2+QkJQKk0EvkmEebNUcGZk2jJj4KQ4cPoGX+z+G++5qJjLEmSjDY9O2rW7BkAFdggYXXy8kKc2GtIwssCxxsLTocIMgrq7YrbGaVzhLBYdfSbQKFhz8vQ6exLwybgZ+/WMvHmt/N/p1bwfq8idO/wJHTpzF2Jd7o07Nyv6elhxPIuAVApLweg6fJLyeYyfvLGYIpKSmgw4OkeFhiIoMx+FjZ/DBzK+Ed+fQZ7vioXtvFR6+LTsNAlPpb76+rqjOVrlCmWKGlHfLZeUy2pPZs9Qt2+vdKq6+mw4OTD4jmae2N7/GiDAlDLxWlrFVBn2npnfDTzvR6cE7cPzUeRw8ehJDnumKO5pdJ90YlIFZ9uJHBA4k7fHjaFeGqhXVQJVxlRxUEl4l0ZR9FRsEqNllpIgVnJjQdttNDZGVnY35X63F5E+XwGgwiMpNtD6qWqlsUONitdow/6s1OH8xEXfeej1uu8n75AYWqEhKCx7Sy5QzkzFU2JaR9OZN0tPrQhERpkOYUS9lDAr/tjg1vd9t+E04p7w14mnc2Ki2JLsK4yy78w8CkvB6jrMkvJ5jJ+8sxgjQiWHLb7swYfjTuP3m65CVlY1FKzZiyqylKFsqFm+P6o/JnywRJHDJzDFBi1RiUir6vfKekHSIFhKC6W8OQvMbvY8GZNqyEZ9iBZPagqWxHHHJKKOoykbiexkyYTtmltXTfPaYqen97Ku1eKj1rahSMbhfQH0GouxYEwgcSNqryjxqRdVXZVwlB5WEV0k0ZV/FBgESvJNn4tDyFke5xRVrtuLdj75EreoV8fHbg4WGl1Xbjp08KwhxUkoaYqIiggoflm8d/PqHiE9MxtQ3B8Go1+PpIe/i/MUE/LDkA0XWas+6hIvJmeC/wdJ0oUB0uFFUmrPashEdYRRWZrJ5jgATHaUMxHP85J2Bg8BBlQhvTUl4A2eTyJlKBHyFwOmzcejcdzSuq1cdr73Q/RrN7uJvfsCfuw/giUdao37tqkHzxXzi1Hk8P3IKpr/5gnCjYJu96Dt8+sUq/PzNdMXgZinixBRbgdpXxQbyY0eOyml66EJCpEuAl7jzdIUlgnW6UFzfoKaUKniJp7xd2wgcTNqnygRrRtVTZVwlB5URXiXRlH0VSwR+27kPz4+YjKEDu+Lhti2vwWDjT3/gs6XrkJaWgVef7yYqPAVDY1SNCXs333DlD+H2P/fhhdHTsHXFNEWXyAhvYqoVlDkEQ5PV05R7iiS7Y96bh3vuaIIBvTpCr5OV05RDV/akNQQOqUR4a0jCq7WtIOcjEfA/AnHxSWj1vxfxZNc26N+9PYxGA3bvO4wNP/2BerWriGIUJ09fwPgpnwuJw6rP3vL/JP004tJVP+KDT5dgy9dTxIg//voXalStiErlS3k9A0p5E1IykWENbNJLHW+paLMoqyybdwgcPnYaPQZNQMPaVTHqpZ6oUM77febdjOTdEgHfInAo+V/fDlBA7zUi66oyrpKDygivkmjKvootAt+u3YrPlq4XUd4LFxPx1rQFwug+NDQU4RYzJgzvi/NxiaIccY/O96PH/+7LwYrWSSTENatVCHj8Xn1zJn7buQdLZ47F/CVr8evvezBkwGO4sVEdRdbGqHJCik3oXwPNqpdevGaDDjER9OWVbFeJDdH7xYnCF/u1F3ugUvnSSnQp+5AIaBqBwyoR3uqS8Gp6X8jJSQT8hoDNbsf5CwnC9qhN96EoW7oERjzXDSGhIWDUk8eutzZtiHVbfke/Jx5Ct4dbi7mlpKXjw7nLsf/QCbw7egCiI8P9NmdXByLJTMvIRHiYuchbHus3BqfPxeGOZo2QmJSCQX06K27uz/k4XA7sCBQDh9CQELB6WpTFUYRCNmUQOHj0FMxGAypKsqsMoLIXzSNwOPk/VeZYPVKZoIUqk788qIzwqom+HDvoECDxva3dQNSrVRXTxj+P6KgIJCWn4v2Pv8LS737E9Q1riiQvEluS3fdnLMaSVZsxYlB3dHzgDuHuoKX2zZqtYt60BmvaqDZ6d3lQrCm/xipWj/Z7HTxmbtPqFlF2uWK5Uj5JImIltvRMevXaNB/pJcGNCNPDYtJDJ3UMWtreci4SgYBD4IhKhLeaJLwBt1fkhCUCPkdg8y9/YtDIqejc9k483+cRYUnW64W3UDI2Cm+/1l8UoqCMgZ69ny9dh/FD+6Ddfbf5fF7uDkCi+86Hi/D4w/ci+7LPMF0m5kwaWmBXcxevxsEjpzDulSfdHc6j60l66dWr5RYTboDFrFdkiidOX0B8YhIa1K4KXTFJzv5OlEwAABbXSURBVBr1zmy8+PT/EBsdqQiGshOJQCAjcCR5vyrTrxZZW5VxlRxURniVRFP2JRG4jMBXKzdh4dcbxPE+o6N1alTC0IGPC+uytPRMzFn0HXjNMz064LEO92gON1o9TZj6uSih/PxTj4j5rdm0HROnfYEm19XGyBd7ICbaEen9fsNvOHDkpEjao17Z381qv4T45ExkaUzfwGhupMUR2fWmUcJx7OQ5fDR/BeiCERVhQYmYKAzq2xmN6lUPaj0wq6S16/GqILyPtG0Z1Gv1Zo/Ie4sPAkdT1CG8VSMk4S0+u0yuVCLgBgLZ2dmi8MSod+bgUnY2hj3XTZDdpOQ0TJ/7NdZs2oY+jz+Eh9u0hCXM5EbP/rnUQXgXID0jE+OH9ckZdOW6XzBi4qcY0KMD+vVoD5KxUW/PxonT5zF2yJOoXLGMfyaYZxTalVHeYLNrw8GBTgxRFiNMhlCvNbvn4hIw/M2ZsNps6N75PtSuXkmcDBw7dQ4TRzwd9JHPJ54dj7KlYx0vWUFWvEWVXxY5aEAjcDTlgCrzrxoR+HaaMsKrytaRgxYHBEh69x44hshwC6pULIOEpBS8PX0hVq3/FcOf74Z2992uSbLrfDYzF6zE3C9XY9nscaJcMhsJ7hdfb8CKNT+Jsso1q1ZAYnIqTp25gNo1KqnqgWq1ZyE+2aZ6pFenCwFlDEY9ya73GWoDXp2E+MQUjHj+CTSsW030ufqHbeBRP8tWB3upXJbwHvPeXLz5al80axL45U2Lw98+uUbfISAJr+fYSsLrOXbyTomAywikpmeI0sNLvt2Ed0b1xwN3Ny/y3nWbd+CTBSvx1SevF3mtLy6wZ2Xh0adfx/m4BGxZPjVnCLovtOw0CK8+1w1dOmpLjkFCfj5RvVLE5LflSoTBe5rrgPv9Txbj6++24OOJg9GgbjXxM75IMdHx8yXrMOv9V1C6ZIwvHr9qfU6dtUwUkWhYt7qYA72r+wx+B70eexBdOtztkyRI1RYrB5YIuInAsZSDbt6hzOVVImoq05GKvUjCqyL4cujig8C/B48Lb96H7r0Vj7S9s8iF/7B1J96bsRilS0ZjxtuDVXNvINl4ZtgkVKtcHq8M6CK8Tvf8d0T8jEb/9915U5Fr8fcF1EzHsxQxvXr9NDijrpQxlIg0KubEwBeODr1ew//bu/sgvar6DuCHJLtks5tsSEIgQABNi23qKAgVioW2Ak6JhQGdcbANSluttMEXiiW0aBEkIgXBWMDUBiikRWmA0UaRlwGBKqATQBSwLbRgeckbedtkd5PdDXTOTclsSDbZPbnPvXuSz/MPzHB/53eez1lmvnv23nMPe8sB4aqLz9myW/zk08+F8y75eviTM04OHzr192rdVS+bd+GiB8KNt34/rO/aEH7lkClh5gffV+xg33n/o+G+f3883DT3r7fcO152b+MRyEFA4E1fJYE33U4lgUELxHtiV63pKB4C29nRY3Fnd+7824vbIM6fdUYRNuv8xIB19TcWhg09veGYd00PDy9+Khx9xK8XO27x5Inh+IkPsK3r6gvdPX2VHFvW0jyyeEBt1MgRpXFs7OkNf/CRC4p7o+MZzvETz3OOfymYNKE9zD7nD8MB+00srd9wGCgebRd/OfzJT38R4s/dI489U/ySFf+fefo/XwhXfeEvwgnHHTkcpmoOBGoReHH9/9TSd2rbW2vpW2ZTgbdMTWMR2EWBRfc8HK6cd2t468FTwkXnfTQcctD+pdwHuivTeuOUgB/+5OchPkA1dcq+4aTfOWpYviSj//eMZ/XG0Nu5oW9Xvv5Oa2PYjS+UiPfulv35xPlXhr5Nr4VZZ50WXl66Mlx/y/eKh9fmXf6XO7x3d9OmTVkfWxZ3t9d2dIbnnn8pPPjIk+HehxaHV5atDG85eEq44/pLQnPT8Dqvuux1Nx6BgQRe7Kwp8LYKvH4qCRAoSSDu7F46d0Hx5qjb5l8SxraNKWnkPXuY9d19xQkOjfiMHT0qjG1tXPiK5zWfec6l4Zln/7eY/lHvOCzM/8r5oalp4KPOzjxnTvGAZHyZyTFHTm/E1658zPhg5DU33BFu/bcfhJu/dmE4/Dfyv5+wckQNdwuBlzqfr+V7HNS6+Z76nD92eHNePXPfbQTiPbuXX3tLsYt36ew/3SrsxtfSvm3a1DBlN/vzdVWL9/rrodjlXR9fRVzSWb3xhWmtLaNCW0tTaQ+oDeQRdzvjq6dHjNgrTDv0wOKe3fjg2ogR27994vGfPxvu+sGPw6OPPxPOPvPUcPJ7j679rwRlrPX6zu4wY+bsMP2wQ8M1cz4dRo0aWcawxiCQlYDAm75cAm+6nUoCpQi8cc9uW1tL6OreULyp7J3Tp4XWMS3F+K+H18N7fvPtYeYHTwpNo3btJQalTDjDQeJtGd09m8/q3dXQG09iiLcwxBdKlHDq2JA1X121Ntz70GPhxOOPDPtOaN9ufU9Pb7hp4d3FA2B3f/OK4mi83eFz0ZU3hqf+4/nwT1+9wF9AdocF9R2GLPBy5wtDrimj4MDWzafE5PwReHNePXPPXiAGk5PO+Gxxnm085mvB7feE27/3UPj+v/xdaG7eHG7jDmV8a1d8UGmgXb3sISr4AvHEhnhyw8qO9FcRx4Db3toc4n27dYTdyBQfIIzn8MaH2Y5+18Dn0sY//1/59W+Fu265Ytg+XDjUZY/3kMdfCN99+K+FkSU+IDjUebieQF0CAm+6vMCbbqeSQCkC8aUNEye0F0+if/Hqm8LCRQ+Gn91/QyljG2RbgfgQ2PI1G5NoJrXvXbxQos7PuvVd4cdP/CK89z1HbPcXoHi7w+Kf/Vf40twFYdmKVeGBO76205NB6vw+ehMgMHiBV7p+OfiLS7zygDGHlDhaPUMJvPW460pguwKfvHBuiKchPHHvfEINFOjpfS2s7ewJvZsGd1Jv8arg1uYwuqnesPtmkjvufKh4CUW81SWeStGzsTd0b9wYXtv0WvFCiovOOyscOnX/BkoamgCBKgUE3nRtgTfdTiWB0gXO+syXi3sUF9/1D6WPbcCtBWLoXdfdGzb2vrZDmqZRI0L7/78qeLgZ3vDNO8N1N307HPWOtxX39I4cOTLs0z42TJ40vji2rK11833gPgQI7B4CAm/6Ogq86XYqCZQu8Mjip8O5X7g2PPrd60of24DbCsQXVHR09obunk3b5Ylhd3xrU4j/HI6f3t6+cN8PHw833npn+PBpJ4b3n3iMBxuH40KZE4GSBF7p2nxEYdWfA8YcvN2W8SHa+IB1y+jmQU1pqNcPatBBXiTwDhLKZQSqElixau2AT99XNYc9qU88waGjsy90btz6BRXxwbTxbc21PZw2lDV45LGnw+e+fH2Y9cenhw/MOG4opa4lQCAjgSU1Bd4pbwq88bXzZ8++KvzypWWF3gdmHF+8br5pgOMCd3T9qjXrwnGnfXKbVbj+qvOLt3uW9RF4y5I0DgEC2QrEo8rWdfeFriL07hVGN48I41oa8/a0RiH99Onnwlfm3RquvezcMM5LSxrFbFwCtQoMl8D7Z391ZXHL1JwLPh6WLl8ZPvSJi8PfnvuRcMr7jt2uz46uX7m6Ixx/+qfCvMvPCwcfOHlL/eRJ+wx653gwiyLwDkbJNQQI7PYC8fi3eE9v/LTuPTLLY69eXrIiHDhl391+rXxBAnuqwHAIvPHNh8eeMiv88zUXhiPe/qvFUsyZuyAsXb4q/P2cT2+zNDu7/o3A+92bLyteH96oj8DbKFnjEiCQnUBxZsPrIYvbGLLDNWECBHZZYEnXi7s8RsoAU8ZM3VL23y+8HE4968LwwO1fLU6DiZ8Ft90TvnP3j8Jt/3jxNsPv7Po3Au/vHnt4GD+uLRw2bWo47fd/O7SPbU2Z6oA1Am+pnAYjQIAAAQIECDRGYGlNgXf/foH3iaeeDTPPmRMeXnTtllD6r4seCPNu/k64f+HV23zxnV0fXxs+d/5tId7CEP89HrcYX7T0rXkXlXqGuMDbmJ9JoxIgQIAAAQIEShUYDoH3jR3bB++YWwTTwe7wDvb6+CDcjJmzwy3XfT68c/q00vwE3tIoDUSAAAECBAgQaJzA0u6XGjf4Dkbev+WgLf91e/fkfvHqm8PyV1cP+h7eHV3f2bUhvHvG2eGGq2eHo48Y+PXpQ4UQeIcq5noCBAgQIECAQA0Cy2oKvPv1C7zxa3/ss1cUp8FcOvtjYcnyleGMsy/ZckpDx/qu8NFPfSl8/I9OCTNOOLpQ2tH1Dz7yZIgh97eOml6cIx5vb/j2XT8K9y28qtQTZwTeGn5gtSRAgAABAgQIDFVguATeeNtBPGrspSUriq9w+snHFa8yj+fwru3oDMeeOit87jNnhg+fdkLx33d0/b0PLQ5/c9n80NW9obh2wvix4YrP/3k45sjyzuCN4wq8Q/1pcz0BAgQIECBAoAaBZd0v19A1hP1aDtxu32UrVhfn8baOGT2oeQ10fd+mTWHlqo5ijPhq9L322mtQ4w3lIoF3KFquJUCAAAECBAjUJDDcAm9NDEltBd4kNkUECBAgQIAAgWoFlte0wzt5gB3ear/9rnUTeHfNTzUBAgQIECBAoBKB5d2vVNLnzU0mtxxQS98ymwq8ZWoaiwABAgQIECDQIAGBNx1W4E23U0mAAAECBAgQqExA4E2nFnjT7VQSIECAAAECBCoTWLFhSWW9+jfad/SUWvqW2VTgLVPTWAQIECBAgACBBgkIvOmwAm+6nUoCBAgQIECAQGUCAm86tcCbbqeSAAECBAgQIFCZwKsbllbWq3+jSaP3r6VvmU0F3jI1jUWAAAECBAgQaJCAwJsOK/Cm26kkQIAAAQIECFQmIPCmUwu86XYqCRAgQIAAAQKVCby6YVllvfo3mjR6v1r6ltlU4C1T01gECBAgQIAAgQYJrKwp8E4UeBu0ooYlQIAAAQIECBDYSkDgTf+BsMObbqeSAAECBAgQIFCZwMqNyyvr1b/RxL0n19K3zKYCb5maxiJAgAABAgQINEhA4E2HFXjT7VQSIECAAAECBCoTWFXTDu8EO7yVrbFGBAgQIECAAIE9WkDgTV9+O7zpdioJECBAgAABApUJrNq4orJe/RtN2HvfWvqW2VTgLVPTWAQIECBAgACBBgmsrinw7iPwNmhFDUuAAAECBAgQILCVgMCb/gNhhzfdTiUBAgQIECBAoDKB1RtfraxX/0b77D2plr5lNhV4y9Q0FgECBAgQIECgQQICbzqswJtup5IAAQIECBAgUJnAmpp2eMfb4a1sjTUiQIAAAQIECOzRAmt6Vtby/cc3T6ylb5lN7fCWqWksAgQIECBAgECDBATedFiBN91OJQECBAgQIECgMoG1Ne3wttvhrWyNNSJAgAABAgQI7NECa3tW1fL925sn1NK3zKZ2eMvUNBYBAgQIECBAoEECAm86rMCbbqeSAAECBAgQIFCZgMCbTi3wptupJECAAAECBAhUJtDRs7qyXv0bjWvep5a+ZTYVeMvUNBYBAgQIECBAoEECAm86rMCbbqeSAAECBAgQIFCZgMCbTi3wptupJECAAAECBAhUJtDRu6ayXv0bjWsaX0vfMpsKvGVqGosAAQIECBAg0CCBdTUF3rECb4NW1LAECBAgQIAAAQJbCQi86T8QdnjT7VQSIECAAAECBCoTWNe7trJe/RuNbWqvpW+ZTQXeMjWNRYAAAQIECBBokMD6mgJvm8DboBU1LAECBAgQIECAwFYCAm/6D4Qd3nQ7lQQIECBAgACBygTW93ZU1qt/o7amcbX0LbOpwFumprEIECBAgAABAg0SEHjTYQXedDuVBAgQIECAAIHKBDpr2uFttcNb2RprRIAAAQIECBDYowUE3vTlt8ObbqeSAAECBAgQIFCZQGffusp69W/UOmpsLX3LbCrwlqlpLAIECBAgQIBAgwQE3nRYgTfdTiUBAgQIECBAoDKBrpp2eMfY4a1sjTUiQIAAAQIECOzRAl1962v5/mNGtdXSt8ymdnjL1DQWAQIECBAgQKBBAgJvOqzAm26nkgABAgQIECBQmUB3TTu8LXZ4K1tjjQgQIECAAAECe7RAd19nLd+/ZVRrLX3LbGqHt0xNYxEgQIAAAQIEGiQg8KbDCrzpdioJECBAgAABApUJCLzp1AJvup1KAgQIECBAgACBDAQE3gwWyRQJECBAgAABAgTSBQTedDuVBAgQIECAAAECGQgIvBkskikSIECAAAECBAikCwi86XYqCRAgQIAAAQIEMhAQeDNYJFMkQIAAAQIECBBIFxB40+1UEiBAgAABAgQIZCAg8GawSKZIgAABAgQIECCQLiDwptupJECAAAECBAgQyEBA4M1gkUyRAAECBAgQIEAgXUDgTbdTSYAAAQIECBAgkIGAwJvBIpkiAQIECBAgQIBAuoDAm26nkgABAgQIECBAIAMBgTeDRTJFAgQIECBAgACBdAGBN91OJQECBAgQIECAQAYCAm8Gi2SKBAgQIECAAAEC6QICb7qdSgIECBAgQIAAgQwEBN4MFskUCRAgQIAAAQIE0gUE3nQ7lQQIECBAgAABAhkICLwZLJIpEiBAgAABAgQIpAsIvOl2KgkQIECAAAECBDIQEHgzWCRTJECAAAECBAgQSBcQeNPtVBIgQIAAAQIECGQgIPBmsEimSIAAAQIECBAgkC4g8KbbqSRAgAABAgQIEMhAQODNYJFMkQABAgQIECBAIF1A4E23U0mAAAECBAgQIJCBgMCbwSKZIgECBAgQIECAQLqAwJtup5IAAQIECBAgQCADAYE3g0UyRQIECBAgQIAAgXQBgTfdTiUBAgQIECBAgEAGAgJvBotkigQIECBAgAABAukCAm+6nUoCBAgQIECAAIEMBATeDBbJFAkQIECAAAECBNIFBN50O5UECBAgQIAAAQIZCAi8GSySKRIgQIAAAQIECKQLCLzpdioJECBAgAABAgQyEBB4M1gkUyRAgAABAgQIEEgXEHjT7VQSIECAAAECBAhkICDwZrBIpkiAAAECBAgQIJAuIPCm26kkQIAAAQIECBDIQEDgzWCRTJEAAQIECBAgQCBdQOBNt1NJgAABAgQIECCQgYDAm8EimSIBAgQIECBAgEC6gMCbbqeSAAECBAgQIEAgAwGBN4NFMkUCBAgQIECAAIF0AYE33U4lAQIECBAgQIBABgICbwaLZIoECBAgQIAAAQLpAgJvup1KAgQIECBAgACBDAQE3gwWyRQJECBAgAABAgTSBQTedDuVBAgQIECAAAECGQgIvBkskikSIECAAAECBAikCwi86XYqCRAgQIAAAQIEMhAQeDNYJFMkQIAAAQIECBBIFxB40+1UEiBAgAABAgQIZCAg8GawSKZIgAABAgQIECCQLiDwptupJECAAAECBAgQyEBA4M1gkUyRAAECBAgQIEAgXUDgTbdTSYAAAQIECBAgkIGAwJvBIpkiAQIECBAgQIBAuoDAm26nkgABAgQIECBAIAMBgTeDRTJFAgQIECBAgACBdAGBN91OJQECBAgQIECAQAYCAm8Gi2SKBAgQIECAAAEC6QICb7qdSgIECBAgQIAAgQwEBN4MFskUCRAgQIAAAQIE0gUE3nQ7lQQIECBAgAABAhkICLwZLJIpEiBAgAABAgQIpAsIvOl2KgkQIECAAAECBDIQEHgzWCRTJECAAAECBAgQSBcQeNPtVBIgQIAAAQIECGQgIPBmsEimSIAAAQIECBAgkC4g8KbbqSRAgAABAgQIEMhAQODNYJFMkQABAgQIECBAIF1A4E23U0mAAAECBAgQIJCBwP8BENwLmEZH2xkAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 9, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/BCG_incomplete_mkts_15_1.png" } }, "output_type": "execute_result" } ], "source": [ "#====================== Experiment 1 ======================#\n", "Ve1,ke1,be1,pe1,qe1,c10e1,c11e1,c20e1,c21e1,𝜉1e1 = off_eq_check(mdl,\n", " kss,\n", " bss,\n", " e=-0.1)\n", "\n", "# Firm Valuation\n", "kgride1, bgride1, Vgride1, Qgride1, Pgride1 = mdl.eq_valuation(c10e1, c11e1, c20e1, c21e1,N=20)\n", "\n", "print('Maximum valuation of the firm value in the (k,b) grid: {:.4f}'.format(Vgride1.max()))\n", "print('Equilibrium firm value: {:.4f}'.format(Ve1))\n", "\n", "fig = go.Figure(data=[go.Scatter3d(x=[ke1],\n", " y=[be1],\n", " z=[Ve1],\n", " mode='markers',\n", " marker=dict(size=3, color='red')),\n", " go.Surface(x=kgride1,\n", " y=bgride1,\n", " z=Vgride1,\n", " colorscale='Greens',opacity=0.6)])\n", "\n", "fig.update_layout(scene = dict(\n", " xaxis_title='x - Capital k',\n", " yaxis_title='y - Debt b',\n", " zaxis_title='z - Firm Value V',\n", " aspectratio = dict(x=1,y=1,z=1)),\n", " width=700,\n", " height=700,\n", " margin=dict(l=50, r=50, b=65, t=90))\n", "fig.update_layout(scene_camera=dict(eye=dict(x=1.5, y=-1.5, z=2)))\n", "fig.update_layout(title='Equilibrium firm valuation for the grid of (k,b)')\n", "\n", "\n", "# Export to PNG file\n", "Image(fig.to_image(format=\"png\"))\n", "# fig.show() will provide interactive plot when running\n", "# code locally" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the above 3D surface of prospective firm valuations, the perturbed\n", "choice $(k^*,b^{*}-e)$, represented by the red dot, is not at the\n", "top.\n", "\n", "The firm could issue more debts and attain a higher firm valuation from\n", "the market.\n", "\n", "Therefore, $(k^*,b^{*}-e)$ would not be an equilibrium.\n", "\n", "Next, we check for $b^{**} = b^* + e$." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum valuation of the firm value in the (k,b) grid: 0.1082\n", "Equilibrium firm value: 0.0974\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAK8CAYAAAANumxDAAAgAElEQVR4XuydB5wkVbXGT+fJYfPCklYBRVBEBMkZBAmCEpSMJEGQDILEJYMkiYJkBQkiSQmSHyBJEBAUJCwsYePs5On8ft+tvj3VPR2qqqu7enq++97K7kzVDf97u+urc889x5dOp9PCQgIkQAIkQAIkQAIkQAINSsBHwdugM8thkQAJkAAJkAAJkAAJKAIUvFwIJEACJEACJEACJEACDU2Agrehp5eDIwESIAESIAESIAESoODlGiABEiABEiABEiABEmhoAhS8DT29HBwJkAAJkAAJkAAJkAAFL9cACZAACZAACZAACZBAQxOg4G3o6eXgSIAESIAESIAESIAEKHi5BkiABEiABEiABEiABBqaAAVvQ08vB0cCJEACJEACJEACJEDByzVAAiRAAiRAAiRAAiTQ0AQoeBt6ejk4EiABEiABEiABEiABCl6uARIgARIgARIgARIggYYmQMHb0NPLwZEACZAACZAACZAACVDwcg2QAAmQAAmQAAmQAAk0NAEK3oaeXg6OBEiABEiABEiABEiAgpdrgARIgARIgARIgARIoKEJUPA29PRycCRAAiRAAiRAAiRAAhS8XAMkQAIkQAIkQAIkQAINTYCCt6Gnl4MjARIgARIgARIgARKg4OUaIAESIAESIAESIAESaGgCFLwNPb0cHAmQAAmQAAmQAAmQAAUv1wAJkAAJkAAJkAAJkEBDE6Dgbejp5eBIgARIgARIgARIgAQoeLkGSIAESIAESIAESIAEGpoABW9DTy8HRwIkQAIkQAIkQAIkQMHLNUACJEACJEACJEACJNDQBCh4G3p6OTgSIAESIAESIAESIAEKXq4BEiABEiABEiABEiCBhiZAwdvQ08vBkQAJkAAJkAAJkAAJUPByDZAACZAACZAACZAACTQ0AQrevOmNxuISjyekqSkswUBA/fahx1+Unt5+2fvHW6t/p9NpGRwakUAgIM1NYfWzV974j7z1nw9l5203ku7OdseLplD7jitz+cZEMilPPPdP+WDu55JKpmTtNVeVb359tqRSaWlrbXa5NW+rw1hvvftRWWHZGbLFRmt50pl6WAsfffKFvPDqv2Xh4qVqjn+685bS0hzxhMeDj70gfQNDsucuW3rSvt1GC31PFKsDnJ964XXZcJ1vyiqzZ9ltquj1hT6z31trtbL1P/Piv+SDuZ/Jmt/4qqy1xirq+kefflk+/3Kx7Lf798Xn85WtI/8Cq9+Rn3y2QP7+3KvS0dYqP95+E9vt8AYSIAESKESg7gTv3Q89LWdcfHPR2Zo+tVuevPvSqs3mqRfeKH/+67Ny7QXHykbrrqHa2esX58jrb78v/37a6Ne8LxbKNj85XlZfdSX503Wnq59d+ru75YY/Pix/uelsWXkl5w+sQu1XbbA2KsbD+6DjL5YXX/139q7dd9pcnn7hdZm/sEde/uu10trSZKPG+r50eCQma3//YCV2r5hzZNU6+8ln8+XuB5+RTdb7lqz9rVVz2vF6Lbz0+rtywNEX5PQJnz18BqtVSvHY/ZAz5cNPvpBX/nZttZp3td5C3xPFGnj82VflqNOulHN/dZDstM0GrvSj2Gf2tKP3KVn/F/MXy5a7H6uE982X/0o621vV9Qcff7E8/8rb8taTN4nfb1/wWv2OTCZTcvL51ytDw7UXHCMbrftNV3iwEhIggYlNoO4E710PPCVnXnKL+rKdNXPqmNmZ1N0hZx63f9Vm7fo/PCSwbhx/2B7yrdW+UlDwwtp19OlXyUrLz5Q5JxzgquAt1H7VBmuj4n++9Z7sfcS56iXg9GP3l2mTu2RgcFhOvej3sqSnX66/+PistdtGtXV7aa0E78uv/0f2P/p8OeHwn8i+u26Tw8PrtQCxC9ELwb/xet+SoeERaWtplkDAX7V5K8VjvAneQt8TtRS8xT6znR2GgC1WjjnjKnn06Vfk8TsvlmVmTMleVivBiwaxy7bT/qcIxO/9N58jTRFjJ42FBEiABJwSqFvB66alwykcfV++hbdQfVatF5X2xav77334WTntohvl/JMPlh22Xt+rbtSs3XoQvDUbbJGGvrvtodLe1lzVHZX8phtJ8NqZv2pYeJ18ZmHBhbD9+T47yS8O2DlnCLUUvGgYhofDfnWpHHHALnLoPjvawclrSYAESGAMgXEveN9690P57Y1/VlttLc1NamvY7/NJMBhQ24Mo8B278c6/yQF7bCvfXfNrWQjYujvr0ltl603WVr63KA889rz87cmX5eQj95TllpmmfpYveGF9OPLU3yoLsP4i1oIXrhDwP3vupTelf2BYNvju6nLKL/eSqZO7su1ecNUdyg3gwlMPEfglon8DQ8Ny6lH7yIuv/TunffgOn3zeDWpb76c7b5EzgceddY1MmdQpJ/3ip+rn//7vx3LlTffJj36wscydN18eevwFee/DebLx974lxx26mywzY6rc8MeH5PFnXlV+uN9c7SuC7c2vr7xCyY8GthbBGFu0cOOAlR3lijlHyGXX3yOffblILjvrF+pnI9GYsn6vtcbKstuOm8m9Dz8jb//nI2lva1GWeT12cLvypj/Li6++I1Mnd8pO22woh+y9g3Id+d3tD8mr//qvNEVCsst2G8svDthFQkHDn7pQ+eDjz+Tia+9SbR605/Y5l8AqeeyZ18gKs6YrTuB53hV/kP/87xP5YsESZbXEbgJ8BXfbcfNsO4UEr5119OY7H8g1tz4gH879XHHD2lzjayvJ3rtuLZut/23VR1xzzuW3y9v//UjtZsxeYRn1cz2OQmsRv4fbz5//+py6H+OC3+cvD/xRjkuJ5nz4/j+Uq276i1qPKN/fbB054bA91HwUK/D7POKUK+TZf/xL9Vu7Wmy3+brZlx0rfbjvb8/JY8+8Kqcetbdaj/BRxVrZd9fvyzrfHv0c6n6U46EtvHdee5qlMT39whvKD/ut/3yk1hL8UY/7+R6KmZVi/m7B9dts+l3l12/+btGfuT122lyWW3aa+sy9/+E8WW/t1WXX7TcZ8z2BeuKJpFx/+4Py0N9fVFy+ssIyssyMyfLcS29ZdmmA9fbaWx+Q19/+nxrbd765qhxzyK6y/LLG2Ep9ZkOhYNHh//ig0+Xd9+fKCw9elXVl0BcXEry9/YNyzmW3Sf/gsFqDX/vq8kXrtvMdqSvZ+YBfq++wFx+6WjpKrFkr88lrSIAEJjaBcS14//HaO/KzYy9UMwgh29HeogQURMykrnZ57i+/Vb/76xMvyfFzrpGLTv25bLfFutkZh1Dacb9T5Gc/2U6OOWQ39fMrb7xPrrn1frnn+jOzQjBf8BYSQ/rLXFcOETl/4RJZsrRfiZmHbj1P9IMGD26IHIhH/FcXXPPw3/+R0z5E2Za7HaPE4+nH7JuzWmGBw8MbfUWBqDn0xEuy1+gHOx6q4AGRg7/j59gqhBCD2LvvxrNLfgogbq644d7sWFBPwO+X2688RfY/+oIc/2a4Oaz7g58rP0+8GGD8KHo+9Nh1g2YG637762oLHcX889+e80vZfANDJBYqEGib/ego1Rb8OyHSdMELxUnn/k6OPXQ3OWCP7QQ+otvueaLqH+YoFAyqlyWsGfwe16EUmmM76whi79cX/F7xhesL6oegQbnq3KNk0/XXlNfefE9OPu96NQ/gM33qJPX79df+hlqPhdYihCxEHPq/zre/ruZTC997b5iTdSspxBn+r+gHXiK0K04hnhBkex1+dnZt6hei3XbYVK1Dq33Qnwm8WKGPuqBt9CG/lONhZ0w33vlX+c21d6kmIFRxEApCDuWpey6TaVNGX0ALMcBcHXrib9SvsC7hn/6Pf7475rtFf+bASNePe7ALcvox+43xA4df7SEn/EatOcw52Cxa3JtlbWVn6+/PvSa/PNX4bttm03UkGosJxD3Kn38/R1b9ynLqpajYZ7aY4F2waKls9uOjivqt5wveoeGosgbjJfXEw38i++S55ORztfMdqe+9+U+PyEXX3CnlvgOKfTfw5yRAAiSgCdSt4EUHzcJFd1gLPIicHfc9WT3wIby+vfrK6hI8rLff+yRDYHggeH/4/Q3luJ/vriI1oC/HnH6lPPn863LBKYfI9lutp/qoH9yw7Bx18K7K8gfL6PQp3cq6aRbcTgQvRNY5Jx0oq62yomrvhDnXysNP/EOJr/NOPlhZYfDgPfbMq5Wv3tP3XpZjgS708bjl7kflwqvukJsuPSnHOpf/MqAFL+rAgS9Y82avMFP6B4aU9UmP/fD9d1YvGpFwSPSLB+458mc/kv13/76EwyH57wefyi4/O1VZtk/55d4lP7WwQMPile9yof1Q9RghZD//cqF8ZcVls/Xh5P8P9jpRRqLx7IGoSgUvxAMOspst+++897HsevAZSqRccsZhqv1SW/j5gvd/H32m/BrxMvD7S07IRsbQQgIiGUzNa+ywfXeSA37yAyWE8UKAw5b4bLz5xI1lfXG/sel+6oT+bb89OcvKTh90v/A5hk/8et9ZTSLhsJrzYn6k5Vwa8IJYbkz6sBhE6O9/c0K2Lf0SAmEGgVasxGJx2WHfk9WLyB+vPjXry1/ou8X8kondBVjQ8TKCCBud7W1jBC8+b/CRxc7P5XOOzL6g6BezcoIX9W675wlqhwgvyHiZQtH9QL2/u+g49bNin9li4/7bky8Jdo2KuS2ZBW88kZAjTrlcCfejD95VDvzpD8o+VfV6sPIdqStD9Irt9/mVEtOl5qxs47yABEhgwhOoW8ELq6hZLOiZwhY+ts+1GDJHStDXbLfXiUpgeSF486M0/OudD+Snh83JsdBq0ffG4zdkrb667/kix4nghZsCIijooh+m+ZY1LQAuOeNwZQUrVewKXrhRXHP+0WOqLHbwaPNdj1YWYT1n+saNfniEskz/9fbcaAH5FWvLLSz9N192kvq1Fj6FIi1A0L7/4acyf1GP9Cztl9vvfVy5eeit3EoFr+7f0t4Bef+jebJwca8s7RuQcy6/Lceqbkfw4hAbXEgun3OEbLnRd7IIECJvne0OVRZrbe0vxlkfSLJi5SwkeO30QQucO685Tdb4+mxLX7blBG+hKA35Y7r5rkfkoqvvVC+Z22y2TrbdoaERWX/Hw8eI+PyOwU1ht0POKLirkv/dooXm8T/fQ4XrMpdCa0j39bdnHymbbzga7s6qDy+sqXjJRIhE7cqk28ShUrg66O1/u4JXX282IJjHowXv649dL8fNuUaFKISfL/x9rZRi5xwKfUfq+vDy8e2tD1LfT/ieYiEBEiABpwTqVvCWs3RoS0mhwxX1JHjh47b+Doer6Abw70Upddq8GoIXFmZYY844bj/ZdftNs2tFP2TPPvFnWR/mYgvJruA1WzHNdRYbO3z15n2xaEzIqfy5LLXQtTX3kT9eqPyvr7vtQbni9/fmhDbCzsC1tzygrOiFyvP3XyldnW0VuzRg3s/8zc3Kgp5fzG4kdgSvDlNmtuzpusEJux06dF4xzoiAgkgo+SfwC7EoJHjt9MHJQU4ngjd/TPrfxdZKudCG2nUl//OC+ooJ3vyXTFxbSPDqecr3kbUqeIu9vKK9c6/4g/zhz4/LvTecpXZx7ApevEzhhebvf/qNzJw+eQw+LXjhroF+7LnLVuqsg9VSbD0U+o4014mX3hWXm5mz02C1TV5HAiRAAprAuBW8iJWLhy+sHDohhPnhXy8WXmyXr7f9YergmLZ41lrwwr/v8JMvGyN4n/y/f8oRv75C6lnwwm0FB83yLb+FPsJ6SxZWp0P22lFt/WL7/ql7L8smEYEAhhCG6Dxozx3kqystq0KsnXvF7crtwy3B+5PD5ii/VViX8ZIBVxy4uUDwYJdC+03bEbzaNeWxOy+WZU3hosBCH+55+6mbVFKAYmtszqW3yp33P+lY8NrpQ60Eb/6YdB+POujHinV+QeIMvJAVK3rno5DVtlLBC797HDLLX89WBa+OU17I7QBWbVi3tUXdruDV8/XE3ZfIjIw/uZmRFrz6Z3DJuu3KU8YcbivGtdh6KPQdScFLkUICJOA2gXEreHX4nG03X1cuPu3nOVzyH0paCOVv6Vfj0Fq+S4N2vTD7oNkRvPDVw3Y/rCp4yJlLsUNr+damiSJ44Qe90Q+PVKG0sJ2931HnC3yF4fOpCwS02XVB/xyHx+5/9PmSgtfqOoKvLKxShdxt8PNCglcfqjPPb761X/8bLhvmaCM4gPi97Q9T0S6060e1BK+dPlQieAvxsDqmq2+5X6666T654eLjZb21v2H7O/Mf/3xHfnbMhQUPb1UqeLU7E9wC4Keui1XBi8QvBx53UUFXAiSuQD3aX92u4NWuIHdcfao6TJdftOCF//mb73yoxDV8vK+/+DhLcXKLrYdC35G6bfhNr7nlz+jSYHsV8wYSIIF8AuNW8GohiJPOeMjrMEs4Kb3PkeflWFEQ4mrfX56X45OHdLjY/jv/yj+6GqUhX/DqLWCz36UdwQu/1jW3OlBFevjbHy7MZjjSvnxmv03tTzhRBS8WtzmCANZI/tY9XhJg9TWHOcKW6sHHXaxOypey8FpdR/pFCgcp4Q+pC4Q2BLfZpUE/7BHW6tS8DFj5glfPb/5LHlK+HnPG1cqSjG14FKvisNRXYiGXBjt9cCJ4S/GwOiYtCiHabrnspBxhiUOVCOWlsygWGr/eYsdhuzuvOVUdcMTn8L5H/k+5qZgjwBT7zKHeQi4NyCIJK63ZQosXlstvuEd+f8dfy4YlW9zTJxvvfKQ6GPfwbRdkD719/uUi2WqP49T3BFx6YOW3K3i1KwcMCFhjxQQvMq2hnHTOdWpXZKuN15aLT/95dhcFv0MkEbjYbLDOGtkIK8XWQ6HvSN02omtgp6aQzzIf5yRAAiRgh0DdCl4IuRWXmzFmLN2dbdkT+6ecf4P85ZH/y8Yi/eSzL7Ohn8wPJWyZbbHrMUro4DDXpM52efrFN7JhhNwMSwaRg7i+eFg++9K/1MEOWPruuOa0rFi1I3gBAJZKxICFWwRiib757gfZMEQUvLlLRAsm/NTsN62vgjCEQIQY2mz9NQXZsP7yyPNqbaCUErxW1xHEEazysPRCDODA1nsffqpio6KYBS/a3WSXo1T78EdH+CtY/vbcZcsxYckQWQMHk/CyA0Gy6XpryqdfLFDXoZjFvVVxaFfw2umDE8FbioedMR156hXqswdXEsRYRoa4d96bqwTaemuvVjZdNMTnJdcZYc0gLvHypEslghcxZeF+ggIfWLhXPPPiGyrWLEq5swu4RkckwffK7jttpsT4dbc/qPpoPoBqV/DqA7KFds3Qbn5YMhwoQxhEhBLE96pOWQw/+W9t8TM1njuvPV1FoUHR68HKd6RmDaMEfJNxUBmfJRYSIAEScEqg/gTvg08rK0qxYj5wgjiQZ1x8k3qIoUBk/nzfHeVP9z+VE5ZMiYFMrnpdLywhe/1oK2XhRUgdhNZBwVYotkR1PEv8rFgcXnwB64QL+sAH/NpgydMFouvcXx2srEK6lBK8hdqHxfCwX12mog7ocWLLF3FGZy8/U/503enq59rNA/F6ES9VF52x6KzjD1BJKXTRh9ms+PDCYgPr6S2X/yqbiKAQGx0xwO6hNQS8h0UIcXTNBeJg0ZJeSz68Zr6w1uZHM8DvES4MB/jM8Y9/sMX3VBt4cL/wwFUqjJW2zpnn2M46+udb78svT70iG4cY9x6+3w/lpj89IrNmTsmJfYz5wWEhCFkU9OfCUw8tuBZ7+wblzEtyD8NB1OF6CKByawxRIv543xPy97sukZnTjLi/xQosvOaoF/o6q33Qn4n7bzpH+UpbLcV4FPvcFBoT3FsQwxXCVb/MoH2wQtKTHbfeoGx38ILyt6deUkIS/Ucc4l+de70SqdoHu9hnDpUXW0Pakqo7gO+M9b+7utx2z2Ny3skHle0bBCXCF+K7Qhd890FwmrMgFvvMlhq4dvn5x0NXj0lOgrjEiE8MC6/f71PV4KzEPkeeqwS7Dk8G33X4sOOlEu4Rutj5jtT3lEqEUXYCeQEJkAAJmAjUneB1Mjt4sPQs7ZMZ0yarL+JiJ/shkD/9fIHK2FPoFLKTtgvdA1EFyyHaMAvdSurHQw7be3jMIKMTMj6xOCMAdxasAwihZaZPKRoTtljtVtcRYqZCxKMgagRi4ZYqWDewoCIcnxYUxa7HiwVCsU3u7iybRMEZpfJ3VbsPdngU6y144mUGIh0vy6UyzJUbsXZ1cCNEFqyjH8+br5LlFDogVq4v+D0su1gDwWBQuTIEAn4rt5W8RrtoIKYwDv05KTp0XX6iH3NdVr4jkZnvFydfPsYP30mfeA8JkAAJNITgzZ9GO6GsuARIgARIIJ8AhB/E5Opfmy1TJ3XKwiW9ypUA/sFXzDlSHWhr1KLdfmDFhvuN3YLwgIg9/cRdl+T4T9upB77WO+53ssqEeP/N51g6FGenfl5LAiQw8QhQ8E68OeeISYAEyhDQEQvyL5sIGb90imFYxO+4+jRlGbdatBuHnYQU+XXD+n3YyZeplwtkyvved1az2jyvIwESIIGiBBpS8MJfN5FIFjxpzLVAAiRAAuUIwH3hjbf/J5/PXyQjIzGZMW2SSuagU/mWu3+8/x4Z2z7+9EtZeaVZlrPk6THjcCf8nJ26XeGswsuvvyttrS3qADALCZAACbhBoCEFrxtgWAcJkAAJkAAJkAAJkEBjEKDgbYx55ChIgARIgARIgARIgASKEKDg5dIgARIgARIgARIgARJoaAIUvA09vRwcCZAACZAACZAACZAABS/XAAmQAAmQAAmQAAmQQEMToOBt6Onl4EiABEiABEiABEiABCh4uQZIgARIgARIgARIgAQamgAFb0NPLwdHAiRAAiRAAiRAAiRAwcs1QAIkQAIkQAIkQAIk0NAEKHgbeno5OBIgARIgARIgARIgAQpergESIAESIAESIAESIIGGJkDB29DTy8GRAAmQAAmQAAmQAAlQ8HINkAAJkAAJkAAJkAAJNDQBCt6Gnl4OjgRIgARIgARIgARIgIKXa4AESIAESIAESIAESKChCVDwNvT0cnAkQAIkQAIkQAIkQAIUvFwDJEACJEACJEACJEACDU2Agrehp5eDIwESIAESIAESIAESoODlGiABEiABEiABEiABEmhoAhS8DT29HBwJkAAJkAAJkAAJkAAFL9cACZAACZAACZAACZBAQxOg4G3o6eXgSIAESIAESIAESIAEKHi5BkiABEiABEiABEiABBqaAAVvQ08vB0cCJEACJEACJEACJEDByzVAAiRAAiRAAiRAAiTQ0AQoeBt6ejk4EiABEiABEiABEiABCl6uARIgARIgARIgARIggYYmQMHb0NPLwZEACZAACZAACZAACVDwcg2QAAmQAAmQAAmQAAk0NAEK3oaeXg6OBEiABEiABEiABEiAgpdrgARIgARIgARIgARIoKEJUPA29PRycCRAAiRAAiRAAiRAAhS8XAMkQAIkQAIkQAIkQAINTYCCt6Gnl4MjARIgARIgARIgARKg4OUaIAESIAESIAESIAESaGgCFLwNPb0cHAmQAAmQAAmQAAmQAAUv1wAJkAAJkAAJkAAJkEBDE6Dgbejp5eBIgARIgARIgARIgAQoeLkGSIAESIAESIAESIAEGpoABW9DTy8HRwIkQAIkQAIkQAIkQMHLNUACJEACJEACJEACJNDQBCh4G3p6OTgSIAESIAESIAESIAEKXq4BEiABEiABEiABEiCBhiZAwdvQ08vBkQAJkAAJkAAJkAAJUPByDZAACZAACZAACZAACTQ0AQrehp5eDo4ESIAESIAESIAESICCl2uABEiABEiABEiABEigoQlQ8Db09HJwJEACJEACJEACJEACFLxcAyRAAiRAAiRAAiRAAg1NgIK3oaeXgyMBEiABEiABEiABEqDg5RogARIgARIgARIgARJoaAIUvA09vRwcCZAACZAACZBAoxDwbTXLk6GkH5/nSbtuNkrB6yZN1kUCJEACJEACJEACVSJAwescLAWvc3a8kwRIgARIgARIgARqRsC3tUcW3sdo4a3ZJLMhEiABEiABEiABEpjIBHzbeCR4H6XgncjrjmMnARIgARIgARIggZoR8G2zXM3aMjeUfvRTT9p1s1G6NLhJk3WRAAmQAAmQAAmQQJUI+L7vkeB9hIK3SlPKakmABEiABEiABEiABMwEfNt6JHj/RsHLlUgCJEACJEACJEACJFADAhS8ziHTpcE5O95JAiRAAiRAAiRAAjUj4Ntu+Zq1ZW4o/ddPPGnXzUYpeN2kybpIgARIgARIgARIoEoEKHidg6Xgdc6Od5IACZAACZAACZBAzQj4fuCRhfdhWnhrNslsiARIgARIgARIgAQmMgHf9h4J3ocoeCfyuuPYSYAESIAESIAESKBmBHzbr1CztswNpR+a60m7bjZKlwY3abIuEiABEiABEiABEqgSAd8OHgneByl4qzSlrJYESIAESIAESIAESMBMwLejR4L3AQperkQSIAESIAESIAESIIEaEPDtuGINWhnbRPqBjz1p181G6dLgJk3WRQIkQAIkQAIkQAJVIuDbySPBez8Fb5WmlNWSAAmQAAmQAAmQAAmYCVDwOl8PtPA6Z8c7SYAESIAESIAESKBmBHw/9MjC+xdaeGs2yWyIBEiABEiABEiABCYyAd/OK3ky/PR9H3nSrpuN0sLrJk3WRQIkQAIkQAIkQAJVIkDB6xwsBa9zdryTBEiABEiABEiABGpGwLeLRxbeP9PCW7NJZkMkQAIkQAIkQAIkMJEJ+H7kkeC9l4J3Iq87jp0ESIAESIAESIAEakbA96PZNWvL3FD63g89adfNRunS4CZN1kUCJEACJEACJEACVSLg+7FHgvceCt4qTSmrJQESIAESIAESIAESMBOg4HW+Hmjhdc6Od5IACZAACZAACZBAzQj4dvXIwns3LZ66KMAAACAASURBVLw1m2Q2RAIkQAIkQAIkQAITmYBvt694Mvz0XR940q6bjdLC6yZN1kUCJEACJEACJEACVSJAwescLAWvc3a8kwRIgARIgARIgARqRsC3u0cW3j/RwluzSWZDJEACJEACJEACJDCRCfj28Ejw3knBO5HXHcdOAiRAAiRAAiRAAjUj4NvjqzVry9xQ+s7/edKum43SpcFNmqyLBEiABEiABEiABKpEwPcTjwTvHRS8VZpSVksCJEACJEACJEACJGAmQMHrfD3QwuucHe8kARIgARIgARIggZoR8P3UIwvvH2nhrdkksyESIAESIAESIAESmMgEfHuu7Mnw039435N23WyUFl43abIuEiABEiABEiABEqgSAQpe52ApeJ2z450kQAIkQAIkQAIkUDMCvr08svDeTgtvzSaZDZEACZAACZAACZDARCbg29sjwXsbBe9EXnccOwmQAAmQAAmQAAnUjIBv71Vq1pa5ofRt73nSrpuN0qXBTZqsiwRIgARIgARIgASqRMC3j0eC91YK3ipNKaslARIgARIgARIgARIwE6Dgdb4eaOF1zo53kgAJkAAJkAAJkEDNCPj2XbVmbZkbSt/yX0/adbNRCl43abIuEiABEiABEiABEqgSAd9+Hgnemyl4qzSlrJYESIAESIAESIAESMBMgILX+Xqghdc5O95JAiRAAiRAAiRAAjUj4NvfIwvvTbTw1myS2RAJkAAJkAAJkAAJTGQCvgO+5snw0zf+x5N23WyUFl43abIuEiABEiABEiABEqgSAQpe52ApeJ2z450kQAIkQAIkQAIkUDMCvp95ZOH9PS28NZtkNkQCJEACJEACJEACE5kABa/z2aeF1zk73kkCJEACJEACJEACNSPgO/DrNWvL3FD6hnc9adfNRil43aTJukiABEiABEiABEigSgR8B3kkeK+n4K3SlLJaEiABEiABEiABEiABMwEKXufrgRZe5+x4JwmQAAmQAAmQAAnUjIDvYI8svL+jhbdmk8yGSIAESIAESIAESGAiE/Adsponw09f944n7brZKC28btJkXSRAAiRAAiRAAiRQJQIUvM7BUvA6Z8c7SYAESIAESIAESKBmBHyHemThvbawhXfRkl5pbWmW5qawJQapVFrS6bQEAn5L17t5EQWvmzRZFwmQAAmQAAmQAAlUiUC9CN5PPpsvh554icydN1+NdJftNpbTjtlXQsFA0ZFD6J7xm5vV7888bv8qESpeLQVvzZGzQRIgARIgARIgARKwT8D382/Yv8mFO9LX/DunloOPv1jaWpvlnJMOki8XLJbdDjlTTjt6H9lh6/ULtvbo0y/L2ZfdJkuW9suPt9+EgteFOWEVJEACJEACJEACJNCQBHyHeSR4rx4VvL39g7L+DofL7VeeIt9efWXF+ZzLb5MvFyyR357zy4Lch4aj0jcwKJf+7m5pioQpeBtydXJQJEACJEACJEACJOACgXoQvB98/JnsuN8p8vS9l8nUyV1qVLfd85jc/+jzcs/1Z5Yc5VmX3irJZJKC14W1wCpIgARIgARIgARIoCEJ+A73yMJ71aiF9/W335e9fnGOvPDgVdLZ3qo43/Xg03LtrffLk3dfSsHbkCuPgyIBEiABEiABEiCBGhHw/WL1GrWU20z6yrezP9AW3mf+fLlMmdRJC68nM8JGSYAESIAESIAESKBBCdSD4C3kwzvn0ltlwaKeoj68ejro0tCgC5PDIgESIAESIAESIAG3CPiO8MjC+9tRCy/GcuBxF0lHW4ucfeKB8sWCxbLHoWdlozT0DQzJvkeeKwftuYNst8W6auiJZFISiaScc/ntkkql5NSj95FQMFjTeLwMS+bWKmQ9JEACJEACJEACJFBFAvUieBF/F6HJ5n2xUI125203ktOP3U/F4e3tG5T1dzxcfn3U3vKTH26hfn/XA0/JmZfckkNmzgkHqPi9tSoUvLUizXZIgARIgARIgARIoAICviPXqOBu57emr3ir4M3zF/aoeLytLU3OK6/RnRS8NQLNZkiABEiABEiABEigEgJ+jwRvqojgrWQstb6XgrfWxNkeCZAACZAACZAACTgg4P/lNx3cVfktqcvfrLwSj2ug4PV4Atg8CZAACZAACZAACVghEPBI8CYpeK1MD68hARIgARIgARIgARKolEDgKG8svMnLaOGtdO54PwmQAAmQAAmQAAmQgAUCwaO+ZeEq9y9JXPYv9yutcY10aagxcDZHAiRAAiRAAiRAAk4IBI/2SPBeSsHrZL54DwmQAAmQAAmQAAmQgE0CoaPXtHmHO5fHL33DnYo8rIUWXg/hs2kSIAESIAESIAESsEogdIxHgvcSCl6rc8TrSIAESIAESIAESIAEKiAQ9kjwxih4K5g13koCJEACJEACJEACJGCZQPiYb1u+1s0LY5e87mZ1ntRFlwZPsLNREiABEiABEiABErBHIHKsN4I3+hsKXnszxatJgARIgARIgARIgAQcEaDgdYRN3UQLr3N2vJMESIAESIAESIAEakag6bi1ataWuaGRi//pSbtuNkrB6yZN1kUCJEACJEACJEACVSJAwescLAWvc3a8kwRIoMEIJJIpEZ9Pgn5fg42MwyEBEmgEAs3Hf8eTYQxf9Jon7brZKAWvmzRZFwmQwLgjkE6LxBJJGY4mZTiWknQ6LS2RoDRHAhIK+sTvo/gdd5PKDpNAgxJo8UjwDlHwNuiK4rBIgAQankAqnVZidulATKLxlCRT6ZwxB/w+iYT8EgkHpCkUgOGXhQRIgAQ8JdBygjcW3qELaeH1dOLZOAmQAAk4IRCNJ2VwJCEdLSFZsDRasgq/3yfhoF9aIgFpCgecNMd7SIAESMAVAq0nrO1KPXYrGbzwVbu31N31dGmouylhh0iABKpFIJFMS09/TOLw1RWRqZ0RWdhbWvCa+xL0+6WrLSjhEIVvteaI9ZIACRQn0HqiR4L3AgperksSIAESqFsC8Mc1fHRTMhRNKNcF/FsXu4JX3xcO+aW1KSiRoF9gAWYhARIggVoQaPNI8A5Q8NZietkGCZAACdgnkEqllchNJEVGYkmBz25+cSp4dT1wcYCfLw648XCb/TniHSRAAvYItJ30XXs3uHT1wPmvuFSTd9XQpcE79myZBEigCgRg1R1CxIVoUuJJWHjHCt1KLbzmbuMwWzBg+PgiugMPt1VhUlklCZCAItDukeDtp+DlCiQBEiCB+iEwEkvJkn7rPrmVWnjzRw6xO6kjolwdWEiABEjAbQLtJ63jdpWW6us//2VL19XzRbTw1vPssG8kQAIlCcB6m0oZProDIwmJJ4zDaFaL24JXtxsM+KS9OaSiOwQC9PG1Oh+8jgRIoDSBjl95I3j7zqPg5dokARIgAU8IIG7ucDQhsXhaRuJJR32oluDVnYmEAhIO+pSrA4WvoyniTSRAAiYCFLzOlwMtvM7Z8U4SIAEPCMCqC//cwWhSEGaslI9uue5VW/CaLb7N4YC0Ngd5uK3cpPD3JEACRQl0nryuJ3R6z33Jk3bdbJSC102arIsESKBqBBBlYWgkIX1DCdfaqJXgNXe4ozmkhC8Pt7k2jayIBCYMAQpe51NNweucHe8kARKoMgEEWEim0xKNGZnRYNF1s3gheNF/xO5FVIfmSFCCfh/Fr5uTyrpIoIEJdJ3yPU9Gt/Scf3jSrpuNUvC6SZN1kQAJuEIAbgoQt8OxpMTiKXUorRrFK8GrxxLw+wSuDojnGwr6KXyrMcmskwQaiAAFr/PJpOB1zo53kgAJVIEADqMNDMcFIcbw92oWrwWvHhvi+CKiQ2uTIXxZSIAESKAQge5fe2Ph7TmbFl6uSBIgARJwhUAylZKB4YQMjjiLuOCkE/UieM19R8ri9paQMGOxkxnlPSTQ2AQm/Xo9Twa45OwXPWnXzUZp4XWTJusiARKwRQA+uolUSqKxlPLRrbZFN79z9Sh40Ue4OrQ0BVUCi1AQPr6M5WtrYfFiEmhQApNO9UjwzqHgbdAlxWGRAAlUkwB8dKPwzY2nlJ9urYWuHlu9Cl7dP7/PJ01hv4RDfuXrS+FbzVXJukmg/glM9kjwLqbgrf/FwR6SAAnUDwEI3XjS8NGNJ9KCUGOw8npV6l3wZoWv3yc6e1skRB9fr9YL2yUBrwlMPnV9T7qweM4LnrTrZqN0aXCTJusiARIoSgBpf3sGYq6HFqsE+XgRvOYxwt1hUnuYh9sqmXjeSwLjlMCU07wRvIvOouAdp0uG3SYBEqgFgVQqrUKKITMaXBfqrYxHwasZNiOObxipi/0qri8LCZBA4xOYctoGngxy0VnPe9Kum43SwusmTdZFAiSgCKRSIiPxpDqMNhxzLzOa23jHs+AFC5xlU6I35FexfOHzy0ICJNC4BKae7o3gXXgmBW/jriqOjARIwDYB7Y/bNxSXoWjCU/9cK50f74JXjxEWXvj4tkaCEgn7KXytTD6vIYFxSICC1/mk0cLrnB3vJAESMBHAIbQl/VGZ3BGWvsG4jMSrkx3NTeiNInjNTODd0N0eER5uc3OlsC4SqA8C087Y0JOOLDjj/zxp181GKXjdpMm6SGCCESjko9vdFlIhx4ai9eezmz89jSh49RgjoYC0NGV8fH2I5TvBFieHSwINSICC1/mkUvA6Z8c7SWDCEkDcXBxCi2fi6JpBdLSEBFnTapkxzelE5AteREBIS1r5IDdKgaUX/r34byDgF+reRplZjmMiEph+pjcW3vmn08I7Edcbx0wCE5ZAKi0yPJKQoVhSEslUQR/dtkhA/AGf9A3V72E1PYFa8ML62dYUzIT60rGC698H2epCRMKKgF8EVt/2liB9fK2C43UkUGcEpp+5kSc9mn/6c56062ajtPC6SZN1kUCDEkBuiMHhhAyMJARuDKVKS8TYRl86GK97GhC8A0Nx6WwPy9BIQvqHEyJpkbbmgDRHguPGF9kOaFh421tC0tocpLXXDjheSwJ1QGDGWd4I3i9Po+Ctg+lnF0iABKpFAFZc7Y+LxBFWSihoRAuoZ8GLg13Y4of7BQ7XDY4kxiTECPpFicKA36/EMDLEeZUC2Qp3u9cEAj5pbw6plxNEeGAhARKofwIzztrYk05+edqznrTrZqO08LpJk3WRQAMQgP02mUzLSCypYunGbEZb8PtFCcmlA/Vn4dVxa7XAgxV3fs9IyVkLBXwSCQck4PNJAr7L0YSUMXKPq1WAGL5drWF1qA0+zCwkQAL1S2CmR4L3Cwre+l0U7BkJkIB9AnBXgNsCxC5Eb2nnhcL1Q/B2toSkp84Er85MFk8amd8wvimdEVnYG7UECiJZHf4K+pXVG1ZhJ3wsNVbDi6BxO9tCigkKXlaCcPhlIQESqDsCy8zxxsL7+am08NbdYmCHSIAE7BNAwoi+oZgKJaaTR9ivxbhDCajW+hG8sFoiVBoKRLjZLcFJWDJYQrtaQ+qAW09/TLk6jOeCpBWdLUHpHYpno1NA2GMOafEdzzPLvjcigWXmbOLJsD4/9RlP2nWzUbo0uEmTdZHAOCKQSqeVlTOWSKnDWuUOo1kdWj0IXojSUADhuAz/1KFoSlmt84sTwavrgA8wDuiB23AsJbAcV/qyYJWxm9dB8HY0G4I3v/9tzUFpCvklGGT2NjeZsy4ScEpg2bO9Ebyf/ZqC1+mc8T4SIAGPCMAeacTPTait+YTLFkptAfXCpQEeqBCi8EtFQfY3xAsuVioRvLpOiGoc/ELb0URKorHUuHJ1gBUXwra3SFQNvMDAHQRWXzVOZrDw6JPLZklAZNmzN/UEw2e/ftqTdt1slBZeN2myLhKoYwLpdFoJwP7huBK51Yo4YAjesPQMxGpKA0K3FRbXtMhg1Ii6UM7i6obgxSANi7JPWpoQ41ZkaAQH/qxFtagppAKNlRO8+hZcB2s5fHzhzsFCAiRQewKzzvFG8M47hYK39rPNFkmABGwTQHgxJIIotK1vu7IyN0D8dbeFZUl/bQSvdqGAGENkCDs+tW4JXjMSaMHu9rDyh4WbgNsWdLfnC0K2vdleGLnmcEA6WoIqcxsLCZBA7QhQ8DpnTQuvc3a8kwTqmgCsm7FEUqLxtAwM1y5EGATvpPawOtBVzfBdsKhiqx3b7EhjXMp1odhEVUPw6raaw37VPwhe9M2KxdmLBeVE8Op+QigjZBuiOsClg94OXswg25xIBJY7dzNPhvvpyU950q6bjVLwukmTdZFAHRBQQlf56CZlJFb7mLFa8PYOxFXcWrcLLLmwMMKXNJlKVRRZopqCV48bB9vQZ5AYiSZtWaDdZleovnDQJy0VJArBPGA+lC9ziIfbajFnbGPiEqDgdT73FLzO2fFOEqg7AhC6fUNG6K1q+eiWGzQsfYjrilTEdtwLytWrLJEtho8soiJE48lsGK1y93ph4TW3iT7D7xUWX/DpH0pU5WXACYfmiF9CgYBaN5UUjBEuDm1NAWX19dPcWwlO3ksCBQksf543Ft5PfkULL5ckCZCAxwRwGA3b5ThljxBjXhcIuo5WI5GBW/2B0IWldGAoIYOZBAlujLMWFt78frZE/NLeYvCBX7XXBQI1LT6VSMOtYhxuCyurLwsJkIB7BJY/b3P3KrNR0ye/etLG1fV5KS289Tkv7BUJlCWAg2gQukNRHEbzXuiaO4wDTRC7lfQLogn+ua1NQXXYDoLMbQ8JLwQvOMEa2tIUkOZwUAaUJdz98HBlF1DmAiTRiCaSMhx1fw3Bz7q9JawiWAQCTFtsdU54HQkUI7DC+d4I3rknUfByVZIACdSYgJHoAIfREPM1WZcxX5HIAP67yNxmtwT9PmmC36vfJxD1EM3V8AVGv7wSvJoJghwgvi3GinDI8PGt1liLzQMOGOJlAuupWgUvLjqWL7O3VYsy650IBFY4fwtPhjn3pCc8adfNRmnhdZMm6yKBKhJAZjRsg+NPvWf1QiIDCHM7gtfvF2lvNtLZwj8XQrfafsheC16z8IUohPiFFbsfaX7dP+9XcHVO6YhI71BMxWiuZoFPL6y8OOCm4xVXsz3WTQKNSGBFjwTvxxS8jbicOCYSqC8C8NFFaLG+oVjdx3TV5OC7CYFjVfAihFdbS0hZrGvp11ovgte84vCyADcOHPobcNGvttiqntIZkcV90bJJOtz8VOBwW3tLQFrCQTerZV0k0PAEVrzAGwvvxyfSwtvwi4sDJAEvCCC0GCykSFU7OBKvuvXN7TFaEbyw5KqQWE1Bwxd5xN2oDlbGVI+CF/0GGxzSQ/Y4vDTAH7paCSzAYFGNBa+eG1i1Mf+hoE+5dTBtsZVVy2smMoGVLtjSk+F/dOLfPWnXzUbp0uAmTdZFAi4QwDa+dgfAgbRy6XFdaNL1KpoQj9Vf2MKLo0s6YQR8dBG6rJr+o6UGV6+Cd1QQ+lQ4MwhDHVvZbVeHemCAMULcGzGLGdnB9Q8kK2wYArMv9EbwfngCBW/DLCIOhAS8JqAjLsBHFxmsYNWz6hLgdd/z2y8meCFo8AcCF2Orto9uOS71IPbK9THf4ov1AXZuedxO64zIgt6olW5U/RqI3XAIqY4NX24WEiCBXAIUvM5XBC28ztnxThKomAD8c2HNRWpcs79ma1MAiVpdjY1acWdtVABrHQQLhBlkC1wXEHsWB++W9FeW4MBGN8peOl4Er3kgk9tDausf4czw4lCp8J3WFZEFS+tD8OpxImcF/JjbmkNMWVx2FfOCiUTgKxdt5clwPzj+cU/adbNRCl43abIuErBIAEIXW/k6M1ohCymsXbU4tGSxy7Yug+DFNnw8kVKRB1AQ+srNzGu2OlTk4vEoeDEUIx2wkV5ZR+1IOogqBu+ByR31J3j1dCFyR1tTSCJhZIOjq4Mba551jG8CFLzO54+C1zk73kkCjghABEL8lTqIBMEIv0ZY8cZjgUsGhO5IDOP0zke3HDsvD2yV65uV3xvrxKfEIKy9iM9sx+cbwrmjNSyL6sSlodiYs0lImkMqiQULCUxUAl+9eGtPhv6/4x7zpF03G6XgdZMm6yKBEgTgo9s3hIgL5ePLRoJ+CYXGn+CFGOlsDakDa9FYSvqG47YEWK0XEAQvQnK5fRCs1uOAIITFF1b1/oyrg5U+IBxcUzgoPQMxK5d7fg3cZIy0xSH1QshCAhONQL0J3kVLeqW1pVmam8KWpqLU9YNDI4I/Uyd3ViViCwWvpSniRSTgnAAOZg0MxWXQRtYxnZkKAtmOxc55Lyu7E0KkvSWorG9L+mPqpD1CkyGmbj33v1EEr5492D4nd4SVrzTYlwtlBuEIH2AkuhhvpSUSlPbmgCCmLwsJTBQCK//GGwvv+8fmWng/+Wy+HHriJTJ33nyFfpftNpbTjtlXQkHDhS2/lLo+FovLqRfdKA89/qK6bfrUbrl8zpGyxtdWcnVaKXhdxcnKSMAgAJEHlwUkUnDihwvhiEM7/cNxceKbWYt5gLgyQmb5JBzyG1ngYoYjqZE1zLA2UvDWYjZy24CrAw4+Insa1iF8xQsdbpvUFpaReEKGog4cgGs/rIIttjQFpDlsxPJFshMWEmhkAiv/ZhtPhvf+sY/mtHvw8RdLW2uznHPSQfLlgsWy2yFnymlH7yM7bL1+wf6Vuv7hJ/4h5//2D/K7i46Tr640S8694nZ54ZW35YFbzpVIOOTaeCl4XUPJikjAELpIiwtfSogMp2G3lMW0OajEcjkrnRfcIagQegyHpjBe+I+a3QIg2GGBg2CvZ3eBRrPwmtcConphniKhgOCQ5Eg8NSbeMazBhptNpbEevFiFo21irHjpiiBtcTgo1L3ezgdbrx6BlS/xSPAeMyp4e/sHZf0dDpfbrzxFvr36ymqw51x+m3y5YIn89pxfjhl8uev3+sU5stYaK8sxh+ym7u3p7ZcNdzpC7rruDPnGqiu6BpOC1zWUrGgiEzAERVKGRpJKPGBLuZKCB3ZHc0iGYom6EiPwn+xqDSkhj5Bj8EcuJGiRNasVgn044Vj0V8LP6r2NLHg1A4hBWOLhr+v3+6V3MJbdNZjSEZElAzEVGq8RCj43OMBnWH2NKBYsJNBIBFbxSPC+ZxK8H3z8mey43yny9L2XydTJXQrvbfc8Jvc/+rzcc/2ZY3CXu373Q86U731nNTn64F2z935j0/3k8jlHyJYbfce16aPgdQ0lK5poBAxNm5ZEUqR3MKqiEbhZYOGF5RRb0l4XbXHGQbr+wbiyFpYqcKtE8gC4NDi1ctdizBNB8Jo5RlRUhpAKDwe/3Unt3qUVrvb8QuTj5QwvaSgUv9UmzvprQWCVS79fi2bGtPHe0Y9kf/b62+8LrLIvPHiVdLa3qp/f9eDTcu2t98uTd1865t5y199y96Ny4VV3yHGH7i7LzJgs//r3B4KfUfB6MtVslARyCUDEwbqJ1L8jGb9VtxnVg+CFawK2xLFdDNcFleHLgq6HVRHRGiB469ElQ8/VRBO8etwqOkMkKBDAPQNxz1I7u/2ZKVSfcnPIRLBg9rZaEGcb1SSwqkeC978mwastts/8+XKZMqlTDdeKhbfY9dghveuBp+SpF15Xdc2cPkX9my4N1VxJrJsEyhDA1i9cFxByy/BbtaD+HFLV6YXRTq0LrGLNkYCKtoCDd+iDHUutcsloCal4wxS8tZ49a+1B/MGHF/OTTCKGb33sJljrvb2rsB7x4gbx2xyCawddHewR5NX1QmDVy7b1pCv/Pepv2XYL+eTOufRWWbCox7IPb6nrr7vtQbnhjw/Ls/ddYTncmRUodGmwQonXTHgCykc3ZiSMiCdTlqyclUKD4IWgRtrhWhXIgA6EFwv6lTXXrtA19xP1oA4K3lrNnv12kFZ4cV9MRdWA3yte6HoH6/ugof1Rjt4B4QuhD4svDlVS+FZCk/d6QeBrHgne/5gEL8Z94HEXSUdbi5x94oHyxYLFssehZ2WjNPQNDMm+R54rB+25g2y3xboKU6nr8cKN+LwoDzz2vPzu9ofkqIN+LHvusqWriCl4XcXJyhqNAOy3cF1YOhCXRI3jg+GhHAj4pH+o+tnWIARwyKetKSjRREqJnkrLuBG8/VFJ1d6IXineiu/HnE/rjMj8pdFsXYiljHWAFzuEmWuQs2xFWU3qiAiSvPBsW8XLiRXUiEC9CF7E30WosXlfLFQj33nbjeT0Y/dTcXh7+wZl/R0Pl18ftbf85IdbqN+Xun5oeES+u+2h6rpJXe1y5IE/kl2339R1ohS8riNlhY1AAFZJw0cXVs7aWVjN7BBSClaoambBQjQFxC/Fdi+syYiq4JbIGS+Cd+lgrK4iYdTq8wO3le62kCzszc2yBvGH3QVYQrH2cRiznq30lfICB7zo4UAmPg883FYpUd5fTQJfv3y7alZftO53f/nXgr+bv7BHxeNtbWmy1K9i13+5cImEgkGZ3N1hqR4nF1HwOqHGexqWAB7sOIimg/V7OVBkTu1oDavMZW4XRFGAJQ8+unDRQMxgnNx3s1DwuknT/brwQtXWHFQuDYUKDizisCLcHfDyh9jSNd7kcH/QJWrUSVSQ8AWfCxYSqEcC9SZ465FRsT5R8I6n2WJfq0ZApf8dRsQFbOOma+KjW24wsLR1t7kreOGjC1/NpnBAjRV+yXYOo5Xrs/n3FLx2aNX+WhxKDAd80lvGZQaWXmTNw5rBi+AA0kXXvrs1a1GnxcbLADO31Qw7G7JIYLUrvLHwvnNkYQuvxW7XxWUUvHUxDeyEFwRwEC2d9inhh23teiyT2t0RvBC6kbBfbVXDZQFuEtX2W0WUBljL63k7HGHJJqpLAwQd3uwGbByKxAtYMCDGyyHSFTey8hWRrrawyijIw231+O04Mfu02hU/8GTg7xz5sCftutkoBa+bNFnXuCCAhzQOoCECAQ7nVMvC6QaMye1hWVyBSwOsxNiSxvY1HtoqyoTLCTKKjROCdyQG95D6VUXINNY7NDF9eHFADa4KduNIY7e/0eNGLgAAIABJREFUrdnIb698fPPSSrux7uupDiOmdFhZuHm4rZ5mZmL2ZbXfeiR4j6DgnZgrjqMetwRgbTRE3/iIOQrB2zcUt+1fC4sutqHDoYD4JG3EWIVFroYzB5cGbIHbFVQ17KLAgt4/HK/ZS0Atx1aurUpfSPAihQQWOOSFeYaPb6NafBExBYfb4MOsPlcqsgNj+ZZbY/y9+wS+4ZHg/TcFr/uTyRpJoBoEkkilOmxklKpni27+2LvaQsolAFvIVksY6WNbkD42pUJL4TCaF0JEuU+k0jIY9SbKhRVeE13wVupyAskHIQhBiCgHCGdXqx0EK/Pr1jVYy8oaHk+p6BU44Iaf4b8sJFBLAt+4cvtaNpdt69+/eMiTdt1slC4NbtJkXXVHAEJ3YDhe16KrFLTWJqT1DUiPBbcGnKpHOl/xifQNxj13JVBxhP0+lV64XstEFrxYK25mwtPrD5ZP+IjXs++2nfUIl4aO1pAMjSBEW27AZrgKgWPAz1i+dpjyWucEVvdI8L5Nwet80ngnCVSLAKyZsYSR/ncIURfcCixbrQ6XqBfWWhycWWBKDmC+3OyjixiiiBsMK1Q9FPg8QhC4kcSiWuOZ8IJ3OCEJlz8fRvzogBK8KrxfYnwfbsNLG6y52GUpxAqfQcTLRtQLiH66OlTr08p6QWD1q3bwBMTbhz/oSbtuNkoLr5s0WZenBBB1AS4L8BkdiSeqHoWgFoOFdWlqV5PM7xkZ0xx8CZEwAtvKELmxeH1lxoJYR0zTnoHKs7ZVizUEL6ycWDcTrXS1hpT1vRouPhCByGCGlx7jBRSfy2RNfcjdmk/tsgFWpVyDIIwh9psiQYkEKXzd4s96cgms4ZHgfYuCl0uRBOqDAIxUONw1EnUvU1g9jAxidnp3k3xpErw4JY9tVFiSYHWCb6HLRjpXhq63uBcVSWzgSiMVVgLBOxxNqEN9E6lgXcE/vG+oOoJXs4TwDQX8AtccRAmBq43bCU6qPW8QvHhxs7pTgZdU5ePbElKH21hIwE0Ca1ztjYX3rcNo4XVzHlkXCdgiAIsuTk33DcdVrExY6XBIq9HKMpOb5fPFwxJAyteWkLIiDYwkZNBG/FQvmMDihdS1FLxe0C/dpvZLxUtiteMx657AzQGxf+FiBKt/NSzL1SCNSBTBoF/6yyToKNQ2MtV1toTU/YzpUI3ZmXh1fvPqHT0Z9JuHPeBJu242SpcGN2myrpoQQCY0hNjCFqkOhYSHKSye2J5utALB2z8Ul2DQJ4kEok2MjzHiAT+pI1w0dW09zFO+hRciHVbJRjlwVYwx/L0RhxdWy1rvDrQ1ByQcDGRiABtRROq5YDcFcbudvmAq945QQKXyRvIXZm+r59mu/7598xqPBO/PKXjrf3Wwhw1DAJahkUyg+/yYn5GQT0UzcGKFqVdAcAmADyS2UzFeuC+MF6uYZjqlIzwuLLzYHTAOHRmn7VVc2Wh9+US7uU6x5Y6XRLxI1VrwYhza3xW7FVjTWN/1Gs5sUntIffbcSKAC0RsKIoxbkNnb3FzQE6iub3kkeP9FwTuBVhmH6imBIWzhR5OSTBb2V4U4xHbp0sG4JzFn3YSD7WaMBeILrgtw14ANDP6W463Uu+DFwS28SIXDAeX/DV9eWKaxFQ0B3I/wbnVugXSyJiA08afcQSwnddu5B8IXPrJY77Ci4oXVCwFeqs+TO8KydCCm3KfcKHihCiq/5qCy+jJ/hRtUJ04d37p2J08G+69D7/ekXTcbpUuDmzRZl6sEDNeFtCwdjJb1M9RbtNU+hOPqAPMqg9DF4R5YfxBeTLsutESMjGlL6zjaQTEu9Sx4wbu7PSwBn0+WDsbGWPDU79uMw4Hjxec0lTZCgMVTcRmIDcpwfET+8t9H1H9RlPNAWiQQQLhmn0pOYhTDw3Sr2RvJ1JbJEgmGpCPSrsYeDhhphHF9NUNuwdWhFWs/lpTB4foRvlM7I7KoL1qVF2mI3UntERXODIf6WEigHAEK3nKEiv+egtc5O95ZBQJ4WEPoqhi6UWwjWjOraKso/Hrd2HqswtCKVgkLF05zw+Kmok3ASm262o+oDC1hFcx/vJV6FLzgjZBZ2NbHHyQmKRWlARZ2uJZAHMJ3vN58TqOJmAzGB2Xx8FLpjw7IYHxIXvz0tZylooWuoXfTghdEFCOurBZahTPybbHSBura1nCLzOqYKc3BiISD4aotRaSkhuUXn324mnjpTx0OIQZvqKp+6CqSBVxMlI+vkayFhQSKEVjzOm8svG8cQgsvVyUJuEJACd2ML586kBa3H22hrSmoRMl4iamK5xr8KLF9jjFHE6mCfox4IHa3hWWJhWxrrkyGi5VM6QzLot76EOqKd1NQiT0tprCVjvjF5cKS4aWjKWQk0oAAw+FIr7feo4movLngXVk0tER6hpfKZ/3zBZFLcotPCdzM/2sbrxJVkFXG+6T596Unf8WuWdIWapUVu2fJqpNnSyhgWMDdLpgjfC40b/j4eiF8cbAPgcV6a+ROBMGLl1+dpdBtrqxv/BNY87ofejKINw75iyftutkoLbxu0mRdjglgC984lOU8K1NbUyBzAMaaVdhxZ124EaGO4MOHhBGwSpd6mI+HaAfFkGA7eGFv1AVilVUBK21rRtwORVPZw384gW9F8OrWIRRh9cPWO/yrkeSk1gVuC//r+Uhe+ewNJXbjqYSkU0rWjimGZXfs75AKFwUHxsaK5OIj0nq6KRiRtnCrijiwxxo7SkuoSfw+92PO6sNtLU0BldoX3xO1LIjigZ2mWs4z3h8w7tamkMCdqRovFLVkyLbcJfDt33kjeF8/mILX3ZlkbROKAB6e0XhSevpjrmRgglUE29X1ergLwhUntPEQhdsFXBespnWFa8BicKrvCE5j1i8E7+K+qGfWUFh1O1vD6mBQId52Ba9Z+Ha2BpXIW9Jf/fFBlCbSSemP9svd7zwgA7Eh1RXtAjQKXlt0Cwtgw30hnd02t2I1HbvmCi/CLWdvKGtM/5pEgmHX/X1VshUkclC+7DG1i1OLjwJ2KOBKlKytzs75HGF3h+HMJtSjseRgv/27nT2B8frB93nSrpuN0sLrJk3WVZYAHp44jQ0/SIR9guB1q2ALFJY3PBBr8TC02m+ILvQNW+LQG4g4YdfPGCIZIaTqzX+0HAOccEe/7Y63XL3lfg8LGaIs4AUIog67B4UKBC8ifww4TOKBQ4bYgkYbWM9WX2DK9d/8+5FEVOb1fy5vzn9H5i6dp3zcIYDx3/xSzKI76qerZLISvLi9XJg7q2LX3I9NVlxXVuicJdPbpkrQb8THdqvoaCzGy7Lh+lTNl8Dp3RFZsLQ6B9bsMNHZ3iD48Xf3iNrpBa+tBwJrXe+N4P3nQRS89TD/7MM4IKAsVBAFOFQWT1k+jGZnaHiI48ALohnUg+DFcx5WZ4QXUwfx4Kcbd7YFDmGmHvAx914Q7LB1em1XW1hisYQM1Wjr3zi8CL9S48UKW+ClBFGlghdc0BbCS0GIoC2Ia7fW35MfPSsjyZj8b8lHEk9iLLDcjj1cNnoorZBld+yhNNVXuDQg5Jr53Jqe6MyPc+fd+qi6mjpkha5l5TvLfFOmtU523d0BLxlNYSNmMr5Xys2zk/ULcT2pIyLzTWm9ndTj5j2YNxygNOL5uu9C4mZfWVd1CFDwOudKC69zdrzTIgGkLu0bNrYhU8liW60WKytxmT7chS3Ialp9rPQUD2P46OoDThAW1uXC2BYQsimdEhWLeDwVpELGZNQiOxxEAHw9Y7GkEtjlrJfg6Ibg1fMBt1j0AYIEPp+VZP1D5IUH//uIfLB0rjoYhgOdWD/FD6Vl1tcY8Wq4MIweWjN6CzGHz2WWkclk6MSqW2hNoiudkXaZ0jpJtv7KRtLd1OmqtRddDgR8An94ZDJz26caawnCut7CAcJijrUWCQakQ7nV0N47nr4TK+3rd27YpdIqHN3/2oF/dnRfPd1EwVtPs9FgfcFDuh8JI2qYChf+bsOx2h4yMU8bhARiu2LsvXBBSFQic0drxqErBKvHQ308FR2FopqiIeAT6WgNqW16u/FysSOAuXLq0lBoLqA/kNACMqRvOC4JG+8oiJf7Yc9cuf3Nu2RK6xRVveG+kNvSGIuu/r3SPqXDjBmCF2IXIQAz9VZo0dW9K7XavzdrTVln2TXVYTc33RzQNiyfHS0hJeSXDMRc+dxhbcBFBYfl6rnArQa7GgxnVs+z5F7fKHids6Tgdc6OdxYgoILeI15pIqW2diEmalkQRkgJjRqFEdJjQ/gkWHVhbYG/aiXWvUK8UL/OvFZLnpW2BaGO0F+L+twPTQZxg21dcEdYMfjQ2i3tzUElKN0UvLoPhrXXr/yuo0idWyJjWzKVlLm98+S6V26WRCohMztmKuFquDAUErt5Ft2s4C1s0TWU82g9ODwJ6y4+nm5YdMt/ykcV9Q9W2UJmtk9Trg5uC1+sN/huo8B9Sh1uK9+5gssG1n9EaHDrpdXu2rRzPcQuQu7p7wkafe3QG1/Xrv17byy8r/6MFt7xtVLY26oSgMiF6MBBEuUb6EEJB32CbfTFVRBYBYVoGIfRDKGLbexqHaJRiRJCSJIwviy8mI+u1rAscDE0GR7mOJwIqx5errDmnL5XVVPw6vWi/LiDfvXyB5eU/JfARYNL5PEPnpa35r+jNOnktslKpBUKF5ZzKK2gVbfAffkfRSQ6wGE+CN4xLuX2P7dl7yigOKe1TpHNVlpPZk9a3nX/Xkh+RDXACwfWhf5esvt1hIOivYPupRS2276T63UYN7jV4A9L4xFY+/c/8mRQr/7sXk/adbNRWnjdpDlB64KlqHcQ2/fW/CariQmHliZ3VD/2KwLjw3KJdKB9Q3ElYpyKLis89CGdWluurfSt1DUIJzW5PeKa4DXHLx6OIm5zZT2sheBFD+Fz2RIOKosvrIaIBYxyzSs3ytyeeSqe7tS2qdLd3K0jh+UMrKgLA67KmvMKZ0qD3sx6eWb+AgGOz2uuFi0rXcfALn9HQV8JVU9rqFlaw63y02/upLK4uV3wXYDPJyy1ym1lOGE5ygmEI+6rh/MATrjgBRzpo7vajLTFLI1D4Ls3eiN4XzmAgrdxVhFHYpsAHpZLB2OOtpJtN2bxBny1T+9ukvlLRxxvZZZqCg9R5SsY9Ev/cLxmAemxBd0SCaoQX9UU1hYx27psWpcR2qmSoiNw4EGOeMRulVoJXnN/J3UEZclgn1z14h/k1XlvSlOoSWZPWtFwYcgbWEGLrhK52f8ZawnO05jm7W18ZrGGYR0fDRVXXraau1X2als+BD51sO2HX99aZrRNlYDLYcx0v/Gi0dGMTIzGy3m5z5DhohRQ1473gpCIeOmkm8N4n0mj/xS8zueRFl7n7Cb8nXjwIWlEvYXKmtqJ2K8JlcXMrYKteTwEcXAMPn3w0S374HercZxGz1iUcQCwGrFeXezqmKqmd0VkvkPBixcLbd2Ghc5pWLdi46u14H134XvyUc8ncv+7D0syDZ9jv3xt+ipjXAtyLLpjXBJKH0oz682sLjaJYJ0ABVv9TkrpdV/copvb1lir41ozV5eVupeTVafMdt23V7eNaCfwhUf0FMQALxYfGu4QsJAODNv3C3fCtJr34HsL7hlu+0tXs8+suziB7970Y0/wvLL/PZ6062ajFLxu0pyAdcHiWIuQU3bQ4uCaX3wqSkKlBUIXlh4ITh0Ht5x1qNI2C90Pqxx8k8fLIRrzGJwIXh3iC2LXiF+crNh9oRDXWgneeDIhL817Ve56+y/SHx1UXUGWtmltU2R651SVGhgvMsp3F7/Uh9UKit2xYcYyt+QMUVv08g2uTgVv2Rc8y5bdYlvsRgsbrbCOQPy2RVqr8VFSlk58piEE4epQKD42/K5xLHA443pSlY7UqFKER4R7BktjEFjHI8H7MgVvYywgjsI5ASSRWNzvfSYi8wiw/d/eHJIlFWx9w/cUrgvY+sW2JixCXghd87ggzmC1hu/leCp2BW9rxK9OnA+OJNXuQTW5gyksX/DDrlZBdjREX1gytFSiSbh2GJEUprZOlcmIVOD3SdCP3QNkhTPmd9TCm+mVHRcG3JLRlIU0KBwngkGf5egDZYVufpDfkiALid3cFuC2svq0VWWzldZXvr3VskxC+OLFqrs1rCJW4MVdp1puawqoFxAcRB3vZXI7UhPzANt4n0fd/3Vu3tWToby8392etOtmo7TwuklzAtaFaAwLeqvjL+sUZyUH13AvTnhDMOP0v5tZs5yOR98HcQZrlNOt6Erbd3q/FcELGQQR1tkaVlnpevpqkx4aTHGwyW1fTURY6I8NyAX/d7l83jvfpFoh7nzS3dwl0zumC5LEmi26iMYBIRbNP1BWwFNgjOW2qMjNFZSGhddfdh25J3RLW3RLrasD1tpNprZOlqA/6HT5WboPocwgcvFCiZcs+MvrrJCWKqjji6Z3NakEHSyNQWBdjwTvSxS8jbGAOIrKCCxcGlXhoeqpTO2KKP9ibbEp1zdY17DFiS10DGVoJC71Zkgdr4J3RneTfFkiPSss8k0hw20EYsNN3+ty845IG2jXTcHbFx2QN754S57+6Hn5qGdu1qKr+xIOhmX25NljxK52CofghSCF4ITlcUyIv/xDaai4hEU3JwBvJqgD/FhLvTiVFbsuuS+Umx/8ftMV15O1llldmoI4eFU94YZdHews4DsAreBlt5Zr0QoLu9fgBX7GpGa7t/H6Oiaw7i3eWHhf2pcW3jpeFuxarQgMDMdrnuih3Ni620JKPCEhQamChxyyFOE5iq1kWFCtiuRyfXD79xC8eLEYb9usxQQvwiXBsgYLK6zpEGCWdZRLcFsjAQkG/a4J3vvefVjm9nwqb81/V1mqjTIqH4P+gMzsXFaF49J+C2PGnBF12G5H+DtYi80uNQUtuzYypWHNg3mxhAr1JHah5MOBkKzYNUs2WH5tlbCimqIXswW/fZVyGpnoMq4OVtJUu7QkXa0Gny9kn2RpHALfu2U3Twbzj33v8qRdNxulS4ObNCdoXRCKC11MLOAGRnXK2i9FM2hBU0BARkIBGRpJqO3LavqKujEmHD6BxabeDgmWG9v07ogs6o3mHDrDoSA8jPGyBOHlFXudFKJSC280EVMH0p79+AVJpPTJ/kzWM2WA9amXquW7V1RhyIofSstIZJPqxJzrzGhxU94R7dZrN1MadjNQ8l/sygpdy766payw5VsZXU+59bSGm2Xrr2wkq01bpdySq+j34IPEJkjjHQn5pLUppA5N4nNX6xeyigYiIpM6IioxDkvjEPjerR4J3n0oeBtnFXEkjgnA+jG/xJa144oruBHbknBRyBeHykc35FcRD2ApheDySmzZHd54jQ06tTOiMlYhBmo44JfOtpDgsCMifHiUkC+LvlLB2zPcKx/2fCy/e+UWiSW1Gh0VdVro+n0BmdY2Xdqb2vM9DEwxdUsnjoDoVdFCMpZwu0JXDxruDLA+Ww5vZ1nlOffVLSZy8fPcOMJp2WHVLeQrk1aUllBzVay9EYQgDAeyu1YYFVxfENkBsbexdsfDdwa4TYP/Lr70WBqGwHoeCd4XKXgbZg1xIBUSgIW3nqIHQBzASgPLHeQHvvRh6cBDC5YtFd7La7VlkzksT51Im1xB9AmbTbpyeXd7WJLJVFac1FNoNaeCN5lKyvuLP5QbXrtNFg/1ZDiNWnQNoabkrvpvR6RDprVNG3W21WRL+N4W0pnazQEqOZlCZkNUZMdqii17Iw5t0oqQtXLNaB63AuvFTt/GCrPROMIIEjZa4OKw3SqbS1dTh+uiFzs/eCFAlBBzwecP6wX/xcsy3J/q2dUBfuB42WRpLALr3ba7JwN6ce8/edKum43SpcFNmhO4Llg+kOyhXgoELuLxIkFEJBiQcMinDv/gEIrbyQtqNWZYbOCPV0m4tVr1VbeDeZjcEVYvF8MjRuIIOxKo2v11IngXDCySh957VN5d8L4sGlo85lAa+owYu4boFQn4grJMxzISCTblDidjuoSPbk4p4I+b774Adx1tuUMoMzsWR+wUlJ8Hqwkk1CiLTJPVmS58/2gc4cL1LN+5rGy84rqyQteyri6TrtaQDMWSypJbqOhDlhC+qRRcjOpzl4jxd11dFnVT2foeCd4XKHjrZg2wIx4TGIknZUmfeylfKx0OdvG62sIqj3xMpRONSTpl1xZWaS/cvR+yANbS8SB4zT7S8H+EIMOp93ordgXvpS9eI58smSe90X6TcDe5MGSsutCAsO6iLN+1vIQDJkvbqNmyoE+onUNpqCocRgIF49BlqaJ72RTyyUi8hBi1ZNV1Q+jq3uYKXlPI4VFf5yIDawk1yY9W21aW75rl2tKa1B5SO0PlAs/A2o4dF7iIYNdiIM8i7FqHHFbU1RqWlibG33WIr25vW//2PTzp2wt73elJu242SguvmzQncF142C7q8z4BhbKo+Y1T1jjhvnQwPm4tuoWWE4LI17NLg+YPK5ny0x1JCA4QYhsdc1FvxYrgRZa0hUOL5E9v3SdvfvlOQYuudl3QQteXEY0Bf1BWnDTbGHZGydmx6BY+JzZWrMLaiD+IdAHxm1/MdxQWvLW06BYWy/m+uuXWihbG7eE22XblTZXoDfmNRCKVlCkdxmfMqu7H9wy+byCAscbhLmL13kr6WepevPAjnXA4RMFbLcZe1UvB65w8Ba9zdrzTRADhe3oGYp6JSzzjELQf27XYR8aWbTCAOKaiQl41SoHghbW63mIEgy9EbXMY/CWThtlQXvg5hGW9Ct5SYvz1L96Sj5bMlb+9/4QkUrBQ5/rpKukGq6627EpafFl16ZPlulaQcAhhoYz7CgkhOxbdUusYnwGIXvxfIpUrfEsKXlvqrFL3hbFiN8eiq7Iql3eFGNW0o/1BOuItZm8goYDzNLrgB8soXt7tlqawX8WTxjzDdcrLw23w34X7k47IYXcsvL5+CWzgkYX3eVp463dRsGe1JYBHVN9gXPnM1rq0RJAwIqAOmkDoah9dfcCkr458iytlo+ILx5MyHK2fRB94qLY1GQd9YGHMjxMMf1NExVg6UJ8WXpzIR5ISc4kn4/Ls3BflvncelsHYUOZXxQ6laRGXK3Y7mjpkcts0QapcK0J3tJb8VVJeAJrvwA4HBCFEOPx7ddtFXRosCEyj/krFbmlfXbTgVOzq8a829auyw6pbScDvzLLZ2hRQLgqVvJzhpRt/EOsYonfIgxduhPyDcK/Q2F3p1xXvrwKBDf7wkyrUWr7K5/e8o/xFdX4FLbx1PkHjpXt4mELsQvTWqiBGpkoaIaKsy9jKNUsDBJDHwQ0ILXuSoVYjsN8OwiNpVw37d7t/R1dbSEJ+vwyMxJVVq1hkAfg69tSh4EXkjuamYI7gnbt0nlz3ys2yZKhHokkI4Tyhm4m8oDWgknFpsxz0qUNrU9unS2u4bSz0It4DSpzYSCBRbjaxxQ7xhqJfAvE5gBU+m5DFktgt5SJg9ZNVIgKDoXQtfUYNAVfaZWFWxwzZduXNVEpiu2VSW1iG4gkZqfCFEj0Efy06a521Dd97HS2Vu3fY5cfrq09gQ48E7/9R8FZ/ctnC+CGAzGbGYQ+rD0H7Y8ODJBAQZVFEhizE2Y0WyaYGPzb41sFaY+m5br87Nb8DliOMacFS+1uubnUWogNuAG1NARV9oZwFXc9DPQveJX1RGYgNyoLBRXL207/JoBrrvgAha7aamd0XlBTLWFZbwx0ytW1qjjiztwbd+wzBAg+rrwpFlkoLtt6V4FVN5Ldjxf/Vat/KW3StCN1C7gv5azl7TaZry3cuI9t8dVOZ3NJty6d3SmdYvTwnXfSCwsFZfGaxA4LPCubA3lqw98kFi04cWIs4s3Lba41X15rAhn/0xsL7fz+lhbfWc8326pgADq5BXJY7Le50CLDY4gCUkRY1JYPRZMkHBx63sEBChFdRgzsdjqP7IB6ndjbJ/KUjju6v5CbwVNu14YDaeoZvtJVYxvUueFP+mDz235fkxU9ekfcWfVAQUe6htLEWXUPsGnEZIIontU6Vtki7UVcxi666SRk384pVQWltNlEb5sDw78XffTKMkFuOm7FyYxmLri33hdIiPF/saiordS8vW87eUKa0TrIGSkSmd0VU1shqfF9AgIZxxiAtKrNjtVJpBwN+9b2Hl1KWxiOw0R9/6smgnvvpHz1p181G6dLgJs0JXhcOri0ZiBWNX+kUDywk2KJDMXxEracBhs8rXC1iCSsPaac9rN19eLhP72qSL2uc2Q6xR1sixhyAv51YxugzojbUo4U3KSPy+9f+IC/OfSMziWPdF1TkhYyYVRo1Zyll/GWN8AxKwUYCYZnRMStrWSxkzTOLtNHq3F2jhWrDmaqg36+sjMi0ViiiQ/HVbLV/BcRuzo/KWzhzPReKC17tBlKsz8t2zJDvr7ypTGudUvZDihcCHAqdX8XdE/QXB9siYb9aLtX4boLQRYQGGAZYGo/ARnd4JHh/QsHbeKuJI6qIALYD3YqKEPCJdCC8WMCv0tCqkEtWn7mZUcDnFV/7+SmGKxqkxzfPmNQkXy6pnYW3vRmWqYCKo+vEKlWPgjeWjMv97/5VXpr3qiwd6c244RQ+lJbVssXEbka96ri7s7pWEIQjs79tbXNxl1iHY43Gxk/w4pJOI2FCWv0dJVoqJm+2Dat9Kyd2yx9Ms+TCYLxbGKVM12a0T5XtV9myrE8vdo8Qt3ZxDeKJa7egjpaQWnuIvFIu7q/Vrx1kk4TgZWlMAht7JHifpeBtzAXFUTknMBxNVGzJw2GPlnBAmiNBGRpJKNcFpwWHkmAdrufYtXbHNnNSk8zvGbEt/u20gwcyDjfBqhtPpqR30Hn0DSV428JjIiHY6Y9b1yId7zsL/yOXvnCtcsswQoohfF06q59Gw4wZreZbdLOxdjNmSK278F9YdkPZJBNWRaJy+0mCAAAgAElEQVRboyui/0zKGy4phi+vcS3chGAIxM8Kh7qzMoby7gvV8tUtSs7UJfx1uc5lZZuvbiKTm4v79CKlMNZBraMqwNWhtTkowyNJ5epQ6RkIuDPo3Rh3VxZrqwcCG9+5pyfdeHaPP3jSrpuN0qXBTZqsS4VBgg+cfesWTpT7DB/RUECiiZRAPFdq9YB4ntIR8fSQl9vLYlpXRPkl23ErsNoHFc84hEQREEI+lTa10jlAnYgJitBfVuST1b7auS6ZSsqHPXPlo565csebf87caqgivy+tXh4MP13j5FlWL+VFXzA0rsmNwVRTONAkU9tniN9nxGItVqwyKLYhXeh+87XFrLvK3SLsk3jcGK+5YL5RMNew/lp3s3DBoquYZv+nuIa1aNHVk5fbM5/Ap3cL+PS2dBdsAwfLkDEt7oH7E146IFIxD/juQzgzK/7xhQaCxBlMOGHn22F8XbuJR4L3GQre8bVQ2NvqE4DQ/bJn2JbgRZgtWDjwpQ8Rh21zWJzcKjO6m2TB0upaRN3qq5V68GAGH7djHusEETqesRP3hUL914LXzW1bK5z0NUuGe+Tefz8oHyz5WOYPLBwTZgzrD8tNyVztipsjdDNiLPM7LYcNQWUknUCZ1DJFWvVBNVMHx7z8mU3GVpZ5Jk1x0UsTCSMGFv4U2uk33dgU9kk0VjgEGFyIAvgfJXy1FbhUByu37I7q3DJ+uppnOV6ZavLFrgYzq32GrNA1SzZY/rvqcKG5wN+/b6jyFzw7azP/WuDHoVB8FjFUuBHZsfhiKc7obmb83Uomoc7v3eRPe3nSw2d2v92Tdt1slBZeN2myLkUAIZ4Qk7VcwZczfNhg1cVBKHy52/XRLdcGfj+1K6J8gPMTIli5tx6vcSM4vnlcah6ag4LsTHjgw8JVTlfY4QLxgW1WzK9Tq5Wd9szX9o70yZlPXig9I72ZH/uQ7ywrDHGwJ+DTgte4JNeFQf0ke73xL62KM39HbNtQi3S3TBkjorKOpqO35FpPy2T0zdqaR8/EjUraVEr2v+cFWemJZyXV2SV/2Wc7eeMbKxix0QqVtAgE70is+OwaYdVEwgG/emlVLz0WQpcVNtCWPpzmqq9ungvD6PBN4DM/DPj88r1Z35ENll87O186HTnOIDjZnXK6Povdh5d/+OLCEICINIhvbuW7kf67bs9E/dVHwet8Tih4nbPjnUUIROPJkgc/8GWO8DzwmYOlstqn9xEvFparSvxQ62myYcjrbDHihVZStLDpzESyGBxx7itdrh+wSuMwIwSUmwWuCubSM7hUEsmEjCSi8pd3/yovf/rP0WgJmQtjsajhvpCxzvr8Punr7ZNPP/3MEJM5ehH/0OberIk3E3BXZNUVZ0trU7O0Rjqko6lLSUPU26TSCWeKUpFGtcoanKlSyU4leDMCdEy7o9p11JUiI759PvnhI6/JZrfdL/6oEZN5cLlZcsFp+0lPdyYcmgmMrhqCqNCLXyGNrOL3BnySSKSUq0PBaBPGG0CRUljwGm2VsOjm/9qCkbmYRbdUS1vN3kjWnLm6Er2wqBpJarxzuylGEZ8dGAVU8ooyEWoQDaUlE9HGzc8Z66ofApve5Y2F9+ndaOGtn1XAntQNAWzB4VBVfoFQiwSNk9CwWiD4fbVi9prbxoMbWYeW9NcuC1w1J0O7CCzJS4drp00IHxzog5YYHE6oEFXVLHi5gdh16necSkN0GeI2kUzKs+++oCTTwMig4CCaKmmRe15+QD5ZPE/6owOGG22O5S/jo1tsoNp3V1k4Q9IaaRqtICPSlGgVxLQNSDqjEleYPFNmdM7Kte5m2lVH4cxqTFeglJjxu7T+Gd4EM/7BowpZu7eO/k4Jdb9PNrzrbzLrtTezIv3d6W3yzr57SHLK2BBcugtIOTsqeLV4NgMZKx11NAfDzWFUxBYzJI/Fm7+2iotdjSX3raDAhBW16GYkbsnfj9a3xUobytrLfkvF90ZCm4Hh6r30VfL5wvkGzB2EOQ7VwahQyLceMbr1fFXSHu+tXwKb3rW3J517erfbPGnXzUZp4XWTJusydEc6rQ6umf1wWyMBCeGEeMI4jOFU+DhBDB0xqT0ii/q8y07mpN9FdZmIdLeHxYngjSB5B+Lp+kSGRty3uBbrMwQvoj1YdSuBuI0nE3LHc/fIov4lak1lBW8qIc+++2KO6wGspCPxEZUKeDg+ktGLGdWTZ1HUWkhbTbHFPaNzck6s3UgoLK2RZjUc7aOb9fFVwnhUUQUDQZnesWxhq2We2M06U+R0wnSr7qsWwVpVmv+t/u6T8MsvSvC9dzO62ad8eEd22lnSXTiUZRb3md6qg1GjgteX8WEtZ3EFA3yGILrAGULLjl+p1bU/Ok34W0Yklzmh58Sym9+fA9f6qSzXbbwk1DpCg1U2+jpYejEPcD/CC6R5VwZzNL27yVZmObvt83rvCWx2tzeC96ldKXi9n332oC4JQIxh+02F3MlYdBELt9IT/04HO7XTEIhete+038Xum9wRthUvFMIAMYnxwIQLCQ6m1dJXEW4lMCIXEhQQs0OxYTXUOfdcJJ8u/kx8MHv6kMjEcFEYuwU+6vwK6+/i4R5Jp1NKGBsqNfs/YxAG/QGZPXVZw6XBLxLw+yWoIitokTgqELWXrha9+pBaVmj5fDKtfRkJBULGy17xZkf7lW8azTd4ZsWwz7D+5gQCzgwHeGJRaXr0YfH1LlViN77mmhJf/VswPxu3ZBxytaBVoeYiQWUdVBVrNwu/kQQhJzpFEZcDXBcJ+dT6KebrrbtvZ89grD9vecHrhtjFsGe2T5M9vrmtdEQ6LL+Quf15tltfwI/Pc0giQb86vIrQjc0Rv3S3RexWxevHGQEKXucTRguvc3a8swQB46Fq+CcuVQLLW1w4NDUSTVo6TOdtT621jtBDSONcLpqFtsx1toVVyCVPtmzTaWkKGyfi5y1ZpCy3w9FhiSXict79l8pni7/IatRsCl8zhiJrB+I2lU7KoqElWRWYrx0hbo24un6Z0tYpnS3tWYuoYSj1CQ4sGWHJIH4NsZsylKbRL5NANQytoyfI8O+ZXSvkTJpZz+Z0PadzBVwd8oOZma3Aowp7VPvrn40Mi8Ddo93w3VVd11m2TJZhv9+vDkIh1qtZBKtLMG5tuc5EhTABGP1r5m/ghO31WDIladtZiq24OBSe9Pz5zfe5Hvv7Mp+nzA2rTVtRNltxI2kNYn3YrsXah7ZKV3W3h1QIQbzrYX5ZGpvA5vfs48kAn/zxrZ6062ajFLxu0mRdWQLY8sSJf7eyrlWKFhZG5a9axYNZlfbRzv04yBKNFRfweGTjYCAO4mAuYAUqJ47ttF/uWohRCNtXPvin9I8MSDqNCBxJufWZe2VJf0/mdn3Ea9SyOqbeQue54L6QiMpwwhDNuX66hkBtb2oV2C0nt3VJKAAXDkPIapGrhSx0ISy8EAv4nZZZEBD5zrcmCZwNhKCiM7ROHYsjTzONkW+lxK8WreZazeLX6HxGjWcuyvn96OE65Wec+Z0/4FPxWUfwMmqyAI9Wl4kvrF4Q9B/1W9WIefz4N3zyQwG/SmGL+NtwpXbvvXY0kkbhtZY7ftsS1XQD1kkw6JMVO1eQTVfYQLqbO8st77r7PUKZ4cAaXkRYGpvAFh4J3icoeBt7YXF0zgngAQgXglqKrFK9xVY+BGD/kPOMYc5puH8nDuGBbSEXAWw5N4cNoVvJQTEnvYbQ7Rvul+ueuEUSiYS8/ME/ZXBkMCuYzB4HZjcB3VbO4zpP7OJ6tWMw0icjiZGsAMPPI8GwdDYb1lucum9TgldrwtxEEYYl01BwCEkGwabPvRkd1eIYvzMsunqHIidWr/hkavtMCWbcGQryyhO2BQO+ma23ucoyV9TmQ8oMImuMzopekxjUA83E2IXoVQdFtRA2/T7zNpBBYBK/mUNyo900ezAbVnGk/wZXrDm4O2RLmbBrhZjlSjazhM4Tc3ma3/J6NVWjk43ALzaWTMtyHcvINrM3kUlFklNYbqPGF2KdTu6IqBcQlsYmsOW9+3oywL//6BZP2nWzUVp43aTJurIEkK2pt44svDi5jExGyFDWCAUuAhAa+YdWYPnFgRaELEu4HE+3GDd9oOyW5/4kT779nLLkLuxbPHqwC9ZTwyXXFDghN8mDuW6lR0w6RwvjgdiAOpCWTKdUfd0tndLe3KragUUW7guGXjVZcw1TZta6q/8Oq54Ws/iZFmmjgnbUqgl3CCQEyLrlmATxlPaZEvAHCwvTMYPK0YFjcZqF72j0srHuy/miWEd7yAriwtbfYMhggXUx+rYwGi1C3a4iRWQqylh5DaYGV2X5Nr0waB9n41afRCIBNXexnGxlJey+Vk3CRQyXtu2ZWTQmezUs1fCBhnsGXFRap8kPVtlSJjV3jZuvCnwfdLaGaeEdNzPmvKMUvM7ZUfA6Z9ewd8biCfli/iJZZvoUCYUyD3MHo0Ww9IGR+rCoGqHJQkrwVuOEuQM8Fd1inNb2K77QIAgx1tYSkiEcYKmy2wYE7kg8KkuHetV/D7z+KOU+YMjKPJNeRtDAior/U04M+SJnTFazjH5EyC4RiSfigmxpsNwGAn5ZbtIyhrDNtJj1RzW5LBiGy1FLbU6wg4xVF76nKIg1Cwuvlrj6Xq0rtYBWfpLoU9qot72pW5rDrcV9PsupsVK/15bXPHFb8FCc2UqbFb2md4bM4EMhg7/adcm3Bo+aw/Osv1m1m3mZwK/9hotwpt7RKBZG4yGVmtqv2rF+SLS48i2HsewHKaeCXOs0OGAsQSV4R/uwQueysuXsjaW7qXNc+PTCdam9BdkqK6ZVFicv8JbAVh5ZeB+nhdfbiWfr1SHw4mv/lhPmXCtnHre/bL7hWo4bwXY70snWMhpAsc7ioYYHAkJx1Trbl2OAJW6EewZEbiyeUgdVYKHEYSScnK9G0XFwX/7gdekf7pd3P39fHv5/9s4DTJKqasOnp8PkzUvOOSj8SJAkoGSQICgGEFARUDAAKihJQFBEiQIiQUAERARJiggIIkvOIixx2RxnJ+fwP9+N596q7q7uqZmena3ywZ3prrr31q3b02+d+s53XnnEQKfo0+vaAiQig5JGhVa2yBA1yPYO9FH/YB+19rRTfXUdNVTXUW1O2i7J5tS/vj5XRyA9zS6YDuCNI3WSGn7D43h5E6SlDhyKXDkEDgd4p1IZmlA7mbKZCFnxxRgk3/ulQK8B42B0V0OygFAhOWCCXB+W1XVyNMIMbo3sQfkFm2vB5hzHQiqCJw14CgGOLKbvlaMutnbZRPE5K/YHJiSqq+6YxD8oLY3z8OVXG05elw7aZG/jwDESn6u42sTNPFxYkm38z8A+9xxbkZN85LCbK9JvnJ0mEd44Z3MctPW/d2bRL6+5k17/3/u0566foDO+cyRNnTyhrDODfhSVi8aKjhdesEjYGSkoLGuSyjyoNldFjSqiO1K+xojkIins8keuo6HBQRoYGKTnP5CaXIucClS4BEGdkzC78qKsArYcrhGlGdSmHBJoUBSOgNVXLpMRMALgNQCtXAQsm2mHAe1GZoHVRGd1Mg93X1DUA/2mkLXqUejIpe7RcWmQfWE8k+qnCoAsxlvs9MKvdkEg5hID9/DQaC8HX3NC8jjIegzwGqcJDr+ec4SI+vLqcv7v6op48GuuOcA3XSWAEv+KvvMU2nOnII9uN9885bsAZv9gVJevONwIoHiJH43G4ZtN24gO2HjPkJLRZX5wR+Aw3MQhYS1xaBiByR2DTe5bIeD9RwK8Y3A1JEMa1gzMmruQOrt6qGl5K/34ot/RJed8i3b8xBZltQkdb1N7r4hCjoUNTg3QFsZd3nY0zw1a0smN1UJ/iuQjSDTitnwD6M549wW6+rGbhK/t4pYlBlL1I1OBEIZLrIzBRnWtllZikoyUOmzi6HTlPkjqWtKxlHKZHE1vmEKw0hLHcx2uwW3rumAT0RiKCweGlNEOuz4DGtbk42wtc3GKTJin9hqYtO44RbXZehHhRYIgkD1vIZUwSIv6mgJy7kKhX+JrjjG8fZnBnj4ekgbcfNpPYwhM82iuhuew4hfmPVfaoLW+4mrqGxPlhFGdk4ltPX3hkVw7LTwE7ZlleL+KlvLWPJbT4eGuWQb6dciD8DcqX3rc+pPWpsM2P3DMShsgbUIhGsi2km38z0ACvOVf4yTCW/7cjesjO7q66dLf3kUtbR104enHUXW1NNYvZQMsocgBClCMhQ1FMBDoax9hjetInCvGjQgOyjJ39QwKS7L62gy1i2IexR4FFx6RLtbQ0tVGyzua6bibTpEwy5oFdhqfVkkZslH1j5YpmH34m1paoIDWRRCJHQNDA9TZ10k9A320xsRVTZKU5SqN0j78emCtwBhgDm9ZXgmCR4j5GKykwQUknsAmn/zLFtKpDE1uWEXpJeFQIMEakXYZwQy5HsWKTehL5DBLGMBo/S0TARRNcJP75rJyjHp0pqiFnmQzhnwgrHbg1lcakG14nF077vQgO4HMAXKcwUFEmyV6a0s4bZ0hlcZq41IJPj69vpTXt7/C80GuHIU7r5AGdaub8lBkTBH936pb0mfW33VMRnoB7Kgkmch3R+Iv79hrc797v1aRQT38ud9XpN84O02AN87ZHMNtAWrmLlhC734wh9ZZazXacN01ikYsHnvqJbrkmjvp/B99g3bYZrOyzg4RSHjAjoUNjy4BjCiEsaJsojpWNk2Ijkk/3QHxr9QkyyS14WiSsS7auzvoyZkz6NH/PUVvzHlL8dqQiIyaKB33YuU8p+BX62lNIpPHfRIYZdlpixx4FZ663dQ/NCBK+dZma5yKXyq+y1y0XPDlrIZ3BOgqGy1jgWagyaukJhZBSpRqxeN2Fsc1j/JtxNpGd9NVaZrSsKqzhIRLRBold+X04emGs+kJ4C/mC8gVCNQFZQzM7SJfpTfVtwFeT8PLRSVKhSJHKWzgvJCqAFydyKahVO2k31PHBqK9OkqPsshZJL7B/3hIyEmcaVHn79+gcBUG399U18v3oTbthU8sHA56evM/hcJ5TK+bRnust7OwLRtrhSnw5GpCfW5F+ZOWjHOYM7B/hYD37wnwDvPKJYeP2gz88Z5/0j///RJ9+NF8Wn3VqbTPHjvQ1764X8E/3h2d3XTmz6+nhUua6KbLzqC58xfTGqtNo4b62sjjRsW1ptbeoukokRscxo6wqIR1D/yBV4QNOl0YyuMLHVFdLsXAVzeS8Lp6B6Wvaokb2uzo6aQ7nruXZi+bRzPee0EmkylO0xFdiTKeFkFHdTnvBB8c2xGpoCSXNGD8KB5Rnc2J6G5trtbKFsKKRDAZg2MzpiLP6EwklCknCEVsSkqh0EmBn4VYCW/QmGr9psFpE+S0GKzdIBprJ1NNNvwzgDUGvSqA19Guh0VuSwReB6H5sUZzLM86IHFQ+wIyRYRXN8Sisi5xuiAb8PlVfGvAl//uaH71vLMbDWVvhneEf28G4CuTCO2TCp08qNhalz5WbcvbJHGm7EFDHsPfIrCbEdcrRb1hMgvv2Gl1U2jvDXanNRrdm50SP3qx7w45Q21SYS32eR2rDR7w169XZGh/O/Sm0H6XNrVQfV0t1dZEu+kqtH//wAAta2qlVadPHpFzTCK8IzKtY6vR92fNo+N/+Gs6/qjP0m47bk2PPvUyXXvrffSDE79Ihx3wqYKDffG1mfStMy6jiRPqae3Vp9NPvnsUbbzBWpFPEF9ii5u7oyf2RG65vB2nNuZo2QoAvFMa5R+Ptq5+6u939YX6zJGEB+1oqZpkOC78++1n6bdP3krN7c3UP9hvJAw2gGditjK2y/W66vdABM5cEhkd1tCJi68jxXgNPrqoktZY3SA0uloGoSxeDaTagGHKFJEIg10NTzyoyjDVgDRPoBNjU0ADD1YZ4ZUvarC1u1hww2vw3jWPxS19cYmwgDkkiXXryGEAbp0wZsHFzKfS2dG06UZ5xeVxgFgehSccXNJg58BNVguN6orJCBkzT2zTE8Yiw+IQZl9mLOQ0+KriH9lMWsxZD9a6eLJgb1K0/698jU+4LF3O76bDCnsE5A12ZRLkAEhY6/dVV+yGh895XbaGDt10f1p9DEHvKpNqEv1ueV8HK+RRB1YIeB/ygHf2vEV04umX0kdzF4l5POyA3eicU48hfJbDtkL7A3R/fuUf6ZEnXxCHNjbU0clfO4wO2POTsV6jBHhjnc6x2dgDj8yg629/iG676ic0obFeDBIQm8tm6NzTjqEpk8JdGBYtWU4XXHYLvfvhPDp4753opK8fVtYJLlrePWydaVkdhxw0dUJOOEdE9weNq+fi7SBCCZ0xCmTAYgywW2grBXjhlwt97uLWpXTqn86VUKm1uCxADJwwXp5eJFePhcsXDFdx2SUfNHsdQAOslMULlPY2xEJMMpJNPjMJaeZpuqU5bRPG85YcaYJKnJIsZmUJ/LG0SFoDlCsC1P+a82UR1Cqh3/VLCbMjGGhibNCsYgry35SwA0weoB+CZRPqgzOHXsakFmYl/GI3jEUWhOCaBiOwNp24EeIwPa/n5mDuTJijAwdk4/FrbxzMDRBLbMP48B+kvbgB4fOvZSo6+VFCtKsjN7AbIqHmS5JrXWsyVQay9Q2Qf/19KQUKUhyxxSFUm5EWeZXcEJ1edVJNJYeQ9D3KMzBWgPf4H/5KPO298Ixv0sLFy+iIE86jc045mg7aZ+fQGSm0/90PPkkXX30H/eOOS2jKpEa69+9P0UVX/pGevOdyqquNb30nwDvKi7US3b3w6lt0+oW/o1+efSJtt9WmYghvvP0BnXHh7+jkr32O9vv0DiKqMvP92dTU3CZcGfBY9qXX36GXXp9Jxx6xH+VypSet6XNFYlVr59jQzaIkL4CreQxVXBM63VxawtHQkCh/XOQ7W0wtgLdY6eD+gX569O2n6P2FH9JfXnxI+NCGOSxIZlFAaLKa5BX0v9KF3ZiJhBqUVJebR9wsOuAcNfAKgBVvKajlPxt5qMVW4wzB4FhodRVsmKQn1aJlEB7bsz/L/i3eIrs9IGnQ5+0kTaVoYt1UylSxz4IHnGE6U2iE8br72N7+JQi91s6ku1Ds/A0p1r+aW5hdYP57893pseitG+ENgVsNs3yM+md1M2MWjepfLRm1oNj8G4mD7Ac3CblMWiQc4rq6/sjqZkxXfOOLk02iH/U14Gz2t2sBsiHIgmyY2Fvt3unLD0SK1pmwJu23waepoVoGECq1QdbUWFv+3+ZKjTvpt/wZ+Ox93yj/4GEc+eAhN5qjkcy+80En0W2/OZO2+djG4vULr/gDLVzcRFdd+L1AL8X2v+bmv9J9/3ia7r/lIqrOZQnR4P2PPJ0eufNXtOZq04YxavfQBHhjm8qx21BrWwcd9o1z6ND9dxWAi62tvVPcUbV1dNEvzzpB/L2HzOHvjz1L99x0gdDkxLXB93ZJS3dczQ2rHcDH5IYcLW7pGVY7cR0M0NUJaXBecEuyFu6loSYjALmjJ+iCMTA4QE+99zw9/d7z9NhbT8kENP0gnml1BbqqgJ9BTE5gnuUTFzpwlnEtv9S4ddKbAkwJvIIY5P+bgKD83T4dZ6AswFqDsQRlJDthM0lpqk07HjdG5z/SlgBtoRu2TlzSoMdmxqnGW52pofrqCUSqf311OGCz03N+FMCfliNBIYaizhr5gNdOn+w+ZD8edNTwCm0x5CMBvbcBVdUYa8+4OPh3PD7cBsaUJ9Irp12N29X14g1p/qCuMSQh6Spxg4bYu9ZDiybUejI3TrpN/85BPcEQy1vtY6P8chj4/KFATugWBrtMM77OhLXoc5vub6zz4vqbUEo70ydWixvlZFt5ZuCgCgHvAwx4IZM8+Ngz6Ym/XE7Tp8oS3H+4+xEBrXdff17gYhTbH4B75Ek/o2lTJtI3jzyIHn7iORHZ/cVPjo/1wibAG+t0jt3GbvvLI/TnB56kX5x5Am2+8ToClO786+N0x18fozt/ew7V1lTTzPfnEOB4u603UxWp4jkffOEsWNYVT2PDbAVfqviSWNRcWeAFgKA6Er7Q4RpRFIBCzhs2ZdBl+tHzj5rm0hl/vZDaOzuos6eTga4CQZAikyvki+yaLsXjfgupOnXfBV4FK2ycBkwACSg+oLWdFnlZwj+LwGomciQIsAOT8CtB143Y8lcsn3ng6yR32SgjwIoHPt1SubaNutwEymVlch3f3F/zUZLiPJJloAHYwl2jgHrBwmww6ugOQP9mqC6wWgRsp1RZYWfwzgWzg1QvD4Xpdvlw9F2LvAB281/325HkKvZ3Iv4sqU02UUVwUUDbfUpqrqEXx4rKeToKnwd89Tr1VyiSFRHd15ZkShFszsHnfKnDcU/zsxvvQxtPWX+Yf5XKP3y1KTVJOeHyp2+FPPLgCgHv/Qx4X/nvu3TUyRfSjAeupolKJnnXA0/Qb2+9jx7/82WBeS22f1d3L/3ogmupq6eXPvhoPkFOecUF36G9PrVtrNcoAd5Yp3PsNjZn/mKh2913j+3p+KMOEl8UN97+ED302HN057XnUH1dfDqZsFlY1tqT35x/lKdt9Sk1tKCpMhFnfD/XCp1umtq6BoblUYxoNaAZSXhIRGvqaKazH/wlzVzwvorosqiu0umKL3EOu6AKrtXVul6uyXVAMV8JYYYTSpepZQfCD1f416IrDrY2cst5yQsECpIS0WF9DijtyyJtrmbXj+f6IG11vHrEWtLANb4WIS321FVPoOowdwZGRgaPg7TEVvmQ+PzhZgUFD4xc1T/G/B4VePN8kJScBJPmKBrCxshA1JKf3DGf+4O4AeB1SBzwZaF8M6kp25YCXAm+8ooYjbfEYTFX8EoWFdGGLLRrkJX7ezdATLut29bXV693JBVC/tAvpPIs3c0vZBHmBczO5YAN96SNJq9HsKsbzQ2f/+mJfnc0p3xM9HXw/cdVZBz3H8dSQUYAACAASURBVHyD6VdHbJ+85woRlcUWJcKbb/9Lr7uLXn/rA7rp0tNFMA5tXXLtnXTvTT+jTUpIki82MQnwFpuhcfI+siD/8a/n6bLf/ZkOP3B3qqutpqeee50+uc0W9LUv70+Z9Mj+sW7v7qfWMaKbXWVStahQlrc61ghcc0R0q+GnK0z3iVq7+obtXAGOnNSQo4+WNNG/3p1BT77zDL06+78CYIGEjkSBfYlLoHSjn7YagTx5n1lcyQJ/duxFO/kjZyVHELyLMrPK3YxHi8PGoiOo0hpNRgA17OIFibs6k98+CreQas9Aj87AjhsbFi1x4OXaYn7OVak01ddMoEzas94JgUYbUeRv2jnTP2FeAHLYCxFfwJw/9/JUSwPewNXJB7whTauJDUZr1eTmg96Ag4O3gGRQ3kZIncix2tc6M9gqbSKiahLb5E0CABg3CbxMsV4nAnw17Op2jVacr5shIZlwSwoHr1HoFLGQPlpsyNbRnuvvRutNXHtUk9gaajPihjfZVq4ZOKRCwHsfA94wTe4Fl91Ki5cuj6zh5ft/8YTz6BNbbUKnn/RlcTFh6/jxz3xNJMF98ZDPxHaBE+CNbSrHfkO9vX304usz6ann3hBfodttvSltu/Wm5pHESJ4Bqq2NFf9bJHthK+aCENd81DGdLvSCjj/rMDqBTve+Nx6iV2a/TTPef1FGdbVuVpOJhihmvmpcD3Q0VyOVn6zGgMEZpqeVNFBponW8rKwEb6Fh9aUAGrvNY2IV8dUFJPxSxMaL1006cyUIElEsb2mtKH/djQJzSUNYlBft5TLVVFczwST2FbtsYZyaLxERj9aRVIboty4iYsYfBXg1jPJBmWsnLy4i5IEIb2TgZTvySK57h6Eg2X3mH/DwVUBqAFg3zaDXsSTTMgITsZXR/kwGNzoyydMkHKobK73eOECbbtgaFSWFhQ1ageiuf6G9yLF8e4im1U2l/Tb4DMGrd7S2xH93tGZ6bPVz6APfrMiA/nrQ9U6/x/3gEprQUEc/O/04WrB4GX3pxPONS0Nreycd892LhB5XW4sV2v+8S2+hR//9Iv3x6rNo7TVWEfZkp/70Gvrnnb8S3v9xbQnwxjWTK1A73T2y8EJNdTSj6DhOrW9gkJa29Aw7qhnHWPAoENERlD0eyU1LDvB1ClcIRCnzQU+p4+jq7aLbX/or3fPqQ4TrKZPS9H+KShypgsxMM9EvH3LF97YdXSACzAYYDGoGS8gq9nA8dS3wcghlsgs1JjiEiKFwWYXq3wdSCTc8Wq1GrkBRv+MAsAE1ua+wJVO6glBZQwqeujVUV91YegQvJAIcvNYSErFe8CQAiYsYTl7oNW/ICQquKQudmpdLBl7GuKITNphAlNfMJ9tPXRMlt5Z78EgulqgenLljUrtxFw0ueWBRfTQPKQMKs+BwRMjNnOlqe+oDwctd6y7lsRnq7RtQyz4kuluKtIGI6rO19M1tvlrqR7ms/XH+8OrGU6NkW7lm4HMVAt57PeCF/y6sxlDBFdvn9v8UnXvascKHt6W1g3Y++CQ66/tfpS8fuqd4v9D+zS3tdPn1d9NDjz0r9l13rVWFO9Rn994p1oubAG+s05k0lm8G8GW0vG1s6HjxZQGnhpGKOOMReU02LZJtEEWOSzqBSNT8lkX07pIP6YK/Xy4ANZNK0cCAKuwwxCKXBhilatYyBYdD9SXPj9PxUezGocu7sH4E1YKi9dDFIaY0sNbhmnLFkoB4bhMidqJblsjFhBkOdzkxXE+/GThbT4Psv4+EroEB/yk+Q2WUwlUR3mif8GD5Ay6pCLThQTGS2vB56e9X7bD3Q2+YnON5aNdyJs4Rkx2aHOmQtbzogX40KXL4dYncdmYWmx2LaU+zOLvwgcQ4dbcku7RrxJE8qNUgnhxUSfCFxGEQ0VpN2VoOoQBYBovlmBBVz2bTAdcK+dCjyG1pnrxEtL7TmtvR/626JeV86Uu0hRN5L5zvpPqsjNwn20o1A4dVCHjv8YBXTzoSzODHGzUPqND+kF6iEttq00fmSUkCvCvVR6VyJ4uvkLbOPoIn71jYpk3I0fKYC1DgywewUluToa6efurqGbAJScM8afjpvj7/LbrsX9cL6E2JBC4JvCKy5UdE2e+SH9QXo4n6si91H3gLJek48GwTjXgfKrBmK5ypY4RLgww0q2i0/AGYKx7ps9ChG2F2JQjcJYFhqUQgAzdByOdSh0DhCZ05pufHQDLGWEV11Q2Uy1YH9bSB6xpW60uzYB5SCjCLjPSKRD2A72BIOWDebxHgFYCngRdCYb8/73cOp87paejl+3MQ1jDsvO9BL5OvsEcSYl5NNJgBs1lXes0YRwa7QnAthR4ahSugyx0aEvCLG0QJzN6TjVRKAC9uAmCZaF0ion5IORB7k5ci2mmN7Wj71f+v9KcBUbsnWaAGZdI9lVAJLSS7rqgzcNiD8Vp1RZ2Hez77u6i7jtn9EuAds5dm/A1sLBWgmNyQFWVfUdEsjq2hRhaOQDQX8g18kca1wYHhpdmv0xVP3kgLWxbLyKviFu1eoCUA2umWR2cdXDS8Ew68btKWJhjurcClmgo3TVU0hZQGaC3oYU8NcHpekHyECDBA14VYjbGyfz0mPRr1qpleixyudphhppvF78W7MS4e+QxEj1NpmlA3iVLGfzc8qpYfddlKCLuZCAFeCe+yEIOIQA+SiOSLrQiwmjsK1i00r1gTQu8acnze1RrY14P2MOB1LpQF3sAF07SmIrp4P1zza2UqGoBltxx65c2OLLAhwRfR3n7jTqLWkZJIoJw0upf+yxaKS/7MsvnRP9akq2m3dXamTadsOCLQi3HDg7sxSVgr+XKNhwMOrxDw/iUB3vGwfJJzGK0ZQOIa3BHK8ZyNe4yosAQdX1jRhlL6QqQI5YqR/IJzYxVRS2km776A3cNuOI76BwcI5YER8jPJadqkX2S1qiY0E6lQqgnKcaLx6MYN2LmwqcFLD9BE3Aw3SWjVj4vF+w6MWG2xLhiBc9BWUsYSjUVUg4DrJaFxfmQEaGHdr+TmILE62rbJgdeLJSvoTFNj3WTrG2vEqHbOI8Gu7pmH5fLArj1FebGyWZSC5pXSQkiLryIPRHE81gg+e6ZCXb5V5y4Idy+zoMw0ugRtorP8InnQ67TPAFrrfr02eBKbvAGyGnC7HrWOXC5GodHNVombhR5IQ7TGXUkpRLEGdQNgXSDUk5A8YVNpYma38NsevDokLMoO2Xh/Wqtx9Vj+DvBGcG4T67PC3jDZVr4Z+PxDJ1TkpO8+8LqK9Btnp0mEN87ZTNoqOAP4soWMAN6jld4gPYAlFOzSytmQYFRfkxZtoBRwjw4lldNYyDGDg4M0q2kO/fyfV9FHTfPk41n9pa2e/eovXATvTPQPX/f6fb0D+5aW72GzL7qQxwOATBagQMeJsImyAFaioCUDxgWC5zAx5wW0Kk6HQwizjnKQm/WrRx4crwvpbpTaVmozhQ5EQxZXcNNib8J4WxqeqqihbrLn0MBxp8Rovn9Opin5Qz54hiwB/6FamlwOHkjaCVI/2fdh5wV3EEQ9nS2M2jgs++/7wCumKA98G3ANeV8cwzXKHHz18H1QllfeXF9jV2bustT79oYH81WdSRP+4uAaS5WDtDfDXCDirderAF+dMBcq69FzFzJpIZdii6mb0i5r7UA1GUhh4ttwTlMaq6VMJdlWuhn4QoWA988J8K50ay054WHMAL5glrf1xpbENYyhUC5bJfS2rZ2lAS9AF8ciOxoRa0giiuW4lDpOwO2fX3mAnpn1Mr25cCaJb2vVifjCx/8Yt+B7TwOvxjWLbQqL8kR4Jb+47fncFAYYOpmM92efULvQqCFZuzToKLhzrAgRK6AxMgYJnPxrPT/scmcCbxZCkpb4NZHAa1/xkbc6W0fVOZTaln0MGzM8wLURbXmRCuEz9gXoIMonADZscXntY8C5jLQ842vV6YczacnAy24g3IvlTapLhY7bg3OcF/X13tP5boEkNgPA6gqq88BciZuFTJVxSsHvuEfF3ySt+9YwbaCXa9/9eQ4B3LBLsemUjWjnNbenhlx9qX8G8u4PWIdDg6gyl2wr3QwkwFv+JU8ivOXPXXJkiTMAkEM0tKO7PzZ7rhKHYHbHF159TUa4KMDkutiGrxYkiqCcb2dPv4CHuPx0ed9Nnc105ZM30jOzXjJRXTFZqryv+LLXw1X/CqcGY6vFINE/La/4hOzXR8gwiSfLlNePlE2CmG7FtqV5SbcsMsmZ/DRQGlghpLUXcyUJ4WO0xOEnuPGz0rBt2vAeV+N9aD4dWzLFbxp8G2onW/1uRNApuJ5CgbcEyzql7RVFK1IpIadxNg6sKiIK2OvrHwi3MGO8Kn6MArz8mCL7u2CNnZVVhx60ng/zrzfJHOz0TZHqU0dlzXDM+xZ6tfZaJgJWCa09Nn0DoCvFmZs4neSmZTZhEodiNz6MRT82bXPafe2dYysBDCkDXGaSbeWcgSP+dmJFTvyuA35bkX7j7DQB3jhnM2mr6Ax0dvcLrWtxxCza1LB2wJdfY21WwLc2+8/XIKwu8QgRCWkA5JHQIONmoLmrlS7655X0xvy35KNnAbpyVPIrWmGbAmD9JS+AbWDQPHLn0V9xUKikwX0SLdoKXBQOuiqyzB4jG9DktmB2lCLhCtE1fSpgAPzOPWZZ2pE5MihJcK9MmKI38BpzAyj0HloWldaQu8ijnOyXhrop9ql9qIgzeNOQd3EGgnJhBF380bluHzcTeOKAJEmzLsOAN03Uq5PenMGF9M+LK/jjDYNbrz8+j0pd419AtZjD+w5WbXPpMp+m173RYjpf5usr1iTcVODfm4K+V8pDxBVU5y35mnlL+8DrDFsBvP4wqs+ou0xStOMa29J2q209rL9Z+uBJDVmqq5bFc5Jt5ZuBL1YIeP+UAO/Kt9iSMx7eDPQPDNKSMVKAAhXXuvsG8joqAIRQoAKPvOP00/VnsKe/lx5+61907dO3ikiu+LJkNlkiSskoQlqQ2a9URPqEF6/ZR/0sdvEplulyQy6l+C7HIRpstYRCfaEbX10HKK3tmRyrHG8QbiVsGJ9UR+NryUpH2jSBhhaW0Hhs4MM93vKHS2wcbLQ8ITTCq8+7qorqa2WteLGp+xA+dU5E1OXmvPqHvDd8Dts5BJ7/g6cStHDTpC3MfC7PZhAJ5nc+zhm442QAGwhu5onmFixG4etA+CXR+gQ9HL2AHH2ya/vBHT2kEsZKYfTv/Po7UWBhSQYLs7S4QcDNAmzxMDd6dkRCJYt0G+mAsUTzdO78MuEGL3ClhmithtVpt7V2oim1k4f3B5SIpk+qEUVKkm3lnIEvVQh470yAd+VccMlZlz8DgJ1Fzd2RZATl9xLtSAAvEuj8hDNEf/HYEKCL6G9HdzzWZf6oACgzPnyB3l78Ht396kPyi9IDXgO7fpSWVWcAmJsqbnmKRfDobdhXpfqKVxgpRxp0X7AaVr2/GJ9xWJARXBPVZWPR+0DH61QR476+OrJmApxh8V+lOTaTyQHeht7EqyFUGQRe6cnKNbwSdmRbtdUTKJ1W2fAhsGvByCJW6SJfdYfBoM+JGRdjG/U+wB32Y7j5gRetXiJ4G687VnlOmwWsxvxH9x7whoK7A7RqXvxz0L8XA149rVYg7ljM6Wvl6szdNcK1vtgfkgasQ/FkR+ibq6RlHilpkLgcLEFOe/mq62MlEHJwHKjNB0hNjPxH/v+6jWvRgRvuMyxpA/pabXJt4r8b7U/8uNzry3//VkXO6479r61Iv3F2mkga4pzNpK1IM4DEtbj8byN1mGcneFniCwTRWwF4KRK6XnwhIiGtp28gAELD6Y8f29vfR4++82+69YU/U0t3m40calDRml3NC352EoNJRKAAtCIoXKSuQDDpy4UtG6G1UWUbQZNnYKUM9ncuXzCRWQ0IWqMrqq1pCzWeAOYnpmnKsdFinjCm43l8L9cowKOrkMIa8kRkSzpCrvzUHF6tq5lIVTB3LVSAixdTsIOKuFRsZNHMAo+wRmnPnK6EL6wH2HHhaYqwIVOQZ4A39I7HjybbmwdnCOI+wn3P3ln4r1v3hMBNQF7gDRHH6vnQi9NLJuOwawCUXV/9mnxJ2pXhs6LnRvr3Ym2mhH8vPhFa5iSeNrCIr5vQxsBa3eiJdeJceXuXhCu9/sR1af/1P0PGoi/iKtG7ocLa1MZEv1vitI2r3RPgLf9yJsBb/twlR5Y5A0iyWdrSU+bR8R2GLz5A77K2XpHFPqkhJ0AXABy384I/6i/deiJ19XZT30CfoAJEe3WE14VWfOW6el7xxa2+VeUXsoR134vXZSWrafSh2PAEb1M90uWRXOuioEFX/ptxgNCNFUtGsSAkEuwcKPclFvx43Y91cJDwEqbilWcbPDo8CU/Djxg/JCGwp3IukvytrmaCAN5QdYje3+G8YtlM7krwnV0t69pGw/g0ZKjqJds/1jTWRXffEEHSUDLweh3jVyld0G+YBcOGkyda7J9EPuDV8ge+P99Xde8UKvGA35HAeMUpcHhtLm0dK5gkQldlw7zhphdPf8TTCOXyYYLMxrqMV/ZTN2fisyA/rxZ8XQQ+bOPP0ur1q5T1hwye33CISbaVdwa+8vC3K3Lyt+93TUX6jbPTBHjjnM2krUgzgMjKouXdkfYdyZ0AA5MbczTQP0jpTJUoe4zEtJHaUDxiUdtiOvGu0wkFJbBpkOLAazWsCvhU5NbwFX/kr34WwCv2M/E3A0BBdnCx0A+gcQ0tC6qpAKiFTXy1a02uSfxRUTQOyhxPEUUDmNuIbIgkwaKbgSseVTaKTcOEhojEkeZ8DWf4dmIuMIukNQG8ftQ5RTU1DazCWoSVUSjhSx3u3kx5cgajHdWTEIK7jClDJQVsmJAyAN4w52ZtF5Ip8Al04NZlWr9ffj2dOwe+uMwC9uYxIGsIg2a2KHynDfZ7uGsDu9kjoprqNPX1aVhnZYdZQmY6XSWkDtjgxmKvUopSeKKi17k6P0dSoYCYyxnsh51oQq6R9lp3N1qtDOhdZRL8d3UKa4T1mOwy7mbgyAoB7x8T4B13ayk5oVGagYXLK6vjBeTAZgzZzm1dfSOm09XT2T/QTy/OeY1+98xttLh9qYkAia9SUYTBIoTVnzIPXUYYPhCjD+SwhEZ4GS9xCOXsoXdB8o7gnYDrgnJoYAgNna6I+DkoIGnJ78e2Jx8baxu4QqjrQroel27fZtRzdA+PhLpw76X/CTqGhlfMndEiy2Oy2RrKZHIhxm0FPiRc3hA2oDw6YKdFznth0Bl+ooqp5ELhUXXh5JBJi4Q2WWyBrzWPsAN3R8HOQhPU8p23H53lQG0WoQ+4eaLkWpatb3TCbMMYtFrWlrdtEoZJODT0KOAV7yiAdfS4qh2t98Vx/QMqn1PSbij0Gn2v9n4OLSQyRGs3rkWfXmuXkvx58ZlbbUrNKP2FTroZqzNwVIWA97YEeMfqkkjGNdZnAJAJT95KbCjLiYgopBUA3ub23qLWZMMd50tzXqdrZ9xCi1oXW7cxAT/68acCFfGPwhXNJSoM7ICkA8Ay0jro2U6FAa7mDR4T1bIIvr8vDtD7IzEKm66SZsHZRU8OGzyeKuUDsjyy3Fz9rvmdRUrDkDX0sbUTdrSgxl0Ugm1pSYOM4fH3c7laSqezQeAtAJx2nai22L4FZRFhIGhYVBNe/lUYrM5m+8fNHbxoBwYHVYUxktXaVJ/OFQg7N5P/x9709zNDzBOd5eAeONY7P7441RXhwXoeQZaAyc5AGzqwREq5VrS+GUlqAN5B4zcsy1yrJwM8QU2tQVO4QkRWkewmn86E6nm5k0MKPsla4RCMxe+25o4Ej96oG0AdBSeSbeWegaP+cVJFJuC2fa+uSL9xdppIGuKczaStyDPQ3TtITW2jq+OFNm9ifU5EuZpae8UXfmNdhoYGh6h9hJwYMCEfNc2hHz5wPnX14nyl6b722dXAayaO61v1U1cPbgNsNEQiSclUWxPs5qOdfdTPI8QSBWyamfzud4/Fb/jSR2a7LMXKM3O0wIABLIcfjZGqXel5y+EyDHxdCPZjxo5+01RlU50auYfGaTtbYeCMd7WkwR8JgBcR3vI21RsfVj79QSGA1tejwD5hsGvORVVmww2Kvh8SUc5smnpVUpu5+t4UOuft9J8vsUzNuZtByC5EHnA34ljWI79RCOvbQLGNtEoK9dcySywjmbCGz2CfMl7R0Kp5XN/8GYgW+nh5k4eb5GwmLfXQcMKAFSDX82p9uT5N9p5owFx/+UO6Kk37rrMHrTtxnUhLbEJ9VuQcJNvKPQNfrRDw/iEB3pV74SVnX/4MIMKyrHV0gBdAA7AFtKHoBa+QhvLCjXVZ4Q0c97a8q4Uu+ufl9M6SD4xkAV914j9VjcHhMw24POPFALDSITpRX8sSRsPLNKyuUpUDoJUoWNhloMuhQcGuYNyQqKwLxy7k+e/hXWgjpaQhiJ8cTTnjBEUSnjDB13R6IlLTVuAmQLaMR/72Mb96LZ0lAK/j+TrcBRKA1jwUG/KyPw55KXyCDjuQBOSJMsT8xknAG6s4Zs4tjMrzaWrzA6wGSNMsf8EbZkAiYWDWIVjVlA7h2ovhR3mdiL6SMegVgyhpcC48Ha+X6GZtyOTakIUrqmhoCOWJlf1bMYmDJXE1cDnPU2um0hGbHFx0ZeGcJjdWi3LoybZyz8DRFQLeWxPgXbkXXnL25c8AvnQQ4R2J8rx6VDBnh40Pkk9gMdbZHSytClCcPrGaFjXHC7xLO5romqd/Ty/PfUM6MCgXBvlYWzsy2O9wrXMwLOBpeh1GMGBsvzt19VV8CbuwyMDASwGzXGEff2sANjIHBYlOUpquTKWHz5OGQqLDVqagNbwcvjn4uj/z8fGV5sNfeDzYJqHp3uy8uEfI6Lg7T5AyDAd4Q1HUknfwg5OHfV1g1L+J2w/WRmFwBpzBcSBoJyaj20IOMyhtuqzExt45idkKXVT5gVegauAY9gK3SQ4bvl6IzOHDrBrznnrF0/IGgFcNBocBeHv7lPJcD9/IEFi02JE48IRG67sLCzPhgU2YOyXzUWAvVRSsRLbq4+PTt3Cu/a5r7BDpjyj6QTlhfZMS6aBkp3E5A8c8cnJFzuuWfX5TkX7j7DSRNMQ5m0lbkWcAUb7Wzj7q7BmZog4oKoEqSrAZg3wiXzlgfC8hEWRhU3dYnYLI5+PveObfLqI3F77DIrsyEuQALz8IEOlRErcec4CPFZ3Q4IOEM3zJ8mID+oR4pNU+PbbQx/kBr+ryq2K8DG41jrocEwas6jXDQ/YIt/AEa9FhJzc2nQ9ULf55e3CnBLFTvvYklCDQiYQkzI24cRhKUVUmS9lMTaDIQZQFkVe5oGDIaaMY6Podhu7vvej9CuDFExVTi89vQyXuAXzxOTE3oWY/1+VA2XW4dwjOArUXkzVhCNrR4zrHeQzP54s3lAd4nWIRJgFTa3PlOqivTlNXr8hQtBWMNaQqMOalhc1+TFoikjsVwOKp0eoTptKeG+4oemzu7HM1395nYP2I8gX/ssNKTeQe6DvbKAsx2WdczsCxFQLemxPgHZfrKTmpUZoBAC+swOLc4LwAiQIiupAvRPHTXXVyDbV2oBhGPJZkX739JGrv6ZCAKwlX/o8Brzxn/S3OUvf96K2Pa5ym2L4C1lRFYol3Op7namx9aJXsYKFVRKzMuPUomfm+OJ2QmCoLAhbCVVmFzUoaZPAwVBhhg4o6ghdCSi67eXrOMNh1DpC/AHgHxXN1W50sl81RXW2dk80fBVTV5Q4uaQ4+pUJuQegNaSwEeLuN3Z4Hr6ptPbWAY8xilxa5Kgjkq7UU4DVDz3fOYXpf3llA35tH0qDGqRnZrHO2LoUUIZumLiSs6bXBJA/6VPEEYeMp69OeG+xKtdnirgjQ+FanswJIEUFu6+yjjphv5PF3De3HKrGJ8w9v0taozcCx//zOqPXFO7p576sq0m+cnSYR3jhnc5htLVveKmBg6uQJK8Ufto7ufmoFlA5z3nA4EknguABgQyU3rlcs1nxDTVp4WzZ3oAhEeRt8dT9aPpcu//fvaHbzPJEIJ9hQ/b/2yGWo5+SwyGiuVfRyPhA/c/0l/1kBqwBXP8KrTsUCpU5QU1/3DMJMpTQ8mvV0wBaHWUIQmyYXV21ZXrmLq8D1E97MHp5umD9D5/1bFvJRl73jaHW90bF7DH0EJA14pK9LHotqXNUN4vEx1pMoPa3uSVzUt5MQTBwrsI4CEWhvX3ZqoTds5rrp4/LbeGEPQCyecpjN0zz7I8V84NwR6YVG1d8c6PJB1iXO8EkILG7vhJz3AycrFzrbxx2Pvunh60HunslUiQj+lJppTvW0b273lfI+9CFHoZ8pE3JCp46/b739cfx1I5pQl6WG2iRhLbYLtQI39LUKAe/vE+BdgVfNGBt6/8AA3XLXw/T+rPl01ve/SnW1xSMLY+wUSh4ObMEQhYVFUrkb9LlIytHlgFGyOEpUl/cnktpqM7S8vXzgfX/ZLLrpudvprcXvKb2uazcmucECbaB0F97SEVv9He9k83ArLy1/sNE6YZgk3B8UC6h/NRdoHaYAY3XyEpKlhAFRWyuHcBGTHxsmD8gHpJZJuHzCl15oS6gwrNYD9Xrwspxc1waOxG7b/Jpr6YbYOyU1mAYfEbGrrjdQBC04+hAFCITGw6U87qEcaR0rKPRZ0dHJsqIkQeJkY9Un4J6cc0gQeM2ZBoer155wd5DOzHB3cLx7NdTaqZbtOK+7GmMH+zivmklwHhGEtMeGGgF4uVtDfa6Wtlptc6qrqaL+/iH6zAa7RbpM5e6EU0JxC/xdgpMD/s4Np6ANkionNWSTCmvlXpBxdtzXKwS8NyXAO85W0iicTl9/Pz370v9o2pSJtPnG65oe8aX58L+epxvv+Btd+4tTaPrUSaMwmsp2gSgIAYVoYQAAIABJREFUIBPyg1I3QBoserLZKlE0AtCcT6dbrG18f05pyIkSw+Vsi9qW0K+evJo+WDY7YDemI39OhryBGYYBXJ7Ayccpw+vqfDnMav2pqGKmTsKBXc9+TACyMtznNwg8GqzhNh+4WkB0YZV77FomUvukUCTDLS/sxoA1T7o46EO1i2xhsGwByhdgoEgHNi0xcV0a0H+VqLDGN6w3RD4xJ/2CjmUjJrJbSiCPgSFnRN2f01RYux4pF4y4qkQtaNkDm9+5T+BC05wSUW5sKE0shsMj1PwY0x57uhGgepvN5nRfipVZROD91Ho70FoTV6OadDWtP2VtmlSfpfbu/hFNlPXXDG7IEZkF9EK+VcqTJ90Wbubhv4t1mmzJDHzj0e9WZBJu3OvKivQbZ6eJpCHO2YzQVlNzK33l2xcQ5AurTptMp534Rdp9p62pqqqKPpq7kM66+Eb6yXePcmA4QrMr5C4AjuVtPWT1hdFOA366UxqrqbOnn9q6+kuO6Ib1AqcGuEbwSF+U0SxsW0w/fPA86uztMk4MEqbUl76R57pwa35T+5kENf3F7/nxOlzB4Fgn1QgUM5oGTXRawiDPhBdryFTBVslqVn3drcsxLm46RR8Crr1+DFgSEm9PJ66pUYn3uBOALxsIkxGEIa6+Xrwt3jvGjdoBmHJTlU5YpVkPY4wE0V18HsM2rD0U38Ca5aKVknQ5Hmj6CoMg8HKRCQvRF4JPNnhEG7uZptS0ry6KP19ysfCzl9AL8MLNqWtvZhoxB4Syv7Og7DHm5ZiA94iPH0gbTVtPjCWXzgqvW70BGps7ep1rH+UzPtx9cGr11Rmqr81QW2cvdfaU9kQL0DxtYvVwh5EcP05mIAHe8i9kArzlz13ZR557yU3014efprXXXIU6O7tpSVML7bnLNnTU5/eh39x0D2203pp01ilHl93+inQgoh6ouhZFhgDYaKiVVdKEFMKrLDac80ZCCKJgUR89QrM7e/lcuuI/19Oc5vmmXK6O+XHgNQDBy8ryEzZPyVPGqcGAgBfh1SzCHR00ECIQ5+aDSe8nCZTyvyr1mFoDnwZH3V94+phGU46oCiU5NKkLkD9pTe4QBrx+yzyLHnKLIIO5vQTeZ4l4oq0qWX45eEMjrdJE9Tc1fuh3CyUHAWCEt+0g3B1Kg5fgGs2jvy22mAPR2HB1sRwrnAk83zXevqN55rDrdZJClTJZPQwRS7nWIow/ZKz+BQ2NUudNaHP7XH3CKrT16pvTruttn3fWUD4ahRug7y8lGF/sMpTyPtYZoBtPtnCjbqrdFWmkviYjEtaSLZkBzMBxj32vIhNxw55XVKTfODtNgDfO2YzY1kuvv0PfOesK+vW536bqXJaemPEqzXx/Dj3/ylsELS8iv3+77WLK5cb/Hzl8caIARSHgxZcsLMaETrdnwP3yjjjnxXZD4hoiV1Ft0j5YNot+/+Id9Pai98Rx/NG2dGTg8T9846uvWS/iK8GVa1zVSMMqrnlAaSFVviG1uPpMLSQK0BU2SvK1gFbXS6IKJKFpzawHtz4k8zMphKOAD1GxzVwUD2h5qdhgYV/ft4Kxk0tWAvIVkImp8UObqn89HjGHachkqosmjaI9RIbxP1TNK1dOo/QBxZanfN8HR36UeM+DXiEfkcU+ROJdvo2BpWrGrDTvEolfcd6AN8ynueksOjbWue+8EAbc7kDcc0+laEr9JNpwyjqUSWfpwM0+XXT+cIOC/1orVM6cDxDjQIItSj3jBrvYTTaS4OAukWzJDGAGvlkh4L0+Ad5kAZYzA909vXTECT+l/T/9SfrWMYeIJhYtWU5vv/eRAN8PPppPF5z+Dcpmxn9WLqIdi5q7Q4EXAIfHgDB4h3wBGsLywaLwlUJiD77EoQcuti2GZvff19KHTVaza5BXwa9NZJLRKAtbFnx1P4Bezgs8uss5x4nGOrIGiTq2+IRtL52qEtFNUu4LsrKxC5g+4IYlptlxhMdv80kSeE88Ei0fi4dEbj3P3CDn5UNprtlVfKjA2djB5ekRyVko2JHO5KiqKl0UdnmEEHOurdzKKqJSxDGhIOSGAK+YL7WAME4k3GGe+wpFojlcMreMMNg1a1ZpmvGZwWdYgK8PqWZnDrvsipo7Jnbr49zFsU8F+3G/zfag9aasRas1rkIZJlko9LmFjy1UKlE+38U+/3G8j7Hk0lXi7xvWDZ505fvbBtvERL8bx6yPjzaOrxDw/i4B3vGxgCpxFtf/8UF694O59LPTv+FEcgdQ335gYKWI7mLeAYYAXq6pxOsooTmpISesfZBoEkXyMJzrWK2iyHjUWGhb1LaYTv/7BdTZ0yUiexp+VqmbQhtPWVtn9CjokNn9T3z4Ig/wyjAsg1wHOBlNie/4ANhKYJD1nRTYKSpCFFe7P2APSAfwkrREc/d14NmLDJr3DGT4aV9qD92mgbbw/fSI9XglJNlZLqTZDY0C+xFJjwrFuaMPplH258piF+QOKZrY2Bjphirf43BEiWGNJwo8FE00KxQOLRLJzbc4+ZyIZSBi2gQZEECqoPIiALze+PzhMqDWn1WcMp7W6FXmDDMMYp07PBds7XDU6+qfL2x9IG0yfQOqxo2JuIuLvsHHFtfFkXZEP3zE9sSp1Vanhe1Yc3tvIJ8Bl3X1KbUj1n/S8Io3Ayc8/v2KDPq6z1xekX7j7DSRNMQ5myW09ebMD+n2ex+jk752KK2x6rQSjhx/uwJo4ceLP/6IlgF0oY1s6+wP9QEdiRlAJEwmlfSFwoHW7F4140Zq6mii+kwtbThpbQG09j8ZXhO/C6KS/+rfJZOkRILbq/PfETKIrt5uGhiS4VeHAbBrKKSGRYOl9tfkWQ2RBD4DlRapZbzPhV//UXhoxNdhEo3EqgiFZCsL++YC+VINeZyOCrqiBpeqCkJwSFTUjFk5CyDqKIbkzaEYgJFwpChXXSvgCfyUy6TFY2ZRYpdBa6SbLVWlDW0gYmf6D1usYRF/vp8j6QhpIMDL+QG1OldFfX2DrjtAoeP5dfbn2QNdPjJcU0iPAL0mqS2woF2Atcsk+DrX9G6+6kZ0yMf2oYbq+rI/+nBKwN8Ux4+47NbiPxDzB+jNZFLU3NYr/u5h3UG7Cw1vsiUzoGcgAd7y10ICvOXPXXJkTDMAQEB0Q1R5SsnHr50RpAUxdS+awaPpxrqM6DcsGe6DZR/R3a/dT/Na5tO6jWsoyAVkVkmAYnDLS5wKlaeuJma+1+VrAN05yxdRV18Pfdg0z4MzSVxWeash1cKlEzhTyWAaFHThC5385SKvZ29mJA6WUPhPPiDng9GwY/Q58GsFCQH8SfVWCG7N8WzubFsWvMUco4obpseJHocTJ7Sf0OtWpdNOfBs3XIAPwJGOijpFJSJEbxFVxQboDcurNOruvG2xGwoHhO2M5V37HswCeHt7taNE0H0h0I4DqezK6IcHBT50uAa6uAOurzl302Y+4JVX2ffT22yVjWhK3SQ6cIvPDOujLj7btVkR3bVR6GE1OWIHI9qLp0148oXxAoJziX53xOZ7RWz4xApFeH+bRHhXxOWSjHmszQD+uPf2DVJHT3/+R8IjPGh8FSMK1N0HT1+XRBa3LaX7XnuIFrcvprpsTf6oLgNbDaoadg0Ei+92Hfm1QLuwvYkGBwdo5uLZ1N7b5bk1+FIBBr9oTkR0ZZEAAXwh+l4OnhynbMQ3iKvFANZG4ay7hEKXELWsPQdAJZ5++4FG5yz1JWDRzrBZwPwKKQfz1eUOFu6ykftlczWUTuuomY/bMlKOMrQApd4+WRa6lE1G/JV+NpUSa1tvtiUeQmatiyF6Nx4+MPqDKQCjuInsQZU1Z7L9mVcNBi5IHkAtNBm4HlXypgH/BgEzxNXB3FHJHxprGmivTXalTadvIH4e7oax4LNdSCc73D7iPB7rDtHyupqMSNbV6zvOPpK2VtwZ+Na/TqnI4K/99GUV6TfOTpMIb5yzmbRV9gwsbempePQFEV7Agf8lfcXj19LAYL+M1GrJAoo2KOcD87pJGJKwZB+z2yivwBkNxoptbBQYtlmDwoXrb28+bSjEePT6XKSiuvhC1PIF9Ds4FJQSuNHgPJpc0b6Pw7YQRDEAlkd7sBaSmAYPYKdyV97MLH4ejMb0DQMi88otQD9GD6AcuFIBcSaTo3Q6G5KUZivW8QWcqZIRy55e13u26CJnkA7YQnEUQG8wKalouJjJL0IuvnrJbcXcKYh3BfAy4A61egjjXw7eefg4MA9edBg3NgA2fJ5sRN8DXmdhpujo7Q6ndaeuRdXpXNHkwaLXQe0AfXVdTTo2z+6o/Q53P8zdtAmJ/+5w53G8Hf/tCgHvNQnwjrellJzPcGcAhTWee+Ut+vkVf6TO7h468vC96OSvfa6o4wTswCBrqOSGym2IkbYrOUVHTwfd++oDBFcGUYJXQ66K4Gm9rrT8YiDLo5JG7sDgzWh8XXcFLn9Ag7OWzacPls2n1u5OE/G1SCr9bIUDhAogimQtnaTmWJ0FITQ/vHJs1fDrRxxDgJkn2zlJZS4t6YQy63ur3neO52cZ9HIwc61APz+PqfGn4MCRpkwuHzwUIrohqslUicfzgRLYoYcFX8QrkBZAugPwKxov9qOxeaxui7ajgFcXdnGuWr5TLga/YR/QfJFhdRmRgIqnDtClOpXG1HHpdJqm1k2mg7bcmzaYtk7sfwIA3khaGwuWZKWcHGQYuAlPtmQG+Ax8+4lTKzIh1+xxaUX6jbPTJMIb52zG0Nbb782mdz6YQwfvs0sMrY1uE23tnfTr6+6i+YuW0U7bbE6tHV1079+fol+edQLtsM3mBQeDog9NZZb2jess4Y8J+6Lmjj5q626jR/73OH3UNFuCrijDq/5liWn68TUEBUa+4MAv0+EayYNCDwUyGnSt3lYdkwIkDNBbC2dRW3cnLWxrUslp8niTTMUiurqog4OqntVUGMYaZhHJc77Fl1UAWxTVrbiz70Z4nZCfieP6Lg26haCW1wVf/CYi59DqsiIeoVII1Sh0urnc8LPcEe2VGuEhVZo2YtiT7YZII9aScE3QAtcozfg+tdxuucjir8mlhUzHmeMAoLqNBEDa82l29g5tS73Izx3a6HSV1DXrhELV0N6b7UY7rrsN1WRr4vooO+0AuBEtXdGAd1JDVvj1JlsyA3wGTqoQ8F6dAG+yEOOegbsffJKuuOFueviOS6i+dmS+AOIes27vxddm0oVX/EEU1Nhg3TWoaXkrnXbeNfSVw/emvT+1bcFukSS0tLVn1Mt+8kGh7OzEuiw1tffRnS/+mea3LBT6OUAKaFZn8/NIrJEuBKK8YaBrQVaiHINkD375e+Cdrr5eemP++zR3+WIFuvbRtYh4KpzkVcw0b4TJDPJHeDnI5v85GLctAr7sAG2fZtPy1LG+o4KgeuuqoLWMsBvLB8nm9VSaIGGI4qsb9fMgdLkg3yFuwVXg6BCYxXrRTwqw5os6QIg2+NVitUUiDFyUFXaqrHm3FSFjDANe2VWRY72xurYjcq3j3OGIgmjv/63+Mdp01Q1py9U3jXAm5e/SWIsiD0ORi8qU31N8R2Kto+AEtLzJlswAn4GTKwS8v0mAN1mIcc/A62+9T98+43I65fjP0+EH7h538yPaHirFnXPJ7+nAPXekk7/+OVFE46yLb6TdPrkVHbL/rrTumqvm7R+Rn6b2XifBZ0QHG9I4vpAnN+Toggeuot6BXiVjkKVU4cagbcWEvIHpcHWUV8aAZXhXfE35SWws0qrUCBIinP308bYt/IRKS4M0SL29A3T3q08q/FAYggZUZBZVsAZZenwo9AqQZDCrQCWwr7FKs2Mx2MMlCHwuA5ZawZivBt6ga2tY1FgeL84LUV2TlefHgxkCI+mnuj60Rtuw15S89xGZ9HDzEJHaKFFar2Nh45WVlQNDpQlOm+wX/no+TQPbBxpeY8XFI8VRQNe5rmx+XQYPOf9ghNdUw1BR+k+uvyV94RP7UU9PprjEY5gXbUpDjtq7+6jXS0YdZrMjejjWxqT6LMHRJNmSGeAz8J0nT6vIhFy1+68r0m+cnSaShjhnM4a2evv66fBvnE1rrTGdrr7o+9L2aoxtff399O9nX6fr/nA/zV2whOrraunGX/+IVps+mS659k6a8eKbNHf+ElptlSnUUF8rLHYWLG6i475yAH3tiwfIiKm3YR88ckShiUptg4OD9MB/76MPl85zktM07GqgFZpdHtHVyWtq4ALo8jg2+LIF7Cf8FZwIr4Q59IHH4PB2ldWs5Gtof0HLMnp21pvU3dfr+Opaj1uDpgqO3ShhmDLWAV4NwY7jQziQuvyTJypsuncrwskpyy9m0DcXvHCCfyZ2vaSEfAFRXXeLonYtbdXpaC8ih8Jzt5Qu2PLXETxY8eUrfWxGViJYw1sYVQqdghD52tCvR8ij0y4j+XMNvU7YtUdJ4DUnrkZf3vYQQjnv2uqM+MwjCu3oe0u7HAX3ntqYo+UdfeI6rSgbkuwm1ufKuZdaUU4xGWeZM/DdCgHvlQnwlnnFksMKzsBv/3A//W/mLPrVOd8akxXXnn3pf3TGRdfRcV/5LE2dPIEeevQZmjV3kRjvZhutQ+9+OJdO+vHldNWF36NNN1yb+gcG6OyLb6TOrh4697RjaMqkCaHnD9ug1s6+iq2Oj5bNpiffe4I6ejuob3BIgGWqStoCSQDVSWYWSF2P3WC0tphsQeCeB8foBZEdXRZWlqzVfUr7McgrFrQsFT6+7y2dax57uxpehZMqmuujpWTafKpb+3oARwU3hAC0E9jj77sAJMcvI7ZuS/Y3HUE3AV22KsKwG+4LsBoTsKtg3RxSEo2Wtvysby98Z9UJRYFG1g2uNdYApBoD+SpblwK7al8EB3Fz6djssYTCskBaHx8SxJUXM2Sg6qXNVt2IDtxyT5paP9npGolZuLGBG4ZOsCvtKhTee9qEHC1r7R3xSHKcY4aNGjx4ky2ZAX8GEuAtf00kEd7y527Ejmxuaaf2zi5aa/XpI9bHcBqGTGHBomV046U/Es0sXrqcvnPmlbTVlhvSaSccQW+/O5vOvPgGuuHXP6TVV5kq9vnD3Y/QS2+8Q+eeeixNnhjurYkoT0sHKp2NfiSmf6Cfnn7/GXpjwetUnctQT78EXiNdUM4Mrn7Xgq/+rve1txwqffiVsXttiQUZhPwZ/SPcB6sxbTEmj9X7yFgzfgckLWhZQo+/+7LRBHObMidqqy56mKaXg2c4AodLCHz4zBPf1Wdqlp20TwvGmbEDotTYeElkMz68xQAer7u+uroLDl5F1pP3tpIN249IEdjUOm88jNGeu4WZN9ggXkGVLVx/8eidNxAFdkP2AYwD/vv5o3wOpFHa5X8o9I1EaAA3j5UEg91Dt9qPJuTx1YU2ur4mLT5zcf4NQBGQxrqsAN4VZcMlQnQXzhLJlsyAPwPf+/cPKjIpV+z2q4r0G2enCfDGOZsrSVu/+u2f6Onn36A/Xn021dVKq6fH//My/fTXN4uENYD6fkf+iE446iD69rGH0mv/e59O/snl9O1jDqUvf27PvLME0F3e1lsRP955zfPpr68/QEM0KL5oevqGbDU1BZc8EqtlCP6/Fmqt2wF/zdHsKkoW0WNKiYQoUd52YFAVZlAiCiF7EDhsvIDxuzxcvjaveQk9+s6LUu+qywqrSCznkzCYdWKx5pc8EV4/sSwEoi08h0d5RYS3CpXIGGarAhIAnrAbnjDczmSqla+uv6SiklyQdAOcWbQpu0MmrX17UV43HLLzKY/VHYH4pyaHOYANmmyjIDwXGB8AemgIbbHSc/whedFzMxfX/cE/LsRFgnfzrV2PptUmTKdsunjEMptJ0dTGalEkAiXHh7shUor7pxXJoQE3KlMac4l+d7gXf5we//0KAe/lCfCO0xWVnFbBGYBt2nGnXUKnHP8F+tz+nxL7Lm1qobN/eRNtsO7q9P1vfp5u/tPDdM/fnqK+vn6a0FhHB++9Mx37pf0LtgtIAPC6RvmjczGenfU8vTD7JRFhaqzLUVdPv4miOlFe9Thea3StS4N1ZfBlDlqyLGDHT3YjGUUG7EKmIMoaM2swHCPcITTcavh2kt3k+7Awe+bD/9KspnkCmHS0NcAn5h0JnMEorf+KvgZBrS1HWoavIZXWZBu6BR3h1a9quzGrswwbg3otVSWkC9lsfKb8hdxxC0KqtzzRDmywEJ2Gb28orIY99vfaQdKS9K4FPOf/DASYld2waDeEUPYuBLv5Gw0mqPnnwo5FNPfo7T9Pa05araQPMdYCHuejaUCvX/mwlMag3xUaYaf4RiktjP6++FuAcYflOoz+aJIex9oMnPLUDysypMs+dUlF+o2z0yTCG+dsjoO2Wlrb6YXXZlJtdY52+MTmeQtG/PCCa4Um96enHUvTp04SUckb7/gb/eOJ5+kPV51JtTU5kdC2vLmNttx0feHBGWWDB25nDJGdKH3pfTp7u+imZ28WXrvpFEp6psWXLAo6OD67JqKqtbq6rK39vZBm1+pwZUwXelu4D+jKYxJSuQ5YSRcM5Ertbj74xdF4/+W5/6Ml7W00t3mxhVlmJhCKrZ7XquEW7uZguDcfIoeBsXaQcK+I1PDKKDoAR/jqGrBTI3TAS/5SVQVf3Zri3lyFgC4Q2C0seQgAb1jbRoUg20KkEv/DOUoNttrEsSEIHdImt/By2vAWt8uctiGMAXIG/+y0BDt0ivK9mG8+1fn42VVrTFyFDtxiL1p/6tplV0yDJ3ateNoyIG6CC81Bvs/79Ik5amqrjEyqlL9BfF+c9+TGXLmHJ8eN8xlIgLf8C5wAb/lzN66OhEvCy2+8S7fc9TC9+uZ7lMtmaJ/dt6ejv7CvcFvwN9innX7BdbTPHtvTyV8/TERGb7j9QXr6hf/Sdb88jWpryou+4csNBShGMM8ocC73vnE/LWiZL2AR5wHLKUBE/4AqdKAiszJ5zU9MY7BrKqhJoFGCBJUYpl5TdCKT0mSJXf3EWbbN+2Bwa5wg1D7a3cHILSwc19dkaGlbBz036016f9m8sPQyMQdh8oYwHHNZJ2qU14/98mlPCdkF1hxGIf+VPdv/d/fHtUnH7KurSbB47bMwAHeXkQuV8jdcS6wlQK+4gSoIquHtCUs8uHWkkXwWHu1FP2GbAF5UdmPTmw/tCwad872pu/Xen1w3kY7e/nBabcIqw/4bCekLLPkAvqjG2NWTL6svvKtVJ9fQ4ubuUf17MtyTnlifJXyGky2ZgbAZOLVCEd5LkwhvsiBHcwZQyez2ex+l2+99jM7+/ldpr922i637lrYOuujK22hCQx1965hD6MPZC+gH511Lh+y3K530tUMDkV5EdK+//UH67S330fZbb0Yf23wDuu0vj9CPv3OkkDnk+xIuNmDA3yLxBTU6iWstXS30x5fuFAAm5QMkIq7ZbBX1CR2vdmYIib4yX10pW2AwrICHv4Y9AC+onoTH1DrBSUZmDR4HktO0dZmFYQ3FGsRUMpsA85T4suzuGRTazYf+9zQtbF1m8RbjZJXZguDrIme4sKCIkEFrOkMvoSzkgfkSVmMh+wTix6mU8tUttnpKf7+UVZYvyFmwDeXbi/LEvSG+vXmCxYETwXzBwkx4/3KNQ76IMaLMWTfCm3ecahBBJUOBMDl/iwHvMTt8gdafuhZVZ8q74c13BYXMoT4r4BcAGyWvVWthFzf3lL4wKnjE9EnV4mY42ZIZCJuB0/4jk8VHe/v1rr8c7S5j7y+J8MY+pfE0COBbtryVmppb6f1Z8+naW+8T/06cUC+kBJ/dayf62enfiKczIpo1ZyF97+wr6cffOYp23HYLIVH48wNP0NU3/5VuvuIM2nDdNUxfGBvgC/vcdMdD9Mi/XxIR4SMP24sO2HPHYY0J0bBFy0cnIgPf3fvffJAWtS0y1mMAT0gNUGYY2fJOkYnQQhJ+tTQeybU/gw90VBdRNyFfYHpeaQ+moVshn3rNwLCKIGtZgz5GViCzkeG6XJZFA1N092uPUW9/P7X3dKprky+2K98OeeCeNxoctn+h2K5wYFA2CDyXKhSsU1WUha8uDGVjNpUK3E8VkkB4K5rvGhWYNbCiwpgorctVDqzBQHtu8Fs+fSCinjDfXs8oAVpQVHPjKWtFP5yBwiFmyYQfqoC7JltNn91yL9pmrS3V9SraU1k74HOJymldvTLaWwh8kXyK0sqVLlleyonio7zqpJpEv1vKpK1k+/6gQsD7qwR4V7KVNgqnu2DxMnrsqZepubWdXn79HXrlv+9Rb18fNTbUCaDccpP16IF/zqAP5yykW674MU1srI9lVEuWNYuks/0+vQMdsu8uAvQQUT77kpto3oIl9OffnSf6efu92fTYf16iT++8DW2xyXqx9O03gi8opxzqiPRCNHv5HHrq/aeos6/T2I9JK7IUQUenk440UMoENfmoWkZlteWrRlXtzOCCbjadJhmwScmktAJyB0fWYFwZlLQhRL4goblKDETvVZ1JC5ju61caZErR0o5mevL9l2lx+3IvZU1PbopSeeitkIghvzDCvWg6Aq5BD1FenaAWBtiiLLD21Y052h8VUkdi2SHqKOUJLFKrdbD2lrJg1+IpRLqKIJKQCV0u6ermEBFG0YnI5xsWLc53I8DG3FBdTwd/bG+Cz242PfKP4nH+dTUZUZQFBTs6usNlDhNqM9Q7MGgrzY3EBY25zUS/G/OEjsPmfvj06RU5q0t2ubgi/cbZaRLhjXM2Y2jr2lvuE8lfKNaw+45b0Wf33pke/tfz9MKrb9MNv/4RbbLBWsIS7LTzrxUR3r0+tW0MvRL19PTR1TffKwD7d5dYDe6/n32NTjn3arr2F6fQDttsLvS9x/3gEjpkn13o7FOOjqVvv5Ge3kFa1jbyjyFfnvMyvTwX/rVSaiArqElIrM2mCWwKKNO6XVsRzZUu2OishmH5ryg2epy0AAAgAElEQVQfm06LaI0AD0UeJpbLAMPV74ZHegP6XhON45IImQSnJRlaUgEZQ3NXGz0y81la1tmqoNvCroRwtTk5Vi7xuHDKftNj8ehKzK3Q6/KkNPlaAHhVV7lcHaWQnGcelXu+tMNYdZHhbxh9FDsUulSsDYAb/J5d64OIIxRV+FByGVFcV+agp6104PVi8xFgF+f67V2PprUmrV62jKnYfOV7HzcODTUoWkHCicEvHQwtbGfP8Fweyh1bucfBjgxR6WRLZiDfDCTAW/7aSIC3/LkbkSPfnDlLeNvCyzabldGSN97+gL72/YvptBOPoC8fKn1sP3XId+hzB+5Gpx7/hdjG8eqb79NZF99Axx95EB28786i3Y7OLvrMF04VEgoNuHMXLKU1V5s6Yl9wAKGFy7tjO6+whvoG+uj52c/TzEVvSecDFSHVpXuR8APAxSNoXfBBB9KshMBGUAUwmopssiRwdVb6+Qo3Ai0KcMoQhzkyoB0JezqazGEY/QQkDUq7q/tIp9IEWyshyRDjUh6+CnN/858/5UkQ84UFxX6XmBzORRLogr66cm/URLCPo9VrmRxlMtm8LZa2IBg4xsfLxYdQgjQCtmGANjgQFNSkFrExq62uooGBIaER1puOAuezRjM7BsZro8XmreAP5vCz9v0u1efqis/LCO4BsJ/ckKXWrn4nqQ2vtXSipPAIdh5z04l+N+YJHYfN/ejpMypyVr/c5RcV6TfOThPgjXM2R6gtaGb3OPz7whHhR9/+kkggu/LGv9Cb73xEF57+DZo2ZWIsPff3D9Avr76D7n34KbrtN2eJssCzZi+gL5xwHh17xH4ieW20Nuh4R7LiGoD3hdnP0zuLZ0rY5VXMUilR1hdROETPDHwyezAta7BQKoFXuDxk08LSTGTIa7TkoKthluluZSTWraQmZQpSrmCjwm7CmjjCj/SmqoQXLGBbRqUVPKs+MKi733icWrvbqaO3y0YYmXWZfkxeCHnDJRAa1OVK4VZjeu3oOTMR76oqSlelKaN9dSMGOaOuxeIuDMVa0sQX88DEzYhMRsNcQO6ijCuKDUi+z2AVN1iImgvf3kHpLgKY9qOe/nFORwFpha4UHKR4eOx+6RMH03pTyrcdi3aS0faCZAjRXtzooVIbbiCg9YXNYcyKmGgDKmMvXLPVptSWcWRyyMo0A6dXCHgvToB3ZVpmlT3XK264m956dzZd8KOvC99beNw+MeNV2neP7cXvcW0oIPHLa+6g19/6gA7ae2d68+0PhT/t2d8/OtSeLK5+/XZaO/piqbSUb3xwZ3jq/SepqXOZkTLo5DDt1JBBVnz/oGtFxgGSgSbgWGZWy6QsERlWdMGB2YVXSS32fRlpNtIFZlNm4NdEkjn4MjszdQyy2XWE13WKkMcNDg0Ky7J/vfcidff3eFFajrneY+6AdZgLQ2IGUtJqLB/s4qy1zAE6XVRMc1w9YuRK2VTAEKyMZRvjoDzNLQYDOMW1F8UmuG8vH2mR6DGWn6iyB+9kFaiFxrXgFgK5Zn8vsqt/hWb38/93AG0yfYMRe8pTxgUSh9TkUK0QN1ApcdWb2/vKbWrUj4MueVJ98Wp0oz6wpMMxNQOnz/hxRcZz8c4/r0i/cXaaRHjjnM0RbAsgumx5C62/9uqUy2UFUMx8bw519fTSVptvELmwQ5QhwhniuZffondnzaON11uTtt1qE1pl2uQoh8a2DzKwl7f3xtae39DC1gX0z5kPiwK9sriEjK5qHW8aOlhkuYukH+uAoGUDPMKbzaSFhAGRNZGBr5PSGBBbR4bwamsWcmXYz9qUBWHWyhRskpwRLahzqctlhGE/Sss6bTPrNEgt5ixfRH998wlneqIhrktf+E0WkJCg4W9+m4jo1lRXi4ppOpGvpIsdgT/tLoVHFK3fCB36s1iCvAGHymiv1DtzeUK08am9UhJ6sXYhcwgF3gIShSDsipE5QzipQprdqPOAeUS0F/CLpxytnSsG9Cb+u1Gv8Mq93xkVAt5fJMC7ci+8Spx9b18/PfnMq7TVFhvR9bc9QO9+OJeuOP87NGliQyWGM2J94ot6yQj6Z7675B16/qMZ0nsXj4NZ5FQmsBHB7QCRWkCcBBL5L3dtqMnIpLTuXpORxuQHcnp8DS7X52oPXn8/DqlSg+vBLbMiM5piZm0GSQMihXi0q/vX4KLb1n0u62ihW19+KBDl5ZjjSxv4hdc3CeFayaDGF69U18j1inGmUkPUJeYvPrGtg6d+XtiIrdo8DRcDXz5YyFiQ7KieLhSU9RRoV0AvShwPDoXLGsKGmq89piE+e5/Ka3ajXD5YkmFB4198enDzXNaNVZTOYtpnamM1VecS/92YpnPcNvPjGT+pyLn9fOeLKtJvnJ0mEd44ZzPmthDFbW5pp9nzFtOSphb60/2P04uvvi00u9/48gH0sc02ENFeODeMtw1f9LAng6RgJLZX5rxIby96U8CFBkKRZMUSwKAHBMQ57goKhuGEAGsoDZUGWBkYc92tBGYXPjXE6gizgGmhybWtuR67vn6XV2YzralIodQRa79fDbv8/GwvKZrXspgeevs/1N4Lr968XgzmUmgA1ra6QZ1kCOgKX114jKosdAV66bSMSiIiWbZu281RG4klE73NYoAboSUhq1FV2jAvJWl7kRSIrEB1cwZJkkheyxekLjheaNmraNcNtqdPb7QzwW93RdgaauTNanfvoIiaN9Zlqad3QPyO18fahusFh4ak4MRYuzJjbzw/fqZCwLtTArxjbzWMkxEtWdZCdz/4BL3/0XyCNdiUSRNop+22pFWmThISg2232jRWGcNYmzY8bm/r7MvrsTnc8d750i0myUzIAZSfLdfQIsqG70ZAr5QRSJ0uAADwgDGaCKqJwPIEM4WULOmM62l1xDhMs2vGYwBaSi6E3MFxZeAaYAW9KRLjRLtSD2pBmUOu6V+9/+Hy+fTwzKeps087ZPjQauO8WvopICrAD0HYRVngtPbV9S8eotAYs0je0t6yhaAkjNBC1LplAV6elVXqcIa7QOWFEtpenTwZuBkoEuFFE/qGB+1g04mUxYenGk8R7b7hjrT7hp+kutyKkVCFtYSEte6+QVPNEHMIiQMKd+B1SKbGEvbiScfEhpy41smWzEChGfjJM2dWZIIu2unCivQbZ6dJhDfO2YyxrfmLltG3z7iUPvmJLWiX7T9Gq06fQmuvsQrV1uTGXKJIjKdtmgJItXf1UVtXf+zNt3W30t//d58pNiFdGqQKVnCGkgYgwgvqACSg+louIyOTAA8Oug7EqmyhoNY3rCIbtyWTjzK5/MH+LIQPnlWZlDkEHBjUWSACjeg1HuMGJBU8GY6dL3pZ1LaM/vDKQ2oseurtl7AotpGSemVDuoIcLCC5X9kpyuVqPV9d75JqNYh6nA89NCqE5Y/2+lAQnpoW+8IZrQa90xO+vbiBIRJ+znIrDEa6Mq3JWRNrXEaNhwah7S1wN8Ca3m+zPWjn9balXGbFSaYCNDbUpsXNsp8ACPeV2uq0uJHA3xZZuKPyW0NtRkShE9yt/LUY6yM485mzKjLEC3f6WUX6jbPTBHjjnM2Y29IlfHmz0PDedf/jdO0t9wtZw9e/fEDMvY6d5mAmj4STuG2Fmjub6NGZf5PAK+A2zPcWj9mrKIdoLkChShv8a9yQsOpDqmRQawNmI7JGQesmkQUitq5vrh2fFhp4CW0sAmwBWJZH1kUJDMiHgK4cP5dREHX39dFVz9xhFoL+EtbR78GQwlY29mvXD6K6qJgmIsklXsTanKwSVsxkQPbmluqt+AqOi1pMO/IHYZWnfHuLTac2DAmbP3kjB3jOA3uq3703+ZSI7ma0BKXiExttAADeupo0tXf15112iPZOrMuKEsWtnfHfVEcbqfr7gSQ7AG/tinNTUcr5JfvGOwNnPlsh4N0xAd54r2TSmjMDqLa2cHETLV7aTHBpuPlPf6f/vfOReOxbla6iE796EJ3w1YPH7axBd4hkk7w2TWWe+V9evc3qdrU3rQJHKxtQwAs4GLJ+plraYEDXOd5Cqevdq/bWZYAdKPY0u1yu4MCwjv6qyC5zWzB4rXQG+B1f+gB24SPsRJ2lBEKjOvfptdrdFM1tWUQPvPUktfV2qsQ+Ke0I23zYTVWhlHJa2I0Ft2iJaVriIKLpInEw/8V23BjKCdj5hR2K0WRcQKtPKdBe/g6Ek0PWRmlDh6qkEHgvNEounBxkeWJEesV1ZV2icAmiuntusgvVhF7DMj94o3QYorf11WkBsgWVKCkSNmCYU8Cx8UEepXHqbjDeSQ05kaiYbMkMFJuBs549u9guI/L+z3a8YETaHc1GkwjvaM52iX0Bdi+97i567D8vC69daHinT5lIuWyWHn/6ZfrYZuvT8UcdFFvhiRKHN+K7A3SWt/cJe624tt7+Hnrov3fbKKuy8RIgqyKdSBSDnhQwCGiE5s8CbtCtgSeZaSDm0VZfK+v8zpwVuHuDlEQoX15Hs2vdGrRsgssapLxCRngF0KDamgI6C8ZuBNq0o89SRGSJPmqZT3NaFtAzs9+QwBlCDz7sptNZUUAiqOJF414DEeAUMID/cB5h8BahiRKXTkwtRobiyDvqexTxr/TtlX7H/g2huNlJS1mIc5PidYVkNoAv2kFinM7l2mPDHWmPDXdaYRLU/Atcna0i/Bc1couktrrqjJjLzp6BUXdzwN8aJKwl+t0SP6or6e5nVwh4L0iAdyVdcaN02ijrO/P9udTT00tTJk9wNLzwyT35zMvpwjOOo312336URjT63cCpobs3PuBt72mjR99+UPncKoxlPrz48oF8QUYWSXxxCicGJK5pcAxUTVMAGXife+4qBNTHco9e7f+rzcecfZj2V2GktRVTuKn2F2ejfga0S2sr7cmlJRh6rDpSzKPSmqkkLAP2e/sH6PUF79Hf3nlKvml4kCGtkIYgopsTDgw2guytl2KR0zzLC+cCwEOSoIG7aIHiEhdsRNgtyqhFdyhxXOGSXRvthW8v7ESIslkpeYEcJL8rgzs+aISR5Ig1v/fGu9NO665Yml1/MiEPwIaobdQN8iZ89pHs1tM/SO1FosNR242yHyL2UyfgJjHZkhkoPgNnP3dO8Z1GYI8LPnn+CLQ6uk0mEd7Rne/YeoNd2XfPvpJ223FrOvaL+1EG3k7jcENiCZLXymSlwIwAeB+f+RCL8MrILiJd1Rn5Ram1jcIvFo8ZjdsBTyoTeOlZjYW8LyCUJ6SpSLI43MRxzc8yQqzKSCiJQkB2wGAZzSDhTo1G/qsKV+TS2kfYhVoW3zXnwOUMiHYhut6jNZ5DRK8tmEl/f/dp1Y+eVhvf1b660ZZg6ZFetCtuRtKpMZdhH+2cC+w1HNJRhSZEeWJCFJxCrPxU2bWCA03R57f5NO272c60rDU6KA773EeggckNWYL+P69GuUifkxqyopAMyhLHLacK6xra3cY6+bcn2ZIZKDYD51QIeM9PgLfYpUneH6kZGBwcpAWLm6i5pY022WBtymbH5x9MfOEsbekR0b04thkfPE5NHUuUrlUld6GqGiJc8IE1hRokAuKLL5dNC/9OCZdS/BBWOU3Dpu/2ENDQquM1+sqIqK32pkFYveo4Mej9NOBqGYRvPQZIzmbT4pzk1HljloO15Y/FY3IZ1dXRbYu1KeofHKTn57xBM2a/Sn2DACI5XsdXl1+gWC5XsBExxhSJCmLREtriWDUxt1Eu4OY5TkRohf4zJa7dwICsDhhpU08lGnP19PmtD6Ct1tiQ6msyws4Lj/fHoGVt0dOCPKClo3dY6wNPdhApxtOlnr7BEQVfjLcmNz4DFkUvVrJDyTNw7nPnlnxMHAec98nz4mimom0kEd6KTn/pnbe2d9CTz7xGc+YvpjdnzqJ33p9D1/z8FNp4HBafwOwA1hYt744NeJ/54F/U1LlEREUhXQDoSq9dCYY+nAJwYWPU1Tuo3GqZtMFLeAsFXS9BjUOx8d81Pr2qopqpoqb78uQQYtnYohMu/FqZAyK8A0MMeJXtmYZfufoA/TJyiv+JxB3zBN0F4v7BAXph3pv0rw9foHQavrqoMhfhizoW+JWjxehEQpuy6cLj51E3VI3IkqV/utkRefrgUwnEhVYX9nO6AIrQPCs7usJFPLTchkRi2uFbHUBbrrqxKrMtfWyxAfbw34q0TZuQo2VtvcN+KgRNLT77iJ4DfPHfSNwArDqpelx7qq9Ia2dFGOu5z/+0IsM8b4fK9BvnySbAG+dsjmBbL73+jqi0Nm/BUvpg9gLq7Oqmhrpa6uruoesu+QFtv/WmI9h7ZZte1toT25fusx8+Qc2dS6k6mxbuC76nroVQq8vFI34Y1bvJZgYzRYa7xEWuk/W1t7ZAhIjsGt2tWy1NiwTyRW7DosW8fwvUEuaRiCO/pK3m1kSUiYS3MMbiZ6izvZ2bADxZ+PVztwvNrm9ukHeVxAS8EsXtposyINqbz0Ei8sotYEsbuY1yd4wA0P7wdPlhnZjmgLBwaZAJj6E3BCayLwd84k5H0TqT1nC01xgS5ndCXVZUJmvp6Cv37Eb1OES7UaJ3SUtPbP1q715E0Zvbhxc59geFG5ZVJ9XENtakofE/Az+tEPD+NAHe8b+4xsIZvvHWB/Slb50vdLq77PAxOvuUo2na5InU1z9AZ158Az393Ov0/N+vGwtDHZExtHX2UltXPIlrr8x5itp7msQjWylfsIlevkuChsf66qxwipDFJnjUVZKKLf+rwNJLSOORXKPgDXFnsLID13rMyhUsZEexGssheq2LZDArMn0O1Zm0OCeuU/T1vRqm0XNd3SSqrZtAXX3ddME/r7TXOhQWY6Jc9OIkqAXbratOC0eCcjWbsSzaCNBatJ+IdxDoqqY6LddwaMhRRm9zyuECLiP5FEE/2P0Emlo/qeDQGmvT4gZxtDStReepwA5YC0gCa26PH9AR6Z3SCO/ewdhuABBJR8GJZEtmIOoMnPd8ZaQF5+5QGSlF1HmJsl8S4Y0ySxXeB1E6RHi32mIDYUnGt1f/+x6dfOYVdORhe9K3jjm0wiMdme7hxzuciA0AAV+CKN85470naV7zYjFQYfzlOysEikbIY7G3tvjiD/odyy9Us9JOC8r71vxu2mW+u9pnV0dfmfuDjcJapwcHd5nVmG97prW5kDRAzWmjn7IsMR7VIgII0NXQz5PWbJRZ9pjN1Aitbl39RDFvWI+zmubSna/eT63d7cGLLpg0PuA1LRVoMpeVVmr60X60lVjCGOMAWmdQURLJ3LPAJYdcAddbRHaZYwaX7PKh5vPtbaiup8M/vj9tOn2DSJUbtaa1o6tfOEIMO6Ie7QKVvJcA0p4BAaUjtSEpDlOPfoYr95g+sVrpr0dqtEm7420Gzn+hMsB7zvYJ8I63tbRCnQ8eLz/wyAy68Mrb6MuHfoZOOf6IFWr8UQcLwFq4vLssTZ5+HImqY+1dPTTjvX8TKq2ZqKvRwrqRXgOXIgteygNkWVdfT1vAeozZiGkZA4/Wmmgqh2xPFiHGwaLB9nf85FZIk5IKk+omoBZ2S9rGGLAE3TLUyINKq6vPU14Lfm7y95qaRqpvmByAIlyTd5Z8SHe//jdq7+nwLiUDyRKYMmw9lHI4QB5KFTyC7y/6QKCUlqOu1CL7RYzghrUiwDUj9ea4ATSbJ0/IN4JsRq4NJH9mUjk6/ONWsxv17ISmNVclAA0JbcOFvaj9lrLftInV1NzWK9bASG6YAxS3wHxC21vu04XVp6Ds9kiONGl7vM3A+S9Uxh7snO0rY4cW5/VLIrxxzuYotdXT20e33/MozXjxTfrgo/m0cEkT3XvjBbTJhmuP0ghGv5tydLx4vInsZ1gUQaPa3dtNr855hlq7m0mUlVC2XxYoLVy6utwU1WTTqgCGlywWAqtaz+u4LegSxpJYTQJcsGiEQW1XM6yPUHph7rpgE9g4ttpILgAJwI5EPZHFr6QZdm9rL6bbQpU0RHSzKCKhbM/8qw7onduykK6Zcat9K8bobjnGHNBwCjAcHCpSOascICo9KhvHJwVaWjyJAFwpu13Lu1E6UMPGOkck/NTdjqGJ1auUHaWFVV9NtXzqMda0vatMqlauLlEmZnj7CO/edJWwFAP0dnQPlPRcA9d1lUS/O7yLsBIefUGFgPfsPMCLKrD1dbVUW5OLdDVK3T9SoxF3SoA34kRVejfAxQuvvk0/v+qP9N6s+YToLjS9m220Dr03ax5NnTyBbr/m7HFbdQ1fJrAairrhiw+PffGFrO2rUGXttbnPUnt3q2jGanatEAGgazW51vGgNpsWURzh5GDkBApOOcAy9wTXusxCLo/C8qisQd0QDbDFYAzcLy9si0hw2zJUWwP8VcFqDBrXAalB5vIF26f8CRvKAk+eulbUqabO3i664FGm6Q2QcdEXAn2Vg6O8EcAEovuF9KuRT3CkdnTWUXgn1Tm5brQtXsGhqEhheMBQvvqD3Y+nNSZNoUn1OWruQFGX8h/9T6zPUG0uTYubYRs4UpMUvV3c7AAgFzZ1Rz8ohj1xGSfWZ4Vn9+KWnshPopAQqItkxDCMpImVZAZ+9mJlSvyetZ1b0nj2vEV04umX0kdzF4mZP+yA3eicU4+hbCbcuafQ/j/5+fV03z+kzzvfzj31GDri4E/HdmUT4I1tKke2IUR1b/3zP+iJGa/SBuuuTkcetjdttN6alMmkqam5lT739bNpz10/Qaef/BWqzo2/JAg8PkWUt9CGR64iaQU2Qn0y4sI3AO/rc5+j9p4WLTawbgmO04JFBg2/SPCyjg5oVbsyMEWvaEPBp6PZdVS/NrIsmjH+DmKotoqa6sGroqZh1YdmfSwbmZA0APoA6lG0uigL3Ng4jTLZaHfqem6Fpnf5XLrzlfuptSdE01viRwPtxbHpssRI7kKT8bRazsiCkeFiT7ERPUQGPzZZLa/AFhp4dnuoy9bSfpvtTtussaW4ocFnBJFJfK4QnSy3wAJkMhPqs0Jm0dHTX3bUuJxZ9Y/B0xx8/lGdsRKb1jn39WEuBvIkFNqRocAFHGCSLZmBUmZgrADv8T/8FTXU19KFZ3yTFi5eRkeccB6dc8rRdNA+O4eeTqH9EfXt6LQ3qnCh+vw3z6VLf3oS7btHfJVkE+AtZaVVeN/2ji4RraurrQ6M5PzLbqX/vvUBXfjj42jj9aNH5yp8SpG7FwUoWnvEo+qwDV900CkimQYShrDdALxvzH2e2ntancIRYdIGR3ZAMlIK2MQ4gg4JEjNtghr7nUdrA/IHFm/lwK0S3hwUdmzMDPbaiK2SZ6Bn6HQB/9gLQIIop9xcX13uClFTO4Gqq2spkw2urSgXydH09vqa3igt2H3cJLXhYSrsuzAXQsvczxO9ShuTnj81je7BfIgeyRYD27BR4CYF0UrIcEKTwwoqK4I9VmdytP9mewjYzabtzTDWfX11RnjNopphudFw0U5NRswznqr4N5rlzHQ5x8DxADel0BdXanPmQtwEhI8F+6GcsPy7kmzJDESfgQtf/Fn0nWPc88ztzjKttbR10M4HnUS3/eZM2uZjG4vXL7ziD7RwcRNddeH3Ar2Wuv/v7/w73Xnf4/TQbb+ItYpsArwxLohKNNXX109PPvMq/eq3d9GkiQ104enH0YbrrVGJoYxonwDdls4+kRnNN3xhNNSmaWgoRW1dhUuBAnj/O+8F6gDwalQESIZKEhggoqJYFaQB3KlBvc8g1om6ckB1rMw8DW+RAhJcqytBOxxadcQZ8wEpQ6+qsAY7KViq5fPVxesTJq1C0OxqqUa5FzJU01tuY7H6PBBlAb0GIj1CLUKl5UBrOactNKEoESzcJgaJiw0KjyE/ZeOdL259EG2xysaUSYdHE7FmcMOI9Q2f2XLlCdK3F2WpSXwWR7sSHvru6h0oHhEv5+KUeAzmoqEmI+YUc+FH6THnooQxaponWzIDJczARS9dWMLe8e36k23PNI29P2seHXzsmfTEXy6n6VOlreEf7n5EyBLuvj7oIlHK/oDjvY44jX52+tdp3z12iO8E8NU7FNfzw1iHlTRWbAZ6e/voj/c8Sjff9TDhcUBdbQ2dcfKX6fADdy926Ar5PiAAXxztXShrKzdEdOprM9TU2hMpS3re8g/pgyVvsfLA2iehSshXZUTVq26mgBRODaKCVf8gc0Lw95ehNz/SG2zXtRrj1mUas90iF9Z5gbs8yFmQrQOWkFgH0AVo6NgxHvP2Gp2m229t7USRmDZc0PUX1PLOFrrkyeuiSwhikjBEWdiYj6EhVA8bXuQ4Sl9mnwhRX3APYLe3D4VC/LEVwN280V65No/e9nDaZPoGkYY7sS4ror1LW7qJG0FEOpjtBBs/WHfBC3c0nRzQZ1tXf9nyjFLPM8r+iHpPnZATUWf+twtSBgA6gDjZkhkoZQbGAvC+8t936aiTL6QZD1xNExvrxfDveuAJ+u2t99Hjf74scDql7H/59XeLIN5fbrgg9s9HArylrLQxsC9KCZ/+s+tozoIltMZq02j6lIm0zcc3pm8e+dlxqd3VUw4EwGPX9s5+ymRSyhIoJeQLhUuo2os2b/ksmrX0baahtTpcDpo8sUtHbRE1BZDISI1vTeZGbXkkNhiV1dZhBl0d2LZJZxrGXasxMU5lPYafoTHG2GC7NoBH4MybFeehtccCgpXsQfrqwoWhcMGBcpc77qHfWvwe/fXNR0Isy4KtOng3CvBbnauioUFIBvIXZCjr3COAbVi70hdZPj0oFl0tZmGl1y762WeT3WiX9bYTmt2oG+QUSMCCdGc4UVq0g4QszDES48rVCEcdN7hxUkOOlrcPv6Rw1D6j7odrhmgvrjHkHpgTSECQtJZsyQyUOgM/f+miUg+JZf8fb/sT046O2D55zxUmUT5KhLfY/nCc2vMLp9I1Pz+Fdt9p61jGzRtJgDf2KR3ZBo/vejgAACAASURBVOctWEIPPvqMKECx6yc/Thuss8ZKU4cdXxQ9vQNCK4hHl6VmmM9vnkWzlsxk7gw6cupFZh0NrURh6fGallCp/AwMkvoygwJaXb9IBNcD57Mac+QIClrxj/QHhl2VLA0sR2qVuvgJtklIfkLkEO1U19RTfcOU2KO6/qofGByg/y58hx5461Hh4hB1G37cVbVQqCHhrSyvKeBcz12+MWJOizQX4fSCkTxILPDUAGNARDWM9aMBrtd9KkWrNU6nwz62P63euErJ11oDGuYHn7lyNbk447oaVD5LU3dPv/i8Dv/6hk81PgeASLiyjFQfES5ywV1qclWExDb8DYCUIdHvDndGV87jf1Eh4D2DAW+YJveCy26lxUuXR9bwhu3/01/dTDM/mEN3XOM6QsR1pRPgjWsmR7EdWJIheW08be2dXdRQV1vwlPCot03peItFwsIaWtD8Ec1aOlOKADz3A50gJqAxYAsmX0OpXkRKMY6gG4Ovr+UFKRSE8j5NkQjrxsBT0azMgMsmJNLqyC1Ggei2C0rOmYhHQqgwNzCUo5q6iZTJ5EZt7QB631v2Ed3y4t2juFQt7hSDVMwxEh1BSLKoSBxbhEfUAG7odbNV1A8HDacIiBpDnmaKto5oYq6evr79l2h6/fBubACRiJoCels7+opGn/PNHiKbsC/DvwDScj67xa4MYBIQyWUDxY6pxPu4mcBcwCEDN6zJlsxAqTPwi5d/Xuohsex/xid+7LRz3A8uoQkNdfSz04+jBYuX0ZdOPN+4NLS2d9Ix372IvnnkQXTAnp8UxxXaH+9/MHsBHXT0j+n3l51BO2yzWSxj9hv5f/auAzyKqu2eZPumh957FwRRsTcUe/vktyuo2MUKoiI2sGDDgooFESxYEFGkWFARsWAXsdKkt/S6JeF/zp1sskk22dnZ2Z3Z5N7/8Ycvmbnl3Fn2zHvPe15JeGMCq+xULQJ+fwWunvAYNmzZiSfvG4sBfbo2eCuJHY8saaOkpZHwbsr5R5DVWprduhXLqquVKfQiUH6YpXor9pJg1kkBCyrzGyDMNYpgLVZjQf0HyRc4GyUyZBFa4kBSUPBsApQ4IF/g/27btguy0xyCbMRTUxnYo4lLH663XbWdGLTsZrh71OtgGclkQQbal2lOtApiouFIqbBLS6ZdXJVrRJ2pNhrVrYrwh1p9YNx7R4yrfmbDoaTm96wolua2IbfYKzDS2hiBTXNZUFjq191JgdpjvrmUebTPT+u6Ir2P0qiW6UwSjfROeb1EAJhqEOGdUIfw0n+XVmNbtu8W23LmiYfj7ltGCx/egsISHHLatbjzxotw3hnDxe8bu56/v/meZ0Ci/NKj42O2zZLwxgxa4zvmsUNOXiG6dmwTt6heJKvOKygWeuSS0jLcccNF6NezU9h5sviEliNWHhuT8G7JXRcighvkfFDLRqy2/Rc/yPyOUvSIjBLXsQerE8GtVa1NtdVYUJ9VX4iBiHTAbsxT5csarDWuZTkmnCeShfNCoFpaQJtJm6S6TheR7JmWaz0+D2Z89zp2Fe9pmPgG/0aBN/Km9Sw7EHGlRltYge1VfSyubpqBFyeII21G5WuVBw630hDMKNS4ma4MjDnwPGQ408L1GPHvAx6zfNnkS5NWTS61thmpdlE4h59jrf3UXUCK0yLcISh1MnsjOc9Kjczr2uxrkvOLHwIP//RQ/AYLGunW/W4LOe7O3XnCjzfF7VQ1r0ivV9Wpyosk4VUJVKJdll9YDGY7rt2wFS88Mi6kd6/Ra1r6+Sq8PHcxnppyPdq2zobX5xdH8Kwg11Djl21ukfpqRoF+Kir9guzuKtwaKBlRm/jWKdkblFJWbQWmEE4mrikZYDV6WYX8Vkd1gzx1q39aVZRC/O+giHAoq7G6cgZqh4mLKHwRFMCqHWeuGkkoKywiIc3pTK2l3xSJRE4rfJWMhIU3xtfr+eDLxu6SXLy7egm2FGzX2XCsZpZq+W5DJJW40y2BpMxfoUhXIm81uxJ8L/tlJJnb549EPqGiGhvHaenOxkn9jkGPFl1ECelYNK7B5bAKiQylAzX+zpGNRvyFntVuEYQ3WhkC+2OCHCPmRpxgRLZ6JtfJghORYiavr0Hg4Z+nGgLHrUMmGDKunoNKwqsnmibpa93GbbjrkZfxxz8bcel5J+PqUafpat6sxzJZ6nbm3EX44de/BeFdtOxbLPz4axH5aZWdicfuuSbkMNQ77sovVx2BCya8W3PXY3fh1qDqZgGSWFv3Gkxea/6uSBsUX1slba06whpMdoOqpVVfUS/yGzReLQ/gGtIqEuWqklv49/pV3gIrCzhNKPe63Zmw2Z1CqxvKbkzYl9ktVcUG/HEjCCS9OaX5mP3jPOSW5ldNXguh1OPpa6gPZUeFRRhdE4TFW6g5BnY+zFyqmLXDxsQ0pZCE4NBhiXRV/+rCx2AVtXP2PQ1dsjrGRRfKaC99e/kByC/SniRGWYfLaRHyjuJyv2b/XD7T1MSWCgcEsz1T9Z8Rlj+mrEU2iYAWBB4xiPCOl4RXy3bJe2KJwLKvfsKdU2ei3OPFjZedhYvPPj7iLO1YzO+vtZtEaeTTRhyKYfv1E0PMemsp5i9ajv0G9haE96KRI2CzWvHi6wtx2vGH4r7xl4acyvbcsvCcoc6dTKAi4d1TtK0qaa2KXNYp5xuwBQt45wakC/yTcTOF8O6tjugGeqkfta2hxDURt5oEtOD4cPAYgf5IApjFTflCDT8KItlifbUjyy53BlzudFX7TdJC39I9hV7djpXVPDflPg8mf/aUtjq/1RIPZaSwvFGNMqKh5LAkCPxJ1OlwoUliURXJ5Fw91V7IEQa4q+dXM9G6Ux576CVoldpCDfy6XpOZYhMvT6yAGI00gS8X2enUmFOfH7kGl5Fz+nEXl8YmIU5X0AC0y3ZJ/a7eoDaj/h79uX5ORDyWP27IrfEYJqZjyAhvTOGNX+fU685f/CVeeWup8MW79ZpzMWy//vGbQAMjFRWX4qHpb+C3P9cLg+ptO/aIDMxbrjoH/67fgrsfnYXi0nK8Pn0iundpLwjGbfe/gL/XbcKcp+5AepWpdXD3eUXeiLV6JLzbBOHdHsKHNxz5rfm9026F11eBqgLDVaSzFj2uJVloyGosdIRYiSJTOkEC7Q9yYGhIviCsx6wOpGW0QnIEfqtcUUCXWeLxi+IUscieD/VY7CjahTd+fh+5ZYFIr06PaSC4p2PwzF5V5rf2i0f9+dYdMmB7RllELTKoNgBZq8M6Momg33VIb4srD7pQJwAj74byBpJNJrM1VNJbTa+MqrOQDD9X7CcSAs1oKSPORaX+iE9+1MxNz2vs1iS0zFCnddRzXNlX00Hg0V8MIryDJeFtOk9RAq9k/X/bMOutJfh0xU844qBBGHvp/9CxXStTrGjxsm8x5clX8dyDN6F3j05YuWo1Jtz/Ak4bcQjGXX0uJj08E7/8vhbvzZpSXbHl2x//wIPTXxf2JNmZ9RNwmDiTW+SNaH2VeyuxM38TdhZsrq6opuhwq8hE3fLCdbS2gvLSmszKSl1K4lpwVDdAievandVLJqvjkxssmRAaYYtSFIFkN9Dqkt1A4QkmpdntLjhdaWGT/RoCS0THnBZBtHmsHAnRiGgDgi7mS83GvM348M9l2BkikU1rv7G6j9F2OkgF9j3cOIxYBspQ19MBN6yQCOo2tA5YXBBEdvu06okzBxwPt71xO79w843298RGlNFNShISmWgSx4Rvr4XJg0o/wZr1huZJvFm5jKXHzd5o8ybkILJJBDQi8Ngvj2i8M7rbbhkcO/eE6Gam/m4Z4VWPlemupN51+Te/YsacD7Bp607cMOYsUXs6KwRJNGryJOKz5i7GlwueFlPgnBcs+QrTXnwHd908Cp3at8ZFYx/AIfv3x41X/B/sVivGT3kendq1xAO3XxGyqAb1vzvzPREtiSRrT+E2bMvbENpnt0aRW52QVk1WgzS4whYsORnlLDEcdE898lt9T7CbQzUtDjrSVBx9ac5Poit8detRn5qRRA+MAlsdSE3NhsVqUyVhaAwscqgUl0WUJs4r9qmuXBfRBtS5uKKyEov/WoZVm3/R3I2mYKnG0YgR7aT4gtJQYhRJLgt9cG0VFaFUG6Gt0lQHpIPkDT1bdMEZA05AmiMl6v3XCEmt2xR8kpCeYofPVymqtGk9MWC0lwSWkpL8kvDPo9uejOQE8OAlYG2ynCJ5UTaJgFYEHjeI8N4sCa/WLZP36YEAq65NfGgmvv/1L7z9wj0Y0LthD1s9xtPSx0+r/xVefZMnXIoTj1YMqNnG3PIwWrXMwsQbLkRefjFOOH+8+OImMR2yT0/MfHxCo6WSteh4SXi3k/AKi7C6MoQAGa1rC1Y7OY3/i5nqdDlQ+oEgrHUdGmprfwNfcMGaW2U8RqcYNWaGeShf3bqJcbwrK7sDLBarlu1o9B4eT7Os7J4ijyBssW6Mfj73zWzsKFZ8HOu3UMQgiDQ2xHgb5RON/LKeKLj+tTw+554Jz96q8UmCRSU+azK8jEoGL0QtKw++J8QUg9PkMpzpuPGwyzRH9WO9r+luq9D20jNbKcWtrZHwZqfZhGcvvXsbaizR6/NXoEyD/lfbzLTf1b6FsdF47TOXd5oFgWm/PmrIVG7ad5wh4+o5qIzw6olmnPsqK/dg6jNzsWzFj8LSi9FTRj/ZGPEQetAqi6+WLTIw8YaLMGyIkjAWr1Za5sGoGx6Ew27F9AduRGZ6qhj66x/WYNLUl/DwnVdh6L59UF7uFdVanE472rYKXyFKix8vCe+OvP+CNLxV5LZOaeDatmA1FdM4b5LcFIcVpV6F8AY7MQR+H5AcVJPVIHlEgE4re6PsEfWhwSlJwfdVJ9GJqmAOMDGNLgyxaiRuTEbysqRsmV9zlE7t/Eh6Z3z7KrYX7VJ7S9B1Oot2G+FmwVa4/LuourdX8exl6Wbuk7+isn4inRq+V4fgNsbXW6W0FI4MrVKzNeAVv1toO8ZCE3wxZEQ8tNtF+PkQC9p4MVpMiUOowhfZaXZRgdHsDg3Egy+UskkEokFAEl7t6EnCqx07U9zJxK8Nm7ejsKgE5R4fikvK4Pf7RQST5HfvXuVLmO4H1PcO6t9Dt3n7/H5hK7Zx0w4cNmygkCeEan/88x/GTnwSF5x1LC48awTsNivWbtiCKyc8jim3XoaD9x8Q8Zy06Hj3FG7HzvyNVSQ1WLtbTVVFxLYhqUKAiPK4lV+8gSPbGoJbu8+6ZFhxeqgiuvRkraTtVc3Sa3swBIh2la+uO0NodUNZjUUMXpgbhM2TyyqeoeIyHinrPULt/vLKCrDwj0+wNmdjowOp4Y7BHcTy4Jh9223JQqvLfaRzR+1W9b/DaHbVzVG5qnNWB5zcdzjapplDnx/uqRC2Yw6LiHwzES0aj1xhhUYPaX9lPQ/pFml2EU3WKqEItw69fs/Id6pLEl698Gyu/Tzx62OGLP3GfW8xZFw9B5WEV080TdQXpQHKf0y2Ub51mRClF2HKKyjCc68swOdf/wL+vWfXjhh19vE48Zga2UIwHNTyvjrvY9x4+UiccuwhmP32Esxf8hUevP1y7NO3W8TIUQKwpyAyHW+OILz/BTkrBIhu1Z+CVzQQtQ3odenFa1WSTsRxbXCRiTqRYtFbUGlgJqUJjefevdUaz7rR3OoZVM2FEV0mpjXkqxsxcCpv4LRddosoEFBSVgFPJMUSVI4RuIzPJx0bFv/1Gf7dsyHCu+N9ubJjlDbQJ9m/t7IqyaqOG0NAiV1bkK3S3ax+yLdjeluc3O9YtEtrrdtnOF7IBXx7SUhZ3lprU2QjTLKk565fSBiIVMsMB3ZH+G+B1jlEcx8j0ZR6yCYRiAaBJ397PJrbNd97w6CbNd9rlhsl4TXLTiTYPD785BvhDHHPLaPRp0cnPDrjbXzx9c94ZNJV2HdAz3qroS/w0y/PF7ZpLqcddpsNE649H6efcKimlfP4mE4NkbgK5BbtEE4NtUhmI+WAa8hnbVrKamskriTdNb69gatrKqkFUupJoRntEhrPiHx104WEQa+XFC1Ak9i1TLeLMrBFZQ3rKLX0XfeexX99jm83/dRAV43Fd9XFSbXOsW5lXxI44c8bpE9ltJc/Ey9BYQ2Cg+arUs4wuN0AnLHPCVqXYIr7KE2gj3VOQTmieX/iZykrzSYqvTHiyxOXSF1b4g0IyToJL/8NkE0iEA0CkvBqR08SXu3YmepOf0UFWGFtT26BkAx0aNsSdrtNVFwrLCrFa9Mn6jrfZ2cvwO6cAtxx/YWwWS3YuTsXtz/4ErIyUvHAbWPgcCi14vPyi1Ba7hHzocTivy07sGHzDuHFm5bi1jwnaj/pu8mjUrXN5/dgy55/4fWV1SvaIOhqrQhtFcmtG7VNUmQJJD2K9lbRb9bS4FZHimuqs9FeSVTaqnKWqm01ViNfiMZXVy0OkV5HiQO/rEkwiHdYPhfpAEHXv7/mI/y07ffqn0QzVtU2NDybOtHXcNMW2t1AMYoQyVhMZiOxUeQujXRe9bCoo+lJGNCmN0YOPNnQF59w2Kj9vV6+vcSO5YQpmfB4laS2SCUvauesx3VMdKV+Vxo06IFm8+7jqd+mGQLA9YNuMmRcPQeVhFdPNA3s67c/1mP85OeQk1cIamsP3X8fQUa/+XENHnz6dbz8+AQM3qd+5FXrlN9dtBwLPlqJKRMuQ5cObUR06/OVv+DhZ+di3FXn4NgjhoJJdc/Nfh+ssvbCI/pmeHI8Rh0LI/De9Ff4sHXPv/D4SqsNTYWAoa6Uocp9oX5SWhW9TUoSFl4kNgqBrSK91QxGIcVKNEdxnqiv1Q1EjWtkD3r46mrdz3D3kcjRI1XYcnkro9Jjhhvrk3+/xFcbv693WYBD1o24hutPj9+TzHJc7mNjCVjccmLF43uePgTz3rAEPITgYVinITihz1FNguwG9kFP316ePnA/6FvN0sJak+P0eEYa64MyDGp4jTytifUaZf/xQeDp1cYQ3rEDJeGNzw7LUcIiwHLCv65ZiysvPg1Z6Wm469FZuHjkcTjr5CMx/OybcdLwg3D3zaPC9qP2gjV/b8B1dzyJm648G6ced7D4h5yyhQlTnsf2nTnCJo3E+/k5C7Fh0zY8dOeVInFOz1bq8QtNoNoooEJ41wrCG9JdIUinWysCW53IVpOURsLr9+9VInlBUWCuj3IHyh72ii9ixY+1rla3mu5W9a2nr66eGAf3FUjUog0Ui1QwAz8WjVXxPvl3Bb7Z9GMsuo+4T0bz2Xh8XpOoGNRNndAicaJzA4lv44laIWK8QT/av8MgjOh1BOxW5bSkKTUuM9i3ly+uWiK0rTMcImGNkXeHPVmUJqaNmZka15rmtomItGwSgWgReHr1E9F2oen+sQNv1HSfmW6SEV4z7UYUc5kwZQbyCorxwO2Xi9LC8z5cjkWffoN7xl0iIr+pKS4R5dWreTxePDfnA2GJxhLAgWIXb77/GZ56cR6+/vBZMRSjm7GKalBDm1/sE3ZQahoJ77Y96+D1KxHeGhJa33qsrjVZcEU03klSy6ZURKvpixpFulSV+xqSLwjtRNDYycjMbhcTX101mGi5hseyLTIcwrYsVuTCV+HDor8+w89B8oZI5xocUW3spSh0xDhJHD/bbHQ7YUJaI6NXM7XalE0kKVqTanksB3oJF6Ue0KaPcGRw2WJnQRcpnrG6Po1FT+wWFJT4q3Tx6kbi/rKQw468cnGDeC7THSLKm28i1wZh9VelX1a3MnmVRKBhBKYbRHivk4RXPpZmQYDShcnT5uDqUaeLAg+svHb5uEdxyAEDsOjTb3Hy8IMwecJluk533X/bhEY4My0VN191NrIz0jDj1Q+w4rtfsfi12Nf7ph0UK4N5fOoiOiS823PWweMra6RKWu3iEDVFKghdDVFlBI8euqLEcFVSGl0w6lqN1XJ9EOizf/6XDLvNCac7HTabQ9d9iUdn5PssJ0siSX/UWHig/rR1NZb+8wU8/poy0uGIorL2htSxoSudhcIrUB6YL1WqThAaCE8K0iykLUpCW8NRzBqJS7/WvXBy32PgtmvXuMfjGdBzDEbReexPu0FiriYZ1WFNRprbij2FtcuMp7os4oVUlDn2VGiKHOu5Nu4/NfCywpqeqDbfvp75/UlDFn/tPjcYMq6eg8oIr55oGtgXCzw8+dI8rPrlLxw8dIBIIvv6+99FNPGwAwdi9NknYEAffSuxMXr77Y9r8MDTbyDF7UTbVlkiynzRyBE49vChcUGD2dn8klTTSHh35KyvTXgbcGkIrpRWY1QWIKwQllSULTCaxC9X0l7+nQHf2vKFGo1vlTQYyUkWuFOy4HCaoyysGuxCXcN1MmkoxWkRDg48Tta7/bb9T8xfs7gREqvviCSofJnh//HkIJS3qyDddW12g5hsKFLOZ0TRAFPPrVxcQ3Gr1lDF08cfcRVctuZXkYsvUYz08j+eHjBJsrHG5477VVRW//PPFxY+m4RUFKyIouJbtE8YyTwJb6xOuqKdn7w/sRB45venDJnwtftcb8i4eg4qCa+eaBrYF6usUU7wwFOviy/WIQN64fz/HYvuXdqjTassZKSl1Jrd9l25aNdan2pNdF7YtHUX6BTRvXM7UYAimZkpcWh0DRAZ2irCcCzCQUmDx1ta/eVTW8sbJDWolh0ExXWrmYziwWq3WZBEe6qKuk5UNf1UUeTqxDi3OxMOhxvJlqaTwGK3JoG6XlafY+KQ3m3Njr/xzu+L9O62Xn9K2WDFbk7hpI1EhFU8b8EDBJIjHdYk0WutQhVBAelzB52O3q26x3ytZh6AzxOjvYQ4vxHfXiaBMYrbkE6aH1cSXz6bJL1McjWikZhnpDQ9HbYRWMoxgWcNIrzXSMIrHz8zIbBh03YUFpeiZ9f2SHHXRIhYZ7683IONW3Zg5tzF+OaHNcjOTBNlfQf2S+wvVx597i4oV3fsDGB7FeENENGaymq13RpC2Ywp9yj/n8epjPDWkKNgc7Jg4qxcn5yUDJc7HU5XepOM9PD9JsNtE0fRxWX6WkTxZYbyhoV/fVr14hDuUxcUgg15aX3JA6OLTHxiVDEclxV3R5JhVWc4kl4+SAFPZv6az8dp/UZgn7Z9m+TzEW7HQv2eNl60MaNkoa77AqO3lNTkFnpQEWYvSHwzqhwSmOQa74psLIzBZ0s2iYAeCDy35mk9uom4j6sHjI34HrPdICO8ZtsRnebj9frw9/rN2LUnH9/99Ac++Phr4ZLQvUs7ZGWk4fijDsDww4cKz95EbiQnO/LKwpKUwBp37FmPcm9JnQhvCN2u4Kl1i/0qmffWKq0ujygVGUMdH95qWzOlmLDN5kRqegskJzftKkuBksTULDIyp0aHqfbZ21KwHfPXLAHLEOvZAhpbPkd0Yahx1AgzSkMkqyH5cB1RBmUTjCjT6QNIxpHdDsYhXfaXZLcO7A5bElIcVpEcSmcQ+lm7HUoFQMpoRKEPlS1F3GcRXtLUnMfLwoyJdVK/q3KT5GVhEZCENyxEDV4gCa927Ex5Jz1vl3/zC3bsyhMevKVl5Ri2X3/07t4RHdu1wv779kGLrAwkNyEH9N355aqTpnbkbIDHW1JdQljJ5K9NbGv0u+KXIqrLBDVFq4vqssD830xSUyJG9X11SXQpX3A4UpAUJ4mHGR5KHkez8hjLvzZuyxXZbDfmbRF63iIP9y+6xt1ixS4ST5IpOjFUN7U5b41MoRHeW30XP4M8cj+u92EY1GYQLEm26BbVRO/mP1V8ppR/sxRvY0pnFIeUyBpfMlgym3+SQEdCmCMbSbma47TObPpOG1qwkfdoQ2DGmunabozyrqsGXBdlD8bfLgmv8Xug6wwoV5hw//Po0KYlRp17Arp1aoe2rbOR6naBLgJNsTETm16catpOQXirbMmqfKtCJaUFE1irxSLIEUlRMC+yVxFgWlZV090qX106MKSkZjcpra4afAPXMMqb6rQIUsKKeHq1PSW5eObb2SG7U0MyxY1JEJIUUQq4qvpdY/ML9NuQ1EH1uIFBqm9Iwom9j8IhXfdFutshtOhKuWrZ6iLA/cpIIellhcMKYUcYTnrSGIqUSrCQCj/TBTo+n3XHTHVbke6SLzLyidYPgecNIrxXSsKr3ybKnvRBgMlrLADhdtVEFXw+v/gZJQ7TX56PJ+4di8yMVH0GNEEvPDrfla94cYZru3I3wuOlLZnCfKr/DCIhwT+zWy1gXNcTxNkCd1HDSyLsFdZkgf4Sz1c3HGZaf0/tpMhOB+pZR2ntk/ftKs7BSz/Mhb+yISIdOvIX2GIeh/M4u+HoXl0KG9RfY0HFoGeo7vpCkeIjux+MQzrvD0uyckTP5Coe08eqoEc0mBt5L6Okmal2lJT5UOatBG3HGKWN1Lc31BpapCvJZCTQsZA4SP2ukU9O0xz7hT+eMWRhV/S/1pBx9RxURnj1RNNEffGonT659ONd+f1qLF72XbWG99rRZ+DAIf1MNNvopsJqZzty1RHe/MIdKC7Nr+XUqtgF1UgS+HebOO4mMQouJVtH05uUBFoOMeNe+OraXXC50mBNQF/d6Hag8bvTXcpxdEA7Ge1YjMz+tuNPfPDnxw10FZqVkjhxHiJSHyqQ2qiUoa4PWbAot/aNaiK+6Y40nNrvOHTN6lSt2+UBDCty8SkrKtNXAx0t5kbdz0gs5QwscEKnhUBTfHst1S4N0ejFKb9JcykewHzZ0KCUCAkPnwPqd5uSfMyo50COW4PAC38oRZ3i3a7of028h9R9PEl4dYfUHB1+tWo1npr5LtZu2Ir9BvbCgYP7oVOH1kLDy0psTc0Tck+BR9VxsM/vxa4966s2qXayGn+oRG1rqqjVHJuG1vmyxPDeJAts9vSE99WN5ZPLCKYox1xRiWId7KFyS/Ox8K9PsCl/a4hpBwhvDfWk1RXfaRov/hARfxYXqyG3ZhYCIQAAIABJREFUtXpNAlxWB87ofyK6Z3cJ+TmkFMRmS0a5p7IWyYvl/pitb8p16cRAdwO6foQqbFLt22uzoMQTnQ80X4aY0EZNNf2kg8m1Vmw4d0Z4ZZMI6InAiwYR3ssl4dVzG2VfeiJw2qg7RDGIKy8+Hf17d0GLzPQmq+Elbowe0nIoXPP7vdi5Z0OQvVUNkWUSWkCiEKwPrPFgqG83lpqahTYtMrB3rwWFZfppVcOtIxF/T2xZYpW6Xh4hR9sKPcV47ed3kVOWV9NVHa7LMs/UE/O4mlHAULHfsKQ18twoZT4NdHzpfueiXXqbRl86SbxSXYqDCqsJNqdGsktLMu5ZwJmhsfXzZcbtVLCK9rkSvr0pNvHyzOIX0UR7Ga1n5Fg2iYCeCLz053N6dqe6rzH9rlZ9rVkvlBFes+5MlPM67PTrcNLwg3D72AvqfbFS08siES5n04k+eH2V2FPoCYsaCe+unI1BfESJ8jL6SMujmkhSXZpbJXmoSnRjtTSXO63aVzcrVfmCpgYzmmSasAtoAhe0SLODBmDCEzXKHC06Njz59YshURGFJOitW6+8bAgmGvyjaoIbQsbQCJFt/Fe0tLPg7IGnoXt2Z9W7KErSJgG5MdKYqp5InC7kNlBXS3ePSP2c6bXLKG1OkTdqSzxG2V0OK3KLPKHlLyrw4N5xPrJJBPREQBJe7WhKwqsdO1Pf+fjzb2Pl97/jnnGjMbBvd1GQYuPm7didUyA0vTt25eKxu69pMqSXR+U5IQzq624SCe9uQXgVokv5Aj0yg7W6wVRXITG1i1LY7C6kpmXX8tVlXzTCZ196aVVN/YBFOTkeV1OfSW1mtNZlb/62AGurXmLEfrE8cNW+MlJX6wUkbDg3uKhE46Hdhruq/5sUhxvDux+OAa17R1yFUPGdpV5VqWSnNeAc5ZbF/HZGahkV5csrXxy1tGDfXn4OQ2q1VXZMnTCxZ1IqX5oiSWrjM9gy3SFeuGSTCOiJwMw/Z+jZneq+Lut3leprzXqhJLxm3Zko50VCe/djr6CyohIDenfF1p278fufG7BzT57Q9LLoxKnHHYLUlJqKbFEOaejtTNJjxDCc9k4hvP8JYip8dPeiTjSoIU/eJFFAgr66TldayLWS5pDIMZmGVlys2iVbwwiQUKS5rUKryqNrrY1uDUv++Ry/bv9D+J4qLzB7w/q0NkhYq8oK11cCNzTDMBFjAP1b98apfY+DNVnbETfXRYnD3qpj/miInFacY3mfy54snBdYnpoa2mgaJRG0HOPLLF94+FKltZG4smCF1Zos/m3xqJwbn206S8iCE1qRl/c1hMDLfxlDeC/tKwmvfCpNigBlC9NeeAez3/lIaHdJes857Rj07NYBrVtmoUVW09L0kpyQZBaXNa53JOEtKtwidk14sFaHy+pWS+MVNZFdOjCkpmYjKdkSNuGPkaqsVDsKSn1Rf3mb9PHSbVrU9dJmittAH1qtcpASbyk+Wfc51uWtFxFj9qOesNZZThXhDb3I8OQ2+D5enWpPwaghZyPDlR4VbiRyTISitysjvdEQuagmovPNIkmvkeQ0rcPxJSErxSY+5/wsan22OD61vSkuq5BlCw/gMJOipjjdbRUFa2STCOiJwMt/Pa9nd6r7urTvlaqvNeuFMsJr1p2Jcl704/3wk29Q5vHg+CMPFL67FRWV8Hi9ojoYDdxdTntY8hblNOJ6O8kuSVNDjWSBX0L/bPgrhFY3SMgQbFOWlIysrHaigEQkjV+QjPAUlvqiPrKPZNxEvZZRcZfdivySyPWXgZLG3govnlr5hvDprdfC8Y5gBhOGKYfrKjhbzW6x4ZbDrtL1c8ZT8ux0h9C40kYrHPky8zORnWYT2OQVeaNKEGtsjXr69vLfD0Zvw53gMFmN8gzZJAJ6IzDLIMJ7iSS8em+l7C8WCJD8/vHPf6LU8AcfrcSevEJ0atcKV486HQcO6YsUd9OQNdBHM7+4/hcno4j8knLYLSICvHnb2qCiE0S8vvtCwFfX7c6Axarti4ukVxzZeyuFx2c0Gd+xeC7M1if1kvRcjeQlgS8xdH5gtJME8JO1y7Fq6y9hlxbsuhwoV9vQTY0T3IYjvq1TWuLcgacj1ZESdj6RXsCjckZGk5KTRLQ30Sq08TPJzwajrtFGX9Vgp6dvr/K5Vpwc+Lmu6wFM310SY7cjspdkNeuQ10gEXvn7BUNAGN3nCkPG1XNQGeHVE02T9rXiu9WYOv11lJZ5UFbuEfpdp9OOlatW48bL/w/HHTE04kQaMy6VXzwkvMFf/tTUUh9I0smjbmo7d+0K+PAGyG5dB4ZkURbY7nBHHZkjMWH0klEsErJIEl/MiHGs50QCS7x8VdrLhl4ShE7TYYXNmiS00sHVyZat/wrfbv5RTDVYqNLo3FWddzdAfUP8uJU7Gyf1GY72aW2jfoYaI+Li+XZYxPqpMVW1jFhvYpj+hY2Ywyo01vxMxKvp6dtLq25qjkmk+W9LsLzEakkGXVtkwlq8drZ5jfPK36FdaWKNwug+l8d6iJj3LwlvzCE2dgAS3JGX3yUskR6aeAWmvTAP7dpkY/zV5+Lpl+djzd8b8dJjtwp5Q6I3Vlzj0SiJrTjmdisRFkbAgo3rFcJbX8KgJKSlIzkpWXNUNxSG5ENMoqH1GRPr+EUvW8MIcO8Y6SX5zS+pX/KVv89KU6yrSPTqvkR4K3z4ZtMPWLnpe/Uw19Ptqtfq1r3SbXNh5IBThNcun6VYN2pV+XxZkpIEXmYmvdxTfi5JdKN159CKq56+vcSeSW1UQdFZgsmEXCOt1ZpacR+teMv79EVgtkGEd5QkvPpupOxNfwTW/7cN51x1H0affTyuveRMvPXB55j15hIseX0qFn7yNZ6b/T7mvXifKFLRFBo1oIwOZqbYUerxoyREVa/du6p8eAVTSRZfVplZHWCxxNYzk7o+2kvRL9jMpMQszwGPhemFuiu/vBovRnSzU+0oqZIwNDTXtTkb8O4fi1Gxt36GPre90by0qk4j0eoGz+OKAy5EC3dW3GEkXuL5KvCYUj5DCQZfZPj8m8FlIuDbu0eFnWG4zSTpZVJbbpFXOIVkpzUdj/Nwa5e/jy8Cc/55Kb4DVo12ce8xhoyr56Aywqsnmibsa9PWnThrzN248sJTMOaCU7Bl+26ceekkPHr31fjr3/8wf/GXmD9zSpMhvIz2+fyKntPrDx1J3bN7o/DQpc0YI7o2W/y+nPjF6KJOtYTSCxnpDfeRoa6XkpQyb6U4IqZEpKDYiwoV0P26Yw2WrfsKngpv/WHUMN7qu8JT38ClXTM74dxBpxsW3eMxu8tBO669KC2PrlJYuL1R+/uARzWP+gtKmTSr9s7YX0ffXiGvqNgryhNHM7dAdTy71QILq4XIJhGIAQKS8GoHVRJe7dglxJ3lHi/OufJetG/bEk9NGQub1Yr/XTYJZeVeeH0+od+9+cpzYLeZO8GipLQcn638Cfv274nOHVo3iD0jpzvzykF5Q0OtrLQQFosNNrvTEGLisNIhwyIM9hM9yz4eHwK3IxkZKXYhXWAErW6SUGNzWLXlZ1DTW6vVejQ0FRsOSYX7te6F43sdDac1fi9QodZOrWqqi+4HilWfkbpxzoGRZ0qIzKphD0homGzG4h7R+gC3yXJK/914/MPQTMd49Z+Zhqz8ot6XGTKunoNKwqsnmibta9Gn32DytDkYd/U5GHnKUXh/6VfCo5cR35OHH4SszNCFFMy0nL/XbcalN03F0YcOwV03XQy7vWHnhB25jRNeM6xLFBJwWqvLEZthTmacAy2lGIGjcwOP6xnhZUU9tY1FKR75qk7teRXR4VD9NxizSwK6Z3URSWoptugTHdWurbHrRLlsuyIhKGtA2qPHOI31wYhnRorioJEICXWB+VISJTyhNQBE3NtlNw3XGw3Ll7fEAQFJeLWDLAmvduwS6s5JU2cir6AIt113Adq3bQGW4jV7VDcY4B9/+weX3fyw+NGLj47DAYP7Noh/XrG3Vta+WTeKkSVaau2F4kMqWw0CJJdMbqKV3J58TzX5CGglFTcOdZSk3O/BM9/Ogq9SKUpSN/jf6OGzity1TGcGzh54GrJcmabbQj5jLHFb7qsQ0V51iEW/DLoXMLJL4mhUcprWVXDeTDyjXZpP5TMWGIuSEiZUyiYRiBUCr/37cqy6brTfC3tdasi4eg4qCa+eaJq4r71794qCE6y6lojt85U/4+Pl38NitWDld6vxypO3o12bFrAkJ9dbE23JmLiTCI0RIVZl4/6QHBh5/GwWvEg2qN3l81pUXr/6GhPX0t02QaRKytSRuM0F2/DBnx+hyFtcU4IteMEqiG19fJLQNrU1Tu07Atlu85HdwHz5jDFhko3H9bH27CXp4/6xXHSikd0AZk57Mtx2i7C8C9gZqvl8sCCI05aY/8aqWZ+8xngEXv93liGTuKDXJYaMq+egkvDqiabsK2oEiopLkZNXiK6d2tbq691FX2LL9l3430lHYMwtD6Nd6xYY0KcbTh1xCPr27FzrWup3KWtIpEbvWZslGSXl/loWaom0Bj3mSqJEiy0SWZKzhiKSQhLisgqtNrWh4ZKN/JUV+HTtcvyyY03IaYZPMQp9xUWDR6J9eu1nVQ8cYtEHiRgxo7wglHuJHmOSWHNv+ByrjcDrMW4s+qB8hvpxfi4pyyD5DddaZznBohqySQRihYAkvNqRlYRXO3ZN9s4V3/2Gw4cNiuv6WPZ46effYc47H6OgqBgd27XCZeefjIOHDhDzoH2azWbFJeeciKnPvIG5C5ZhxJEH4I7rL0SLrPR6c6WVVSTJTXFdbAODMapEzWUxyxFHeJRqhvlHMwfFN9km/JPpZ6pm70TxCadVFACgxCHYaznUXIo8xXjzt/eQW5YfZqqNEJakmsLBh3Q+AAd32l94XCdKExXaXBZwhQHfWD3mzr2gFIDes/SabkpW0/Tt5eeSpy+NlS4ntkxYk00iEEsE3vj3lVh232Df5/cabci4eg4qCa+eaCZ4X6zE9sQL7+DNDz7Dyg+eQVpK/JIvfvn9X9x49zO48fKRGNivG266a7rQtj5w2xgM7Ncdl497FH17dcbmrTvxw2//oGvHtigt94jf143wcht4DMmMfkoFEqkJn9k0u9BbBldvSqQ1RDrXgM601KvYyUXaAuWFmdimJsP+8a+er9bzirGCSKzasQe3HYDjeh5liMuH2jk2dh09cfmykFvojboQCiOaTE6jVIIkuim2AKHns5ZTFKoYSpLQ4zNRUDaJQCwReGOtQYS3pyS8sdxX2XccEdiwaTuenf0+GN3db2AvPHD75chMT43bDChZ+Or71cKBISsjDVu378atU2age5f2mHTjxbhqwuPYsHk7DhzcT5RDrqiswMQHX8R5Zx6L4486ICTxYJ17kiA10cK4LVTFQJRZk0AwYYY6yATj7CpWqFxCbSmTmxQngYqoCD6jcOlupdhIOEeAncW7Mfvnt1TPs+6FfVr2wGl9T0hYshtYj4K9Rbwc8kVBi36cBJCR3VjKJDRvVAxupCyEkptgn2NGdplg6bIzwh2DQWWXEoEgBOaunW0IHuf1HGXIuHoOKiO8eqKZgH1RSvDVqtV45a0l2LknD2eddATOPWN43AtRsOrb3PeW4f7bxqBb53YiMrviu9VCvnDx/x2Pwf17YP3m7TjsgIFIS3WjsrIS/6zfgrQUNzq0a9kg8vwyF+V8zVDaKYLng6Q3zWUTR8Mk7U2tBY7WSeZJliLNhg+FhyixyzKvyUmi6EJDfVLP+8naL7B655/qYa0iMvu07osjux6CFLtb/b0mvpLPGV84WBSiiK4Eaip6VK3HRb21wyKwZmGQ5tKIGa3yAr69/LuM7DaX3Td+nW8aRHjPlYTX+M2XM9COQGlZOZ5/dSEWLP0KbpcDk2+9DIP6dW/U41b7aI3fuebvjbjujidw+/UXYsSR+4uLvV4fbnvgBfz5739Y/NpU8TMt9ekZ4VWOu+uXmY3VevToN2CIb7clC9uypqKLJNnl8a/XV4Hi8gpdI9giasyoY4pNvOg05BLg8Xvw8brl+HPXP/W3qorc1g7WJWFg6344vOtBTYbsBhbOdTLay8ilhwltnsbJK69nZJjPJTWtiXaCosdnk30wAZBe2iS+skkE4oXAm2vnxGuoWuOc2/NiQ8bVc1AZ4dUTzQTqa09uAZ5+eT5YlKJfzy6Y8fAtcY/qBsNVVu7B9Fnv4ctvf8OrT92BzAxFTrH6r/Wi4MSyt6chPU17VK2ishL5xQ0TIDNvHYkILZJI4CKJwJlxTYwmUj/KF5BYRgVJejNSbaAnc0OR3mJPMd76/X0VSWxAt6zOOKnXcLibSGQ31LPBF5HsNJt4xgqKfSEdMgL+yKLEc6kvrDuGGZ9BPebEF4TMFLssIawHmLKPiBB4a50xhPecHpLwRrRR8mLjEaBUYNXPf+G5Oe9jy7bduOCsY3H+mcfC0UjlsmhnXVJahp9Wr4Xf7xf6XCahhfIDXrtxK+5+ZBY6tmuJG6/4P7RpmYXFn32H+x6fjYVzHkKbltF5nVLWwGQwHqEnWqODA90IOHc1iVlmW1+g3C3/5ItHPKLVrJzFKBy1qbThCqVR/Wz9V/hx26+NwmW1WHF4l4MwtN0gTScMZtuLxuZDQsvoOIOWTJoMjpBTMpLhtsFfWVWJLLHyQXXbBn4WKTeyWaXfrm6gyo5UI/DWuldVX6vnhef0uEjP7gzpS0Z4DYHduEGpfR1zyyP4/te/MbBvN1GqNyMtRVRdozY2Iz0FFosF6aluuFxOtMzOiKoi2+Ztu/DCawvx57+b0KZVFrbt2IOThh+Eyy84pR4IJOOM8E6c+hL26dMVvbt3Ekl0hx04ELdcdY4uoJH0FJf5YuZDqsskG+jEYSOBswlpRqx8VGMxfx5/kyzx6JvJafEgu4F1BMtCChuIkC9b9yV+2r5auSWEY8OIHkdjYJt+TZ7sBu+9kDg4LGLP6LwQKPZRzuRCr74ylFg8c7HqU5xQuKyixHUkjd7iH3/xvciT6NKxDU48ehicTlmRLRIM5bUKAm+ve80QKM7ucaEh4+o5qCS8eqKZIH299f5nuG/aHNisFlitigYtULGMXrfJScmwWi3i95NuGoVh+/XTtDJWyrr/qdfw1Xe/4vlHxiHV7cJ7S1Zg5tzFuGbU6SIZrW7jPf+s3yy+HPKLioUP7yEH7IMUl37+lkyUKin3NeqpqWnBcbiJFlCZaXahf23MEzQOU1E1BN0m7JYk5Bssx6AkxOW0oKjMB6+vdmjS4/fim83f44cQkd5T+oxAnxY9mhXZDWxswH2AzxxfUuiAkYinC6oe1DAXURvO5DS6MSRHaMWwc3ceHp3xFr778Q8MP3w/fPvTHzjm0P1wxUWnimCDbBKBSBCQhDcStGpfKwmvduwS9k6/vwL5hcXCCcHrY5WqSni9fpSUlaO4pExUOtu+KweFhSU49oih2Le/ti98j9eHm+6eDuqF337+HoEXxxx9w4PIyS/CS4+OR9vW2eLnHI8Si6GDeiM5OfZHhaQ8zErX4vtqho3PSrWJI3pG38xoW8aIbnqVnKCg1BzerJwTyzgzQl7XL3Z97ka8/9dSVOxVErZIag7qOBQHdtwP1mSlLG9zbDy+50sLn7HGkgCbMjYK2bVUFUaJLLLLf+8em/E2Pv3yBzx699XYp293/PbnOtx413RMmTAGh+yvFNaRTSKgFoF31r2u9lJdr/u/Hhfo2p8RnUnCawTqzWjMJ1+ch3mLluOt5+9B+zYtxMqLSspw9hX34KhD9sWNY0bC4bDjtvufx8YtO/HAbZeje5d2cUGIX+LUKZL4skRtIjV+CfNola8GlDf446kTCAMUvUpTWMI2Sm/dWOwHcSPp5UmCUmmsZt9/3r4aK/77FpV7KzGk3UAM6zgUTqsjFtMwfZ88sefzxZcEEl3alvE43+NTNORaPHtNv+gQE+TzklIV2dXiEEPLx7sefhnXXXImTj/hMJG7sO6/bbjlnmfFzxhQkE0iEAkC89YbQ3hHdpeEN5J9ktc2QwQ2bd2Js8bcjVOOPRh331JjXP3GgmV4b/GXePD2K9CzWwcwYe23P9aJo76AQ0O84CLpLSz1JlzGuYg82S1wOiwiUt2QBVe8cFT8SanXTUZpeQU8fnN6szJGl+pWdJjELWCr5a3w4dcdvws976jBZ8Np1U9GE6890GMcpaqY4gFNvXvgnYB4uezJsNssKCk3/nnTY62N9WFh0qPTKoi+lsbTsjMuvRMHDumHO8ZegNSqypWfrvgRT7w4TxT3oQ2kbBKBSBCYt/6NSC7X7dqR3c/XrS+jOpIRXqOQbybjUi7x4Sff4JHn3sLEGy7ECUcfKFb+65q1GHvn03j8nmuw/759xM94bTzkDKGgVwpUeBPSU9RuSxIWSWpL68bi0Qtk8Jf7KuKemKZ1PUzMYhQzOAnQX+lHXlkBWqUopxHNrVFNxAi44scbOjlNVGgjbiaM4Ou1X8SBjhQuhzayy3l8vPx73HT3M3jj2UlCFhZoF1w3Bd06tcOEa88TicKySQQiQeBdgwjvWZLwRrJN8trmjMC4+57D739twD3jRmNg3+54/6OVeH/pClFZrWe3jqaAxutXqrL5TBqZbAwkWnCR9NIbleuIZ+PYWWl2EQ0sDVO0IJ7zUjMWo5mtM50o8/pRUGIOrbGaecfiGpZnzkyxIb/EH/YZYjQ/M1VxGcgt9Ib07I3FHOPRJyPZ1C1HWz3t6ZnzMePVD/DD0ufhcjrAqpZTp7+OlT+swUN3XCHsGes2an7Lyr0i18HhsMFqscRjyXKMBELg3fVzDZntWd3PM2RcPQeVEV490ZR9NYjA9p05mPbCO/hp9T/CGaJFVhouOedEDD98qKky4El2SXrjTRr1eHTs1pqIJaOWsZb1khhQwkDLKkoDvP7E0kEHMKfEgQSHOm5KMcykh9bjuVDTB/eRCWrUNast8xzw7BXSEJZy9lUmPPHly5twFrFFTzRX/fwnrr3jSdx6zbno2qmtkGw988oCXD3qDIw5/6SQ/+7RhvHpl98Dq2Aef9QB4kSsl0kCAmqeI3lN7BGYv+HN2A8SYoT/dTvXkHH1HFQSXj3RlH01igCdIVau+h2sqsYjvl7dzRHZrTtpJuTQszURC1SQfPCYnmn1LNsbq+SiQFEH6l+p54w1uY71R4uRXhb2cLC4h4fFSeIbJY/1+hrrP60qOY0vLVoq+VHiQOz4wmBW1xA1+DKiSyz0KihBidYHH3+NDz5aiXUbtyE1xYmzTzsa555+jEjUrdsKi0qE5nfooD44fNgg/Lt+C779aQ3unzAGvXt0UrMEeU0zQEASXu2bLAmvduzknU0YgUQmvUpmuUVEqRit1pv0MnGJnqQBX9bEjOuGfnhJ5LMpzyj3J1RxDy0fRUZoM9NsqGRxCb60RMHxqXll9bGAq0MgEVDLvOJ9Dz8vDptFJOpx/no3Wi7uzslHWoobnTu0CVllkmMyELD/CVfimtFn4NrRZ4j/fdaYu0SRirGX/U/vacn+EhSB9za8ZcjMz+ymT/EnQyZfNagkvEaiL8c2NQKMWOUV+YQVUyI2RqsYtdpT6NHNq5f+v4yA7SnwJHxUt6E9ZbSXmmTuOy3fEsyxTtWjKnyS3Sy7rPjr6tVYDTAzxYHCMp9IXkyERilQVrodlggLSmhdGyO3Dzz1Gq4adTqGDekH+pUvW/Ej5i5Yhn/Wb0G3Tm3x5OSxSEpOxqkX3SZkDfeOv1TrcPK+JobAAoMI7xmS8DaxJ0kuRyJQBwGSHbofUN5A79ZEa9Rm0laJa4jGtowJTcxYZzJNUak/4bWa4faRpNfttIJkSNEnRxH+DDdYnH9PrS6fizJPZUxkOyTTfNkSpaS9FaZ1PiG/5Qshkz3jxHXFTv/253q8+NpCjDn/ZOw7oCeWfr4Kz8x6D8ccOgTHH30gHnnuTeTkFiIt1YXWLbNw67XnoV3r5ukaEuePRkIMt2Dj24bM84yuZxsyrp6DygivnmjKvpokAqIUscePYlGgIvGWaLcpBIcJeUzKimQJwrO2SuPJiF25r+kQPzU7SXKY5rYJks9EwERvKU6L0NtSaxvNC1A4HChxcNkUj2j6XJst2sty6qJ6mssWV7JL3Hx+PwqLSpGe6gZLud86eQZ8/gpMuukiZGemg4lrkx5+GVddfBpOG3Eo3K7mWfwk3DPWXH//vkGE93RJeJvrIyfX3dwQIOllMhMjpYlIepnMlua2iih1ocpSv4xy0qYq2ZKEvCKvOP5ujq0mYlmJorLEJb3cf8pRCriXkbz1RLHptC+jJprV2Rgpj9Owjc44UKWQRSW0VE+LAo6Qtz77ygL8u2ErJt10MbIz0/DP+s2i9PC1o8/EyccepPdwsr8ER+D9je8YsoLTu/6fIePqOaiM8OqJpuyrySPAKF9+ceKVIubGkMDScoktv8TXqDaVmffUeDIyR7eH5t5IkpjUxKS23CJvQr30cN8pMWBUM9y+x2KfA5XbOH4skigjmXNykiK3YOEMszRqeu948EXsP7gvLh45Am8v/BzzF63Ak1PGYvCAnmaZppyHSRD4wCDCe5okvCZ5AuQ0JAJxRCCRq7IJz9lUG5KQhKIyXz19JSNyTptiz9UcysdG8tgQu0CUlBKHRND1UntNLXLAPs7IBDxKCFyOmucq3nNhdDuQyBnJvsfj2o1bduCN+cuwbeceMdwRBw3C6ccfBoddeUGVTSIQQGDhf/MMAePULiMNGVfPQWWEV080ZV/NBgGvr1JkovPPRGwkHw4WGij1V5NeUbjCaYG3Yq8oLavFkzURsYh0ztT1UgfLvWf5XbM2zpP6a+q2Gak3g5yApNPlSBYvXJQ46G2Z19Be8NmmFpsnF2ZtXq8PBcWlsNusQrdrs5onCm1WzJrjvBb+964hyz61y1khx92TW4A4N3HXAAAgAElEQVQUtwsuZ31v6VA3hLuesrtdOXlIcTl1L70tCa8hj44ctCkg4K+oRF5xYpYiJv788mfEsogldcWRvVVJzkpQEh/PZ8papYnmmHwGzNacYm9tKCj2ihcYMzWhoXUqlnk5lIfEWBRP/Tp1xHoVlDATlnIuzQ+BDw0ivKfUIbybtu7EVRMex39bdopN+N9JR+Cum0fBZg1dpTDc9cUlZcKu7/2PVor+WGnw8Xuu1XWDJeHVFU7ZWXNDgF69u/M9cYtU6Y2vw5qM7HQ7SN6VksrmIkd6r1fP/ihxoF8vNapm0vUySs9CCkywNHOUXtGJ20QBEzo5xELiwIRDkl0rtTqySQSaAAIf/jffkFWc0qV28ZMrxj+K1BQX7r/tcuzYlYOzr7wXd910MU4dcUjI+TV2PV96z77yHliSk3HpeSfi8GH7ggS4dctMXdcqCa+ucMrOmiMC9KbNLVbkDfx7orRA8QFOmdnqtC1jhbEEWoIpoA7YtjGhkW4ERjVGMt2OZJGcVlwWu7LSeq4v4B7CPilx0LNCGwl1Vqpd4CGbRKCpILBokzGE9+TONYS3oKgEh5x6LV6bPhFD9ukloL3/yVexY1cunr7/hnpQh7v+s5U/Y+zEJ7H4tano0rFNzLZKEt6YQSs7bk4IUIvIL+xSEsYEWDjLA/NImQl4jK4J4uGyirnrWXkrAaDQZYrUiNLjVpSkVmn7psvAVZ0ErNN8/r3CMzqRXloocaAmmgTVV0H7suh10UyOS3fZYIlBqWA99032JRGIFIFFm96L9BZdrj+585nV/azbuBWnjZ6IL959Aq1aKFHYV+d9LOQI8168t9544a6f+sxczPtwuagquHbjVrRqkYFLzjmxmkzrsgAAkvDqhaTsp9kjIKqylflQUuY3NRYt0pXkgsKS2kfeiWy9ZQbAWWyBEUU+B5Q4xKtZOW6aXZRB5stLojYhP0i1w+OvQAF15RobyW6G2yYjuxrxk7eZG4HFBhHek4II78+//4sLr7sfXy98BhlpKQKwtxd+gRlz3sdn70yrB2C466+f9BT+XrsZl5x7oqgu+NEXq/DhJ9/gwzkPolvndrptiCS8ukEpO5IIKAgUl/uU8rsmC/Uy0SqdPrxJQF6ht8FINLPoGXFjpFLPI+bm8nykuSyiJDGrmcVaE22zJonSuLSYM1JOoefeZqbaQL9crokRa7UtECmm17QZCkqonbe8TiIQCQJLNi2I5HLdrj2x8xnVfQUitsvnP4mW2Rni52oivA1dT8LboW0rTLj2PNFXRUUljjrrBlw96gycf+Zw3dYgCa9uUMqOJAI1CJSU+UTBhnjZLoXDnlEvJqjRO1ZNFJCEl7ZWzbGccDgs1fyekhGXQyncURaDksSUpXJPSawZ2U0ET2A1uAWuqcFPcQ0J9/JInS6dH1hQQip2I0FaXptoCCzZ/L4hUz6x0+nV44bS5E6eNge79uSp1vAGX//482+LCoMzpt5STXgPOuUaXHvJGRh99gm6rVcSXt2glB1JBGoQEKWIvX4R6TWS9AaKJTBLvZi+wRFEzIRtmcsqCBtJlWyRIWAnfk6rIKN6JgMyksl94d6a6aUqMnTCX00yzyQ8JCUJmVBDjhOieprbKk4lZIJaeFzlFYmNwFKDCO8JQYSXCI4Z9wjSU92YMmEMtu/KwblX3Vft0lBYXIpR1z+Ayy84FScNHyYAb+z6X/9Yh/OvmYwZU2/GsCH98N6SFbhv2hyhB+7Xq4tuGyYJr25Qyo4kAvURYOZ+PPWcwTOgJpJaRlqO8Xhdi90p3ZyoS2VyG/uQLTIEGIll1NFmSdatrC5ttmjjQ9sxLXsa2QqMvZrknpX/UlwWoTkP9cLWIt0BVpSTMgZj90qOHh8Elm7+ID4D1RnlhE6n1foJ/XdpNbZl+27x8zNPPBx33zJa+PAWFJbgkNOuxZ03XoTzzlAkCY1dz9/PenMJHp3xVvUYUyZcJvrUs0nCqyeasi+JQAgESDj3FMbeYD94aEa7SLSKS31RF5JgJJFevSJSWWY+bXIiPHTCG9duEaRXqy6aSXEiqctXgSIdnAwSAbfAHAOnDXyBZHU7nqAoSYIOU1dPSySM5VwTA4GPDCK8x9chvAG0du7OE368KW6nKgAbu77c48XunHy0bd2iwQIWqgZp4CJJeKNBT94rEVCJAMmiEqGKrU8ro7okB/yPMgRGZvVogUglyS81wFpJmx5zSdQ+WM6ZutuScj883sqI7OsCNnJmL2ccy73haUOqywYmX5Z6K5DitAoNs2wSgeaEwEdbFhqy3OM7nmrIuHoOKgmvnmjKviQCjSBAkphf4hUFKmLRSHJJqlhAosxbqbt2OJAFT9ImHAhitI5YYGOWPumqwOg7G19I1Oi7WdjCZklqkslpke4LX7joNOJ2yuS0SLGT1zcNBD42iPCOkIS3aTxAchUSgXghUFGxF3mlPnh1ztznkTldAeJhT8WoGq2jeDyvVwQ5XvibYRy+ONBRgC8o4UoSZ6bYhP43t9irihybYX2xnAMTAbNSbaIEqWwSgeaIwCdbPjRk2cd1PMWQcfUcVEZ49URT9iURUIkAySKPtqNtlBpkpiqFJApKfSChjkcj8WBCHNcRa5lGPNZjxBgpDouIVOYXe+s5EHBf092Kn2xecfyKWBiBg5oxiQMT01hgg64MskkEmisCn2xZZMjSj+t4siHj6jmoJLx6oin7kgioRKCishIlZUplrMpwJqMh+uRXPkknJQz+qrLGGrpROdvQlzFCSR0lk6i4jniPH9XkTXIzvY7ddku1PzJdFyh7IBmuqISSJGiSuRo1DfJbPudprJ4mya5R2yDHNQkCn241hvAe20ESXpM8AnIaEoHEQ4DWUvS4ZZQ00kYfVktykrjfSFkBk+RIztiasidspPsTyfVMwqLtFqOYfn8lHDYLSjyRJ7ZFMmYiXctnnY4jWshuWbkHr737ibBESk1x4vILTkGLLKUylGwSgURE4NOtiw2Z9rEdTjJkXD0HlRFePdGUfUkEIkSAUVFGSNV69TLA1SLNLvScJMpm8GHlnJSM+STkF5tjThFug+GXU8LAkrhOu0VIGJpKmeBogaWEwWlL1uSxS7J79W2PY+2GbTj+qAOwYdN27Nidh1eemIDWLbOinZq8XyJgCALLDCK8wyXhNWS/5aASgSaHAKO0eUXeRuUNwV6kjKaaraW7FZuocIlYZpu30fMJuF+4nRaUlleArgyUMqgpAW303GM1Pl8AKGGglEFLQQn6eU59Zi4++mIVnp96Cwb26w6P14fTR92B4YcPxfhrzo3V1GW/EoGYIvDZ1iUx7b+hzo/pcKIh4+o5qIzw6omm7EsioBEBRnppqk+7LxaqCG7U65IMkUySBBkpYQi3PLoPOB3JKCzxy2S2cGABEMTOZRXlc0lyGbmnTIQvDz7/Xl1LEquYjikuqSa7Gq3HKBX64OOVeGbWe7jlqnNwwtEHinX5KypwxiV3one3jnj83mtNsVY5CYlApAh8ts0gwtteEt5I90peLxGQCDSCAOUNlAUE/Fnpv8qIH7/EWWEqEQo+MBGLXrM8lqfGWLbQCFACQikIXS7qJv2R9DK6Sd1qcTlfgppH6pqQdqTaq72KtTw7rNR0+wMvokfX9rj5iv+Dw6G4mHzy5Q+47f4X8PCdV4oor2wSgURE4PNtSw2Z9tHtTzBkXD0HlRFePdGUfUkEdECAZDen0CP8V5XjbZ8gj4lEeUjYGLkkUWPUWrbaCDBazwIKjZV+ZmSfMhbakxWV+1HmadovD3xmstMcIsIdTft3wxaMv+85TLrxYgzdt4/oavvOHNw5dSYqKyvx3MM3w2lXSLBsEoFEQ0ASXu07JgmvduzknRKBmCGwd+9eEeWlR6vXn0hUtwaSgEcwbdeYYCdtyxRsGNlVyK4f5Sqq1dGmjAltpWUVImKemE9D4x8Vm5W+zlbYbYrjRzTtn/WbMWnqy7hn3Gj069UFTF574bWFWPjx13j16Ylo16ZFNN3LeyUChiLwxbaPDBn/qPbHGzKunoNKwqsnmrIviYCOCLBEMHWdiSwLYEIWC1Twz8JSRaPaXBtfAOjC4LAno4SlmSN4kWHUs1raUk4cmw6KgSg216glQa0uEjt352HSwzPRuUMbHDikL/5auwkff/E9xl52Fo47YiiSQ1RpKyktx59r/0NBQTFS3C707NYBLbOlfVnTecqazkq+2P6xIYs5qt0IQ8bVc1BJePVEU/YlEdAZASawUd9J4puojQfUJGskNEpSXvMjvfRMTnVZUFkJlHq0EVbyNLdDsX8rKTd38qLaZ5U6ZeXZ0K9UMGULf6/bjDcXLMNvf64XxPf0Ew7FofvvU63nDZ7f1h17MPONRVj5/e+wWi3w+fwY0KcbrrjwFBEhlk0iYCYElhtEeI+UhNdMj4Gci0SgaSJAKQAJb1FZ5AUqzISIy54sCggUFPvqldI10zz1ngsju1mpduGuwXLS0dJ9h5A42FFY6lMlidB7PXr1R6Kb5lKi/7FopWXlYOTW6bAjxe0MGdnluBdf/wAqKipx3SVnoHuX9iguLcfst5aiRXY6rhl9BmxWayymJ/uUCGhC4Mvtn2i6L9qbjmh3XLRdGH6/jPAavgVyAk0dgeKSMricDliiiGIFSC8z9qnvTdTGZK1M6lfLm4fPrDUZYPEEJh3qmbwndL1um4j+C11vAj0SolSw04o0pxXJfBuIU/vupz9w093PYNp912HYkH6C5D749GtYsHQlsjPTsN/A3rj2kjPQsV0rFBWXISkZSEtxx2l2chiJgDoEJOFVh1OoqyTh1Y6dvFMiEBYBfqlOuH8GjjviAFHtKZomSG+5H0WliR3pDTg4+CoqUVLWNJOwSOPsNsVlg1HdWFROo0yCThgkkIkiFRFV+RwWpLntMYvsNvQZe//jlULmMHn8ZUKju+qXv3Dt7dNwzajTccDgfpj34XIs//YXTLv3Ogwe0DOaj6q8VyIQMwRWbP80Zn031vHh7Y41ZFw9B5WEV080ZV8SgToI8Ej1wJOuQtdObXHf+EswdJBikxRNKy33i+PsRM7/CpBeroEODk2pBTTLJKS0EvP4Y5dhxrFSnEyEs4hngsUqzNzoNkEdcqxkDI2tnS+fG7fsQPfO7URy3MPPzMWSz7/DktcfFrKHgqISnHf1fejSsS2eeeCGBiUQZsZXzq3pI7Bih0GEt60kvE3/6ZIrlAhoRMDnr8Dkx2fju5//wOB9eqGwqAR33zwabVtna+yx5jZWZSso8SZ0tr4oMpBiE8faSlnlqGExRQdZqTYxDxLQeLkp0OmA0eRyT4UoUGK2xj2m7thpSzaE7IbCY/K0OaIi2/dLnhe/pn3ZyMvvRlZGKuY8dYckvGZ7iOR8BAJf7VhmCBKHtR1uyLh6DiojvHqiKfuSCNRB4Pe/NqBPj074Z8MW3HzXdFw4cgQuGqmPvYuHpLfUl/CuB3QvYJGNRLcto0SbpI4tr9gbd10tI8ok2/5Kc/kec14slexymCv565sf14jKaxf+7zicMuJgzHn7Y8xbtBz3jhuNk4YfJP8tkwiYEoGvdnxmyLwOa3uMIePqOagkvHqiKfuSCDSAAEsDL1j6FZ5++V3cN/5SHD5skC5YsRQx9ZteFQUMdBkwRp24HBZRTpZJWIxeJ1oLlAn2Vew11EKOUfO0FBuS9kJohzkfIxtLY6e5baJinB4eu3qv5Yuvf8HcBcvE6QsTSw8a2h+XnnuSsCeTTSJgRgRWGkR4D5WE14yPg5yTRMCcCFDPO33WfCz69FvceeNF2LU7D/sP7ou+PTtHNWEWqCDpTUSiGLxwkiLaVHEdTM5LlEYvWc6diWlmKBJCXS9fIBw2C8q9LFwSOw1xY3skCkqk2ET03sxtd04+WKwiIz0F7Vq3kGTXzJsl54avd35uCAqHtDnakHH1HFRGePVEU/bV7BDILyxGUVEpOnVorWrtvP6cK+9FQWExjjh4X4y/+ly0apGp6t7GLqqo2Cs0o2YgXNEshtyoVaZTVCLT08Yrmjk1di+P6kns8k3oLcyoMzXSeluiqcGSmFDeweRE2SQCEgH9EJCEVzuWkvBqx07e2YwRYLT2lbeXYP7iFaIyU+sWWZh444UY1K9Hg3679M/95fe1uPX+GaLq0/hrzhOG+Ho1yiaoHWWBg0RupEjZ6XZQo8yKYsYeyodGki4D6S4rbFYLcos8pk24I5Yt0+3w+itRWEYP59g/GbRjY6ENandlkwhIBPRF4JudX+jbocreDm5zlMorzXuZJLzm3Rs5MxMj8NEXqzDnnY9x3SVnIjs7HVOnv4G8/CJMvvUy7NO3W8iZ+/x+PDNrAfr06IgRRx4Ai0V/nSAJTX6JV9hhJXJjpJeuAyzFy6i1mcoRW5OT4HZahLtEYYn57eFIzhW/XsUmjeQ3Fo3jOO0WpLttkuzGAmDZp0QAgCS82h8DSXi1YyfvbMYIPPb827BbraIyU3JyMrZs243JT7yKyr2VePGRcQIZEtz3l67Erj15okQpG62PmBwTy8ZIcnEZo6N+VMYjpBejxTBASAJFjSzlDWaIXPOInjIGzoXkMVGs1BhrdbC0s9MqNNKMnOvd6AecbkBBCb3XIfuTCJgZgW93LTdkege1PtKQcfUcVBJePdGUfTUbBN764DMs++pn3Dfukmpf3TV/bxA2R/v07Y4H77hcSB2uGP8oVv+5Hq8/O0nYk8WrkfSS1JAoJnIpYuKl6EFtIppabqBcw2Wn161NaKXNQL61PEuMnGenOYRcRDwbWjqpc0+g0AYj8mZ0YtBhibILiYBpEJCEV/tWSMKrHTt5p4EIVFZWCj2ixaAM8B9+/RvXT3pKSBiGH7afQILE8v4nX8U7C5fj+6XPw26zIje/EPkFxejepb0haBWL5C9fXLSbsVxggPQyOSxWR/KNzZ+WaSkuKwqKvYZbfUWLM6UHGW7FE7eorAIVUYSpRalgp1XIGGSTCEgEYo/Ad7u+jP0gIUYY1voIQ8bVc1BJePVEU/YVNwTWbtyKTVt2Cj9bmy3+hvaUJrzy1lJ8+Ok3eGTSVejfu6tY+8bNO3DyRbdh7nOTRAKb0Y0knEfYJDb+eJX9itGiRTUxpxVlHsVqS4/oZLipUlZBiy+7NVn46xrtaxtuvmp/L4gqrcvsFrEuLRFrJqWR7FLKICO7apGX10kEokNAEl7t+EnCqx07eaeBCNDL9p2Fn+O+Wy9DZ5WWYHpPd/uuHNzx4EsigkuHhiEDemH+4uV4aPpcfDD7AXRo21LvITX3R0LDo3h69iZyo4ZWSWZTJBvRRCfD4UBHLRZNYOPxfyzHCjeXWP2epX4ZuaYemf+pfYngPjARzumwQnoxxGp3ZL8SgfoIrNq1whBYDmx9uCHj6jmoJLx6oin7ihsCT788Hz+t/heTb70UHdu1itu4dQci2T37yntAf9301BSUe7wi4nvw/gMMm1NDA5Ps0rbMTI4HWkAiwSLZslrpf+uNSeIYK4RRN1zqrUBpDBK8tKw7Vvcwis0CEUlIEg4f4fIcRQnjNLuIessmEZAIxBeBVbsNIrytJOGN707L0SQCVQjccNfTSHW7cMcNFyLF5YTPXwGrxZjypdQTr/juN/y3ZSeGDemHPlFWTovlJpP0KkUSEjvSG0iUovNAXpFP1+irjQUb3DYRQU70Qh5qnyXxEuG2wm6zIK/I2yCejOwy6U0WlFCLrLxOIqAvAt/v/krfDlX2dkCrw1Read7LZITXvHsjZxaEAEllYVEpdufmi2jqrffNEMTy+KMOED8vLi3DwH7dcfB+/Q3R9CbSZvFonpFRLbpNs62TGlK6J7CoglcHBwf2Rc1umcccZYLjiTdJL/Fk4YhSjx+eOjpp6n35IiDJbjx3RY4lEaiNgCS82p8ISXi1YyfvjBMCv/2xDjPnLkZRcSkKikpQUlaOzVt3IT3VjXZtWqBNq2y0bpGJoYN645jD9kNqiitOM0vcYViKmO4NIvkr3Bm2yZfJZDYmTgkdqldb5DrgNsByvIWl/oSXfUSzZZQq0PuYHs6KrZ3i4ZvhlqWCo8FV3isR0AOBH3av1KObiPvYv9WhEd9jthsk4TXbjsj51EPA6/Nh1ptL4PX50bNLe3h8fkx54lVcffHpOO/MY0ThB0tysvKnQTZlibhtoipbMUmvPxGnX2vOjDpSc8uoNV0HIm3ZaTZR1Y2JfVG4dEU6rGmvp66XeLKaXKmnAhkpdshKweG3i+4xX333G/r06Iyh+/YR1oSySQT0REASXu1oSsKrHTt5p0EI/LpmHa6b+ATuvmU0jj18qEGzaDrDUt5ArWqCB3rBd53MFLvQn6olrkzAykyxiXsKShPfr1jPp5IEN5vJaTb9S2DrOU8j+uKpyEfLvxd5BMP26w+eELy54DM89dK7cDhsKCv3olvntph273WGJtUagY0cM7YI/LD769gO0EDv+7c6xJBx9RxUEl490ZR9xQWBN9//DDPfWIynpoxFv15d4jJmUx6EX96M4hWVJnYpYu4RSRqtxEh+C0v88DcSrnVYaXFmg8dfiRKdqo41leeEOLqdVuF7zCivbLURYNnwx2a8jXkfLseE685H987tcM9jr2DIgJ446pAhWL9pG95d9CVsVgum3DYGg/p1lxBKBHRB4Mc9xhDeoS0l4dVlA2UnEoFIEJj99lJ88NFKzHl6IlLczkhuldc2gAD1mtTAMjKa6JFeLpFEjclX+SU+4dlbt7kcyXDbrSjx+FGuUffbVB8mRitZOc1Nj13JdRvc5t05+Zg+6z189tVP6NCuFbxeH2Y/eTvSUt3wV1SAJ1GsxkgSPPXOq+S/VU31AxPndf2455s4j6gMN7TlwYaMq+egMsKrJ5qyr7gg4PF4MW/Rclzwv+PiMl5zGsTjq0BOobdJLJmJVyxSkVPoQbALGz18mehWUEJ7NrWlFpoEJKoWQY9dp43V01Rd3qwv8vn8eOCp1/D2wi9w3pnDcecNF9XCY/rL87Hwk2/w4B1XYL+BvZo1VnLx+iDwk0GEdz9JePXZQNmLREBvBPbkFsDpsEvHBg3A0t6LBSqaQmUxElsmXwXK5wYKVjTmNasBsiZxC5ULJLuOKDS7jKYXFpfAYbfB5XQ0CVzCLSInrxBPvDgPn3z5Ax64bQwOGzaoOlnt2x//xKSHX8KUCZcJra9sEoFoEfhpz7fRdqHp/v1aHqTpPjPdJCO8ZtoNORddEKBn7/jJM9CpfWuMPvsEZGak6tJvc+rEKwpUJH5VNu4Zq6Yput6kKhcH6cRQ91mmy0V6CiO72qunrf9vO1as+g2r/1iHNq2zccJRB2Kfvt2Q1AxCxbv25GHGqwvx3uIvMf6a83DmiYeBL92TH5+DopIyPHHfdWjTKqs5/RMi1xojBH42iPAOkYQ3Rjsqu5UIRIEACe/r8z/FK28vxZknHo4rLzpNJI/IFhkCJL2FJT7wz0Ru9NYl4bVWEV7qemWrQcBiUZwqoonskuw+OuNNbNqyE/87+Uhs3b4bf/77Hx6962q0b9uyWcCdm1+IF15bhIWfrMQh++8DkuC/127C4/deh4P26ydsE2WTCESLwM8530Xbhab7h7QYpuk+M90kI7xm2g05F90Q8Hh8eHXex5j55iJcecGpGH3uibr13Zw64hH1ngJPo24HZsaDRRR4TJ9f5BXEPTOVkd5k7Cn0mHnacZsb3SxaZjhF9FtrKyktx7QX3sY3P67B8w+PQ7vWLcCXzpvveRaD+vfA5RecrLXrhLuPJc4pb2Bi7ekjDsENl49E65YysptwG2niCf9iEOEdLAmviZ8KObVmj0C5xyu+eA47cBAG9Ona7PHQCgBty3KLGOlNHK9e0je30yKcBijNCE5OS3dbRXnc5l5RzclSwSmK1COatviz7/Dos2/i3vGX4PBhg0RXZeUejL9vBvr17oxrR58ZTfeG3vvvhq2Yv2i5OCXKzS/C1bc9jgduv1xUdWyosfT5iu9WY/CAHkJWJZtEQE8EfslZpWd3qvsa3OJA1dea9UIZ4TXrzsh56YIAI03yKDF6KJnAVlzmQ6nH/KWISd/ozsCj+mKWCQ5hS0YHBxK+0mZqS+ZyWCAS+KKsTMjqh6defDtOPvYgQQqZrMYXpE+//BEPTX8D0x+4Ef16dY7+ATSoh3kLv8ATL72LAwb3xeZtu9C5fWtMunkUsmRegEE7Iof91SDCu68kvPLhkwgkNgJFxaX44de/UVhUgsH79EKXjm0Se0ExnD1Jb2m5H0UaSvfGcFq1uma0khFczrWkvKJRpwk6OFDbW+71o7isIl5TNHycFFFQwqJLGW5+du6c+pIgtj27dhBr27k7D+PuexZdOrbFpJsuFiQ4UZvfX4FpL87DK28tQUZaCl59eiJ6dG2fqMuR824CCPya870hq9i3xQGGjKvnoDLCqyeasq+EQYAm8e8u/hIvvbEIeflFoBsr694fNLQ/nrxvbMKsI94TJU7lHj/yis2X+EWZQlaqHeXeCtWknAHO1plOYVtmZiKv1z6nua1Ic+lHQJet+AnTXnwHs6ZNQKsWmWKao254ECSKlDgESLBe8zein9lvf4TnZi9AudeHA/btg6fvvxFOh34YGrEmOWbiIiAJr/a9k4RXO3byzgRFoKKiErPeXIyZby5GZnoaTh4+TER3V/38l/DSbNUiA4/dcy1aZWck6ApjP22WImZVtlBVzGI/ev0RGK2ljKGkPPLKaZRAMLGN/sOsvNYUKs3VRSg5iWWUrWB0V2+XsAuuux9OuxXDDx8qSu2yytgNl43E8MP3M+JR0GVMyjIKi0tF9bTMjDSw2M2st5Zg9jsfYXD/nsJXt23rbFCvu+bvjThwcF/YbFZdxpadSAQaQ+C33B8MAWhQ9v6GjKvnoJLw6omm7Mv0CPCL7J2FX+CR597EQfv1xw1jzkLPbh2r5/3LmrW44c6ncMCQfpVWXxgAACAASURBVKJqkvTwDb2lxDFQijiERDauzwH1qC67RZBdj0+bhRodo9KcVhHpJ5n3N6EKbILsuq1IiVGp4O27cvHqOx9h+64cUVZ35MlHCv/dcNp5n9+PHbtykV9QjIH9usf1mQkejPPYk1OArMw0UazG4/Xhmx/W4KMvVomfHzpsIA49YCA6d2iN1979BHPfW4Z+vbvg+KMOwMpVv2PT1p14cvJYtJQvyIbtYXMaWBJe7bstCa927OSdCYjAtp05OH30RHTr3A4P33klunZqW28VSz9fhclPzMEdYy/Ayccmfv3wWG4TCWZBsQ/+Sm1EM9q5Ua9L3S4lCdGWCaZZgdtphcOajEL2l+D+w8SW0dxMFpSwx7ZUMEliaWk53G6n0OwWFZcB2CsIcKDRNeWf9ZvFSQqJ7u6cfOzKyReJc9T69u7eKdrHQdP9TEab9PDLOOXYg4Vv99qNW3HTXdMFAe7coQ0+XfED+vfuKgpK9O/VGUs/W4UnZ85DYVGpSNB7aOKVOOKgQWEJvqbJyZskAnUQWJ37oyGYDMweasi4eg4qCa+eaMq+TI/A/MUrMOnhmRh/9bkYfc4JIefLzPOjzrweYy44BZeed5Lp12T0BP3+SmFbFk/SS3JKSy0SOo6tZyM5THdZUFDihyfBSW/LdLsouqK3jKExvClzmbtgmZA3vPjoOBH5XP7NL3ho+lzsyc1Hy6wM8SLZrm0LPPDka+jXsxNennYb7AYlt1G68Mizc7Hks+8wecIY/PzbP9i0bZc44WndMhM///4vbrr7GXRo1wqzn7xd6HdZTphFNrp0aosWWenNopqcnp8x2Zd2BCTh1Y6dJLzasZN3JiACDz79ujiWnD9zMvr0aDii9Mb8T3HKcQcjPS0lAVcZ/yn7/HuRX+KNS1SUyWkku9TcMrJLGYLezWlPRqrTKrx6E7HSnM2aLDBi4Y14N3rwsujL2g1bcc+4S2C1WvDGe8vw8txFuHf8pThi2CAUFBXj3sdmi2psbz1/N7Iy0uI9zVrjkcA+NuMtLPr0W7hdDlxx4am4pKpYDa0NP/z0W2GzdtfNo3DCUYmfrW4o2HLwqBD4PfenqO7XevM+2YmryQ+sWRJerbsv70tIBN5bsgJ3Tp0pjiFPPU7KFfTcRF9FJYpKfCjXqKNVM5dAcprHWyFsx2JBdgPzCIxFTS+dHxIlmY0kN91tg82aZFjksbRMqWRH8sjGamzzPvxCEN/zzzwWO/fk4dsf1+DecZcYqt8NfuYosXhq5rv4ePkPuHjkCFxy7knV8+fvbrn3OWSmp+CpKdereVTlNRKBmCDwe55BhDdLEt6YbKjsVCIQKwSYVU0Nb/cu7XH/bWPQvk2LkENt2b4b8xd9iaMPHWKaL+RYYaJnv/S/LSr1i4IOejcWi+B/1NcyuhuPxmhyitMiyC6jyUYn6IVbs5BjuG2ikpzZms/nxzc//oH7n5iDnIIiXDv6DFw88nhd/ID1Wiv/fZgx5318svxHXD3qdKHptViSsXHzDtx2/wvi34KJN1yo13CyH4lAxAisyfs54nv0uGFA1hA9ujG0DxnhNRR+ObgRCNBG6Lxr7sPBQwfg7ltGhyS9v/+1AbdOmYH8whI8fvc1wp9XNnUIkBwWlHiF24FeLdVlgdNmQX6JL+4OCtS/prusSEpOQkGJz7SRXrpVZLhtSI6yVLBeexaqH+pljz9vPLweL3p174hZT9wOl9MeyyEb7buopAz3PjYLObmFOPGYYfjfSUegpKwcT898FwuWfiU0vZRgTJ/1HhYsWYFXnrgdfXoak1xnGEhyYFMhIAmv9u2QhFc7dvLOBEbgi6+ZRPM6CgpL0LVzO4y95EyRib07N5/J5cjOShcZ2JOnzcHyb3/Fq0/dISO9Eew3E5dYyIGR3mikAORujFgmJSUJ319GkI1oJL0sxUu5AItuGDWPhtbudlhFhTkzk13OnUUpaJN229jzYbfb0aVDa0PcDfjZ/vqHNZgw5XlhPcg50V7tmMOGiJMf/rsQ0PS2b9sSfA7HXnYWRhy5vyHzNeKZl2OaE4E/DIrw9pcRXnM+EHJWEoFwCDARZdPWXfjwk6/Fl9u5ZxyDF19fJMit3WrBwP49cOFZx6Fbp3YiGtyrW0c8++BNpjp+DbdGo39fuXcvSqKoYGazJInSv4pMwmcKOQEjzQ6bRcg2zJLMRpkHXwrMTnb5PDJquu+AnugWwg4wns/rxi07MPGhmejUriVuueocUQ75rkdeFsUkHr7zKqSmuIRt2nOz38e/67cIgt6vV9eEwDieOMqx4o/AH3m/xH9QAP2zBhsyrp6DygivnmjKvhIOAVZd8/p8WPn975j40EsYc/7JItK7bMWP4mdnnXyEKFTRoW0rvPjYONissppSJJssCjmU+4UUIJLGhCuSOBa34H/GxHVDz5jJbKxYxuh1uTc+WuKGsCNGsaieFsleJeK1H33xPe6bNhuvT79TkNspT7wq/INvvHyk8A5e99829O3RGf4KP7bu2CNeeHnKIJtEwGgEJOHVvgOS8GrHTt7ZhBBg5InV15576GYM6tcdzDKf9SZLiS4Vf/+/U44Uel/ZIkeAZLXcU4EClaWIaQlG+QCjqLF0fIh8JTV3MPqcnqIQcj21ymrn9P/t3XmcT/Uex/GP2Zh9rFmyJXFTaaUULaJLWeuWsqSuEEWuspatkIgopVKKaLGUFlkuUWm7SrsUkZ0xZt9ndB+f72SMGH5z5vx+53d+XuefenC+y3l+f3jP9/c932/BEotQc1wwV8kFjgTeV6YNk0kzXzff3IwadKfUqFZJtu3YK/cOmyYP3nubXN/c/Zvtl1yHEv4ssCnpO0e694+4xo60a2ejBF47NanLtQJff/+rPDDqabmpVTO5veN1EhISIvOXrDKb5199eWN54pG+kpefLxu+/cVsoP/6c49IeLmCLZe4PBM4chRxcetfNcTpEcE6Y5mUllPqk9M865X1uwr3A87TpRu+W3KhSxdiwkNFX1Jj0rH48dNdIfRkRT36V19C1QMiLjqvvlSvWlESElNlxMQXzExuXEy02Wqsft0aZvu0lxZ8IOs3/Cjjh/aSs+vWsP4BoSQCXhAg8FpHJfBat6NkAAnk5uXJyrX/k3mLV0lqWobZCF+PHG1zbRMZdn9X0d//9MsfzItuu/YelD7d2sn1LS6RBvVqsa63BJ8D3c9W1+P+/RjgoCAxBz1omNOZXX97Kay4RzzyUp3+vr6k5+1+6zHKOrOsPxhwFS+gwXXZ6i/k5deXSW5evnkx7cDBRPNDa8cbrpI7Ol9vTlDTwyTKx0RJ7+7tpWxYiGz4brOsWb9R+vXoIB3aXCUhwTjzOfMvgV+SvnekQw3jLnCkXTsbJfDaqUldrhbQfwz/2LXffMX5/c9bpfvNraTHv24wa/rWf/WDTJgxX+rVqS6XNG4gX23cZGaPht/fVZpc2NDVz+3rzhccUKHLFQq2LTtyTLCGRTfsdft3L51l1Vnp0OAgc9pcaXalONlY6A4R0REh5qU5ruIFsrNzzSEXc95cbnZduOGayyQmKlIOJibLR+u/lYXvr5XObZqbfXY19M6YvVgOJCRJcHCwOViib/f20rL5JRIZUQ5mBPxOgMBrfUgIvNbtKBmgAsmp6bLio6+kU9vm5iW1zVt3SM+Bk+TiC+rLiAHdpFqVirLvQIKMnz7PfCW6fMHkAJXw3mNpuE1KyxXdLaNCdJikZeWZk9PcfOkBFRp8E1KzJd/mRzlyVLD+l1enTv4pMevxn31DendvJ106XGdeRjty5eTmycxX3pG5by03py22anGJ6F68O3fvFykTJLWqVzYvsQXpVw5cCPihwOakHxzpVYO48x1p185GCbx2alJXQAnk5eXL199vlr5Dp0rjc8+W0YPvlLq1qpln1CUOOjP0+jtrZMPy5wufW49MfX3Jarmn240SGREeUB52P4yGXp3d1eCbmWNzQrS7sx7Wpzs46M4JumzDrhfuNOSWjwrzy9PTPGTx2W3fb/pd7h40SZpc1FDGDO4pVSqVP65t/WZG1+tf2Ohseajf7RIawoy5zwaIhkotsDnZocAbS+At9eBRAQL+KKDLG3QZw8QZ82Xn3ngZ++BdcstNVx8NtvGJMnrKHNl7IEGWzhlf+OsfrvnSbG/26vThHFThwcDq1//6glqgBF595LIhQRJRLtjs01vaWWsN0HFRYaJrd7lOLZCVnSMTZ7wm67743ixb0FnecmWPPclN75nx0hL5YdNWeWHyg7x8empW7vAjgV+Tf3SkN+fEnudIu3Y2ygyvnZrUFTACn2/4ySxZqF2zqvy2bZec3/AsGTGgq1QsHyuZWdky8en5subTjTK4763SqU1zs5538QfrpFWLS83Lbs2bXnDcP7QBg2PzgxScypZb6nBoc7dKVZ05NCM8RHLNoRl5lurSAyWiwkOZ2S2h3qGkVJk5Z4l8+NH/5MbrmsqQ+3QW9+j2bfpSqq7TT0pJkydH9ztmyUMJm+J2BHwu4G+B9+ChZPNtpqdHhJf0fjuBCbx2alJXQAjosaPt7xwhZ9WuZnZoSEnNkFt7j5GGZ9cyAXjzlp2yZ3+83N6xpfTt0d4E2/4jnpJNv/0h08beZ7Y+0uubH36VamdUNGt+uU4uoDO9ugwgXQ+Z8NZbXz4eBJ2U1dlZvQ6l5pSodd1yLC4yjG3HSqR29ObU9AwZN/VVWbl2g3S44Up55D89CkPv9p375K4HHpc7b/undL+5NbusWDSmmDMCvyX/5EjD9WMbHdOubveny/30RW+9OrdtIaP+c2exS4ROdr/+kNq84/3HPddLU4fI5Refa9vzEnhto6SiQBJISEyW3Nx8c9SoXus+/06en/euJKWkS9nQEPMyTJuWTSUrO1dGTpotW7btkgf73iatr2li3hDXF2X0a9MbW14uD/XrEkg0Xn2WlIxcycjKFz2WOFCu2MhQE1w92W5NT/OK1KOCI4++aBUoDr5+Dv0mZsijs+SLbzbJbe2vlT7d24muy580c4Fs37Vfxj14l5xTr6avu0V7CJRKwF8Cb++HppgXPMcPu8e8xH1rn7EyalAPade62Qmf72T3JySmSItOA2TWpMFSq0aVwvK6Bt/TmWNPUAm8nihxDwIikpaeKbqDQ3RkuMRER8q2HfvkqRcXmr07h953u9x0/RVmD98WnQaKvkp/WeMG5nS2mtWP/gEG8tQCenKZbk+Wl+/ssb2n7qnnd+gODvrymYZ5Xdt7oktnhHUJg97LMbae257sziNreld/ulE6tblKdu6Jl61/7JaH7r1drmpyHrsx2MNMLT4U2JLysw9bO9rU2TFHZ1r138Fm7frLa8+MLPxGU5cA7jtwSJ4eP/C4/p3q/iOB9/25EwtfDPfGQxJ4vaFKnQEvoGt2daZIT3DSF9qaXdpI8g8flrkLV8r02YskLDTUnNykWx/VPvOMgPbIycmVuQtXSPyhZLn6isbS7NLSv9ygB1SkZARO6NVXzsqGBZltyzT0/v0lvZDgIIkKD5bwsBCWMdj8p+XImt5lq780aw0fH9lbLj6/PmHXZmeq842APwTerdt3S/ueI2Xt4qekcsU48+DzFq2UpSvWy6IXxx4Hcar7jwTea5pdKHExUeabl47/vEpioyNtRSXw2spJZaeLgO7E8MmX38vEEb3lysvOk/z8w/LG0jUy46XFckal8vLEqL4y/YVFJgSe6C+AQHFKTkmXPkOeNEs6zFWmjMycMFCa2rDuKjv3sCSm5Yi+1BYolx5HXDEmzJzKpsH3LzKz7Vg5Tk/z2jDrmt55C1fKTa2ukFo1AvsHUK8hUrFfCGxJ2eRIP86O+Udhu3pgS7f7xstn780sDKVvvbdWZs1dKmsWTjuuf6e6X7891YkiXcKg/79k2cdSqUKsvDFrtK0vlRJ4Hfno0KjbBTTg7d6XIC0uLzhuUX+ynfLcm3J23Rry/BODzR9SXcyvC/U1EKekZZifXAPp0uNbB495VhKTU+XpCQMlLCREdJ1W/KEk+WjRU7Y8al7+n3IoNVv0v4FyBQeJxEaGmZPmcnIPS2xUmNnKjMu6gL7oyDIQ636UdI/AVocCb70igffIjO26JdNNMNXLkxleT+/XfzvbdhsqC559RBqfW8+2wSHw2kZJRaerwN79CXLLPaPlvIZ15eEHuh+3Zvetdz+Sb3/aIt1ubiX/qF87YP5h3rUnXgY8MkNmTnjA7Eah18tvLJPZCz6Qz96dadvHQY8iTk7LLXbtq20N+bCigpPTQiS4TBl2CSilu367ojNIwcFB5h9HTkkrJSjF/Vpga8ovjvSvXkzDwnZPtCb30Wlz5cDBRI/X8J7sfp1MadK2r7w8bag0vejozHJpH5zAW1pByp/2Al9u/EUGjJwuQ/vfLp1vbHGcx5pPv5F5i1dJRkaWDB/Q1ZzwFAiXzqrpC3uXXXj0L8L/ffuLPDD6GVm/9BlbH1FneJPTc0SXOQTCxelp9o2iht2xT74q1111kfTr2VFCgjk5zT5davI3gd8dCrxnFQm8atLrwckSExUhjw3tZQ5g6tJ3XOEuDfqN5p0DJsg9XdtJ25ZNDeHJ7tddkDTkXnHpuWb7QF3e8M7y9bJ64VTThl0XgdcuSeo5bQV0wX3Lfw2Su29vK327t5ewsFD56ZdtsvrTb6Rh/VrmMIrdew/K+BmvmSUOH8x7PGCtFn/wsTw1e5F88vYM84wff/GdnFW7hpxZrVKpn1mX8ialZUtWjrtDr67jrRRbzhyrzFU6gW079kqPgROlUf3aZg/Q6lVL/zkrXY8ojYB3BX5P3ezdBoqp/azoBsf8ji470CVsu/bGm1/XA5h0VyI9qlvf7WjWvr/5xlP3q9frZPev+niDjJg4WzIys8y9FeKiZfIj98rll9i3B6/WS+B15KNDo4Em8N7K9TJv8X/NLK+eJPP4M/PNT6r69WpkRDmZOOIeiU9INscR97jlBunxr9aFBLp1kgbienWqu55l+IQX5cuNP8viF8fJ3EUr5Yuvf5aH+t0mF59/ji3PprPKSWm5Zv2r27bq1b14y4UGS1yU7stL2rXjA3HXoElmX+yHB/WQM6tVtqNK6kDArwW2ORR46/4t8B5B2h+faPbj1X/nPLmKuz8vP18SDqWYKqpUivPK35EEXk9GiHsQOIVAbl6exB9MMtsete0+VM6oXEFG3t9VygSVEZ311K9dr7ikkaz65Gvp0+0m6dq5lakxLSNTnn3lHfnt910yZXQ/27dhsWPgNGRmZGVLZPip/0K7rc9Y8/XWVU3Ol+SUNBnY6xbbN/fX/hTscpAnbtnAIahMGdHT02IiCg6h4LJHYOsfe6RcWKjUIOzaA0otfi+wLfVXR/pYN9qeSQtHOv9XowReJ/VpO+AENPjqhtwNz64tz4wfILExUZKSmi5Tn18oi5d9LI0b1TMveen+ghp2p856SxZ9sE5GDuxu9h3U3R386Xp3xXrTb90a7JLz68tdXdqYZzrRpadY3dpnjOjXzG1bXm6OXa5RtZJXXiLSk9gys3Wv3ly/n+nVgBsVHiIRZUMkmHUM/vTxpi8IuE5gu0OBtw6B13WfFTqMgNcF1n3+rQx85Gm55carZUCvm82WZD0feFwqlo+RJx7uaw6i0GUMumfva4tXyfihvYo9jtHrnT1JAxp0Jz/7htzR+Xo5/Nc+w7rLxJxpQ4st9cpby2Xr9j3y6JC7fdJ1Db26V68/X3GRoRJRLsSWLu7ae1ASk1Pk3Pq1Jfg0eTlr1OSXZVDvf0n52GhbDKkEATcLbE/9zZHu14mu70i7djbKDK+dmtSFwF8CC99fK6+/vdp8va+zo+ecdaYM7X+H2bosIzNb5ryxTPSee3t0kNs6XOd3brrV08SnXzNHKA/4982mfyvW/k8mPbPAHCX5yKAeEhdbMNP74eovZcv23ealPU/Xcdn5wDl5f0piarbk+9n6Bp3NjY4omNktzaVLOHbsPiDPzV0quguGvrVcIS5GBt5zi5zfsK5X1rqVpr92ltVT0tr1GG4C7803tgjoZ7XTjboCV+CPNGcCb+0oAm/gfqp4MgRKIXD48GHzVuqoyXPkz8OHZdj9XU3YTUnNkJmvvC0r1n4lve64STq3bSER4WVL0ZJ3ihYE3vmSmZUt44f1Kmzk/VWfy8hJs6Vfjw7Sp0d70TA26omXzZu64x66W2rWqOKdDp2iVt2uTJc35Ob5xw4OuhNDTESYlA0NKvWa3QMJSTJiwouSk5sr3W9pLfXrnmm+Gdix54BMGtk74Gc+9USnMyqXL/ghK8AOb3HkDwuNulrgj7QtjvS/dpT7t9NkhteRjw6Nng4CGno3bdkh0ZERUqtGFUlKSZMnZr4uH/z3CxkxoKu0a32lX4bdI2Pz4vz35ZU3l8uSlx81xyXrpQF3wdurZemKT82xyvVqVxfdhHzPvoNS/6wzHd0DNScvXxJTcx2f6Q0OLiO6jCEsRMNu6d9Q6zd8miQmp8nIAd2kUYM6ps7lH30l+lW/Hlsd6Efl6hHeY598RSYMv0ea2LgJ/enwdxDPGHgCBF7rY0rgtW5HSQQ8FkjPzDJHDy96b61MHtVX/nltwWbcJ7tWrdsgL8x/Xxa+MOZUt3rl93WbmFt7j5H4hCT55J2nC9vQ3RdadBoow+/vKl06+tdyDA3k8cnOHUWs+bZqhXApfcwt4J76wlvy9rJP5PlJg+XcBnXMr+kPUvqi42uLVslLU4dI5YpxXhl/pyp9+qUl5hCJRg3qmi7o3tW9Bk+Wnre1kS4drvXKS5BOPSvtIlBSgR1pW0taxJb7a0XZd8SvLR2yUAmB1wIaRRAoqcDmrTvN3rw3XX+F3Hzj1acs/tH6jfLkrLekcsVYmfXEYMd2b9Cwce+waVKnZjUZ0q+L2ev051+3m1/Tjf5bX33pKZ/F1zfomulEPYpY9+r1UeM666rLGCpEh9m2E4P+wNGh58NyTt3qMnXsfYWzxd/9tEUGj3tO7u7SRm5tf62js+p28y58b63MefNDScvIkrNrV5NuN7c2M9jL1nwhqz/5Rl6dPrxw7bjdbVMfAm4QIPBaHyUCr3U7SiLgsYCuiT2UlGJeAjvV1mM6szt99mKzDGJI/y4mbDp5acCa9sJCycrJlcsvPlc+2/CjOd9cZ9x05wl/vPQFttSMPMnMyfPJtmXhYcHmBbWQ4CDbOLJzcuWmHsPM2mjdw1kv3c9ZvymoVCFWht53h1Q/o6Jt7flDRbq1nf5w+NW3m0Q/d59//bP5IUv/zPy0ebtMHdNPWja/xB+6Sh8QcERgZ9rvjrRbM+osR9q1s1ECr52a1IVAKQXeW/mZTJn1ppxVq5qMHnyn1D6zqi3rQEvTrSO7BHz61Q+iL1DVrFZZWl19qV8eklH0OXWvXg296Vl5pXn8U5bVsKsHSujaXbuvPkOmSF7+Yenfs6Ps3pcgLy34wLy8NmvSf066djc/P9/V25bp7LYeT7pl2y5Z9/l3okeP7tmfIHVrVZMlL42TsFD/2q/a7nGnPgSKE9iZ7lDgjSTw8qlEAAGbBHRm97Hp88zJUYtmj5PoqAibaj69q0nLzDM7OHjjii4XItGR3gtful9z9/sek59/22G6f+kF58jsJ4dIaGjxW511v2+8eUFSDzOx+yx6bxh6Uqe+GPnMy0vkzXc/krkzRsqFjdy/ntCT5+YeBP4usCt9myMoZ0YWrKl388UMr5tHj74HjICu2Z00c4GZxXts6L+PCbt6LG2DejWlWoB9fe2rwfvzTzGzvGl6FLFNe/XqgWmR4SESFR5q2wtqxXnobKcePR0UVEbq1alh1uzqi2tBQSdePvHND7/J8o++lC+++Vn6dm8vba5r6vi3BHaMdVp6prTtNlTOPaeOPDN+oISEBNtRLXUg4CoBAq/14SLwWrejJAK2CBxZsxsVFS4ZmVnmpLLG59aTyIhwU/+f8qdcedl50u3mVhIaUrpDDGzpsAsr0WUZmTkFe/WWNvTqTgy6hEEPlLBh17ESax48lCyrPv5arm9xiVSuEHvC8jk5ufLqwhXmBbAVr082W+MFwjV6yhz58Zdt8spTw/gGJBAGlGcoscDu9O0lLmNHgRqRBbvEuPki8Lp59Oi76wU0mLTq8qDZz1a3+Zq3eKUs/uBj+XD+ExIWVhBudYZST+3SF5WKm9VzPYQPHkB3bNCdGxJSrB9FrAE3NjJMdN2uE2FXmfQFQt2HV19ma3rxP4qV06//pzz3hixfMNlvXy4s6bDrGnL9gbDJhQ0l2MYXBEvaD+5HwCkBAq91eQKvdTtKImCLgB7aULFCrHkT/dFpr8rC99bJ92tetqVuKjleQF8CO5CUbYmmUmxZc6CEk1dqWoZ8uXGTXHflRSf8AUiXO2z4/leZMH2e7I8/JGuXzDjlziBOPg9tI4CA5wJ7Mv7w/GYb76weUdvG2pypisDrjDutInBCgftHThfdDWHjqtkIeVEgJ/ewJKfnSG6+Zzv1mqOCI8OkXKizYffvJEuWfWwOodClLrorRU52rmRmZ8vh/MPmQIrRg3tKnZpVvShJ1Qgg4EsBAq91bQKvdTtKImC7QM8HHjdrFDcsf972uqnwWAENvamZuZKde/ikNKEhQRL711HB/mb48uvL5NlX35FLL2hg1vQGBwdL+dhoqVIpzmxbFhVZsA6cCwEEAkOAwGt9HAm81u0oiYDtAp9v+EkGjZkpX7z/rO11U+HxAnpARUp6rmTm5J+QR8NuXGSo6H/98crNzZPVn34jc95cJrd3vF5uvP5yXmz0x4GiTwjYJLAno2CLQl9f1SNq+bpJ29sj8NpOSoUIlE4g/lBysW/fl65mSp9IQHdwSEnPk/TsYw+o0BfT4qLCHHs5rSSj9fnXP8nDj78k/e/qJJ3bNi9JUe5FAAEXCex1KPBWI/C66FNCVxFAAIFiBHSrstTMPMkwobeMlAsLkphw75ye5q1BFjJ4IQAADVBJREFU+PanLfLkrDdl5sRBEsOhJd5ipl4EHBUg8FrnZ4bXuh0lEUAggAR0+zdd06tXZNlgV257tXtvvNSoVjmARoVHQQCBogIEXuufBwKvdTtKIoBAgAmYPRv+FFcsYwgweh4HAQQ8ENibsdODu+y/pVpETfsr9XGNBF4fg9McAggggAACCCBgRWCfQ4G3KoHXynBRBgEEEEAAAQQQQKCkAgTekoodvZ8ZXut2lEQAAQQQQAABBHwmsC9zl8/aKtpQ1fAzHWnXzkYJvHZqUhcCCCCAAAIIIOAlgf0OBd4zCLxeGlGqRQABBBBAAAEEEDhGgMBr/QPBDK91O0oigAACCCCAAAI+E9ifudtnbRVt6IzwGo60a2ejBF47NakLAQQQQAABBBDwkgCB1zosgde6HSURQAABBBBAAAGfCRxwaIa3CjO8PhtjGkIAAQQQQAABBE5rgQOZexx5/irh1R1p185GmeG1U5O6EEAAAQQQQAABLwkQeK3DEnit21ESAQQQQAABBBDwmQCB1zo1gde6HSURQAABBBBAAAGfCcRn7fVZW0UbqlyumiPt2tkogddOTepCAAEEEEAAAQS8JEDgtQ5L4LVuR0kEEEAAAQQQQMBnAgRe69QEXut2lEQAAQQQQAABBHwmcDBrn8/aKtpQpXJVHWnXzkYJvHZqUhcCCCCAAAIIIOAlAQKvdVgCr3U7SiKAAAIIIIAAAj4TIPBapybwWrejJAIIIIAAAggg4DOBg1n7fdZW0YYqlTvDkXbtbJTAa6cmdSGAAAIIIIAAAl4SSHAo8FYk8HppRKkWAQQQQAABBBBA4BgBAq/1DwQzvNbtKIkAAggggAACCPhMICH7gM/aKtpQxbJVHGnXzkYJvHZqUhcCCCCAAAIIIOAlAQKvdVgCr3U7SiKAAAIIIIAAAj4TOOTQDG8FZnh9NsY0hAACCCCAAAIInNYCBF7rw88Mr3U7SiKAAAIIIIAAAj4TOJQd77O2ijZUoWxlR9q1s1ECr52a1IUAAggggAACCHhJINGhwFuewOulEaVaBBBAAAEEEEAAgWMECLzWPxDM8Fq3oyQCCCCAAAIIIOAzgcTsgz5rq2hD5ctWcqRdOxsl8NqpSV0IIIAAAggggICXBAi81mEJvNbtKIkAAggggAACCPhMIMmhGd44Znh9NsY0hAACCCCAAAIInNYCSTkJjjx/XFhFR9q1s1FmeO3UpC4EEEAAAQQQQMBLAgRe67AEXut2lEQAAQQQQAABBHwmkOzQDG8sM7w+G2MaQgABBBBAAAEETmuB5JxDjjx/bFgFR9q1s1FmeO3UpC4EEEAAAQQQQMBLAgRe67AEXut2lEQAAQQQQAABBHwmQOC1Tk3gtW5HSQQQQAABBBBAwGcCKTmJPmuraEMxYeUdadfORgm8dmpSFwIIIIAAAggg4CUBAq91WAKvdTtKIoAAAggggAACPhMg8FqnJvBat6MkAggggAACCCDgM4GU3CSftVW0oZjQOEfatbNRAq+dmtSFAAIIIIAAAgh4SSDVocAbTeD10ohSLQIIIIAAAggggMAxAgRe6x8IZnit21ESAQQQQAABBBDwmUBqbrLP2iraUHRo7AnbPXgoWSIjwiW8XJhH/Srp/R5V6uFNBF4PobgNAQQQQAABBBBwUiDNocAb9bfAu2P3fuk7dKr8sWu/4ejctoWM+s+dEhoSfEIeT+9f9/l30m/4NHl24iC5+orGtlITeG3lpDIEEEAAAQQQQMA7Av4SeHs/NEWiIsNl/LB7ZN+BBLm1z1gZNaiHtGvd7IQP7sn9m7fulG73jZeMzCwCr3c+PtSKAAIIIIAAAgj4v0BaboojnYwKjSlsNzk1XZq16y+vPTNSLjqvvvn18dPnyb4Dh+Tp8QOP658n98cnJEnnfz8iw+7vKmOmvCJTRt3LDK8jI02jCCCAAAIIIICAwwL+EHi3bt8t7XuOlLWLn5LKFQu2K5u3aKUsXbFeFr049jihU92fmZUjPQdOlBaXXyD97+okl7XpS+B1+HNG8wgggAACCCCAgGMC6Q7N8EYWmeHd+ONvZunBZ+/NlNjoSGPx1ntrZdbcpbJm4bTjbE52/3/fnCoPjntWRMqYkBsUVIbA69ini4YRQAABBBBAAAE/EPCHwHtkxnbdkulSqULB7g2ezPCe6H59Oe3aWx4wL73pmmC95i5cIdc0u1Dat24mN1zTxDZ1XlqzjZKKEEAAAQQQQAAB7wmk56V6r/KT1BwZEl34uydak/votLly4GCix2t4j9w/6eE+Mn/Jf49p+akXF5mX325seYU0b3q+bc9L4LWNkooQQAABBBBAAAHvCfhD4NWn6/XgZImJipDHhvaSvQcSpEvfcYW7NKSkZcidAybIPV3bSduWTQ3Gye7/uxZreL33+aFmBBBAAAEEEEDA7wUyHJrhjSgyw6tIuv+ubjW2a2+8MevUprmMHtzT7MObnJIuzdr3l4cf6C63d2xpfv9k9xN4/f5jRwcRQAABBBBAAAHfCWTkpfmusSItRYREnbDd/fGJZu1tZEQ5j/pV0vs9qtTDm1jS4CEUtyGAAAIIIIAAAk4K+FvgddKipG0TeEsqxv0IIIAAAggggIADApkOzfCGFzPD6wCB5SYJvJbpKIgAAggggAACCPhOIDMv3XeNFWkpPKRgv103XwReN48efUcAAQQQQACB00aAwGt9qAm81u0oiQACCCCAAAII+EyAwGudmsBr3Y6SCCCAAAIIIIAAAi4QIPC6YJDoIgIIIIAAAggggIB1AQKvdTtKIoAAAggggAACCLhAgMDrgkGiiwgggAACCCCAAALWBQi81u0oiQACCCCAAAIIIOACAQKvCwaJLiKAAAIIIIAAAghYFyDwWrejJAIIIIAAAggggIALBAi8LhgkuogAAggggAACCCBgXYDAa92OkggggAACCCCAAAIuECDwumCQ6CICCCCAAAIIIICAdQECr3U7SiKAAAIIIIAAAgi4QIDA64JBoosIIIAAAggggAAC1gUIvNbtKIkAAggggAACCCDgAgECrwsGiS4igAACCCCAAAIIWBcg8Fq3oyQCCCCAAAIIIICACwQIvC4YJLqIAAIIIIAAAgggYF2AwGvdjpIIIIAAAggggAACLhAg8LpgkOgiAggggAACCCCAgHUBAq91O0oigAACCCCAAAIIuECAwOuCQaKLCCCAAAIIIIAAAtYFCLzW7SiJAAIIIIAAAggg4AIBAq8LBokuIoAAAggggAACCFgXIPBat6MkAggggAACCCCAgAsECLwuGCS6iAACCCCAAAIIIGBdgMBr3Y6SCCCAAAIIIIAAAi4QIPC6YJDoIgIIIIAAAggggIB1AQKvdTtKIoAAAggggAACCLhAgMDrgkGiiwgggAACCCCAAALWBQi81u0oiQACCCCAAAIIIOACAQKvCwaJLiKAAAIIIIAAAghYFyDwWrejJAIIIIAAAggggIALBAi8LhgkuogAAggggAACCCBgXYDAa92OkggggAACCCCAAAIuECDwumCQ6CICCCCAAAIIIICAdQECr3U7SiKAAAIIIIAAAgi4QIDA64JBoosIIIAAAggggAAC1gUIvNbtKIkAAggggAACCCDgAgECrwsGiS4igAACCCCAAAIIWBcg8Fq3oyQCCCCAAAIIIICACwQIvC4YJLqIAAIIIIAAAgggYF2AwGvdjpIIIIAAAggggAACLhAg8LpgkOgiAggggAACCCCAgHUBAq91O0oigAACCCCAAAIIuECAwOuCQaKLCCCAAAIIIIAAAtYFCLzW7SiJAAIIIIAAAggg4AIBAq8LBokuIoAAAggggAACCFgXIPBat6MkAggggAACCCCAgAsECLwuGCS6iAACCCCAAAIIIGBdgMBr3Y6SCCCAAAIIIIAAAi4QIPC6YJDoIgIIIIAAAggggIB1AQKvdTtKIoAAAggggAACCLhAgMDrgkGiiwgggAACCCCAAALWBQi81u0oiQACCCCAAAIIIOACAQKvCwaJLiKAAAIIIIAAAghYFyDwWrejJAIIIIAAAggggIALBAi8LhgkuogAAggggAACCCBgXYDAa92OkggggAACCCCAAAIuECDwumCQ6CICCCCAAAIIIICAdQECr3U7SiKAAAIIIIAAAgi4QIDA64JBoosIIIAAAggggAAC1gUIvNbtKIkAAggggAACCCDgAgECrwsGiS4igAACCCCAAAIIWBcg8Fq3oyQCCCCAAAIIIICACwQIvC4YJLqIAAIIIIAAAgggYF2AwGvdjpIIIIAAAggggAACLhAg8LpgkOgiAggggAACCCCAgHUBAq91O0oigAACCCCAAAIIuECAwOuCQaKLCCCAAAIIIIAAAtYFCLzW7SiJAAIIIIAAAggg4AIBAq8LBokuIoAAAggggAACCFgXIPBat6MkAggggAACCCCAgAsECLwuGCS6iAACCCCAAAIIIGBdgMBr3Y6SCCCAAAIIIIAAAi4QIPC6YJDoIgIIIIAAAggggIB1AQKvdTtKIoAAAggggAACCLhA4P+GAT4Q3fYQjgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "execution_count": 10, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/BCG_incomplete_mkts_17_1.png" } }, "output_type": "execute_result" } ], "source": [ "#====================== Experiment 2 ======================#\n", "Ve2,ke2,be2,pe2,qe2,c10e2,c11e2,c20e2,c21e2,𝜉1e2 = off_eq_check(mdl,\n", " kss,\n", " bss,\n", " e=0.1)\n", "\n", "# Firm Valuation\n", "kgride2, bgride2, Vgride2, Qgride2, Pgride2 = mdl.eq_valuation(c10e2, c11e2, c20e2, c21e2,N=20)\n", "\n", "print('Maximum valuation of the firm value in the (k,b) grid: {:.4f}'.format(Vgride2.max()))\n", "print('Equilibrium firm value: {:.4f}'.format(Ve2))\n", "\n", "fig = go.Figure(data=[go.Scatter3d(x=[ke2],\n", " y=[be2],\n", " z=[Ve2],\n", " mode='markers',\n", " marker=dict(size=3, color='red')),\n", " go.Surface(x=kgride2,\n", " y=bgride2,\n", " z=Vgride2,\n", " colorscale='Greens',opacity=0.6)])\n", "\n", "fig.update_layout(scene = dict(\n", " xaxis_title='x - Capital k',\n", " yaxis_title='y - Debt b',\n", " zaxis_title='z - Firm Value V',\n", " aspectratio = dict(x=1,y=1,z=1)),\n", " width=700,\n", " height=700,\n", " margin=dict(l=50, r=50, b=65, t=90))\n", "fig.update_layout(scene_camera=dict(eye=dict(x=1.5, y=-1.5, z=2)))\n", "fig.update_layout(title='Equilibrium firm valuation for the grid of (k,b)')\n", "\n", "# Export to PNG file\n", "Image(fig.to_image(format=\"png\"))\n", "# fig.show() will provide interactive plot when running\n", "# code locally" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In contrast to $(k^*,b^* - e)$, the 3D surface for\n", "$(k^*,b^*+e)$ now indicates that a firm would want o *decrease*\n", "its debt issuance to attain a higher valuation.\n", "\n", "That incentive to deviate means that $(k^*,b^*+e)$ is not an\n", "equilibrium capital structure for the firm.\n", "\n", "Interestingly, if consumers were to anticipate that firms would\n", "over-issue debt, i.e. $B > b^*$, then both types of consumer would\n", "want to hold corporate debt.\n", "\n", "For example, $\\xi^1 > 0$:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Bond holdings of agent 1: 0.039\n" ] } ], "source": [ "print('Bond holdings of agent 1: {:.3f}'.format(𝜉1e2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our two *stability experiments* suggest that the equilibrium capital\n", "structure $(k^*,b^*)$ is locally unique even though **at the\n", "equilibrium** an individual firm would be willing to deviate from the\n", "representative firms’ equilibrium debt choice.\n", "\n", "These experiments thus refine our discussion of the *qualified*\n", "Modigliani-Miller theorem that prevails in this example economy.\n", "\n", "#### Equilibrium equity and bond price functions\n", "\n", "It is also interesting to look at the equilibrium price functions\n", "$q(k,b)$ and $p(k,b)$ faced by firms in our rational\n", "expectations equilibrium." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAK8CAYAAAANumxDAAAgAElEQVR4XuydB5QcxbWG707c2axIME7ghA3G5GATTEbkDCbnDCKDQIgkMgIJkZOJxuQgY3LOBmMcsTEOPDBIKG2c3Z2Z3Xf+GtUyO5qZDls93dP71zvvGNjuCl/VdP99695bdYODg4PCQgIkQAIkQAIkQAIkQAIhJVBHwRvSmeWwSIAESIAESIAESIAEFAEKXi4EEiABEiABEiABEiCBUBOg4A319HJwJEACJEACJEACJEACFLxcAyRAAiRAAiRAAiRAAqEmQMEb6unl4EiABEiABEiABEiABCh4uQZIgARIgARIgARIgARCTYCCN9TTy8GRAAmQAAmQAAmQAAlQ8HINkAAJkAAJkAAJkAAJhJoABW+op5eDIwESIAESIAESIAESoODlGiABEiABEiABEiABEgg1AQreUE8vB0cCJEACJEACJEACJEDByzVAAiRAAiRAAiRAAiQQagIUvKGeXg6OBEiABEiABEiABEiAgpdrgARIgARIgARIgARIINQEKHhDPb0cHAmQAAmQAAmQAAmQAAUv1wAJkAAJkAAJkAAJkECoCVDwhnp6OTgSIAESIAESIAESIAEKXq4BEiABEiABEiABEiCBUBOg4A319HJwJEACJEACJEACJEACFLxcAyRAAiRAAiRAAiRAAqEmQMEb6unl4EiABEiABEiABEiABCh4uQZIgARIgARIgARIgARCTYCCN9TTy8GRAAmQAAmQAAmQAAlQ8HINkAAJkAAJkAAJkAAJhJoABW+op5eDIwESIAESIAESIAESoODlGiABEiABEiABEiABEgg1AQreUE8vB0cCJEACJEACJEACJEDByzVAAiRAAiRAAiRAAiQQagIUvKGeXg6OBEiABEiABEiABEiAgpdrgARIgARIgARIgARIINQEKHiLprevPyOZTFbq6xMSi0bVX+c8+6Ysau+U/XbbUv374OCgdPf0SjQalVR9Qv233/3hQ/nTh/+SnbfZUMa0NrteNKXad11ZSG7M5nLS29sviXhMEol4zY3qvT/+Qz746z9lx61+JuPGtFS9/0Hghz48/+rv5eP//k8GcgOy1k++L+ut8cOqs0CD//e/efLsK+/K+mv+SFb+7jd96YPTRp08Fx757avS35+RPXfc1GkzFa//9yefyxvv/kW+XLBYmhpT8oudN5eGVLLiPR1dPfLgnJckUheRfXbdQuKxqMybv1jmPPeGrPnj78tqP1zJcR/xfL7roWfkW19fTjb96eoV73/s6ddlwaJ22Xj9n8hK31zecVu8gQRIIDwEAid4H5jzkpx7xS/LEl5mwhh54YGrPJuBqZfdJg8/+YrccOnJsuG6q6p29j12urz/54/kLy/l+/Xp51/KVnufKqt8/9vy6xunqf921U0PyC33/kYevf1C+e63V3Ddv1Ltu64sJDc+8cwbcsZFN8lh+2wnkw/bTY3q9d/9Wd5676+yz66by7ITxgZ6pLNve0Suv/MxefDm8zwVWL9+7AX5fN7CIUYaSil+1QSGD8TDTr1C3nz3L0PNQoydc+L+nnUjlxuQq29+UFb85nLqI7SwvPr2H+XI02eo9k2LQq8G5OS5MGnf06Wzq0deffQaY915+/2/ycEnXjqsPjyH8TyuVC6Zfa/c9eAzcuHphwzNwwd//Vh+cfQFap3iN+20dHWnZd1tj5KtNllHZpx7dMXb//z3f8ueR5ynntX3XjdVotGI0+Z4PQmQQEgIBE7w3v/4i3LejDvkeyuuICssN2EpzGPHtMh5pxzkGf6b75kjL7/5gZx69F5D1odiwQsLx4nTrpVvf2M5ueC0g40K3lLtezbYGqn41bf/JDfe9bhsv8X6QwLlujsek2tvf0R9cOBlFuRSLcG733EXye//9I+hDzPNpBS/avJCn9A3fEBOO/kgmTiuTSBaWlsaPesGrIA/2eJQ2WSDn8i1F02uecHr5LngheCF2IXonXXB8bLR+qtJT7pXmhpSFQXkh//8RHY99Bz5xc6byVkn7Dc0B9UUvGhUf/DhWb3LpI08W3OsmARIINgEAit4LzrzMNlxq58Ggl6x4C3VKVMW3kAMuAY6QcG79CSVE7x+T+dDv3lFzrn8NrlkyuGy/ZYbVKU7YRO8TqB5IXjX3uZIaW5K2d5dGxgYlP2Pv0j+/vH/ydO/ulzGtn3l5lVtwYu+7H3U+fKvTz6XZ++7Qtpam5zg5LUkQAIhIVDzgvdPf/uXXHPbw2qLuyFVLxuvv5pE6uokFosKRDMK/Gtvu++3cvBe28jaP/nB0NR9PneBnH/VnbLlxmsNbbc9/szr8tsX3pEpx+8jX19+orq2WPDiZXr81GuUBfjI/XdQ12jBC1eI5159V7Bt2tmVlp+uvYqcdcK+MmFc21C7l177K5n75SK5bOoRyvqA/nX1pGXq5P3lzff+Mqx9+A5PufgW2XDdHytLSWE55fzrZfzYVjnj2F+o//yXv/9HZt/+iOy67Uby30/nypxn35B//OtT2Wi91eSUI/eQ5ZedILfcO0eeffld5Uv54x+upLZ17foxtnd2y+wlrFE/rPDYLt5nly2GWXpgAb/yxvvl9Xf+JAsXdyrmsIZ/MW+hnH/qQYqFk3H97aP/yqxbH5Y9dthEfr7B6vLgnJcFFi+4lmAMbS35F9heO26qfGX/9tEninnxDgHue/6138sxB+1U1iqMbXC8pKdO3k+WX3b8MN5wdXn2lffk6AN3klV/8G2BfyDq/OyLL9V8oj2siUN+sa18f6WvD91bysKLLWoUvUOgL4ZbDHx+Z5x7zJB/+OXX3SfvfvB3+d/c+Yon2tli47XkoD23GfIJnj7zLnn0qdeV5Q3zrcvZk/eTjs7uYfz03+D+cNWN96s1h3rXXX1l1XesWV30mtpt243VOB9/5g3BfGDuJx+2u/q9VSrwf8fvE3MFSzx2aFBmXXCcxOMx5YJhtw+Y369/baJa1x/961NZf61VlvpNoG4wmHzO7KFnwlqrfV+1CX97cNUuDfiNw/XBakx21305DvCnvenuOfLkC2+p3+U3V1hGMf708/my/25byvpr/Ujd6uS5oNv66z/+I7NufUhgxcfzD1Z0/HN9Mm7LpSHd2y/X3/GovPTGH9QzAXO03Rbrq990JFIn8L0+7qxZ8spbH6j6NctJm65b8eMFu2RHn3nVMDck3edyghdr5TfPvyUrfWt5OeXIPcsuq69cGtaWTX+6hvz68RfVzgZ8dA/cc+uSVtwXXn9fjjtrphy1/45y7ME7V1yz/CMJkEA4CdS04IUP5yEnX6ZmBqKqpblB3nz3r+qFB4uC9mF78vm35dQLrpfLpx4lkzZbd2gmP/7PZ7LDgWfJIXtPkpOO2EP991LipFjw4iWx1taHy2YbrqG2+FC04NWVQ0TO/XLhkECZc+fF6gWPAp8y+Jbh5YL/1QXX/Oa5t4b5e0IQbL7HSbLHDj+XaScdMGwVwuqClyd8Q1H0i1xfhL+h4CULHs1NDUMvXLzoIUIgXB657ULL1b1gUYfsfvg0JexQL/qOlxPKQXttM/SCmr+wXXY++Gw1btQNoYutTfQB5bf3XCbf+NpEJXTsjgu+n4eecrlMOX5f2WeXzeXOB55WghdtoC94EaPAHxAvQ1gTi19seHH/fNfJ0tuXkdceu0aSZYLftEvN8YfsKkfst/0QF1iJNt/zJPUR88ojs5R4mnLxzUr0rr7Kd2Xi+DEyb/4i5euN/jz+y+my3DLjyq4p+ICjwPpVWPAR89sX3pY351wnLU0N6k8b7nSc6vfqq3xHmhob5MN//lfxxBzcc93ZKrjytAtuGJqPwg8Y+Dh+9vn8YfxQ5yefzVPbzfitQCS1NDXKi2/8Qf17ob9l8ZqCz2Zrc6P6kMrP56Xyja/l11mpAp/8Wbc8NPQ7wBqMRiJy9+yz1Bpw0geMC2JbF1iLYTUuLlgDB06+ZOhazQOBVr+8+oylfieVxmR33ZcbP35n6AsEGdr58corydz5i+SPf/1Y3VK4k+XkuYB733n/QznoxEtUPfrDDx9Gxc+/cn3LZHPK8gmmYITfKz628FzYaeufyfQzDhVcs+8xFw49pzTLPbbfRD2TypULrrpT7nvsBXnolvPlB9/5xrDLSgleBBHiIwW/5ztmnjnMQFBqfuHDqwuebctMGDs036V2BxH097Mdj5MVlhtv63lXdmD8AwmQQM0SCKzgBVEtZArpaoEHAbPDAVPUix8vT4gOFDygt9vvDPXQ90Pw4kVxylF7qkwN6MtJ02YLrAuXnnWEspyg6BcbLBKTD99dWQt7+/plmfFjlCWoMMDJiTDU4gQvLrysfvi9b6n2tBjCf794yuHqBYRAopPPu06eful38tJDV1d8waAOWMIRFAWBgXHU1dVJT7pPdjvsHDUHLz88U1mb4X8N0Xji4bvLob/YdmjqdNCNCcGLSsu5NCB7xjqTjlQCH0E1+iNDW3ggYiFmyxVY8zbY/hglTp779Qxl5UKBEMAWLSxfsAyiIGod1xWuUwToIFCnMCCq1EeUE8ELQfLdFVcYyhoC8T152jUq60FhkGQ5l4biD4bCNVH4Efi/L+bLjgedrcb2wgMz1AeSXlNYqxDCEFaF/E8+cg85eK9JFR+AdzzwtFx27a/k9qvOkHVW/2qHRa9Lu31AI/io2frn6yjuEDHlAhbtuDTYGZPddV8OADImnH3prSrA6pIphw1lGcFO0pkX3VxS8Np5LuD5t8vBU5VV9pYrTh2yEuO/b7vv8Odfub7pAGFYzuFji7WOj/mjzpihdp0Q5KWzKPxokwNljVW/J3ddM8XWyw7rO5PNlnSBKBa82J07/NQr1M7FnbOmWAbCaQsvfuPnn3aw2vVB0fWinifvvnQp/2IEvmJHDR+8I8mkYwsALyIBEggcgcAKXjy0Ct0ANDmIqqvPP1ZtO+9yyNRhmRL0NcU+bNW08BZnadAP4UILrRa8f3j2liFBpvteLI7cCN7i6PNyQRv6ZYxt3q02Wbvs4oTAWnXTg9QL6Yk7LpK6yFeRztgOvfGuJ4bEDKzO+NgotFCi4otm3SP3PPysEQtvJcGbb+tuuefh52TmBcfJ5huuqcZ15OlXqq3eZ+67Qr5W5KpQPPCzLrlFHn3qNWVp0lu4WrCXslh99sV8+c//faHSH330r8/ktvueHGb1HqngRf9gKYS4gSiF1fHlt/6gBC8CshCYhWJX8EIUrbbZIWoL+PE7Lho2fP0hcd3FJyp3hXIZDfTvrzggqdQiKiV43fTh1KP2UlvWdoodwVv8Oykek5N1X65Px0y5WrkLPHf/DFlu4lfZRLRFs5SF185zQfe11Bza9eHFrgk+hvTHqh6DzshQuPPlVPDierht3HT5KUuhKRS8SE2233HTlci9Z/bZQ7silea4UpYG/Tt//oEZS30M6bWNHS18/LOQAAmMLgKBFbxWQWuwTJ507rUlfbKCJHi1xRDbxvDvRYHgRQDF7357w1KrzQvBq62b555yoOy+3SZDbeqXbuEWdqnlr0V3pZ8GLNjrrrGybLLrZGVth9W9sFRT8GoxoF+4yLu69S9OUzk7r5l+guUvXGcVQEQ3fGwh4CHkC9PQoZKP/v2psp7r7f3Cig/YfSs57Zi91X8aqeDFWr/w6juVW0BxwXh0LlK7ghcCfcu9TlE+mMUuAXpNwOIHMVtO8Oo1sdt2G1tmTSkleE30odJEuhG8xWOyu+71zk2p/sDSiXkr/q2XE7x2nwvPvPyunDht9jB3LN2+XcG76e4nqpzjxenL4Ja08S4nDHPZciJ49S4LnjV45hQXLXjha65dMJ6697KhmAmrH2glwXvFDb+W2+/7rfzquqlDuxG6Pv2BX7zTYNUe/04CJBAOAjUreBFABKsbArb0gRDlHvh+WniReH397Y5WgUTXX3KiL4IXFiZYmooF7wuv/V6OO3vWMJ/NUssalkW4j0Dw7bVT6WT2a/74e8oKud3+Z5YUltUUvBiD9ruGC8WjT72qrNCFW7+Vfr5w94BAhi/jO0/eIC++/r6cPv1GOf/Ug1VAIMri9i756Y7Hqn/Glj6CChFQ1d7RpfxSTQlevd0Lt4nJh+2qfEDhG4y5g/uIG8Gr51ML+kIWL77xvhw7ZaZoa2o5wYvDA36+22RxK3hN9MG04C0ek911X8mHGf7XELwfPH/rkEsK+j1SwaszX5T6WLUreMtlXtAf6YXPLCeCVwvSUnEHGLsWvIXz5yRlmB3Be98N05SrWGGh4A2HaOEoSMAtgZoVvFoIbLPpunLFOV8FMABE8QMfQUAIBip+qHoRtFbs0qCtjfvvvpWcvsTi58TCiyAxWGJKWePKBa0Vb9WOVPDCv3jNrQ4vabktXHjaEgpx9s6T1ys/X12KBa+TcZXyQdXbk4V+hoV9QcQ3RCqE5wNzXlY+vRC/2ifX6gfzy/ufEmRHwE7DY0+9pnKQvv2b69UJUyhwJzh+6qylotA/+WyubLPP6bYEb6Gfue5PcdAaIvcRpIet4cLsCfrl7Ubw6qBLBHoiiKuw3PvI84KMD9rNxSvBa6IPdgRv4c6Kvt7umOyu+0r90B9exa4wIxW8egwnHLqrHL7vV8GVpZ5/5fqn+/be0zdJfTJ/YiRKKXcVJ4IXdeD6UuwLBS/8wZEN5YATLlG7KIXuOZWYVhK8CHwD21J+ujfc+bjKGPLwrRcMy6Ji9Szg30mABMJBoGYFrxZMEDIIUECADQoCfPY//uJhaXmwbXbACRcPy3QA/zz4lCLAyGSWhmLBq30/C/1JnQhevTUL/9lCwYZsAHhhIWq6OEuDacELrvrlOPuiE4aCRPRPAHy/9fVlVdAaPjYQxHbf9efIqiuvqC7BFiksyYhM10FrTsZVSvB+JcyOVgFBxQViZcOdjlcvUhSd4cHuz1Zv68K3EGuteHv2/idekvOu/OVSLjWFQruSSwMi9xEYVOjbiTR5R5x2pfLV1T7QWgAXByZdPOseFQVfKHj1y/7FB6+WieO/SoNXit9uh01Tv5XC9Yogy10PyQdCIXsE1pxdcViJa7mgtZH2wWouIbowhuJMGE7GZHfdl+uL/jArDAxDsOP0WXcr/9liH167Lg3w5d5ir1NUVgP4pOqsI/jg2vXQabbSks248X659VdPquwvhRkXdIaFy6YeKdtutp4amlPBWy4os1Dw6pPW9Glo+FthADL+Hc8SfPDhQxW7DjhavJzg1R+bpfyaUZf2zUeWFT+O+LZar/w7CZCAtwQCK3gh5CCiisuY1qahU3v0AwwP/Z+t82P55LMvVGASSmFaMrgVbLb7SUr84CjRsa3N8tKbfxhKY2NS8MJ/FXl9YeV85e0PlCUQrgC/uv6cIeuiE8GLsWhxhC3Gn/zoO/LHv32sAmFQqiV4ke9z98PPVW1iG3vVH6wo8xYslnf/8KGyfupjc5GmC+m6MH74NuKIU+Tk1MJTC14n4yol2LTgxzwjLRoi9lf5/opDx0Gj/itvuF8FkKG88cS1Kp2WkwIfcfjPohT7BMJvF+nXUCAWEJD0zh8+HDo+18qlQVub8HLedvP1BS9rBMrpogWvTpMG4b3DlvmDWODOAFGKUih4kaoNeYSxBhGEiLzH++66hQqoK0zrhvs007yrxG7SkErKw0++qtJnFQaiORGH5diWE7wj7YPVXOqgLBxg86Pvf0vlvcUui5Mx2V335foC15ftDzhTuTWANfLjFvpiuxW8aE+vTzxfNvnpT5Q4RIBq8fOvXN/QDwhT/DaR/QKZQJDqEe5iWJcP33bBkBuGU8Grs7UgPd9K3/rasC6USkuG5zYCzsDovuunDt2j106he4UWvLgWzyIEoOEDFRluMBYdcFnYKD6wN9jhWJkwrlUZSFhIgARGH4HgCd4llrNyU4EXP9JNoSAt1rlX3D6UfxQPwKMO2EF+/diLw9KS4Vq9hajrheUHYgAWXqTPQhotFBxXC6tM4bZXuTy8W2y0lsoYgQKhAcGBF4UWI/jv2Na76MzDh500VEnwlmofrhdHn3m18ilFwTiRDgqCbsVvLKeO10XRbh7FFhudBL7QB1UJpyXJ2K2C1jQzHEJw8TX3qFyzhQVWoNOP/YWymsD/FVYj5CXWBYdTYK6efumdIQsv/mZ3XDrfsg6k0vUiOAVWTs2l2EdZ8yjnS2j1c9cv4XIWI7QNa5guWJu7bbeJWkMH7rG1Op663JpCYA+CjtBHXZBjGOIU/+2tOdepXQtkM5h2+e3DxDC2gpFaDmK40OIOITDzlgeHDqBAvRAcXy5oV/mqi/nhYwypmvTHCK6HP/Lxh+wylD2k3JrS/q522MJCB9eMwqwXeswj6YPV/GF9XfvLR4c+WvC7QfCY0zHZWfeV+oKDWG66+wn541//pY5TRnov7IZMu+L2Ydv4Tp8L7R3dcvL51w19ZKEP+Hif89ybJYPRSvWxVOAlnlkXnn6o6qMuELylXGDKjVvHB5Q66AE7PXsffYH60ILQ1kV/LOMj9tHbp6vnic66UOjSU5h6EPmpC9dvoVW6sG+VDsKwWkf8OwmQQDgIBE7wusEKf8BFiztk2YnjlBW1XNAGRBci9pHQXx8K4KY9q3sgBvCSQxuFR2pa3Vfp7xA+OCwAXrEIjsJhA34VuAv8b+4CSSUTMmF8W8m+oL/YokeeVOTCLfbh1X0f6bggsCF44VtbnFtT7wCUSiVmih12Dz793zxJ1Sflmyssa9tHGO2j77DCIkgIuxmFfpTF/dNratzYlrK5Z/U9sGZ9Pm+BEiylclkX1g3XHpyght8QdkrKHchhileperzuA+YIp80hz7XOy+xmPHbWvd169QeyCX9SrA2cXIg15Hb+YCHFM+try00YOvDE7lhKXYcA1n2Pmy7//Pdn6nCSQvFst17s2qyx5WHKLaWc/z2uwe4ITtf85teXLfss2uvI85UFvPiYY7t94XUkQAK1TyAUgrd4GuxGKdf+9NXOCMoJXq9GoH28S6VI86pN1ksCpQjg0I21V/+B+iDCKXNwAYL/N7biH7z5/KUOSAgLRR38hh0gWF6dFn3YC47H3nun4ceqO6lL+/vb3clyUjevJQESqB0CFLy1M1c13dNqC95Ztz6kUpEVHydd0xDZ+ZokAHeA4gKrJdyhCo+BrsnBWXRaB8aVyiZhNV6cOIkc1oXZUazuKf67dl+BGwlcauxmaXHaDq8nARIIPoFQCl7462azOUHKMpZgEECgCnwqkVGhsaHe807BN7S9s0u223z9oeNcPW+UDZBACQLIhoEgx0WLOyVVn5AVlp8oyFtdyYUlLCDhX/vUi++o4Wy/xQaOXErgQjIwMGDpllOJFd4FCJxdZ/WVlWsECwmQwOglEErBO3qnkyMnARIgARIgARIgARIoJkDByzVBAiRAAiRAAiRAAiQQagIUvKGeXg6OBEiABEiABEiABEiAgpdrgARIgARIgARIgARIINQEKHhDPb0cHAmQAAmQAAmQAAmQAAUv1wAJkAAJkAAJkAAJkECoCVDwhnp6OTgSIAESIAESIAESIAEKXq4BEiABEiABEiABEiCBUBOg4A319HJwJEACJEACJEACJEACFLxcAyRAAiRAAiRAAiRAAqEmQMEb6unl4EiABEiABEiABEiABCh4uQZIgARIgARIgARIgARCTYCCN9TTy8GRAAmQAAmQAAmQAAlQ8HINkAAJkAAJkAAJkAAJhJoABW+op5eDIwESIAESIAESIAESoODlGiABEiABEiABEiABEgg1AQreUE8vB0cCJEACJEACJEACJEDByzVAAiRAAiRAAiRAAiQQagIUvKGeXg6OBEiABEiABEiABEiAgpdrgARIgARIgARIgARIINQEKHhDPb0cHAmQAAmQAAmQAAmQAAUv1wAJkAAJkAAJkAAJkECoCVDwhnp6OTgSIAESIAESIAESIAEKXq4BEiABEiABEiABEiCBUBOg4A319HJwJEACJEACJEACJEACFLxcAyRAAiRAAiRAAiRAAqEmQMEb6unl4EiABEiABEiABEiABCh4uQZIgARIgARIgARIgARCTYCCN9TTy8GRAAmQAAmQAAmQAAlQ8HINkAAJkAAJkAAJkAAJhJoABW+op5eDIwESIAESIAESIAESoODlGiABEiABEiABEiABEgg1AQreUE8vB0cCJEACJEACJEACJEDByzVAAiRAAiRAAiRAAiQQagIUvKGeXg6OBEiABEiABEiABEiAgpdrgARIgARIgARIgARIINQEKHhDPb0cHAmQAAmQAAmQAAmQAAUv1wAJkAAJkAAJkAAJkECoCVDwhnp6OTgSIAESIAESIAESIAEKXq4BEiABEiABEiABEiCBUBOg4A319HJwJEACJEACJEACJEACFLxcAyRAAiRAAiRAAiRAAqEmQMEb6unl4EiABEiABEiABEiABCh4uQZIgARIgARIgARIgARCTYCCN9TTy8GRAAmQAAmQAAmQAAlQ8HINkAAJkAAJkAAJkAAJhJoABW+op5eDIwESIAESIAESIAESoODlGiABEiABEiABEiABEgg1AQreUE8vB0cCJEACJEACJEACJEDByzVAAiRAAiRAAiRAAiQQagIUvKGeXg6OBEiABEiABEiABEiAgpdrgARIgARIgARIgARqgEBq9WN96WX6/dm+tGuyUQpekzRZFwmQAAmQAAmQAAl4RCC1+nEe1Vy52vT71/jSrslGKXhN0mRdJEACJEACJEACJOARgdQaPgne31PwejSlrJYESIAESIAESIAESKCQQGqN430Bkv79LF/aNdkoLbwmabIuEiABEiABEiABEvCIQGrNEzyquXK16fdm+tKuyUYpeE3SZF0kQAIkQAIkQAIk4BGB1JqTParZSvBe7Uu7Jhul4DVJk3WRAAmQAAmQAAmQgEcEUmv5JHjfpeD1aEpZLQmQAAmQAAmQAAmQQCGB1Fon+gIk/e5VvrRrslFaeE3SZF0kQEXtPcEAACAASURBVAIkQAIkQAIk4BGB1NoneVRz5WrTv5vhS7smG6XgNUmTdZEACZAACZAACZCARwRSa5/sUc1WgvdKX9o12SgFr0marIsESIAESIAESIAEPCKQWscnwfsOBa9HU8pqSYAESIAESIAESIAECgmk1jnFFyDpd67wpV2TjdLCa5Im6yIBEiABEiABEiABjwik1j3Vo5orV5t++3Jf2jXZKAWvSZqsiwRIgARIgARIgAQ8IpBa9zSParYSvJf50q7JRil4TdJkXSRAAiRAAiRAAiTgEYHUej4J3rcoeD2aUlZLAiRAAiRAAiRAAiRQSCC13um+AEm/dakv7ZpslBZekzRZFwmQAAmQAAmQAAl4RCC1/hke1Vy52vSbl/jSrslGKXhN0mRdJEACJEACJEACJOARgdT6Z3pUs5XgvdiXdk02SsFrkibrIgESIAESIAESIAGPCKQ28EnwvkHB69GUsloSIAESIAESIAESIIFCAqkNpvgCJP3GRb60a7JRWnhN0mRdJEACJEACJEACJOARgdRPz/Ko5srVpl+f7ku7Jhul4DVJk3WRAAmQAAmQAAmQgEcEUj8926OarQTvhb60a7JRCl6TNFkXCZAACZAACZAACXhEIPUznwTvaxS8Hk0pqyUBEiABEiABEiABEigkkPrZVF+ApF+7wJd2TTZKC69JmqyLBEiABEiABEiABDwikNrwHI9qrlxt+tXzfWnXZKMUvCZpsi4SIAESIAESIAES8IhAasNpHtVsJXjP86Vdk41S8JqkybpIgARIgARIgARIwCMCqY18EryvUPB6NKWslgRIgARIgARIgARIoJBAaqNzfQGSfsWfdk0OlhZekzRZFwmQAAmQAAmQAAl4RCC1sT+W1vTL/liWTWKk4DVJk3WRAAmQAAmQAAmQgEcEUhv7EzyWftmfYDmTGCl4TdJkXSRAAiRAAiRAAiTgEYHUJj4J3pcoeD2aUlZLAiRAAiRAAiRAAiRQSCC1iT/5cNMv+ZP/1+Ts08JrkibrIgESIAESIAESIAGPCKR+7s+JZ+kX/TnhzSRGCl6TNFkXCZAACZAACZAACXhEIPXz6R7VXLna9Itn+dKuyUYpeE3SZF0kQAIkQAIkQAIk4BGB1KY+Cd4XKHg9mlJWSwIkQAIkQAIkQAIkUEggtelFvgBJvzDFl3ZNNkoLr0marIsESIAESIAESIAEPCKQ2uxij2quXG36+TN9addkoxS8JmmyLhIgARIgARIgARLwiEBqs0s8qtlK8J7hS7smG6XgNUmTdZEACZAACZAACZCARwRSm/skeJ+j4PVoSlktCZAACZAACZAACZBAIYHU5pf6AiT93Om+tGuyUVp4TdJkXSRAAiRAAiRAAiTgEYHUFpd5VHPlatPPnuZLuyYbpeA1SZN1kQAJkAAJkAAJkIBHBCh43YOl4HXPjneSAAmQAAmQAAmQQNUIpLa8vGptFTaUfuZUX9o12SgFr0marIsESIAESIAESIAEPCKQ2vIKj2quXG36mVN8addkoxS8JmmyLhIgARIgARIgARLwiEBqqys9qtlC8D59si/tmmyUgtckTdZFAiRAAiRAAiRAAh4RoOB1D5aC1z073kkCJEACJEACJEACVSOQ2npG1doqbCj91Em+tGuyUQpekzRZFwmQAAmQAAmQAAl4RCC19VUe1Vy52vRTJ/rSrslGKXhN0mRdJEACJEACJEACJOARgdQ2V3tUs4Xg/e1kX9o12SgFr0marIsESIAESIAESIAEPCJAweseLAWve3a8kwRIgARIgARIgASqRiA1aWbV2ipsKP3kCb60a7JRCl6TNFkXCZAACZAACZAACXhEIDVplkc1V642/eTxvrRrslEKXpM0WRcJkAAJkAAJkAAJeEQgte01HtVsIXh/c5wv7ZpslILXJE3WRQIkQAIkQAIkQAIeEaDgdQ+Wgtc9O95JAiRAAiRAAiRAAlUjkNpudtXaKmwoPedYX9o12SgFr0marIsESIAESIAESIAEPCKQ2u5aj2quXG16zjG+tGuyUQpekzRZFwmQAAmQAAmQAAl4RCC1/XUe1WwheJ842pd2TTZKwWuSJusiARIgARIgARIgAY8IUPC6B0vB654d7yQBEiABEiABEiCBqhFI7XB91doqbCj9+FG+tGuyUQpekzRZFwmQAAmQAAmQAAl4RCC1ww0e1Vy52vTjR/rSrslGKXhN0mRdJEACJEACJEACJOARgdSON3pUs4XgfewIX9o12SgFr0marIsESIAESIAESIAEPCJAweseLAWve3a8kwRIgARIgARIgASqRiC1001Va6uwofSjh/vSrslGKXhN0mRdJEACJEACJEACJOARgdRON3tUc+Vq048e5ku7Jhul4DVJk3WRAAmQAAmQAAmQgEcEUjvf4lHNFoL3kUN9addkoxS8JmmyLhIgARIgARIgARLwiAAFr3uwFLzu2fFOEiABEiABEiABEqgagdQut1atrcKG0g8f4ku7Jhul4DVJk3WRAAmQAAmQAAmQgEcEKHjdg6Xgdc+Od5IACZAACZAACZBA1Qg07Hpb1doqbKjnoYN9addkoxS8JmmyLhIgARIgARIgARLwiAAFr3uwFLzu2fFOEiABEiABEiABEqgagYbdfLLwPkgLb9UmmQ2RAAmQAAmQAAmQwGgm0Ljb7b4Mv/vBg3xp12SjtPCapMm6SIAESIAESIAESMAjAo27+yR4H6Dg9WhKWS0JkAAJkAAJkAAJkEAhgabdf+kLkK4HDvSlXZON0sJrkibrIgESIAESIAESIAGPCDTt4ZPgvZ+C16MpZbUkQAIkQAIkQAIkQALDLLwUvK4XBC28rtHxRhIgARIgARIgARKoHoHmPe+oXmMFLXX++gBf2jXZKAWvSZqsiwRIgARIgARIgAQ8IkDB6x4sBa97dryTBEiABEiABEiABKpGoHkvnyy899HCW7VJZkMkQAIkQAIkQAIkMJoJtOx1py/D77hvf1/aNdkoLbwmabIuEiABEiABEiABEvCIQMvePgneX1HwejSlrJYESIAEqk8gmxsQqauTWKSu+o2zRRIgARKwINC6912+MGr/1X4l252/sF0aG1KSqk9Y9ivd2y+LFnfIshPHScSHZywtvJZTxAtIgATCTGBwUKQ/m5N0X07S/QMyODgoDcmYpJJRicfqJFJH8Rvm+efYSKCWCLT+wifBe+9wwfvJZ3PlyNNnyH8/navw7TJpIznnpAMkHouWxHncWTPlhdffV38b29YsO229oZx85B7q3xcu7pQNdzpuqftunXGarLfGD41NDwWvMZSsiARIoJYIDAwOKjG7uKtf+jIDkhsYHNb9aKROkvGIJBNRqY9HYfhlIQESIAFfCQRF8B5+6hXS1JiS6WccJl/MWyB7HHGenHPi/rL9lhuU5DP7tkdky03Wlm98baK89d5f5ZgpV8t9158jq668oixY1CEb7Xy83HDpyervukwcP8aW5djuhFDw2iXF60iABEJDoC+Tk+7erLQ0xGXe4r6K48LWWyIWkYZkVOoTpa0XoQHDgZAACQSaQNs+d/vSv8X37DvUbntnt2yw/TFy9+yzZPVVvqv++/SZd8kX8xbKNdNPsNW/TXc/UfbacVM5fN/thwTvnDsvlm9/Yzlb97u5iILXDTXeQwIkUJMEsrlBWdTZLxn46orIhNakfNleWfAWDjQWiUhbU0wScQrfmlwA7DQJ1DiBIAjej//zmexw4Fny0kNXy4RxbYroXQ8+I489/bo8ePN5loThBjFp39PluotPlI3XX21I8G6ywU+kraVJvrfS12WnrX8mrc2NlnU5uYCC1wktXksCJFBTBOCPm/fRHZCevqxyXcC/61IoeBFDAUsuCgTxEk1ccryJeEQa62OSjEV8Cb6oqUlgZ0mABIwRaNvXJwvv3V9ZeN//80ey77HT5Y0nrh0Spfc/8ZLccOdj8sIDV1Uca1d3WvY7brq0tjTJrVeeJtFoRPDfZt7yoMCFAf/88JOvyPixrXLfDdMkmYgbY0fBawwlKyIBEggSgYGBQSVyszmR3v6cwGe3uEDwLujoU64KCFAbHBDBVfDfhUjO31d+VLgPfr4IcGNwW5Bmn30hgXASGLPvPb4MbNHd+wy1qy28Lz88UwlTFDsWXmRpOGHqLOX6cOesKdLW2lRyLNoCfO91U2W1H65kbLwUvMZQsiISIIEgEIBVtwcZF/pyksnBwltasSIGbXxrUiCMtbiFywOuhvhFoBosvr2ZnPT05tR/L1UQzBaL5n18kd2BwW1BWAXsAwmEk8CY/XwSvHd9JXhL+fBecNWdMm/+orI+vLjn2Ckzpb8/Izddfoq0tpR3V+ju6ZV1Jh0pt111uqy7+srGJpKC1xhKVkQCJOA3gd7+AVnYae2TWx+PSHNDTAnVzxf2Vuz22OaEwNOhI50V1F+pQOyObUkqVwcWEiABEjBNYOx+95qu0lZ9C+/6xbDrDj3lcmlpapALTz9UPp+3QPY68vyhLA0dXT1ywPEXyWH7bC+TNltXetK9stth09T9M849RhpS9eqf8fxdftnx8vKbHwhE7vpr/VDisZhyb3j0qdfl+QdmqDZMFQpeUyRZDwmQQNUJwHo7MJD30e3qzUomW16Qah9dnWkB149pStgKWoPFFz67sAqn+3OqnUo+vrFonTSn4spCHI0yn1nVFwYbJIGQEhi7v0+C987hghduB0hN9unnXyrSO2+zoUw7+UCVh7e9o1s22OEYOXvyfrL3TpvJ3C8XCbIyFBfk43310Wvk2VfelSkX36KEMQr+++VTj5L11jSXgxf1UvCG9EfBYZFA2Akgb266Lyv9mUHldlCuQOgqH91onfLHhThG8BqK0ywN8NeFiI1ERDLZfLsQ3OVKUrlF1ClXBwrfsK9Ijo8EvCcQFMGrRwoxi3y8jQ15q63bks3lZMHCDnX7xPFtUueBbxgFr9vZ4X0kQAK+EIBVF/653X05UT635Xx062Qod25/ZkBZZnF9YXEqePW9sODWJyKSjEVVRoeudLZicBuuTyWi0piKMbjNl1XDRkkgHATGHfArXway4I69fWnXZKMUvCZpsi4SIAHPCCDLQk9vVjp6spZtQIzCpQBW4IWd/WWvdyt4Cysc0xSXeCyiDrLo7i1vadb3tKTiSvh6YMCw5MILSIAEapsABa/7+aPgdc+Od5IACXhMAMbb3OCg9PXnT0YrttAWNo9UYtrXFkK3O51VWRoqFROCF/XDggsfXyV8VbsDFfuK09uQ1SGVjEksUkfx6/E6YvUkEBYC4w+8z5ehzP/lXr60a7JRCl6TNFkXCZCAEQJwU4C4hRsC3BHgd1uuwEcXeXAhNnO5fIox7aNr1RlTgle3Ax9f9AMCGP3vhdtFhUS+EOlwdcjnAY5Q+FpNGP9OAqOcAAWv+wVAweueHe8kARLwgACss13pjEoBhn8uV6IR+OjGJBaLSH8mL4ytLLrFdZkWvLp+CF6IXwStYQydPRkLH998MFxjfV74spAACZBAKQLjD/LJwns7LbxckSRAAiRghEBuIB/8ZccPtqkeAWBxlaXBjk9vuQ56JXgL22tKxZS7A1wdkArNquDa5oa4wHLNQgIkQAKFBCYc9GtfgHx5+56+tGuyUVp4TdJkXSRAAo4IwEc3OzAgff0Dyke3kkUXvq6JeP5Es/7soOX1djpSDcGLfkC8NtRHVVYHnAJn5eMLV4eG+pg6wAJ+yV6k6LHDh9eQAAkEi8CEg30SvLdR8AZrJbA3JEACNUEAPrrws9XpwioK3SUpvRDohev6Mjj4oXIwml0I1RK8uj9ww4C/LsQ74umsfHwjdfn0ZxD68PWl8LU7s7yOBMJJgILX/bzSwuueHe8kARJwSABCF3628NGFaEWqsTJpdAVWThz/C+so/HkhkCsJY4ddUZdXW/AWCl/47EL8wk3ZyscXYl+f3gbfYBYSIIHRSWDiIff7MvB5t+7hS7smG6XgNUmTdZEACZQlgON4F3X1V0zXpW+G0IXrQldPVh0w4VXxS/AWjqchGVE+uzhMw44/Mj4ExjYnGNzm1aJgvSQQYAIUvO4nh4LXPTveSQIkYEFgYCCfJgxiDinGKhVYMPOZCmLSuyTvboUkDUbYB0HwYiDaxzeViCnfZDBDirVKjhtIxQY3h/xRx4xwM7IgWAkJBJzAMoc84EsP5966uy/tmmyUgtckTdZFAiSgCAwMiPRmcioYLd1fOTNBXB3TG1UuDNncgHJfqJS71iTioAhePSbt4xuPRpS7Bz4UKqVaw2ltSvTG8+4R8PllIQESCC+BZQ71SfDeQsEb3lXFkZEACTgmoP1xO3oy0tOXLeufi4qVj24qJpEIfHRz0pcZNO6jazWAoAneQuGbiOFAiry/bme68ilz2se3MRmTZCJC4Ws18fw7CdQoAQpe9xNHC697dryTBEiggACC0BZ29sm4loR0dGekN1P6dDTYICF065NR6U5npLuv/ClqXgMOquAtHHcqEZGWhrj0ZQdUcFvOAhe8G8Y0J9XBFywkQALhIrDsYQ/6MqAvbt7Nl3ZNNkrBa5Im6yKBUUaglI/umKa4yqiAfLO6QOTGYnWSiEbUMcBwW4AF2GsfXavpqAXBq8eAID64LSD4T6Vmg49vBSdfnPKG3L/Kx7cOuXytaPDvJEACQSdAwet+hih43bPjnSQwagkgPRiC0DIZ+OgOD0aDNRKnpukT0/JH7EaU4MrmBlXuWeSgDUKpJcELXtpnFwF+KMhjjI+LSjjBHkIZ/xuNRoS6Nwgrj30gAXcElj3cJwvvTbTwupsx3kUCJFCTBGCRTfdmpac/pwLMSlkYm5JRiUTrlF8uMi5ApfX0ZtXpYghmC1KpNcE7ZDGvE0GwH05jgwsDrOmwmpcrOLACAXGw+uZzG1P2Bmkdsi8kYJfAcoc/ZPdSo9d9ftOuRuvzozJaeP2gzjZJoMYIwILYnc5KV29W4MZQqTTWR5XPKazA7d0ZZYEMaqlVwVvIE0IWeXnx8bG4O2OZ51j5UDfEpTEVo7U3qAuT/SKBMgSWO8InwXsjBS8XJQmQQIgJwIqr/XHhO1reggiLI7bOI4LsArnBAVncmam41R4EbGEQvJojgtvgH40Pkp6+AWWBr/RtEo0iS0Zc+fhqF4kgzAn7QAIkUJ7A8kc87Aue/924iy/tmmyUFl6TNFkXCYSAAOy3OPQALgnIpQs/0bJCV7BNHlF5YFGQqaE/m1MWxMVdmcDTCJPg/Ur4RiUeq1PWWxxgAVeHSjZ5zF1bY0L5ByNVHAsJkEBwCSx/pE+C9wYK3uCuCvaMBEjAMQFYB+G2ALFrddIXhG4jLIqD8CHN54nFPyOvbmtDXBZR8Drmb+oGiFfl45vM5zmu5OMLjdvalD/aGAXuKDH4SbCQAAkEjgAFr/spoYXXPTveSQKhIQD/z46efiWMKqW6woBhBWxtjAkCodq7+yVbdGKwElCNFLxBWRzQrmOaEqo7pXx8cWhFa0NM2nsyQ0GFyOqAOaTFNyizyH6QQJ7A1456xBcUn12/sy/tmmyUgtckTdZFAjVEAEfXwoqLbW+c5FUpGC1vMcz76MLf09JiSMEbuJWAuUMu32IfXwjellRe8BZ/7DThgJB4RGJLcvkGblDsEAmMMgIUvO4nnILXPTveSQI1SQD+nPn8uVkVkAZXhHIFQhfWPmyPo2if0EoDxz1tFLyBXRspzOcSH18cXoFgRKQ3Q0aNUgUWewTDYR0gwA2WfRYSIAF/CKxw9KO+NPzpdTv50q7JRil4TdJkXSQQYAKDgxA3g9KZzqeuQtqwskJXIHTzUf/Qw8iji3us3B1QX17wJmRRV3+AaeS7FsagNTvQMUew1MPHFx8zWAqLu/orZ3WI1Kl74OMbj9HH1w5nXkMCpglQ8LonSsHrnh3vJIGaIYAUVR09+WA0q5KI1klbU0Jyg4NKBOUcptGFmILP6MJOCl4r1kH4O/x0J7Yl83l8u/ql10beZFiJWxpi6uQ2FhIggeoRWOEYnyy819LCW71ZZkskQAKOCEDAIEVYX2ZQutKVU4Rh2xpWO/h4QrBandxVqSO4HwchLOqsbDF0NBiPLh6tFt5CnBC8zamYOiIa849/R6YO7AZU2gVAHbgvmYiqrA5wdKC3g0cLldWSwBICXz/mMV9Y/N+1O/rSrslGaeE1SZN1kUAACCihq3x0cdxs1mKbOn/cLHw6kay1b0ne1pEMQwve9q6MZC1OZRtJOybupeAVScTyrg3I4ICCIDXk5oWvLoIa4etdycqP62DxVYeOxCM8ttjEwmQdJFCGwNeP9Unwzqbg5aIkARIIEAEI3Y6ejLLMVfTRrROVQxfWOVzX7cBH12q4sPQhryuOIkZQVJALBS8C0iISj0bVutEFc4iT2ODDjewcWFfdfdmKPtzYJYCLQ1N9fl1FaO4N8tJn32qUAAWv+4mjhdc9O95JAoEggGA0BJQhyh5ZFKyK8r9sjCsRgzy6po2wEEuoHwcZ2OmPVX+9/DsFryiBOih16qOnVFHz2RBXWRqwXuz4+OaD2xLK6stCAiRgjsA3jnvcXGUOavrkmh0cXB3MSyl4gzkv7BUJWBJAIBqELk45w/GxlQr8MpFSqj4ZVa4LEDdeilEENNlJYWY5SI8voODNp5Dry+Yk3Vd5DamT2+pjggx1Pf05lc7MKqAR9zQ3JFQmCFiMWUiABEZGgILXPT8KXvfseCcJ+EIABwfAPxc5dPv6c9CvZQuErg5EgiW3N5NTll2vCw4ygP8ugt+CXCh48wGG+ADCerJTIF5h7YXHwsAAxC8OLal8Jz62dC5fnt5mhzKvIYHSBL55/BO+oPnvrO19addkoxS8JmmyLhLwkABORoObAP4/kxuw9KeENQ5CA5kaYAGGr66dPLomhoATuvInelHwmuDpZR3jW5LS3tOvsjI4KXBbSMYikkxE1L3I7FBpfcGnV/kFJ6LKUgyfXxYSIAFnBCh4nfEqvJqC1z073kkCVSEAH12kFuvo6a94KpruDARFa2M+zVRnT+UsDV4NAL6bEDgUvF4RNlfv+NakLOjoc/0xBN2K9GQNOJ64q1/SFu416DmC25obotKQiJkbCGsigVFA4Jsn+GThnUkL7yhYXhwiCVSfACxlsJAiTVh3b8bS+oZt4mQ8olJK4cCI7t6cLXHs1cgoeL0ia75euHXMH4Hg1T3C4WuN9TGVkxcfW/DhrnRsNe7DDgSsvUiLF4vU8dhi89PLGkNG4FsnzPFlRP+ZuZ0v7ZpslBZekzRZFwkYIADXA+0OgIC0StvEELqN9fCnrJPcAHx6BwKRCgzCOxKhhdfAcvC8CtN+zPDxxccXXB4GB+tUOjMr4YtDT3AP/M0hmFlIgARKE/jWZJ8E79UUvFyTJEAChgjojAvw0cUWMSxk5VwCEDDUBB/deEQFrmEb2epULEPdtFUNBa8tTIG4aGJrUua19xnvi951gIhFPuauNA6wqOwnDLGbiOPkt7g68Y2FBEhgOAEKXvcrghZe9+x4JwmMmAD8c2HNhQsCgn50gdVWSuRGhQZIxKPS2pD30YWIMJ1Hd8SDEpzeFlGChT68Jmh6W8fEtqTMW2xe8OpeQ7Y2paKSSsZUwCUyQlitWXzQwT2iKRXnkcXeTj9rrzEC3z7xN770+N9XbetLuyYbpeA1SZN1kYBNAhC6sHrpk9GKb4OFFNYuLYL1NjEsuvmT0fz10bUapt7SRj+DXExv5wd5rKX6Bu+BcS3eCl7dLtqCiMWHEHJI4wALq8wQkQh2MuIqEwROfGMhgdFOgILX/Qqg4HXPjneSgCsCSNivD34o59sIwQi/xv5MTuU8hT9sNpsXCVb+kK46ZfimvGCvk64aELwmArYM46tadYlYnbQ0JmS+By4N5QYBEVsfj6qANXz4YU1b5QDGWsL1jam4OsSChQRGK4EVT3rSl6H/a8YkX9o12SgFr0marIsEKhCAUO3oQcYFa39bZDlobYirwxvgtoB7rfwfgwRfCd5YRPU9yAUWXqTkstpiD/IYRtK3VCIi9YmYLOrqH0k1ru6F8IW1tyUVF+SYxlrBrkelguvzxxbH1QchCwmMNgIUvO5nnILXPTveSQK2CECodvVkpNvGIQwQARAAELywfHV0Z2pSjKkUaYmIdPRUzjJhC6CHF412wQvhCInZ2ZPxkLJ11VgrWPf9OftrviEZk+ZUVOX0ZSGB0UJgpZP9sfB+fCUtvKNljXGcJOCIAFKJIcsCMigUBqOVqwRby3m/17yPLrZ4cYBEZzojOXsnvjrqn9cXY/sZIqYzTcHrNeuR1D+2KSG9maz09AVjkeGEPrgsYEejD8dg2zj9raE+KqlEPpcvDjthIYEwE6DgdT+7tPC6Z8c7SWApAhC6eFGrxPsZa9cFHM1an4SFqk4JZPjsQuBi6xapySCWa8FntxgERAsscBDsQXYXGO0W3nEtiSVuNs6OFfbypw/NCr91fATC/GzHxzefvQTHHOdPb6Pu9XKGWLefBL5zym99af6fV2zjS7smG6XgNUmTdY1aAvngm5z09OZU5Dl8EisVCEJErMOFQfvoFgpDvLCxxdvTn7WMZA8idJya1QjBbiP3qp/9H+2Cd3xLUhZ29avUeEErELHRaP7DDz8nfPxZZXXA7wbZHPJW3/yBLCwkECYCFLzuZ5OC1z073jnKCeQ17aBkcyLt3X22tl9VkE5D/vjVrnRGHRhRruBFD9cGWH5rrcCtEocHwKUhyMF2o13wTmhJyvzOvoqn+QVh7cE9Br+HXG5Q2nvsrSkEtbU1xlWQGwrFbxBmkn0YKYHvnuqPhfejy2nhHenc8X4SqEkCEHHItoCjf3sriFY9OLXdGsun6lInqPXmVLBQpVLLghfWudbGvOANskvGqBe8rUmVksxqLQblR4oDWeAfDuHbBxeg7IClWFduDsn8fTy9LSgzDD7/wgAAIABJREFUyX64JUDB65acCC287tnxzlFIAFu/cF3o68/nDq3kugC7El62yXid4P/g2wt/RAtvhyGq+nhhqxylQZwG5ZLREFf5hil4gzhD+T7V4sEbysc3HlWHUUCpQ/TiBLdKoh33JNU9UUnFIyqvNQsJ1CKB7532lC/d/sdlW/vSrslGKXhN0mRdoSWgfHT78wdGZHLWohXWJOV7KMi9m1U+kk7dJHE/BHXQTysrN+lw3cDRwhS8wf1ZeH2ssJcjh2aFcEW+agha+Pha7bbgOlh5YfFFUCWFr5czxLq9IEDB654qBa97drxzFBCA1QiuC4u7Muo4VKsClwX4DeLFCqE7EussXsoI2unsCfbhDTUveDv7ZMB6aq2mvub+jjU6sTUpcxf31VzfizuMD8yWxphE6+pUEF42i09N6zK2JalcjRjbZs2KVwSDwPdP98fC+/dLaeENxgpgL0jAMAFYJfM+ujnlilCpwNKEABmcLgaLEbZYTVhlkZcXVig/TsEygbNWLLyLu/sto/9N8AhaHfg4G9MUly/bq3/Kmlcs8JGI3w2KTg1otbMCDk31MYkjD3akjsFtXk0O6zVCgILXPUZaeN2z450hJAChi0C0fE7cymY/WIUaElH1osznC4U4tnZ3sIsNJ6e2NCZkYWdtCpJaE7wQPvlUVnmxZJUCy+48BvU6CEMc9LCgozbXVzmued95fIBGkd5afbjCx9dK+OKjFbl/kS4QWVRYSCCIBH5wxtO+dOvDS7bypV2TjVLwmqTJumqWgDr+Nw0fQLwYBy0Dy1KJiHoxwje3I+3OR9cKFoTXmCYKXitOI/k7grZg4UXu1lQyqtYACoQg1oIJS/1I+uflvRhvIlqn0nyFsWh/3cZkTGKxOiV6sWNjVSB2kQYNa4Ant1nR4t+rTYCC1z1xCl737HhnjRNAINrgYJ0SNhA9VgWWI1iA2poSkl0ikEfio2vVHv4+trmWBW9cWcuDHrQGP+l0X1b5XBdm0EDQILbIYWHP5Ox4hNqZ0eBcA0GHAXf1WovA4PTaXU9gvUfWEBz4sqgro6y+dmYUv3XtquSuZd5FAmYJrHymPxbev11MC6/ZmWRtJFAFAhA1CECDWEXWBauDEeCji+1fHHeKkvfrrU6U07jmhCyoWZeGuPT2wz3EjrSowsQXNIEPl1QyplwY8LFTLrpfn4iHEeDDCG4uwRuNO3bNDTEl/KwyG7irPZh3Yd4b6iH08y5ImE8rV4d8TumE+v0zuC2Y8zqaekXB6362aeF1z4531iABWBtVarElSesrDQEvOmz7wrcPItkPwQPB29GTqUkLI3x44QsdJEGlhG4iqkQrPlpg5VR8LUQ5sgAowSPIw5z/WKr1AotnUD9IvGaL+cRHLI72RvKVnt5sReELSz+sxLgW7g64nye3eT1LrL8UgR9OecYXMH+9aEtf2jXZKAWvSZqsK7AEcDJTZzqjhIqVRReDSCXzGRKQ3qi7L28FtntghEkIbU1x5RKgfUtN1u11XSqP8AD4+b9lDssc+gPRUpgXGS4jWBdWghesUAei+FsaMScDak5sZKrzGrPr+iF4g+5y4npwNm6EixJy8kLA4mMGOzflDrDA2lHW8MyAugcfwfhv+F8WEqgmAQpe97QpeN2z4501QABCtyudsSW6lI9uHKmaEkoYd/ZkJOuzIU8dpRqPyqIadGtQeYQjdep4Yb8K5hSCBiIVArU4CM2J4C0cg6qzIS4d3fmPqFp0c8DRz0E/Ca9a6wZJGVpScXUS2+Ku/mFzip0erB8cB44di8ICKzE4RiPM5VutuRrt7fzoLH8svH+ZTgvvaF97HH8ACcAS25/NH//bg6wLFk562kc3n7+zbklasmBIGB0kN68GDweA1QxM27szVV8lsMZi2xmZNGCdLyfs3ApeDAhiHvXjf9PwVbbhD1p1EBUaVII3nVUBmCx5AtpnG+tHHR++RODCmosPplKsVHpC+IPD/SnKPL5cS94SoOB1z5cWXvfseGfACCDrAqxt8BntzSBVWOUOQujmffMiShThgImgBVihjxPa6mXuot6A0bbujs5piqj4ahZE1UNoQ8dhPRRb5Qr7AsELMTwSn1yIHIh7CF/Ugxy+tVBwIiCs73ZcfGphPCb7iLWLPL7I4KFdmdp7MhXdmjD/Krg1GZNkjMLX5Hywrq8IrHL2s77g+POFW/jSrslGKXhN0mRdvhGAuEHwUW9f5eAT3UEIXfw/RG66f0Dg+hBEOxe25JcZUy9f1KDghRCEFXF+lQ42UNvSDXE1xVrIWfldQ/AiJRnWwEgK5kmd2KVyt4rKzWzHL3gkbY7kXvQX/uHwZ6bgLU1S+/iqZ0V9TO38YF1ZrSl98mJzQ1ztMrCQgEkCFLzuaVLwumfHO30mAIsugoY60hmVK1NZ1yoESOW3HqNKlGD7GQK5FoKOlh+Xkv8tSPtM23nzsHjh6FqvBS/mFUfDYm6RYqwvY//TxZTgLaQDjTNGCen8QQdB9BjQfqn4DVjthDif+XDdgUNmYMGH0MUJbvDlxa6AnXlNwMe3IS4xZHUIFxaOxicCq071x8L7pwto4fVpytnsaCaAk9AgWJEmDNvHeBFB7CBNEF5ExQWWN2xRJuP5l5ZKS1ZDBwksN7Ze5i3urQlxXsgeL/ixLQnPjq6FoNZ5VbEeYIFz+gHjheAFg7y7TEwgeFQ6u+xAoA7gQLYJ5OGFf7Ud4TaanzfYpUBWDgQ84lmS99vO+/hiXq2eJfggw7MH6fAgmHl622heTSMf+6pTnxt5JS5q+NMFm7u4K1i30MIbrPlgbyoQQPCZThavha6+PBmvU9kMOguOScXLCS8ZpA7KIIgtM1jRnzOo8HH8LVJnBSmfrV1W41sSxi28ENJIG5eIRYcOELESHeX665Xg1e3ptFfY2s77lwfD4ovfBD4SkYmEgrfyah7bnM/wUejfH4/hYyui/HzzuaZzlsIXreSfR3XqYyiCryIWEnBI4Mfn+CN4/3g+Ba/DqeLlJOCOABLDI59rLlf6ZCT4i8JVYXF3Rm0d6hyZEMgQikE+3taKSAuOgIVfaIGYt7onKH83LXjxEYNgK4gMWNxG6n+KurQft5fMIHwb6qOSjEWUH+hIguRM9BPBVfh/Oz6pJtqr5TrGtSRUqrJSuwc6UA0fD5kcUhlauzqofM7RfAYRCGCe3lbLq6P6fafgdc+cFl737HinxwTyrguDsri7z9LPEEIIvnIQQHiRQ1BYRVV73H1j1TfAmhlHftDqZjswMQBTghfCAie3YZ7nt/cbCzDEdnX/ksBFE+O1qgMfY+NaEypI0k8fcvik4iPRzxzJVqyC8nfssMzv6LMMVoOLSIM6wCKf79mO5Rxid2xzUs0FLb5BmfFg92O1af5YeD84jxbeYK8M9q7mCMDHFkJX5dDtwzaidfQ8XhbwlcQ2IawsYQvEwfGnrQ0JWdTVX3PzOVLBC4GLbeM4PmLgs92XMyZ2AbPagldPICx7EJ3IF638QC2ONjY98fk0avBnr40UaqbHb7c+HETTnIo78kPXJ/phXuFbbuVuA9GrXEyUj28+vR0LCZQjsNq0532B88F5m/nSrslGaeE1SZN1uSaghO7AoApCUwFpGesXsc5/ClEEoRuLRNT9fm8Xu4ZQ5ka8EHH628IaPG1tfGtCWWSdFogx7X+N+YTbgdOANDtt+iV40bf8gSdRqcd2uHa9sWMWtDMwi2sgeNE+skiwlCcAqy0Si7U7dCfKB8rm3Uaw64Tnkp2PGghe3KdPKeTckEAxgZ+c64/g/cO5FLxcjSRghABevAgMyQ0MWG4dwv6htrdjSBGUDybBS6WpPrrk5WJtFTbS6SpV4nW2Ay+Hge3gL9v7HDWBAERY1XBKHiz9I/XTrdS4n4JX96vQD7SrN1uV4ETtO0rBW3lpIqgRO01uA0YxtwhSUyf+5eBmZZ3HFx+4+VP84gJ3JmSfYSEBTYCC1/1aoIXXPTveOUICsOrCcreo055Ppj4ZDS8PiKHCjAzoSv7UtLqaDO6yQgnXgAXgZD/FrFWVVfk7BO+Cjj5b/oyYO1iyMcQF7X1GXRfKDTYIglf3TX3YNCcELiwLO5Ej2rvJpuC1t/yxQwFXopwBQ7j28cVBJ102fXzRS/wmmM7M3nyNhqtWP88fC+/702jhHQ3ri2M0SACCDTkt4dcGf0wIXqsC/zZYSbD9i3thCS4l/ODH25iMqYhq76SCVW+9+TuEEFJIWfkDetO6+1oR4Y5+VzqyOZ/eKaKOcc3nVq6ehR6CF5Y3CJCgFLBIJaOSHcjnm/bCRQf140dSK8cg+zU3y4xJyrzF1gFrTvqXD76MqLlVfr424hR0/l8Er+KfafN1Qjxc165+3gu+DOj9aZv60q7JRmnhNUmTdZUlgFPRkBpM++jaecgrH7hERL0cELBklbxfR/Ijm0HYBC+Emc7jWkvLrK0pIf39WekpIWIL8ySrAMVM6ZRzXo43iIIX480fVpAPxMRHnl0fULuslPsPBC99eMsiQ4zA2JakzPXgWG/t44sPj0w2/1Fj58NGBXEm8odYwBDAMvoIrHG+P4L39+dQ8I6+1cYROyaAo0s70jjydUAGcoOWYhSuCxAiSNOjTkVb4qNr1bAO7sIWZK1t/VuNrSkVlcEBUbmIa6k0N8QFk1Gc/gqR7Piggc8qPoS83L6vxCuoglf3Ge4NCMaEVRAffF3I8zrCBQDrYFNDTP2uYFFnKU0AeZOxRr1MB6hPC4SbFj7Sy+X7LewhfHqxLpKxqLQ0xnhy2yhbwBS87iecFl737HinBQFkXejEgRHppY/7LXUrIvObUnG1vQ1hB9cFpwX+bul+90EmTtur1vVgAks3BGItFfhVw9VEiwYIiDHNcWVZDMJBGhCSWKdBcmkoN7/4SABPHK5ixxpYrh59MEvfEstiLa2navYVawNuJT1VcnfR84sPwMXdpQ+6KDX+xvqoem4ynVk1V4d/ba15gT8W3vem0sLr36yz5UASgGUVKcKUNSqdVWKiUoFVFiIIoigejQydVuR2cAgMwQs9CGLK7RhK3YftbfCpNcELoQ5rIgIMsRWL+daZNUzycVsXRAbcbWpB8GKM2GbX1kD4v0P4Ot3NwBy0LMmCge10ltIEYP2Hq42ddGImGTanYFmOSj+eo/DzxRxbNJA/yS+m3GDwnGBiB5MzEqy61rzgRV869N7Un/vSrslGaeE1SXOU1wWRC8sdcujiJCmrAjGEvJPwS8N9Vj66VvXh74lYnWAbfUGH89yvdur36xocSYvDF9xYvf3qM9pFWqWWhrhK66SCFAMmsGpN8Oq5xEci/DjxdQe3BCcWX7gMYU60O4mf6yPIbSNQtN2BpdXkWHSqOnwkwt0HMQy9GeuPk8L7cC9L+AisdaE/gvfdsyl4w7eaOCLHBPBAbu/OqOALO76YsFK1NMaVJRYv3fx9jpsteQNe5uNanOd+NdO6d7WoTAaJSM1YrvHibVripwtr0/x2e6nJvCNYuuZaFbwYjc7X2tYYV1vv8O/F/1oV7SPv59HGVn30++9Yv7Dw+h0PAF9dWGxh1cd84zkLlwerEqmrk2hUpK0pf2wxS3gIBE3wzl/YLo0NKUnVJywhp3v7ZdHiDll24jhfjtKmhddyinhBOQLYSoWvmd1Ib1hyYVnCA7gbuSjT5gNm8GhfZky9zF3c63irN8gzjbRsiNhHii8bmsa3oYA/tlXxQdOVzki6b0AmtOVTOwWx1LLgLeSJjyH8thAc2Gtx/DKCQTHuju7wZTMxtcawhmEhhcAMSsGOGOZYGxjsfNyg73AXG9ecpJtDUCZyhP1Ye7o/Ft7fnTXcwvvJZ3PlyNNnyH8/natGtMukjeSckw6QeKz0zsJxZ82UF15/X107tq1Zdtp6Qzn5yD1GSMPZ7RS8znjx6gICsDPg0IhKkd7aR1f7lmFL2+tt+QmtyP2atbUFWCsTqi2mCAC0+6Kr5tj0MbmpJI5SFZVdQ1uilmlLylwKXs+nA0GfsARGoxHpRZq3MtlN9FoKkpjzHI7DBuAuAgupFx/lDruy1OUIXIT4RU5uldIsW9mPG89euGfwxLaRkg/G/WtPf8mXjvzurE2GtXv4qVdIU2NKpp9xmHwxb4HsccR5cs6J+8v2W25Qsn+zb3tEttxkbfnG1ybKW+/9VY6ZcrXcd/05surKK1ZtPBS8VUMdzoZgcSxOOaVHCqtTfRyBSvkDBRBkUw3rJALXIlIn7T3Bsc6MdPYhKOGb7EcQjVXf8fKFNWxgMH+YSPHhGBS8VgTN/h07KJgPCFv49hYfLkHBa80bohIJFLFDEcSC5wEstxDmeKYisK3cISL4CIJ7Bks4CKxzkT+C950pXwne9s5u2WD7Y+Tu2WfJ6qt8V4GdPvMu+WLeQrlm+gm2QG+6+4my146byuH7bm/rehMXUfCaoDiK68CDdkHn8JOIEDjW2pjIn4q2xNLnNJJ8JEix/d+cisvCznAFrmEbGoErQYmsB2dssSITBz4ukCe4lHdh0AUvPsjgzxq2AlHU1piQiLJUfpWqj4LXeqZxMAd2UhBsGeQCFyKcUAhRC0su8vgWn2o4rhlHEzOALcjz6KRvQRC8H//nM9nhwLPkpYeulgnj2lT373rwGXns6dflwZvPsxwO3CAm7Xu6XHfxibLx+qtZXm/qAgpeUyRHaT3IxjCvvVeNHpYlBCohYAIuBX5F5Ic1cA2CFxY7O6fUebkcIZhwQhQs+O1d1scdB13wwqc1zNv7cHXAiXf4UOpeklMWawn5fFmWJqDStjXEh06FrBVGeP7C0IDPTnWcNw75GRRZpq1eiWKWcBBY92J/LLxvn/mVhff9P38k+x47Xd544lppbW5UYO9/4iW54c7H5IUHrqoIuqs7LfsdN11aW5rk1itPUy5Y1SoUvNUiHeJ2YB2DyITQxbaakxRJXmFBoBT8i+1ENHvVB9P1+i14EXSognniUTXHcK+w46Ky7Jh6+cKD41lN8MUHGgR8mAWv5qQ+UuLwsR5UEdJeniBmYm78qmPIX77AD92vvrhpF79RzDXySyOHMD52WMJDYN2LX/ZlMG+fufFQu9rC+/LDM2X82Fb13+1YeJGl4YSps5Trw52zpkhba1NVx0LBW1Xc4WwMliOIXlgeq+m6UInmmCbkfs1JOuBbkk5WBAQvDvWo9jYrbEPwacSLFC4VELt20s/psQVZ8DYmoxKLRUaF4MV85E8zjKljafHBghMNg/KbdfJb8PJaCF6cXqYOzrHOAOZlV1zXjd8sfHzVXMfpzuAaZABvXO8SfwTvW2d8JXhL+fBecNWdMm/+orI+vLjn2Ckzpb8/Izddfoq0tuQtw9UsFLzVpB3StiB4v2wPVtopFWUdQZ5f86nP/JpG+OnBkl4uSNCLfsFtQfkO92M73J0AWGZMUuXhNZVr2eQ4IeTjo0jwgh3EHHZjUDC/PX25IVcHk2xrtS7sZGBdwC2rRvXuEHrkJMeHKkt4CARB8ILmoadcLi1NDXLh6YfK5/MWyF5Hnj+UpaGjq0cOOP4iOWyf7WXSZutKT7pXdjtsmpqEGeceIw2pevXPsWhEll92fNUmh4K3aqiD2RC2vRB0hC1Ot2lrYO2bG7AtaxzUgAd9NcWh1zNczdygeOk3qRRXdbKwo39EL/4JrUl1YlVxMI3XvOzUPxoFLw6qgH89MmpA9o5pScggDq5IZ5fKsGGHYdiuScbqVJBXrR9Pjm+aifDfxVcyS2gIrH+pPxbeN0//ysILmAg8Q2qyTz//UrHdeZsNZdrJB6o8vO0d3bLBDsfI2ZP3k7132kzmfrlIkJWhuCAf76uPXlO1uaHgrRrqYDU0MDCgFuzv//yRdHenVaTlRuutJo0N+S8vpwUW3qBkD0DfkUGgMRlTW9W1bqXRcwER2opjkz3MPgFRjY8FBMDAH9uES8iYpoT09meN1OV0XVpdPxoFL9x9YNUt9LXH9jd2EPAbVrldbRxja8W2Vv+OHQ2k2NMBfrU6Duxc4GOTJVwE1r/0FV8G9ObpG5VsF2IW+XjdaodqDoaCt5q0A9TWky+8LQ88/qLE4/lE9X/+8N9y9uT9ZatN1nbVy850Rm0BBqXAqoEXFyy8TvxNg9L/Uv2AxQbi0Yt0a3D/wEluED5wXUC6OVP+iy0NMRU8CJEVtDIaBe/4loQs6sos9btQuV1jCHiKSW5gQHp6c4E85MTrNQQLeE9/Tv0Garkw/24tz175vm9wmT+C943TSgveWqJMwVtLs2Wor//59As54PiLZfftN5F9d9lC6iJ1cs5lt8n3VlxBjjloZ1et9GZyaus7KAUvb6QWgsjyO42XKSZq+7nZvOBtTkXVFi4sWn395g8HQWAY3GWQkzloZVQK3takLOzoK/tBgw8rZOJoSuWzcdT61r7TNTe2Oa52hoLoc+5kLMjB3FDPgDUnzGrhWgpe97NEweueXU3fec9Dz8o+u26hUtcgRcjRZ8yQfXbdUiZttp40pJxvg2EbdH7H8AMo/AaECOWwbc8iibwJlwaI56GDIwYHZVGnd64fEJWwHAYx7+toFLzY5rbzW8UawQldsVg+r3aQsrB4+WyBBRy/sVrOXoEPfhwnnGCGBi+Xii91//TyV31p9/VTN/SlXZONUvCapFmDdc1bsFgOPekyQX68RDwmG6y9ipxy1J6STDg7ihKBb4u6+gPl+wcLFaw0CM4JS4HgRQBYdgS7rTh2FqfhIVCxB+4LWW+9nCF2ISyDKniDKsa9WrNK8Lb32fZtV+5BDTEV3Iq1gl0Ab1eMVyO3rhd+8rCM4oOglgv8d+H+hPGwhIsABa/7+aTgdc8ukHciGO3j/34uSAy9yve/LcsvO04ikfJpaTo6u+WN9/4iY1qaZe78RXLLPXPkoL22URGXTgpegB3dGeX/GZQCkYUHfpi2ZFV+4UxO0n3OFS8C0RSTWERF5FfLYgf/4OaGeCAPOlD5hRNRdUjJaCkTW5Myz2EaQZ3XFQcaQO2Gwce11HwjZVs8GszdCCfrE/ME4b4k+5yTW3ltwAn87Ap/LLyvneJMEwQRIwVvEGfFZZ+Q0HnWrQ/JnOfeUq4KsNgiEM3uWdWLO7rkpHOvU7n1rj7/WEe9gOCF2IXoDUqBFROBGzhRKiwWKbhpxHBKlkPO2JqG4EUQH9w8TAWk2ZlrfG8huwQCpYJWcPJYqj42ugRvW1LmLXZnwYSAgiBsaYxJNjso7T2Zmt76L16PY5sS0pPJSq+LD8ogrW089xAs6jbVZJDGwr4MJ0DB635FUPC6Zxe4O5F54aob75crpx0jP/jO1+Wa2x6WJ59/S+6YNUVWWG5C2f7CKpzN5uR3H3wol87+lewyaUM5cM9tHI8PJ5vlgz2CIS/hxwahB3FYy/54hROBtGEYkx3BAnGC7Xpcj7nxy9Kt54GC1/FPyvgNmIvxsPC6FLyFHcLHV0MiqoIRsb4C8rMfEbPxrchg0S+5GvaCwu++FQFrsMazhI7Ahle+5suYXj35Z760a7JRCl6TNH2sK5vLyR33PyVv/O4vMuPco6W1pUk++2K+nHHRTbLM+DFy+dQjS37t/+Nf/yfv//mfKjH0a+/8Ub737RVk6okHSDLpzIcXQ4flEOIyKPl4sQ3b1pSPuA7DyxiMIVgmtNbL3MW9ZVcbxl2/JFAMF8HyjrRgfhUKXr/IL90uAhUhhuDDa6JgbuGugjWHjA5wt6nlj8tl2pLq1Mhafl7g9Co89/CxyxI+AhS87ueUgtc9u0DdCReGB+a8LPc+/JzccuWpMn5sq+rfo0+9JpfOvleuuegEWevH31f/7X9zF8g/Pv5ENtlgdfnwn5/IFdffJ6v8YEX58coryhqrfk/aWptcjQ1BLQu7+gOVvxI+ryqvrMeBWa6AubgJ1ptl2urlizIn28ECDP89CBCkGQtCSjb0GblNaeF1MeGGb8FRwqlETFkxTRYIadQLf20I3yDmXLYaL/z9ERQ614D126otL/8OoYsMDQhKZQkfgY1m+GPhfeUkWnjDt5pqeES//9NHMu3y2+TM4/eVDdb6kRpJR2ePbLn3ybLZz9aU6WccKp1dPbL30RcoP907Zp4pMRwD2NktDfVJSTjMzFAKFV6kQcqKgG1XPPbDdMTwsmPr5YuFwy28eFm3YKzw7+2CRXswMJY2Ct7gPFSQbQEfx11p83v2+J3BX3tMU1IGBvP5e/3cWXBKPZWIqry1CwKUT9zpGHA9srBA8LKEkwAFr/t5pYXXPbvA3Znu7ZMLrr5T/vnv/8nds89SQWso58+4Qz7+72dyx8wp6t/vefg5+c//fSEnH7GH1NebfTCm+7KBsuQhKAkBHCZy1wZlwpcbWy9zF/WqbVcYcWDVhbCHiMFxwEErSvA2JQIZGDbagtaQqqqvPys9/c6zfDhZV7AkY00ihVl3X04GvG3OSdfKXouTGRF/UIvW6cJBwZ0BpyayhJPAxle97svAXj7xp760a7JRCl6TNANQ13t//LtMPudaOWyfbWXvnTeTwYFBOfPim6W9o1u5OnhdsrkB5QMXFD8+WJzGt5gJ0vGand36J7YlVVoxFIhd5BrG0c5BYV48Dn0kMlJ/+edJXJruaBO841oS0tmTqYqLD+YdohfZQXr7B5SrQ1ACWkutBgR39vQhi0nQVqndJ0P+OhycwQMnnDGrpaspeN3PFgWve3aBvBPBa3c98LTcfO9vZMN1fqy2tt989y9y8ZTDZcN1V/W8zxBdXyxKB0p8LTumXuYtzltEw1DGtSSlTgaVgIBFN+jbxlrw4sCMoB3XOtoELz7+FnX1VXUe4G6DbXYIX6xVfKwF8acIf/+Onto+Uhi/tWXHpJh/NwwP+jJj2ORqfyy8L02mhTfEy6p2h5bJZOUv//iPXHH9r+U73/6aHLL3JJWWrFo5GRd29ElvJjh7mBPaksqqBStTLRdYc7HtimAUZMIIYhBYKb6SzatdAAAgAElEQVQ6WwaETsbHbBGl+jYaBe+CTn92YOB+A5cKiDKshSA9I3CaHCy8iEEI6k6JnWcX/XftUKrtayh43c8fLbzu2fHOMgT6MrlABX401UclGq2T9u7gnALnZPHgZZxKRNSJYDjYIzc4KK0N+XyhtVIgJhDMGISsEYXM8BHR0hBXbjjIMICUXRBkCPwL8va723mf0JJUx+b6aWGFxRfrAe5P8DsPAmdkNsgfUhM8txsnc41sKA319N91wqzWrv35zDd86fKLJ2zgS7smG6XgNUmTdSkCeIEhqCooRWUwaIjJws7gnfRViRG2gBPxiNTHoyq/aU9vTgkV7SKwsIaOw4VlGmIXbhhBKrEYUlHBJzqjThDDAQpgjIh9CDIEXNWyxa+Y9YTWfJ5Zvwus/kifB85Y2/2ZAV+t/+hHNArLc/CCPp3MFXJ0I0UcS3gJUPC6n1sKXvfseGcZAkh7hJdqUHxLsZU6tjlv2aqVoo4QjtblRWL/8GAfvM7GNCek1gRvJjcQOLcSpOlqTMZU0B9cXrS1EVZ1ZBrAHMDvWAcJ1sr6KddPBDyaOGXNFAdwhpUd/58dWOLf64P5WZ9KVssZGvCcW2ZMfdVc10ytAdbjjMCms/yx8L5wPC28zmaKV48aAhBjsJYFpUxozQvEoAVNFfNpUOmc4tKXHVB+x+UC7RBtX0v5QuFWgrEERVBAaMHqH6mrk0i0Tr4sc9gAsnwoNwcZrLm8ssVrCx9K8GcPkuDVfdQntsG1oKc3qyzr1SxYnxDcteznn0pGVA5klnAToOB1P7+08LpnxzsrEOjuzQTKZxa5KXv7coEKlCnEB/eFRgSk1dWpfLVWRi6kHsIxzkGxolv9GLBlDFcMvwUv+pCIRqR1SUQ+RM6YxoTlNr/29e3o7ldb77WY8QM+ymOw0xEAl4Zy6wWifGxLQnBqY1dvdVKEYU3A5QbuNkFzubH6XRX+HbsVzSnnR8I7aYPX+k9gs2ve9KUTzx+3vi/tmmyUgtckTdY1RCCIgWsQkThuN0gFPrqJJb66EIN2LUwI+kFS/yBFulfiCvcAiHk/Ba8OTBoYyB99C+EKH147ghdj08IoEokIDliB36nVh0mg1loMVu1ETbj24AMDQWR4juCjzkshCms/BC+OIA9aFhG76wdrE6erJeNRu7fwuholsLlPgvc5Ct4aXTHstucEEPADF4KgWCDxAoW47OwJRqYGvGSxjYqjgOGjixe7E6shtuPB1k8B6WQRIf0X0qn50d8oLHiNccnlBlU6t8KPBCeCV48XwhnrCXMIt5OAZVorOy1IWYV+t3fXRvCmPkUQ2UkQOAhB6sXzRP8Wcfy4k9+gk/Xv9bVwvUF+bgResoSbwOaz/bHwPncsLbzhXlkcnWsC2JJs78moVFRBKIhcxnGbQXjZt6RiKsUYxB8shW5esrCY4kUdNIt1ubn2S/AinRsCACGW0v0DS2VccCN4lbVXRAW15a2QAwKxFPTSpNJVwVUgGL9Ju7xgvYRLTGN9VLHuMPzRisDExmRU1VtLFvtCfliL8DXHM4El3AS28EnwPkvBG+6FxdGNjAByxsIPLwgln5osrgSvH3k/8RpKQnzVx1RwTHtXZkQvV1jqYM0JCl+rOdYW0WpZeGMR+ERHJRaJyIIK6dvcCt7C8WIrGZlJquVzasW63N/h44mdl3RfsFLD2R2PPsBEfej1ZZX7j4mUcYlYndRD8NZonm7ww4cX5hduQyzhJrDF7Ld8GeCzx67nS7smG6UPr0marGsYAYgbHCdr4qU0UrT5KPCYymVbTT89vH/gV4eXKl7UpkSR8v2NRWomXVa1BG9hmiusPyvfT3wIQbCONHMB5heiQ+ca9mLrfaS/AXzw9fZnpT9bq3bMPAHs2iM4a1Adrz2ofNlHMiKkJFPuKTVgpS+3BjC32MlgCT+BLa/1R/A+cwwFb/hXF0fomgBe/ji5KCgvfwSmIMl9pkovfIjShkRU7X/rU8ZMiX/lR5oIjk+y1SKBSwNOu/PSBQMHGaAdpMPD2rOTgg7iCcn6vzBwUAo+qjDnyOub7oe7ysiEmBVTp3+HKOrp88YP1mlfRno97JjqUJYl2T8w53YDPovbHtOUPwWwVgJAi/sP33icsAYWLOEnsJVPgvdpCt7wLy6O0D0B+PEu7OpX0exBKAgSg3WrGsfb4gWE7XIEyaE9U0JXc4zHItKQjOT9Dkdi3qrSxECIwprqhf8oxM+41qT0Z3JKUDtxWYFIndhmRvBqlPrQilQyJos6+2wJ72pMAzJ7eBX4VY3+l2oDc4/fGcQ8ghKRqs9pGduUUPEGTtaN0za8vB6uTTiIBr8vlvAT2Oo6fyy8Tx9NC2/4VxdH6JoA/BoXdeEEq2AEyWDrEgLHC9EFSHBfQBvY2oYlzctjSvM+qjHl0lALL2qdJaPLYGAQ5hJWXTAHa1hVnRYvBK/uA9wcIMTgVgGh6SY40el4Kl0fRsFbOF7s4CB4C+sArkt2eSOnNTLK2L3e5JyYqAu/LZwkSfddEzSDX8fW173tSyefOnpdX9o12Sh9eE3SZF1LEUCQGF72QShwA2ioj8riLudWoEr9h2jCdiKsrrCxdFQ4Ic0UB30yFU6lqqZPstv+gz3ECPwkTVikUReYYxdhJFH7XgpezQqiF9kR4EqDjz+/DPIQvLXygeR2neH3B94Qf9hZgfittN4w/0jnhaPQa7Vg56qlMVGr3We/HRLY5np/BO9vj6LgdThVvHy0EUB+2YUd1ieHVYML/DWRugfWHFNF+43Cygofwmq4S6DveLEjCA+ptpBbNugFJ8mBFQTXSCxpqKehPpY/ta135AFY1RC8mBuV+gr9FlEizCqYzov5xGmDcLGphR2BkY4f1nUEi4I73JjKfXQj3Vl9MiKLOs1+BI+0/07uhzsDxsEyOghQ8LqfZ1p43bPjnTYI4OU6b3GvEauejeYsLxnXnKiYpsqygiUXqDRnqZg6OAIWY1gaq22508ehVktk22VT6jq4YMC6jiwVAy70uRb4CFTC0csQzSYsxdUSvPojRR3v25JUmQVGYpl2Ohf4QICFF21irY6Woj9yYWHH2IsDaOG/i4/y7oDkC3czL/BBp/+uG3K1ec8knyy8T9LCW5sLhr2uLoG5i3oDY1Ua15JQmSPsRPCXogSBhPQ/EF6wVrqNDDcxA7UkeCE8kIMY/tNOLYwIAoNYy+UGpMOQS4TmX03Bq9tU4l2toahK21cNlxTt842T4UaR3h36meEAEvi857L5A3E0A/jvItAtKJlknD4XkPlkmbZ6p7fx+homMOmGd3zp/ZNHruNLuyYbpYXXJE3WVZIAhCH8WoNQcCQvkrM7jeaGYNCBV7BQdqQzRiyMI2EC0aTzvo6knmrcC2EJ30pYeO2KC/j94oQ8uDEg36qboDSrsfkheHWfsJ7gi4z15HW6vHxWD5wm5v+6tZoTL/+O34xaTzhiun9AIHjhv1urHwFwa0JOYpbRQ2BbnwTvbyh4R88i40jdE0Cwzpftve4rMHgnXnZjmhIyz0GQCiy6uA+WOAQd2RVsBrtdsipYTJEJoxa2Y3UwEU7IssMP4gyCEL6uXp7O5qfg1ZMK/8tEvE5xQXYBLxwOTAcNer22vawf2//6pEL4lSMHswn3GC/7XK7uCa1JFSzLMnoIbHejPxbeOUfQwjt6VhlH6poAXuCfL0i7vt/kjRA4eEnMXWwdlY2XIixC6L/2GzXZl5HWhSwFEDJBsZ5bjQfWdYjXSoI3EhGBnzWE7kgD3Kz6g79DiC8zxmweXjvtFl+Td5WJKyEGNwfTp6EhDzKEEZh6IajdjNnve/BRhTWJ9ajckwKSL9wJl2XH1vM4YSfAQnAtBa/7SaRLg3t2vNMBgQUdfb5Eppfq4nJj6+XzheUtzvAZhdCFfxzSqtmxSDpAYexSWJ3hJrDAYNYJY50rUVElwQvBhywGEPHz2/uqKsqWDYDg1bggwMe3JqUvmxPkLDa11Q6uYOyltdzLteNF3epjdnBQCV0cFINgvvYaymKB3/8E+u96sTQCXef2N/3Ol/49cfjavrRrslEKXpM0WVdZAvDd7HBxCpIXSCe2JZWQLU4NBX9RtfUbjyqfSq+2l02NCQKmrclsmjVTfStVTynBC4FXD/eFWESlV4Mgq7YFMkiCV3NTLh2xiPI1tcola2fOKHiXppQ/FCSr/MNRwBw+1XDBwrMh6NlP4GqVz/HMMpoI7OCT4H2cgnc0LTOOdSQE4PtqMv/tSPoCyw4KDkFAUf6ljXFlAcOLDv/vNJPASPrj9l70Gzk4g8LVahzFghfb7BC72dyA9CGfcK7aUjff4yAKXvQLFjxkA4ErAviMJGhP5WmtE0nXcPotq/Xl9O9jkJc4jR2cr+5ENhHk78WHL1ZjkLNaMP+u0xkPx/UUvO7nkRZe9+x4pwMCmdxAfqvaH00zrKcQErCO4NhjWHUQ/IUtZCTlN7WF7ADNiC4dW6OCt7UhJrFoRGW7gEXNzxJUwauZqJzPDTH1EYZcsm5+QxS8w1cY8hJD8OIZUIrnVy42EbXTE7TAUPQfv32Ic5bRRWDHm/1xaXjsMLo0jK6VxtG6JgAhuagzGH68kUidTGhJqC10nIFg+qhh15Bc3Ii8wgs6zJ0c56ILtm/Roq0xGVUCoru3wLRmuxbzFwZd8OoRN9ZH1Qea9it38nGmT+IaiZXYPHn/aoT7Ej508duv9LmFXRScUIdUhsgwgt0fNx8cpkeaTESV3zHiDVhGF4Edb37XlwE/dthavrRrslFaeE3SZF1lCejtQURD+1XwakgmImq7EumIYNGt9SAepFjr6YM/sr9WUqs5xVGvzQ1xZaXsTmd9c18o1c9aEbzoO7bcEdwHAebkiGIIZQg1Ct78CoCvbj7Dib3nEdZvQzIf5NafG/TdNQTziWPSYellGV0EdrrFH8H76KEUvKNrpXG0IyLg5wEU0ahIc318yI8RVsb0CP0iRwTD0M3F/siGqjVWDQxQOCUNYgspx7A9HLT0T7UkePXEQIDBaovdChyiYmV1hHUYpwvCl55F1AcvtKKTD16ISx3UirXc3Zs1nj7OztygH7BO4wOSZfQR2NknwfsIBe/oW2wcsXsCeNliO7baAWEtqZgKjoLg1i84HDWa36asbQEASxVE75ftwXNrQE5ZFajWm1Pc4TeN1E9BY16Lglf/CrGOIXzgHgIBVqpA2IF9rZzK5/4JY/9OfADAWtvTB6cm50X/7sC0vdueldh5K6XvwHMLH5EQ7Syjj8DOt/pj4X3kEFp4R99q44hdE4DQXdTVL/1VSPAOyyKyAKSSMckOLP1Swt8QNIV0abVcsMU9vqVe5i4Oxkl2YIkgK/BNxPP+pvoDB9uwEF8UvGZXHCx+Ko8sBFxvbil3Efy9JRVX7gxBT7Vllkzp2kx+ACg/2midcnFAKkMcE+11we9rbHNS/c5YRh+BXW59z5dBP3zImr60a7JR+vCapMm6KhLACxknlhXnvzWJDS93bPUiEwP+GeKqVBYApHuCKLPrw2eyjybrwhiXafP/pDCMCeIb+V6RPzadGVjKzxFWsXg0MpQOziSHkdRVyxbewnGDL9a+suT2D0h2SVQbPv7yVmB7xzqPhGUt3At3BOSvBQ8TGUK0XzUCyMDe6/zdcKtAhga4s7CMPgK7+iR4H6LgHX2LjSN2TwBbiAgUw4vGixArCK0G+Crm8qcnIRVaOd9GWEcQ/INcvNhmr+WC40W/qHByXDXGBvcF5ReNhP2ZnPIXLS7K7zQZU1bfIJWwCF710QE/03hEZXOAGwn81KGLIPCQc7bUvARpLqrRFwhTuHh0GeQB6Yl8yfjoiEUQUDiyvMmVOMCVAcGqLKOTwK63+WPhfehgWnhH54rjqF0T6OnNKsFjWmJiazEWq5OObgSSWO8r/j97VwEmR5V1b3uPSxRCgOAS3MPiLIvb4hYkQNgAiye4huAelh8N7hJYWGRxWVyCSyCQEB3vkfb+v3Orqqemp7q7qrq6q7rnvf1myUxXPbnvVdd59517LrwydVWyl8emhAemjZhxI1IlA/BabVO9/RvRGODkEciklwtQweteV+OjNofJqFUS4FXmTPLqeplWAnsD4GF+7FojetdSKa4DIMXGGJvvYtgD65wDNYmKIhkImTQoRogyNC1wgE2A9ykBeIfmghOjNm8BAKNlFiWgAGjFFz+8i+DPdfcZC0BDsBfus+JY07xFCr9zVFOAqSLREiZwYI6038NH6OCG6ol2h2cNYv8tAvAWPuk6a4A3sFZWaLAjYFRnN0t6GQAp6xnrlCQz2zkoKcDji5gFUKusCtYd0RhkypYoQ9MCB9xnj4f3qWOEh3dorjgxatMWAMUAAVaF0AgAtvAix5c+2AigJeSTZdLqMAAvXkYRHR5h0wMuwY1IMQoFjFKljQVYgO3hwYLyhV5GCF7RSJQhAG8JFoWqCWw0muv9FIkmKJ6AMoGxjWFpe1v81qBs4UHAaok0wfE9g8A2tn1Y//OiZQlw9kc3VQn93eIvE8e2cOB9n9vStyeP2diWdq1sVAStWWlNUZcuC8AbaVYAH3JCAa8cmAPvbAF0BHhg8AIBYC7nUlvlIY/bXXRuLEAu7O/1evh4HJnqjB4JDxeAt+RLDYAX9AZw52vko/DeiD0asiUfvEaDDdU+pj2Z/Q4yMwY8OziJAr8aJzFIvmL02UG7yLA2rE7wd83MQaXcc9AsewDvE0cLwFspa0iMo4QWwMumpTNiqEV4dRGo4XITcxL1ehVzNYIXEEBva8h5GrZGjANAA73b9u7iBYOBugDQhM0KPFVmXtYYkwC8RmbWmmuVIC0lWBDgq7k+QF29sZKdClgzEmtqgcIBAtZKSQFSeo4NNr7H8H2G59UozQEnJAGf0N+1ZiWUZy0C8JqfN+HhNW87cadJC+BLfkm7Pt1Y5WUNOSt4qKz0yvDLB0FURQSKJk1k6Da8PBtr/NTWbS1wBwUBR7EIwAEFBUE+itSVoQ6qLhaA16zlzN8neea9nJFNKUrQJo72O3ukTcxQKfCQtvfECqJVFWorcHux2cZ3IU6YoCyjZwZGNkJ/111o8+L+MrbAwTZ5eB8XHt4yXjWi67ZaYHF7bh4vgK7C08XLuBi0AwA6eHvK3cOLcYDH22ahpxqybZwowgXuYZIzeVlRBOC1worG6gC4gldQSw4Ozxh0XaGRDQ54pQNfbHJ5DXZGdQFMY5Y2fjXUM3xeFwNe6Pfm2lAiwxokCEUZ2hY45P4vbDHAYxM3sqVdKxsVHl4rrSnq0m0BaILCY6hV6iEx5iIOJkOSimK+hHFEyHzUMvdwYRytFqkfIKgHCgwsoh9JmAoIzLYQBODV/YhYdiH0kV1uV9YgLWyYAHxB8QHgyvZcWtYhGysCuAc1x6pnxYqhYHOPTYnf6+GNB6gmWkG4eCaxQRdlaFtAAF7z8y8Ar3nbiTsLsEA4mqS20EAeL15GOD5PICNbV2k8MHj5pZIp6rbIg1mASQq6dURDgO1ZSGIBUCOQspQoxYBAzxGr0U6jn5Clc1KpRB1etX2hEoAkLHjmchVJRSNAyESG04JibjTtmn8ErAFUFuPEqNAxwf7IiIcNZ1dffBC/Go4A0CBEGdoWOPQBezy8jx4lPLxDe+WJ0Zu2ADy3rV0S8MHxOV7KSJVZam8r0gvjJeM0EGbUsAiEQeS9mbTNiqYu8zy7o0X1dgPwImCxGGDaqM2U6ysd8CJRQTiS4OyDegooolhP4MtD7q6QTZSe9kp5DU5CoJCg1xal7JvSFr4PAczh5e3ibHDS09JUF+B06KIMbQsIwGt+/oWH17ztLL9zWWsHffb1T7TtFhtQdRU8bZVblGAN6KcjJSderHbogwLsAYQt6XCW19HozEOlAQk0jAT1waMUxFG21y3rsxamEaqnz6A0AFQ7Sfq40gEv27wnZshjq2hd49QFmyjwe520SdGz1rSuGdEArrtxdQSz7RVyH5RRQHWARzqeIEkSUASsFWLSirj3sAe/tGUcjxy5oS3tWtmoALxWWrPAun6Z9yddcv0suuTMo2m1lccUWJuzb0+lUgzQeqAHGksaluexanQAfQgEsTM1rxVjkQLMSHdwmSJlBvWFvmhSVzpmK/opeRvhYXMOfKp8wCvRXcxI+QHw+n0ugkoKEjWUO9cdc43EN2YS1Vix/o3WgWc66PNwKmSkiRb51YxasPKuP9wmwPuwALyVt5hKMaKffl1Az770Dh132B40vLkh3WR3Tx+dd9VdtPH41enog3crRVdsbSPUG3MEl25UU5C6epAMQ9+Rr61Gy9I4Ao7g/YF0W75SV+WhqoCXg5OMeITz1avnc1BXkkmkWnWOrSsd8DKNpCtSEMhTqD/I1gZ+aTkWyLNBzWRpGZ7mgG6EUxyopogytC0gAK/5+RceXvO2M33nOx/OoZOm3cD3j11uBF169jE0rLmBxoweTrfPeo4++PQbevruy03XXy43ApyBs2u3r69WPipU65SWiw2VfgLwghqSK10qXvj1CNqhFLWHipekIpftEHSDoKiuLAoddthdAbzgkEPRAP+FHY0mBbCj73ratJI3DW4vTtUxf2Yy7enpb7GuUVJidzpo7ekdK55bSJiJIixwxEP2UBoeOkJQGsTqM2GBzlAP7XrYOTR2+RE0fq1x9L9Pv6XOrh7a+29bU1eoh15+82N69t7LaaUVRpuovXS3gHMMGsao4U20ykrLG24YslfQBsWL086iBM0VM1NZsceHo2eAXq3oc78XaU09nETCSPBSMfoMT2FVUMrY5pQCSgv6AxuBaoMNGEKDcHwPbrndG7JC7WS1MgbWGWTMQIeBfezIWGbGJhLPHSmF7f2+Mdp30I9ABRIZ1oxarjKvP/Khr2wZ2INHbGBLu1Y2Kjy8VlrTQF3Tb36Q+sJRuuC0IwkUh0VLWujF/35Ib33wJSWSSTr2kN3ozMkHG6ixtJe+8d4XdP+TL9PCxS3U2FBLB+y5PR289w6GOoEXJkBmJGZNUgNDjasuxilhc215J6CAd7c64GbPm8JPlGSOvOT3yfzLeMp2ryXAd0ON3zGqGJh7eHgRlAWvriL8Dy8mjpGRicxJ4NzMGkd2LquP8RHUhk1WDSTP4pJ2rNNLY42PusNxQ8F7ThgTnm3o7wL4iiIscOTDNgHewwXgFavPpAU+/Pw7uunOJ+mKqZNotXFSgFokGiPweJ/691u00zab0morG/eamuyOodtAu3j4mf/ScYfuTvvsujX9Y9qNFI7G6J7rzxnASc5XKYBZeyjiCIkgK3Rs8423mJ/DSw2AphzF4/fGWj9FYwn2+jolSAdAclhdgJY6QIsXR9yQpAOMQOY/rQIVkWENAQ4G1MOPLuYcm6kbYxtRBMCr9AUbBtBUkBQBlCC7T2ty2QigsaMnSsnycvDyxmJ4Q2Wr9phZ20P1nqNsArwPCMA7VJdc4eNesqydjjvzGjpz8kG0w4TyEXSOxeN05MnTae9dtqbD9t+ZDfH197/SqRfeQldfMJk233AtQ8YBQEPWNbsBGRJe4HjWjI6toQEX6WIAydoqHyGoCNQFSBrBm5Uv2UCRupOz2mJ4HI2MQ8ps5WGBf5wwYLOTDfCiXoA6eAfjkH2LlVf6XWx8APSs9vBm2lvJYIbnB7SZXClyjcyVVdd63S5C4gZ468uNooKNLL6fRBEWgAWOesQeD+8DhwkPr1iBJi0AOsMzL71D66+zKq231jiTtdhzW1t7FzU31acb//aneXTq+bfQ9Rf/gzYcv5qhToHHiwQUdgNeBK5BtskOLWBDBstyMU478VIEmINNnRQUltllOwEvNgLgn6p1n9UqDQG/h7uLjUNmAUCuDnqZ/gB1C7vXrJ51A840+ozMaaUoCKzygysO4BtNmJJCK0Y/wTvGj5Ofi2zjbq73szSZKMICsMDER+bYYoj7D1vflnatbFRweK205hCt69n/vEsPP/MaPXDL+YYTZoDH6wRdTAi8Ayzi6LrcCry74MXCmwfVCydnkYJtRzWWPtGHFJjo480AftRH7xy01h0lv9/LShfw6EIbOhyWlAjUBfXAm4n1EupLOPoIH/0GAAWtoZSpdOFNrQp6JO3esKSzbXfBRgfqIOX4fEM2UfB37V5Bzmn/aJsA7ywBeJ2zCERPrLNAOBKlaDRO9XXVuiqdeOqVNGa5EXTlucfrul59EaLiAXjt5tUh2xiCu0oJDAwbS+MGHLUH/G724MELhCNlADonl1IDXgCwpno/QfdZi+Lh87poWH2AkuQiteWwNjs6I5qBfvAWwqOOYC0n0kaU+YecVTyBLIalXxM4dQD3FGoXHTZTCcDXhke+1LrThT6H2Hwt11xVaDXi/gqywNGP2uPhnXWo8PBW0DISQ1mwaBlddv399OeSFopEorTcqGF04elH0RqrjM1qnD/+XEIHnnAJXTltEq08djQ9+e+36f1PvqYX7p+h26DwAsEzaWeBRi0izgGKEqXHBoaHDsCFVKOIkFdAOpI6CMDbb0p4xQBKARqwIcikIACQ1dcHOGEHvKA4NMbUZ04/9Hg7uyIsw6UuuAdyUUgGAHk9J+r2DpOBvp3SYZADg7cXQX9Yn3ZwaOHpjidAsyiDh1u1yLB+weEVRVhAscAxNgHe+wTgFYuwUizQF47QLfc8TX8uaqGpJx9GLa0ddM3tjzFX97qLTqKAf3DQBDxgDz39Gs2871kOYPvym59ppbGjad9dt6EN1llVt2niiRQt7dCOktddSYEXAvxAwqs3nHB0+lQAXRyp42gdGwUAXqXgpZ5IOF9ndFRTgJa0Rwqcsdy3YzPgcbspGk9ogpxgwEPg6/oyuJHQ3wWQBSxSAzNQGyLROEXCg3V5MSfgyiJQC+vHDkCXzRrD6wNM17AbjMOLXh3w8qYj25wUa0Hws13lY++u008/Mm0wvN7PKYVFERZQLHDsY1/bYox7D/NJ2UgAACAASURBVFnPlnatbFRweK20pgV1tXeE6Pr/e4L2330b2ni9NSyoUV8VbR0huujae2n/3bahHf+yMQvwf/HNz3TZDQ/QvrturZnqGNeccclMev3dz2m7rTagSYfvSWuttqImOM7VC9SzqM1ewAuQA8AYjoGX6STIIlkOL214eiA+D1ULALAMhyMrMwAIO52WUcxUvvDUQ60C3jwEIGoBvfpaP/nl4DStdYm1oPxkMroh89alEQAGHjXsDw4w7I9NnBMKAG9ryP6gUMUWfDIR8PDmAB7fUpymwNOPZ7vcsufhZAL8XbdIJ+yER8kxfRCA1/xUCMBr3nZFubO1vYsOPOFi2nT9NemaCycXpQ2tSnt6++jafz3OXjF4eP0+eGNSdMVNDxKC0t56+mbm9EZjMfb8brbBWvS37TejRUtaqbo6SMGA3zDQVfdjWUfYds8qPLyRqPM4sNCCHdEY5Bd2TyS7pi6SOgAUOz1jHADvkvaw5Z5Q6MFWBz2c1EJLQaG6ykvBAFIb6xPwh7cXvrVMsg2oDVBx6NFItgBsAhUKeHqdsPEYUR+gFqiglOybJH9DsD7mCRuTlo4wFXtvAA432nOSHnV+KxFvniCZJ4qwgNoCxz1uj4f3noOFh1esxCJY4JLrZ9F7H82h5++fYVj1wGx3ENgCegJ+Hrz1PFpu5DCu6s9Fy2jfYy+kI/6+M/1z0gH8+xGnXEkbj1+drr/kH2abG3QfvHEd3aWRTsrWaQAmHGR3O0SpQfFMwWuJ4Kh8PEx4GRtrnJ8xjpN8dEcoYZEghsK/TiWJujQ0naFLDPBQW+M3tV6lVUGU2d3evhgD30QGYuMMd1XI0jaYdmKqAwXcZHVa4QK6MuhWzBvURZDMubM7VjTtXpx6IGit3CTJQMPAJlwUYQEBeK1ZA8LDa40dLa1lzvdz6fizrqPLzj6WvailKvMXLqVzrvg/WmXF5Wj6tEnpZv926Fm0zhrj6MZLp/DfZr/8Hq239iq0ykrWZYKDZmeptEKz2RPHrTiWRsYoOwsAEwLo4JnC0S88u3oK7muq89tux3x9bar1U284RpECqSMA+KB4QFcXclNYQ5kFPN26WnNAV10XvL1KyQx7CnVHNXV7IV2G9YRALfzYwaO1U/M43zpQPgffGhsSbByw1q32RoNfDQWWcgO8CIgE71kUYQG1BSY9/o0tBrn74PG2tGtlowLwWmlNi+qCLNjF191HRx6wC41fs3RJKZLJJL3w2gc0/eaH2Jt7+P47c6rjvSeexxzdi8882qIRDq4GnEscvdopT8Z6ttU+auu2D/Cq1ReQ4MBoxipk1bJ745BvkSDyHNqshUhEwU7wyKMOLTAJr15VlY+BlF4KQ75+43MlfEgNrUH9yabbizWFoCN4GEO98ZIHTZUD4GW7Qrs34OGATKaLRCxy/8vedmw2yimpDHi7SDgBe4giLKC2wPFP2AN47zpIAF6xEotkgWg0Rj6flyWPSlkQ5X/3Iy/SHQ/MpmFN9RSJxqi3L0wfvHB7QRzdfGMAL7KtO2qrSD1MDe+jHYCRj8Grvawc0JKFg5rPhvgcMlStXfZSQ/L1E0FL0ApD0JKZggAkeE4hBaYVdY95bG4MFvXZgd8NkEztjcyl2ysd3/sYnJeK2wuw3VQX4PVULoU50A0BntfO3pglG+DmWj91h/NTgpxkI3ikobENyTxRhAUE4LVmDQgPrzV2rLha3njvM5o5azZ7dicftQ8HsRWzACzgyNEsCLKqb8Pq/NTRAxknq2rMXQ9e8Eh6UV/jo94wxl+YrBX3HzJUVp8LW2gOeDs5K1yvMcCrcD7hrYPUVmZR6+pa2N2sVcHbCzPr1e1FRU21UvpnBBYWm+KgKFZo2aoU9imkDaRxRgAmNgdaiiRG6sYz0d4D8OzghyJjQAiyA7+5tO4OI1YV19plgROetMfDe+eBwsNr15yLdivQAuDvITjLzgKRfBSjYMxMn3FcWRVwUyrl4qP5zDS2ZuqEFxH1OPn4FmoS4Cbq5UpjUwD6AqgJkZgxXV0zNjRyjxndXoy/KuClZErmrBYJh4G7Co4zPKXlWBR1BWwQsJ7hHTdToGWLU48imdlMl/Leg1MMZMkTRVgg0wInPvmtLUb5vwPXtaVdKxsVHl4rrSnqKsgCCDqyO2NVwOui+ho/S1sVsyAgBW9g6P5amf2pGoFSQa+jaQ04pUUEuh7AK3GavWkQb0ZXt5jziLrN6Pa63cSpoDG+QsBcrrHBbm4XMvFZx4ctti216oeN8IMNDzIyGnHUYnNRV+1z9POQOWZs8ODdxUmIKMICgwDvUzYB3gME4BWrUVjAMgvwUXUoWvLAHvUAAMYg1r+koziAtzrgpvpqP3t08fK22usEqgAC15YWqf9WTDbAHrxXHXmCA3ENlA6s0tW1ou+56sil2xuNJqg7h24vNj3Y7FlZII0WTyapL2LOM2plX6yoC2oO0O7t6Yvplg6EpxRUl1Kc2FgxRtShPMOCv2uVRSurnsk2Ad47sgDelrZOqqmuoqqgPjUcUItAYfTYwE8XHt4yeBawOJa2dBAW1mdf/0S33fsMrTZuDM26cRr5NVL+lsGQNLuII14AXrNHl1aNe/lhVbSotc9SMAo+ZXXQy/zNYgbFcXamxiAtbrc3c11OYMgeLF/WBBnF1tW1ap1kqyebbi+u7wxFKKZxNA9vXtDvYVkuq9LfYsPQF4nbntDFSnsr0nv4TgTfPZ+twN9FXEDYJB3Cyr7rrQvKIui3leoietsW1znfAk4BvH/8uYQmT72Bfl+whI22/+7b0kVnTCSfN/vJBJ5b5BlAufSsY9LGRqbXbfY9ZZDx77nhHNpy43UsmxQBeC0zpfUVLV7aRh998T21tHfS2x98SZ/N+Yka6mtojVXG0k+/zqebLj2ZNt9obesbtrFGHHMjeMvOAikneNusAN7w1uA4FmAGR9fhSGFBafnsAkAwqjlIi21O1WwG8GLDDzvhhQ+PZzF1dfPZsdDPc+n29vRGKR5PDeJssw50wMOAGEAuVmDkIQBvb8Q5aY4Ltan6fqh0wFawE2TMstlqRANUV4ofIGj12KCnLYqwgJYFTnr6O1sM86+/DwSeJ5x9HdXWVNH0acfT4qWtdNCJl9JFpx9Fe+0yQbN/r7z1MWduBbg9YM/tBgBeZJjddr9T6Y6rz6QVx4xM3z9yeJNuz7EeowjAq8dKJbwm1N1Lj81+g+Z8/yu1d4box1/msyyYz+ulv+2wGe232zY0ZvRw2mvieXTiEXvRSRP3KWHvit8UgpLgAdVKDVv81qUWELiG9guVj4LXDj/wMOGFHC8QwOgd/3LNQVrkYMALLzQkl9QpkNW6uqB7ZM5/sXR19drU7HVaur2oC/J/oDhkenthG3B7EaUPb28hmy5oSiMVdanWnVkbmb0PpyVKOm1sJrUCNUc1BWlpR9jW7xOj48PpB/jXoggLaFngHzYB3ttVgLcz1EMT9ppCD912Pm00fnXu5vSbHyQ46W6d/k/Nievti1BXdw/deOeTFAz4NQHvvx+YQeNWXK5oEy8Ab9FMa67iP/5cSkefNoMpDOPXXJnOmXIorT5uBfrrwWfSzttuSldMPY4rPu2i2/i/+B27rEopSDyxhF9QVrNb9VsI4Kou6GUpI7MFerjgKoE7WGz5qcw+gpKxpL2vZNJqRm2UCXjBOUYEXydspbEpKIWurtExGL0+m24vlnlbx2D6CUusVUOZwm2aAgPghM1WpQJeZQ4AfMFXhnbtso5ImopUDnx2rXU0ojFAPhv4jUbXtLjeHgv84xl7PLy379/v4Z0770/a++jz6a2nb6IRwxrZEA8+9SrNfuV9euquS3Ma5rIbH6BEIqEJeLefsCE11tfSGquOpX13/Qs11NVYamQBeC01pzWV/f34i2nksAaaeeVp/MJDeejp1+jfr31AV0ybRKutPIbe+XAO76iQAnjTDda0pmEH1AIe75J2ez0yABuNJhJQYKqq+ahVygCmNyWw1WbHCzPUE3Msb1FJ8AEPZ221jxKpFHVqBLCVWlfX6nlQ1weqCby9CB/TCiHDsXx3z+CTDcixBfxu6kaWtkTSkKcSgBdrsNQbrmLaMVfdCGqD3B1oHH3RJEGWDRSZYnLmrR6rwsEX/F2rLVs59U2xCfDOVAHeL775mY44eTp98MLMNCh94oW3OGHVG0/eaBjwIqPrzXc/RaAw4N/PvPQODW9uoMfuuNjShFcC8DrwOXjqxbfp1nueoQduOY9WWmEU9/Crb+fSGZfcRpecdQxts8X6tKy1g44781qmNey+0xZFzSpVahPhBaXF3yxlP+Ch5QQOOgPcoSaAlyu8ukgha59/2jpKRrHsDY/ciIYAz3GoD/zKwS1BWs0v83mL1Q876sX2FT+ZWdrQFyg5QEO5L4PDDuAPaS0UIx5bSN9hLQ4VwKvMJ7y9WGMej5TNz0rZv2KvGXCTBX+32FYu7/pPfvZ7WwZw23798UKKh/ftZ25mYIpSiIc3c0AIhNv9iKn0yO0X0gbrrGrZeAXgtcyU1lXU2dVNOx18Jk07+TA6YI/tuGKQuk+aegPt/bet6dB9d+IjgS+//YVWWH4kLT9qmHWNO6CmSDRJraHiyILpHR7AAgLM8kV348UKTxqAbrdDjo+lDFverCoIem1QjOvQL/B1URAYqHXc3lDnJ6/XXVGbOLUtc+n2gsoTlwOxsP6UAs8fjrkB5mKJZF6ZLUnL1cfXlVOGMavWHJJWYPywAxJvxOJ2bkH1jwr0HmycRREWyGYBJwBeLQ7v5Tc+QEtb2rNyeJXxaFEaMsfa0xumzXefTPfeOJW2sDAwXwBehz5X4OiCm6twdqPRGN354AvUGw7TKcf9naqCAYf2vPBu4QVtt6yWIvqeLWMZQEtdtZelxtq67NUOzrQ4jkMRsOS0lLINNQC7HuZZIpVyd4Z3t7rKy0kzXEApQ6Ao3l5FkyQTkvX0xiisoVjSXOsncqU4cQc471oFgA+bC2QuNJKooZLMjjTOfZEEYfMKT285JOAQ/N1KWoHFGcspNnl4b1V5eDGySWddS/W11XTF1Em0aGkrHTL5srRKQ1d3L0089Uo6/nDpBBolnkhQPJ6g6Tc/RMlkki48/SgOxoce79v/+4oAcrfadB3+G+gNz738Pr3+5A3chlVFAF6rLGlxPbNfeY/efP9L1rVrbqzj2pVArqEACMDjtfMoFhQFr9vNXtvMgpTAAMRKalinAQpFq9Qp3EVWYKjyUm84wdxmabPQrxELby4Cjqqrhk4qVQXcKtxe/K6VDw1rrKc7yp5wtacW6xP8XlZyiA/m9iq6z6EhCnjBp8emD5sC2BjrD6cx0O4FbcSJ/l5QV0Y3V04AssWvRFGdbIFTn7OH0nDLvgMlUEE7gDTZgkXLuGdQkLr4zKNZh7ezq4cm7D2FLjjtSD6RRnni+Tfp0hvuHzCPl59zLOv3vvbOp3TejLtZkQoFmOfaC0+iLTexToMX9QrA69DHaPGyNvpp7nzadIO1eDcEEneop0/KUOJ209qrr0SIaKzUgixkWmCzVOMFAEPQizpDk8/roiqfh7xeF4O3fHSHUvVVqx1wkFu7onZ2gWAvSGwBcADoqrVSIUsGDVU4KGuqcfRc+V7dXCALh9iwgFZQG9McEinm+EYi8XTgGkAtjr8B7hCkFVUlV8CmDBsNPEM2Cp7Ytv4U7Wt19jrWOfa7KZVyUV8UCT6cBXtxWoTnQhRhgVwW+KdNgPfmDMCr9HHJsnY+ja6pDhY0cfAAt7Z1cR0jhzcW5Z0gAG9BU1T8m//36bd0z6Mv0WdzfuTMO/W1NSzcjAVx8jH70T67/qX4nbChBRxF2nkkn/aQ9UnHxrVVHj6OB8UBWsHZjpJtMJVmkwgKawtFdAfdWd3vmoCUQAJAV0tLFkkD4HUDyTJV4WBXL6xSvL2YC63UKwrwTcSTBLqDUhQgBwCnUHDwN2w4evqKm+jE6nVjVX3wgCseXXWdWGqSvTwUTyQdRXMQ+rtWzX5l1/PP2fZ4eG/ep/yTXAnA6+BnA0oM5191N73/yTd0zQUn0q47bMF8FwSsgT8DybLpUyfR6JHNDh6Fua4hMAdcT7sKa3tWe1lJABJl8J4BgJeLt6yp1s8c2UKzdZmxP3iICLxSJ5ZQ1wOPZHOjdHSryOvbm1vPzChz36MX5GrVAm4vPL6wiVY9AL6QMetR6UQDLAMw4WRiaUdE8vy6SDMZg/WjdV6Nejj4sBeA8bJO+zaGassNqwuwBJ0owgK5LHDa7B9sMdBN+6xlS7tWNioAr5XWtLiuDz//js6fcTcdfciudOTfdxlQ+zsffkVX3vowXTnteNp4PSnTSSUV8HfBQQXfzo6iKB0A+OJYuJykjWAvJC2Ax69U8m7wnAFkwHsG7zyO2DMLTijqav3s+R0AgFXH+YUARTvWCdosRp/V3F5YMhvwhacXmwslYUfA55KzdLl47rMFXdplq1K1Wxv0UDyJ9Z/7+yPglfjl8WSS+b12JemAhBoUGkTCiVKtkPJt53SbAO+NAvCW76Iph57P+W4ue3j33W0bOu7Q3Qd0+Zd5f9JRp17JgLcSubwI1kHADV5CpSwAbkjriZSlbpeL0wsXkt61lH1XtwVKAUihpbAf+KLwlAGkhcKQwRo86ny6urgXMBjAzp4tjrGZKgbI1eqBouSQLWEFDIZnBWoO0ViCga8iSQZedG+4PNevsdkYeDXGD/k2cOzVvOZsdSqbNaxjnIj09JVeRxvxAg21fqZhiCIskMsCZzxvj4f3hr2Fh1eszCJaoC8cofOvuof5uw/ceh6NaG6k19/7jF59+xNqaeuir7//lRNPnHjkXuT3V1awA6gDOJIH4CxVwQsP2ZrgXYZnDMfCOD4uBWi0eozwtHo9bpZjKlbBq7m+2kceD/E8xeMpTU+kEV1dxbOplZihWOMwUm+pgK66T8pmAP/l2czoBP+aSvG6BeBFxjZwVMHhhccQnk518JaR8ZbjtQCN4Nwb9dgiFbFit1IHpcLLDOUSAXfLccWVts8C8Jq3t6A0mLddSe6ETMfeE8+jJS3tzNmFjh3K6BFNLFk2YbPxrFtXiQVgDTqipeDN4gVZE/BSeyhK0YSEKAAacUyfjYvqZJtLQUvuoqU3BqiAvimO0zt7tUF1Ibq62L5hpTvB22sHyB2wtuQOgNcLByDEBXLZBZs0eIZ7e2McNFgnB1xCosuuI/tSPitYm9VBD699M98dAL7D6vxsO7VKS7HGAA8zA94hJMtXLFsOhXrPfMEeD+/1ewkP71BYX7aM8ce581mK7IXXPqBEIkkrjx1NI5obOHBth603SkuARGNxlu+A9l2lFfB3EShWrJc0XjTw6iIJAiSf4KVUa+p63JIHsxwBL8aFACa89K0sAFxQq1AAhRbdwypdXazobPxVK8ekrssWcJulUa0/wwPoc4HGoK3koIwFtgPwhbxfIpkkr8tFtdVe9vjjmN9p2tFWzicAKyg9AKuFzCdoETjl6epFLEGqaDZDfxEYi2dWFGGBfBY4yybAe50AvPmmRnxu1gJ3PPA8fffzPFpt5TE0ZvRw2m6rDVmMGV5elPkLl9IHn37L/8U1+1agPBmE9gE2IQNmdWHZsQAoC8TC/VrADYAYWa1aQ/bq2ZoZu8KrDRX40le3nZZzSiY5GEhrIxIMeCzV1VU4rMWmOBQCjMzMD9+jRU3QWZmi26uVsEJtM+b+JlOs35tMJMnvwebYLcvrOcF/rnPABi7DOsWPFd5Zfo58bpaEzCaxZ6BrmpdiPhCwJvi7hVpyaNx/9r9/tGWg1+65pi3tWtmooDRYaU0L62rvCLFnRg1yu3v66LmX36P3Pv6ac1bPX7iMAn4vnXzM/nTIvjta2LpzqoJSg9VKAziKh6eyLwLgllunFAkc4CWzQ96rkFlgL1fQK3mtLXDn4cgVmwRJh3gwUEJ7yJTm87ktFwwvVkBbuYHczPXA3l7ZC65ImOF3bNRiqYF4Gt5erANwfBOxOIO4RBI8+cK8oIWs0WLdy/rOJI3NigI7cyZAbJCJmA9thiqRrS+oe1h9QPB3rZisIVDHOTYB3msE4B0Cq8shQ2zvDNGUc2+ir76byz2asOm6dObkg2n1cSuwNm+lFgA2BK9Z8YKB8gKODhHcozcLGY418ZKz6uVZqnmSAnekI+xCKCHYGCCJRTiWoM4ebQCh1tUt5viYw0pE/SkXzLVWcqCratCKtjPrgE38LgngwhOeL4EYwG8smmBqBI7sF7dL6TwrpTTV+iTqRj5DmBgw5P4Q2AbQa1WmRXB3ofktirCAHgsIwKvHStrXCA+veduV9M5Hn32dbr77KTrmkN3p8P135lR+Q6EArLV0Rlh6yWyBZxJHnH6fh721iFrXW+AJq632cR/KqSjSTJzS18SLH0AX9ATolMILbkRXt5h2ArhTUvDqmUU91xTc3wKoCZltm+kvbALwioJ4S6Z/6OEFI2VxLEHVfikjHuS4DDwaBZutWBWAHtDZEy1alkGcZgD44rvJ7POlHjv6i42HKMICeiww9UV7KA1X7yEoDXrmR1xjgQVmznqOXn3rE5o+bRKNX2ucBTWWRxV4cS9pD5sCvHB8c4BVwCMnQ0gYfqF7XETDGwK0xMasb2ZnStEiNZq8A7zFqoCbQRM821ogKJ+urtk+671PgQfZ2N1mgKPetvk6C722hfRV8XqzokWKyOuSsrSB0qA74C+VIsRLAfxGokkGceVchtdLvPsC9sh5h48NJTy9SJGNDSE47Tg5MlNGNQYq+pTOjE3EPdktMM0mwHuVALxiWZbKAt/++Bsdc/rVnEr4r9ttys2C0/vKWx/TWx98ybzJk4/Zj9ZYdWypulSydlq7IoaTP4C+AF1LvMBxHG/2WB+Os9HNQVrcFi4o4rtkxlI1BMALvm1UZ7Y61tWt8RE2Cgh2g820XuFGdHWLOW61t7ck4VcWgVxzsEi2pHwz83cBUpP9EmVKvZya2CXRPyI6GlMucaVSTI2IxhPU0V0ocaSYM5+9btBrkKIX6YJLUeDtxekRPLR4ZvQ+a0rfkGFtVGOwFF0VbVSIBc59yR4P74zdhYe3QpaQ84cRicZo5n3PEqgNkyfuQy/+93809/eFaV3eCZusQ9NOPYJWXWl55w/GYA9DvVEK9en3OjUhRafbxZJmVgSbjWoKUntXJK3Pa7D7tl1uBPAiSUFjjZ/TKCM1sFYpRFe3mEZQNHv1rxCdvdEAizrw46DKzdzDlWS5EWA34CaKgr6Qo3LQHODxDSczA9hyjx90Fp8rxRrY4SxrQacFS34ZTnMQBFZqwA7gC+4wHA9LDZwG4RnFxlwUYQG9Fjj3pZ/0XmrpdTN2X8PS+uyoTHB47bC6iTYRaPKfNz6iS66fRV6vh3V5hzc10L67/YUmbDKegkG/9I5MpWjRklYKR6K0SoWAXxzJ5/PYMOfU75Giz1NSJLVVBV5PnI9aIXNkVZ/01IOgtXhCkhDLVhDcBm94dcDLYLeYurp6+pzrmlzAESE/+Fz3Mb66oQI5uIYBbZ4bsn2sZKHLTD6Rvl7jRgbHHonuAHENvX2FdxhgGc9SPJmknt4YJZPJotIECl0fuL+5zifTl0ri8x/U5YZqL8Fri2cOVId8LAcEhEKWTBRhAb0WOO8/9gDeK3cTgFfvHInrLLDAvPmL6c33v6ARwxpp+wkbcvIJeBRQkIYYySqQnOKmO5+iZe2ddNd1Z1VEFjaAeESSZ+PkBbyudNBHT8Q8fSHbFMH7CYmvUnuNCl0y8HZBPzSbwgSOYjEu6BzDq6v1crZaV9fMmIyANPBXdWdokyvWW7/S96zXqz/IzBGboxE97bM0FgAo+LkmsBzAK74q8AxlxjDm3EjAS0zwJqc4YQUy67HKQxG0sc2sjcx7wLfvCEUNBaZa0a66Dq+c6Q1/wwlTthMTfL5ccxXPiyjCAnotcL5NgHe6ALx6p0hcZ5UF8LJRQC4ysH3z4290/xMvU0tbJy1t7aDTJh1A0WiMRo9spk3WX7NigiG0eLzwdMGL6fW4qbtX0srVAx6MzgVeSE21foImcDkVeG6Dfi8fTWcWHL8iyAZeKC35pmLq6uq1oZm5BHYAQAMmHEBxKICekLMfBjtp8HJezxgP1jorMBitQDY2bmP5Mrfk5YXTXxdwl1UxwOtmTrD8jOG7JxqNU0InP1zvnBd63cjGgKzqUmhNhd3P61DOoAZeL05PoIE8ABh7XDRS8HcLM/QQvPsCmwDvFQLwDsHV5oAh94WjdPusZ+nhZ19ncAsQPHpEE110xtG09WbjmfJQaaUnDB3YfsDp97mouS5Aod4Y4bNiFxw9AvCajcQudv+06lfkk9pC/YAXwAUvWSSQyEb7KJWubjabmMR0A6rjwC1ZrQAfGK1TLxjMNa9628xFSQBXF+AJPFytotyrdhLmaxcBbQC+EGMABst3vdIuTt7hKcZ9Snfw3QPw29dr/2YQ6xZrGwGmTirVATfzdHFCpKYMIW25kiTDSf0VfXG2BS582R5Kw+W7CkqDs1dGBfbu0y9/pPOvvpsaG2qZvrDrDlvQDltvxPQGqDb8Nn8R1dfWUEdXN1Mflh81rCKsgBcFvLycQUw+qgfQNRoVbdYYjTW+oqUWNdunfPcBBCGAD0AdHsKaKi9Bcqw9FNWkL4D+UFfrLxmnUC/QGjTObNSBDIoCAC/AXWbWsZwAWGendF7GXdcrj6UGr4rSAtDuAAq2joZ1XMLrASoPoLHASTvgnowKBphbBstMjVArRDDNIc6UBwzYiux++dZ35ufg8IPG48STGGiB4/nDMwmKERRQGmp9zJ0XRVjAiAUE4DVirYHXiqA187az5c6OzhC9+9Ec2mrT8QPSDvf0hunpF9+mux55kcaMGk5//LmEDtp7Bzrl2P0rgtaAFyj4ufBQgksID2UpS23Qw+Cg1O0WOkaI2oOji+C0ZmHSpQAAIABJREFUZBL9t19XVw8gy+nO1PgwW52clhgSXQBoMtVhwO06O6PnMr5Gx4U5L0lJQJQzykFLV+NiHU3kXjaqCthr65Z4wUg1rLdu3AO7KsFw6QYBduWEFvF4glL5orYKXeCq+6F4gBMYJz+jNUEP+TxuthEAOuhYoggLGLHARa/8bORyy6697G+rW1aXXRUJwGuX5S1oF0eJH33+HT3+/JvU2t5Fvy9YTG0dIebvXnrWMTRmueG08gqj05xfC5q0rQocneJFBu+IHbQCqD8g+roU9AmrjAyQC8ALe4HHm02LuBS6unqBFI8dF+c5o9dbn3Ide3vltMR6PK566tcDcPOBW/VcK9q6uEfxuurpxyCcrfcmuXEAV0UoQJ1zIl813F+PNF3xhAyW0xQJycuL5zaZQCpj61RTsj0fyH5mReYzq56/bPWAelET8HLAKE5VRBEWMGKBi20CvJcKwGtkmsS1VlpgwaIWOvm8G+mXeQv5pQJ6w9RTDqOvv/+VE1G89NDVVjZne10AKaG+WFbFgWJ3EIoG+CkXaTIErIHO4Ha55Ex1gy2EbGnQ1lWCIItlw3zASdOtCByQ42g9V18Htaf6AzixWEvQsFVKvv7pAciDQKe6g3kawMdpXi08rTmuH/BRvo7nMJJWPX6vBHw1YhzTc6HVJDAbTuYjcW2PdNrOqRT19RSPX4tAzJBMFyjWWraqXlAZANAF4LXKokOnnktetcfDe8kuwsM7dFaZw0Z67oy76INPvqGjDtiFDtxrB6qrhbyNi7754Tc6adqNdO1Fk2nLjddxWK/Ndwcv2u6+GGczsqNAmgwvKQTJlfCU1vBQmeMMz5GLODIcnqRIHLJj/VFPXq+bfJAkq7Je8F4XBtNxUb5LjAI/9fUK6GVur46gLc2+6AWlmTMo36fcDgUQhU8LpS+9KgxGxp/Pluouoj8Ar6C/oD9Z782wG7yWipcY3t5czwgHusUT/IMCfd9CC2zYWOvnZDN6NyiFtlnI/QhWQ9CaKMICRi0gAK9Ri/VfLygN5m1n653Hn30dNdTVcKrhQKD/i7O3L0KPzX6dGutraf/dt7W1j1qNI0VyV3cvbbXJuob7Bgmtjm7tgCvDlRm8AfQAvKR6wlLAidMKgAo4gQGvm/sHsIuizjzFQNfrLopXV5dFdHg6c9k1fbsZsJnh0YVHFT8ARwC+SjEKbnFfLo+y5udyYwqVQAkAU9dTLECbc92qGoXQi6Lba0Ry1+ORub16OMEyMkWwWyqZpCRIxCYLB4UFvaw8omstmmzHitvg1W2o8VGVv/LUdKywj6gjtwUutcnDe7Hw8IqlaZcFHn3udXrq32/TFVMn0dqrr5juBl4ejzz3Or3zv6/o9qtOo4BfysDmlDLj1ofpvY/m0IsmKBcAcpwu2AbtT7z8ERTjRI6g4t1ChDx4znGVew1AoLneTx09Maqq8nHwmhUUBt2gQuNCvfdmA5Lqv2swH3RTIRTOLJ4NcFdz9Stnn3V4iTOfP8wZ8I4iDZar8bz2ynaBTA816/Fkb69P8vZG47mVHNTjw32IxcKPvO/KEw0ncX0R4MbgP2pc4izod0t63H32nAAZ+X6V0hCXTg3FSN/Etc63wGWv2UNpuOivgtLg/NVRoT2E/u6fi1toxTGj0ioMiIq+5vZH6bHZb9DKY0bRc7OmkxtnjQ4pi5a20tmX3UFffPMz7bnzVnT1BSca6hlehgC88PTaUQB4IY9WKik0PWOEl6ixFhqfUerLkkJ4RHMVB2zBannBU55Gdd1vEuTm8q7mA5zqbmtdy3/LgpTV4FPZK+TysOqygaq9zOtx9M9qIwDZOsCyWcCaOZVGbKi+F331+4jC0dxUBS1QD8Aci0tBeEYKAHA8GqNkQt+zXoX8yYSsZgYbMtIpi67FKcvw+oDIsGaRPYdaNZe/9ostQ77wr6vZ0q6VjQpKg5XWtLGuBQuX0V0P/5teffsT2mW7TemiMyaSB+eLDimxeJyef+UD+vKbn2n1VcfSrMdfpmsvnEybrG9MzBrJJ+xSSqgNQjMTdAF9L+Fimp4zoQU87LFt7x4cAQ8vGygMCErzyYlIlAxkRiBBXnCnAdg0va4qYwwCn5mf5UFqugCtXIcmxs2oAL9y0JhHlueSub0KZnWprjflBZZvUntMEeCVs+gAwvlAfr76c32eOU6AXigygHWAHyM8doBl9tzm4fZm6w/oDolY/xrH75kFcl/4M05gnF4AzuHhFUVYwIwFrvivPYD3gp0F4DUzX+Ieiy3w1Xdzaea9z9K8BYvp8P135iC26qqAxa0UXh2CU3CcDjm1My6ZyYD8/FOPoOHDGnRXDg9rWyhiS2AKVBrAk82WoUz3IAq4EGASAvZet4v1dcOx5CBbAFhVV/koGPAMoC+wJq3s6MwHes0A3azDAnhT1Jd0gkfFG2sE3CoAlfuRZQDZxoW/czpYWV8WHkktSqlhsC4bhTnDkPACZziTHpBjPeSdhzyo19D9qrq07pPS5UreaYxBk8qepUGmOKjGb/QRkKqV/j+BxvFbUnKRo1/g1+PkRZ3JzGgbpboeJzIi4USprF157QjAa35OhYfXvO1suTPU3UvgwTbU1tCaq61IrR1dNPuV96mlrZOuOOdY2nqz9QYEsdnSSR2Nzvl+Lp1x8e10zpRD6K/bbqqbV4p89Es7wgUfzevo4qBL8NJGZLWWR9VMfUbvgVcXtAolCYdW8Bx7dH0QtM/O1QXoBUgA6M0KKLN1TofnMd8RfC56QTasmlnnoH5rDESLlqAHALJqAry9UE1Q7Qz03KvgMvW1ONZnoCtTGAaNMV/fjS6UTOCaq+P53PEabbMig3x4BHldvXbhUwd5QwFbGPESD8D1ymIA7zeVIrcrRTW+FPWGExRzYEBppgmR/hjPpyjCAmYsMP11ezy85+8kPLxm5kvcU6AFDjjuIvp+7h+Dagn4fczZ9Xo9tMa4MbTGqivSEQf8lZNPFLvE4gn6ce58GjW8kVMa5yuRSIxmznqWXn3nU3rm7svotz8W04jhjTRSx72L2vps8fDihY2jSDtSlyIoB5HdSAscjWtDDIBdaOvmC0qb8dgHDHgRLR6X02uhRvxEwJuUf1FaAahgkKYgVQa9CvKVAo2kX6W/DfqvfB/zVeWLlbqkX5U6+E4KQherv1K48mSyq9RQ0OelC0/cM73EsoHffEAs/XnGhfgVcw1dWtbszQB1+TBiJthFRyOqOKx8/cp8drL1M98zlmPPkvFRnh5l+Rj2QTKWcBTZ1TJbyw7oJEURya4FCDOkG3S5UgzAY7EUJWJR/bmczRqwwPuWa4aEZIGViNuHrAWutAnwnicA75Bdc7YOHGCxp7ePOkI9NG/+Ipo7byF9//Mf1NbRJWc3SjJtACB0my3Wp5Mm7pPmcVrdcQCYT+f8RBdfcy/V1FSxp3m9tcbReacewRnfcpVPvvyBLrj6HkKw3Vqrr0jHH7YnbTg+/y4SoM8urt4wKB50Ry15UeuZC4WrC3CKCHTFq7ukozt9O8BGXS02Oy5679sF1NLZm/a69UVilEgmpd9lUKJgEyntrosSKYkWkQaf8rXagFcBrQrI7f99AIhlHKsAZRnQAgorAFdpQ264H0tLXjsGzpn3p39XAWCl4zJArg76eEz9A5KuHTu6mbbbXJHCk/oBe0lBnf1ua7SJQFClwDsLjy8nVZC9vdkAtjQk6Ygdx/c4EVD0bLXm2gyQNQqWs+8KBvbIbL1pbq/M0c3n3VdaxRT5QCqXs7TBTkb6oMaL7DkG4JV50ZLiA4jGqjBNvR3T81AWcA0SwgxvCBZQg7h1qFtghk2A91wBeIf60nPW+DmyOZFgPUv8t7s3TOFIlMYuN6Joag2t7Z20z9Hn08H77EgH770DffXtXJpx28O0+YZr08VnTqSqoDaXGCmQZ973LM2bv5h22HpD5h3DQ62nQKXBDi8r+gYvK7yixQ6cw0scCgzgDX/+62LpuBbBO7JLbM7vSxjYAbDF1S/zDFCrwIhBlyieWNnTCwTIVav+3u/ElTyvXGQgqnL2qoCpfEmGR7jfs6uoEgwEmAO9vTjqVgYhAVPJY6wGy6p/qz5P900NgtOeYlwogV8p6ClFPo8kZZX2IPPGIEXbbDaePZc+r5c2WncVqq8LMuhFVekUupkLVYXWvF4JJPOxvQZZuv9S1U0D0F529192UGgALmZeirHpefDSa2Bg/xTAif9yUJvuuDHJM4s9RzLpkuT0tDqSzRzytRLFwiWffGRcLNMeJPALHo/uzhmxiO5rkRwDwaaiCAuYtcCMN+aavbWg+87dcdWC7nfCzYLD64RZKOM+/PTrfDp8yhU066ZptO6a4xj8vP/JN3TWpf+ic6YcSvvvvk16dADfoFt4PR4CF/nTr35kb9q4FUcbAuQAfUs6IrZYDdQCCNy3dhnXCtXb4Xe+m0doB0E44WicFrZJ3lxwdyUwmCKXG0kkBgalDcAKaeAre1llsKrCrWlwyxABGb/IRQm0oXIFqz2vacCrpjfI/1a8sdzMAO9s/wlzmuoAEKIJniXAo1AqGOoOqkv2ACse5DQA7/cKqz3DA0Aw6pO1XpnBjE7gd/631LAL3m5KSl5al4tGj2gkv9dNfq+HM9PtseMmVF1VMxCXyYMBdgaAQ8Abeyx18J3Ta0ID6BkCoRZIzuldn9muY3k3rwR6FW8rGzJPUYLhcP8gvd98N2OeVLzgrJcP3LFJlyXgEjZqZR0dynHJqKYgK6uIIixg1gJX2QR4pwnAa3bKxH2VYoEFi5bRfsdeSIfutxOdccKB6WFdPfMR+vqH3+iKqccxh/jTOT/SqRfcQleddwJtu+UGBQ/fLh4vXq44klzSHi54DEoFvZEovfbVLxSNJ9jDCJ3OcCxBCNAbVFJE/oA/K46QsJcK5KorUAGwAQBVvkZKcyvxehVAKuFSub604zXjdwW8yldqURsG1KcGvGrgKve9HyjKgJdBqQo4Z3B+06BY9vbykbZ8A/+H71fRJBSQzP1Qg2D5vjSJWfYKyx7hVEoCwgi8qoUKSipFJx66CzXUVTPoQvrpSIThs0YZPJd5oVb6gkyApH1n3voKWrH6QRoC/gDqInGFyqKvYeb2+lwUS6Yonk+2TVUlqBGYIlN8YOU0IBnTg831DSTHVcsPqyq4DlHB0LbA1W/a4+GduoPw8A7tlSdGzx7dsy77F/0y70+6+7qz0wFrCGCbPPV6uvSsYxjgAhhfddsj9NdtN6E9d56QTpZh1oR26fHitT+6OUiL2owDXnhoQ+EIRWMJ6uoL0zfzl/C/OdLc7ZKUFRDghKA0FShkGzEYRUCim0FpPnCjBpgyHk1zVTPvHejFdTF4Aw5IDOLSSrOVBsD9FaepB5lAWcVOUAWzSfX0UxckPxsDVQU8p/+tArtpQNsfQKeA3TSLQQVs++kQitdYzug1wDsstytXoNwDkNxP35BAcT+vWFIGAMrCnCLgvrbKTxuuvRKtOnaUxJdPpai5oca4PKBqcvLNsdlnp/D7tMEv+qt8Ag4zsvyBc85xkQYG4/dLHAts+PSILgQAkuNagXNGRopnT+qkK6Fo/sq/G6kmx7U4GQIlShRhgUIscI1NgPccAXgLmTZxb6VYABnfTjj7Otp+wob0j4n7Uk11kJa1dtC0K++kfXbZmvbaZQIPFWmPQWmwIvubnTzekY0BDlzLppaQOa+/Lm5lcBeJxWlRexeF+vrpEBL/0c0gUwIHg71i0jWerJuEbFhiIG9Xcc/2967/Pq02Jegi9Ud9pQx609UpygwZf1cAq4r+kAa/6oA2rc9VwFYNjNNglNFxP0BWgHI/XVcByWqagwpUa9IkFOArB8vJXmLJW5zBH5YlCZjXyx7kJCXYm4ngvxQF/V7+72pjR9LI+moKVgdoeGMtrbbCCHIpx9kGAGC+74nCq9LvvVX6onWHuh/4nFMMe8Azd1GcAan+nuIeAGZ4buPgVg+4dWDrALx4Fg1Ur2nSQWMC5xv0Idb6lX4KKfXVXqqtEoC3EBuKe4mufcseD+/Z2wsPr1h/wgJsgadfeoduuuspuvC0I1lX9+ff/qRTLriZzj35cAbCVhfwW1s67eHx4sWFl2uoL/u5K5QRFrZ20qL2TmoN9Q7goiq24MAoD3izEthNA0vVm5eBrtvVD5Q0DJnpzVVfMgCqZvEeZgIF5fgf8mYALRJ3WA2UpV8GAOo0XaIfePR7jlWKC3I1A8CrzKRUUyEyaQ2DgG86WG2gd1jN+ZWYCUrgm+SZBoZhwkaa1pDNWyzdxyAt41rME8tKsZMXyVQkG4FbrgBkV083+b+eQ67WFnL7feRfe22q3XADbgx0iJWWb6bN1llJYzblyc+JrVL9rlTdD5ZxUJuvar01Yv1ircOUMSXH8ICbtWtiwIyTD1k+LxtlAclgDKUbz6IJlnU88kIHvxvFTQlT9IfmOj8nrhFFWKAQCwjAa956ImjNvO3K4k5Ik73/8dc064n/0A2XTKHmxvqi9DsajdHM+2fTfY++RPV1NRSORGinv2xC5556ODXW11reJnimUGrQSr5geWMZFYKriePJDo2Uvrj0nW9/oT6V8KpEVFAVWYAfwVAA7tle5KAvIBudXmChPW5tz5cWSE5jLJV3FnUCrDDoVUlHSffLwFfVsPJ3NdjtvzSDi8sfyEA0/W9VsJeawqCEF6VkjqwMsBXvq7pdNZiWPLD97TLoHeAdVnl25c/SIFehWfC4+7288D7CHsx1ltgncgY7/E2iP3h/+pGC/3tXAsDJFMVWWJF6J2xDKZ8/DYpxH8AvnL5rrzyadtlirWIv3f765UVV2NrSd7dyFdY71lJfJEMpIU81rIns8zDFIfN5lwLlwHlXMactGdsgUw2cG3nt+0gf2RjAHYAX/HxRhAUKscB1b/1ayO2m7z1r+1VM3+uUGwXgdcpMWNSPjq5umr9wKS1r6aAnXniLPpvzI/X2RZhbO+Pc42mrTRUtUosaVFWDpAWvv/sZffz59zRh8/Vox603YgpDMQpASag3Tj1hfS8cK/uAlyzkhRRpNHhzu3r6aGFbBy3tCA2gAGQ6kwCWIDXG+qxxjbTAOAp2u/gFny+BRN4xZXgJBxMTpBq0PLyyA1Nyn7pczFNl/YK0dJmMUNNAVK5L7pSaBqFcmekRTkumqeroB8r9UmhqLq7stB3A+U3fA4+rAkzlcQ34XfbuKt7jfrCsgOB+mgTWlxoYK3FsmHvwShVvrkTt5YbZ04u+JMMR8n/8IbmXLE7TIVIeL/VtuClFRy+fBs8SL1jy7DPIThJVBXwELeGdN12DucDga3s8bhrVJG8a0+BQH9jMtUYG15APeeZecdnv7kegkpIF1n+KZchy0RAyncA4DQFwlOgL0r0Au7A5OLxcLAK7g8aiMTimbVCKPJTgDU+uUhWQ+LtCoCHvt5a4II8Frn/bHsB75nYC8IrF6QALIHHD/z77ln745Q/6+bcF9P7H31AsHqetNlmXVl15eYrFEvTsf96lqScfRrvusHnRklCU0hR44UELt6tXCTApZetESEDR0hmmZZ0h6urto8VtnYM4iup3JICLlO5XCqDiDGfpIvmApUQIuE69SRjoH87kSfbXkYdfmFUiqx9YSmE72bW00DeGdwCOA5pTeXq1uiH/TfkI9QxrqBs8YRpNM8BVuJMZ9ajButIDBRCn4XimIoRa7UGuQA2iF7R2UCSW4LlUKA1Kv/E7AvkUiocEVCWQrPw3vYNYupRSbW2yh5co4fdTYtRoSvoD6WsViTQFvKFeNWeYqQBuN/k9Hlpv1eUY7OH38auMpgBnbVCtMO1/6kKo/bdmoRZo1ZIV3Q46zxh0NyedwA7KJXnKwRMfXLThODR3FVkveHv9PjdvHM2kKc7OqshtBw9k61jGT1Lt0LP1wIkQqFAFb2JL+zUnWnOgBW6wCfCeIQCvA1fDEOvSL78toFvueYa++fE3am3r4oQTJx+zH2224Vq08tjR1NRQR8lUkmbe9xy99cGXNOO8E2jt1VesCCv1RuLU2RMrOFjFjDFSqRj9NH8JdfSE2eaZLz317/Boeb0uBooxmecptdkPDjhIx4sXohzto+NFqm5DDVQlr7L8aRYXmiY8Vv0x20tcSnYhSUABnI0a1sT9ziy5PPuouzpLQhIzc6G+Jw/sz1s91DNwdK6AbPQV3vxIPEk9fXFZujdFkaj0bzV1Q2n7vR9+J4rHiBYuomRPDyVdboqNHE2J6moOfWIwLXs31cA67VWWga8CovlaaATLxwUjGmvZ8wttYK/bTdttuCp7hlX7J3l1DVxj6sEPPHkYONuZQDAfDE5/nhP5DQTCkgSe5KHFOEHtGdA/1Qi0xoXNI4Av7AAJv/Qyz+iD9KseSCpdlnXdU4q8LimLHvuUc1ybuchwT121j2qrBj8neRekuEBYIMMCN7xjj4f3jG2Fh1csRpst0NreRZfdMIuOPXQP8vu8NP3mB2nigbvSX7fbdEDPPv/6J5o89Qa68dIptPVm69nca2uax0sSPNqB3lJr6taqRfLsJemrX+bJvlCFU5jxMpdvZu4heItuF/Uh7RYjIvla1ZsVGeb6AUhuD1muV/fAz9TuULydFfcprlKgGTzOshyTCiS7+MXuouaGeqqrqUmbws1qEpBFIxrWEGAA2JvJxyye+UteM6gnDdU+wsaqO2w8Q1eNz0W1yQh1JVzUnfQwMFNnkcOA3p+3jBYva5WP9yVPsZJgRO1JxhrHZknyAmOzgX/L/GTZy+z3epkusMdWa1N1UNJqxjz6IIyrAfuUNZe54tT7JQUCDtrQqf6gtWIH1qFM3eArcZ3P5+bANInPLq1NTQieATKxSQz6PGwTbEgk1Nt/Z5bYtCwQWL5P+Y/clt8F2TnI0Jlffnj+G2t9FJDnwXxN4k5hAaIbbQK8pwvAK5afkywAKbDzr7qbRo9opvP+eQQFA1KADDi9jz//Jr385sd03UUn0UbjV3dSt033BS+69u4YH0EXu0QhKdbSRi2dXQxa4GFCZrKYLBSqfrni3ah4oDgyHdfIL+N+kAEKAzy/Ek8zXTI9R5leV+VSg65M9Mfv80sve9XbG6DWK3tolVTFemwJLmZtUFKr6Ism0nbQc6/Tr4GJ4Y3DcTk2VNpH7vpGgZP7+lofe/dDvTFdurJYX8iwpy5Lu3rpu4UtEu9b5ikDBPcHzqWorSdMnT1hBsKSJJiHPcNbrzeONzYAXpivUU11zAtmQKxyz0oAeaCnM+0hVePBgdhwwEmFgiZVsHMQwMwE1PgdfUMwKGvvKtzedDua8JfpP9hQ4nosaUXCrB8wZ6DUnF5ZF3llrzPu8rulOnOBZn0rAAlJ3BywJjKs6bWYuC6XBW561x4P72nbCA+vWJkOsgCO1mc9/jLd/ciLzNUd1lRP0Wic5nw/l777aR4duNf2NPnIfai+rtpBvS6sKwgcMyRJZKI58KH/WLSUQr196YA0iU/ZD3iVl6wio4QXJYJyOMhLVRgMc0pgCfBKHtb8RX2NwlcdCCr6ETC8sHW1UpATQAH+5/V5KRgI8N/wuRUF7VcFPFQT9LBEWziqnWPMirZKVQe4pdUBySPaE0lYogKCucbmAGaPxABmrdmgSR7ffpsv7uyhllBfmn+MzH0AxHCaArz90RKiBe0hGjuyiQGvQglYbcxIOUAOAE9aj+qNWXqNqgCjAoQzN3rp1ZwBLvnvg4CyNKvKZxygxxx2cNwlDejMZyf9O05PANpdUsCakriFE1akU3ArT6XSTsaDCGqNR2qfecUK4NXzQBpYkDgpAOAV/F0DRhOXZrXAze/+Zot1/rnNOFvatbJRodJgpTUdUFdXqJeef/V9zmoGYIMj+HErjKZLzjqaVll5TFEkwuwcNlQaunrjA5QRrOzPoqWt1NXTS+FodAAwlTxSkBWTvbcciOPmYBy8gBHcxHqtqrc8XqqZCSTSHrRBne4/2pWYg9L/q1/4+J0DwJqa+c8A0Owtdkl8YKUU+0Xr97qoHkf/0QT1mjj6t3K+CqkLQBeeXXh1Ja51IbUNvhdedhxtI9gqm6SdlS0y/UGVLKEnEqM+cI9ldkuEAXGCaoIBWhQK06e/LeHkMFjH664yJq0SofBtFWCI7ZK0zNTguP/fEmDuR7fKulWeBTWYzqT44BpO0+xR1BekNNdpgJ1e1DL/F0k/4NGW28Smgr2+iZR06qDhjW7ySwAX44AHnvtgMchVzyM2hA010umKKMIChVrgFpsA76kC8BY6deL+YlkAurjhSIw9Och8hhcbZMPw90gkRqNHSiCp3AvAw7LOsOXgJJFI0NLWDmrr7BpkIn65yi9W6YjZRQGch8rySPC5qd+fEmBQuJQSb1ZdJDjbj64y371qDxtA7chhw6Uj6gFqDvbOJIAG+K6Yj245uMveHulvHfYO+t0cWFQKbedmUByIeKNWCF1C/wiNXwnvcG8kRj6fl7nHr/+wkIY1NZBPToSiBC8qMm3S8T9oPiowLINKdu7yv/u3dwyYZa/vQI+ydA3qAaUEur2RmLz5AH6VHw5wlQFsI9EkS9GlAa/cPgL6JO9vkkYEJS1rpY/GrVHYHcMbAtxXUYQFrLDALe/Z4+E99S/Cw2vF/Ik6imQB8E5/n7+YFi9to69//I3+88aHtGhJK+2y/eZ05bRJRWq1tNXCW7W4HVQD69qFru6y1vYBYFftqUVLeIHCs4mCl3IiISkwKEW5HkCQj2rxAla94Af3VvJjocaA35+OAseGpb6uQW6nOJrGVlkOgKKuysue744eBBNaOClWdTKjHvQVfcbRP4C6GXkrM12DNxk/kNYDB7qcCjjG0lqXaApzlvSQl9U7JFk7CVxKCgr4pTMsKVqkQbHsGVZ+ly+TvcYyxUAGrghmQwIWloRLJKnK56Zqv8R7BxCWhaK5zRqvm6q8EqzGcwcaCYLacAqEgLhSzW3mXI5goqNXAAAgAElEQVRqCgr+bjktcIf39VabAO8pAvA6fGUM4e499PRr9PuCxfTFN7/Qb38sorHLj2RN3o+//IFT/150+lEVY51lHWHLgqbg2V3S2kadoZ6BXtp+JCuBT8hCIYFESs6upRFcxlJjyJSmcbyrNj6/rGslqSlcW10lcayl1L5FPGst0gqA5ihs0xuOy6CkSA0VUC3MCuAU8HsYcA7K/lVA3XpvBbezyu9hLy/aB+e73AsH0akoCHiIFndHOVgvDWwzKBHSWpdGLjEM+nntivcX6yngdVND0MvPHtYW7CV5lLM/I6CRVPkldZFu3FPiTRjaH9kYLPdpFf13kAVue98eD+/JWwsPr4OWgeiK2gKnnH8zzZu/hI46cBcGuiOHNVFNTRUnoLj30Zdo2pRDac9dJlSE0QAW2rujBY+FwW5LG4V6etJ19R/Cyi9kcHW9UnAN/gdvMLiC/a9ceLaIvL5+9YXBnt0Ueb0+DixzuyVArCgllCPA1TI8PKe1QQ+DEmTEc1LBXDXV+dljCA+rnUATawV0iuqAlykOmXq0TrKbnX1hsFuDwD83gXsMDrTeUx0+NYFnOOjhDRjmvFSlttpL9VUqjeRSNSzaqVgLzLQJ8E4RgLdi11TZDwzBJ+B4Stmx+kt7Z4h2O3wqbTx+dbr9qtP5Aw6uKkNPojIqeG2WdoQLmjMA15bWNurqVoHdtOlkXqFLenHi4DYck6TJpFSn0vEurgK3EDQEVVB6eg5cLtATIAPmcxT/tiDD5bgZS4qj04mopavwDYkV/cTjMKIhQOFYkpOWOKUA9CLwD2oXdnibnWIHrX5IwX5+6ulD0F2Saqs87Bnv7DG2QcA6RIZEAGVskEvhUBf8XSevrPLs28wP5tnS8SkTVralXSsbFSoNVlqzTOqaccvDtMJyw+nIA/9G3/44j3m9O2+7SZn0fnA3QStY3FYY4G3v7KLW9na5ctWRqgx6ob4AcAv1BUgmKTxBDpyJJRnUssyTLPkF0OvzSp6duroGKaDHIjmwcpuo+ip45lzMpVR0i0s9BqYwBDx8LM4UBgdKqGGfhMA5rL5QX3lwoIs9j0Gfm0CRQYITNdcZG0+oH+DZw48RqgIoDkG/dC/q1OspNjpWfEeAv5vpdDBaj7heWEBtgdttArz/EIBXLMRyswA8vK+/+xktWNRCm224Jr35/pf08psf0Xuzbyu3oQzob0tnxPRxcHtHB3V0dql0EvoF+NO6uiTr6vYrHTHvEBxQKaeEFKQTCATZgwutXZ8vUNaecysXBDyYCCDi4LASHiljDJgnKEhgl9LdK3E/nVxABUH2sXBEAmRDscATD41nbCgRTKi1UcIGAcCVA9MixnSg4TXGBghrA0oP8PhbXdB3eHhFERaw0gL/sgnwniQAr5XTKOoqlgWg1jD7lffoxdc+pPauEKs2IAvbmSceRFtssg61tnXROmusVKzmS1IvvIdmjqjj8TjNX7hIyoSW1saXheg9EMEHZUFK56qk5GX2rluiL8B7UxXw0fDmJuoOw9MLGomQINKadETcsw5tsjQ6tOgD5OLgNUWyBySSKJY3z+pFjhMFaAKjIJvgUCoAuw01Pg7mQ6BZZvKWTFtALaU6KNnKiL6xpIvtosYaH/VFwO2V1CSsKlh3UAARRVjASgvc8T97KA2TtxKUBivnUdRlsQX+XNxCV9z0IH30+XfsaQwEfLT1ZuPp9BMOolHDpWxLlVKisSS1dEUMDQfc5cVLl1I0OpBfCk+t3yfRGpBEIh11rmiNulxUFQxQbV1jOltaU630ggYHs1xAlSFjWXjxsDo/a6dig5IPzBTSLGSpaqq81NoZJqZZl2HhlLQuorYCUxyXy9AVni3oBkb1nBuqvezxbQ1FDVEcpBMAL38ftoes4/Zi7tAfUYQFrLTA/9kEeE8UgNfKaRR1WW2BZa0drMiweFk77bfbX2izDddizy6AHry++HelFByVt3ZFdQv5wwZdXV3UGVISS0jqCpzlSc7UpBx94yXs8UBqy0s1tXX878ykD3hpAmCBAmEnV7Vc5hPH1eBngpsp6alaVzAHOK7GPAJUOzW5g94RYywS51TKZGelF1JvH0pxHTy18Ipi84qNo5kS8LmoJuDlUwQ8hypp7LzVpe0cTTDFoZB1g++D4fUBXoOiCAtYaYH/+9AeD++JWwoPr5XzKOoqggUAbH1e8ExT9M0Pv9G7H8+hjq4eCoejNG7saNp9py0rIusa0qgC3OjlPMZiMWptayP8Fy8ndTpTpCWFveDihSauG2DX7ye/PzcnF8AYQA7BNJDiKgYvsAhLxLYqEXhUV+1lriqOrq0oAC2I4Mc6AI3B4XRd3UPG0TsoDin5mN8IkNPdiI0XIpAM84b01OECAwqxcYUEmdeN1N9J3lTpLWAjIUgO9BtQYAC+zRSsbShLYPMlirCAlRa488PfraxOd10nbFnetEcMVKg06J7u8r7w+Vc/oFvvfZqWtXRQc2M9AzokV9hmy/XpmgsmU8Bf3lqR8HoBZHb36eM79vT2UHt7O4NdBJcA8ALosi59isjn81FdfQMHoBlNAAFPVVOtnzp7YwW/vMt71eXvPYAFZKaUVLuF0EGw0QBYgeQUqCiVVoCdsFah7QpPrxEg52RbcJBejuA0s33HJqGpxscBb3gWjawttjM2GKmUKQ41OMX11V4p25wowgIWWuCuj+wBvMdvIQCvhdMoqiqWBSA7ttvh59DmG69N5558OI1bcTn+Iv/Pmx8TJMpuueIU2mj86sVqvmT1AuxCvD9fwdgXLfqTX0bI4OR2pSgSgxaxm9UVGhqHFayTi6AjeHi6emOWH9nnG185fg6wWuX3UkePMf4lxqqkNEaKZwQtVYpXN9s84pS8uT7AHFdo9pYztG+ukzaUVnJnM+1mVrcX9YCHC68vNH9jBojgCFYDPUMUYQGrLXC3TYB3kgC8Vk+lqK8YFnj8+TfpzgdfoOsuPmkAsIWH94xLZjI39V9XnVGMpktaJ46wO3QIyvf2hKi3N0QBn5dSLg8DJK/HS9U1dZYqLAD08pE9ZI8q6Hi9WJMKOgI8tEY2CfDEQfkB3k4AwKFScFQOz6jLjTS7CdOSfHbZC559PBvwuhr1vprpcyG6vdgUg58PDjX0m0GfylWg3ALvLrLniSIsYLUFBOA1b1FBaTBvu7K587HZb9BDT79G9900jUY0N6T7DX7vPy+8lTq7uumR2y8sm/Fk6yjE5wF4c6VnRaBUNNxNLG/q8pDb47MU5Gb2DcAE3kt4sQDICgmEKfsJ0jEAAFjYC940gNhs2IJ5mgEvp3kGV3ooZidTOOPgjWP8xUyioGPqdF/CMmJyYFkpNymF6PbiOYaWNNYnNrC5YgUgVwjVFhGwpntJiAsNWOCej+2hNBy3uaA0GJgmcaldFvj194V0xMnT6dxTD6e9/joh3Y229i6acdvDtOH41enw/Xa2q3uWtYuMazga1Yr6BzhAIAtE6jtxbG4uFsVUXwe2HXN84gNTg7TwJoBZeHoBLjo0VBbweVOdX8qUFUkM+U0EJ1EIesjjcrG9jHBVLZw2XVVhTuHZBdC1Wp1DVwcIPGhzur2oX9FHziVBiDEihXE5p2vXa0txXektcK9NgPdYAXhLP9miRXMWOPPS2+n7n3+nGeedQBuss6okTRaNMf/P55U0KCuhwMObGcyjSAThSFIPx7dYdgCvD/JS0At2Migp1viN1otj4aqAl5Z2hNP2gke3udbPEfSl9A4a7bsd18NevL46I47kMYOCgY0M1r8TVCYU3d4WA3KGyrziFAJe6tZQZJCWNDzBzXUiw5odz8BQaPO+T/6wZZjHbLaiLe1a2aigNFhpTQfXtXBJCz0++03ae5etCemFkZTinQ+/YnmyDdZdlf6y+fpln20N5gdXFl5eAHnlCBMcPKQPdUJUew1ks8BT7QH1opzDjUqz2CWZMTdzJ3FEjKPlzu6opKYhyiALQNqrKgA5rhT1IkuZA+ykaFTjqL+zN1rUZCNGlwR0e5lekUhxemIjiVDUvGDQHBS6EhRaQDMRRVigGBYQgNe8VQXgNW+7srsTXt0XX/+Qrr/jcU4nXFUVoO222oB+/nUB+X0+uvD0o2j8WuPKblzqDiOgZElHmI/D8fIHzQGeQCe8+JV+BtC3oIc1Pss9yr4Ui6U64KaGGj8DijaDWbRK0T+ntYGNXm0V1A8kqT47eePoAzzPELV2KoddodAg2AynQEZ0gDE+RbdXCWob0SASTjjtmaik/syyycN7tPDwVtIyqvyxLFi4jM6dcRdFolE64fC96P4nX6FJh+1Bq668PJ1+8W205cbr0D+PP4C8nvL2TgBE4kUEmTIlNbDTZpcTCQS96XTETuufU/oDSSl44KDcgON6eHiRUU+U3BbA+oe9AMb6InHqCetPvmCVbcF3baiRFDTKIaBO6S8CJkF9MuIcB9WmrkqSIRPphK1aQaIeLQvcbxPgnSgAr1iQ5WSBl17/kGbc+jDdee1ZrMV7673PUH1tNR136B70nzc/omdefIcuP+c4WmH5EeU0rEF9RdR+W1fE8WOAZwmSWimSdEhF6bcAAv0Q3BQAJ7UjkgYfoITUVHllNQ4jkGRoWhdrDCluw7EEe3tLZTEc98OzC+BoV3Ca2RlHv3FCBLk0owlM8DwLOTKzlhf36bHA/Z/aw+GduKng8OqZH3GNQyzwylsf05W3PEz/fmAG1dVW09MvvkNPv/g2A+B7HnmJvvjmJ7p86nE0dvmRDumxuW5AlgyBO+VQ4IkD5w90E4ADO4+fnWIvgA1wd0FPCYXjgwL84E2rr/YxkOrpKx2Ic4p9jPYDawwBkyg4rs8l22e0bq3rQSXC/CFddLmBXWU8CDyr9ntY8g5j0PtcIiEIpA9FERYolgUe+HR+sarOWe9Rm461pV0rGxUcXiut6fC6fpw7n8698k464Yi9aNcdNqe58/6kS66fRWuvvjK9+vYndMAe29Hxh+9JgUB5ZwgCb3dxW9jhszGwe4j69nnc1BOOcyrUoVoAlCCxBSALcJbNEkwJqfL2c7RLKDNXrnMDIAabgV5QLIoDgDXmBuu43IMyQZ8BfxzPJWgZAL/5ysimICGphijCAsWygAC85i0rAK9525XdnZFIlC6+bhZ98tUPNOumc2nUiCY67aJb6cPPv6cTj9iLDtpre2pqrCu7cWl1GFJWiLwupwKvEjiX3UhHPMQUHDg9cLWP0wSH+uK65o6TTwS9HJwIObqhvFHQu845Q1uVhwDJYGer5MEwF6ACQHu2s6ey0jtDtxfPJby8uWQNYdtRTUG9UyGuExYwZYEHbfLwHik8vKbmS9xkowWQhOLYM66h1VZenu6+/hzq6OqhqqCfAv7y9upmmhTHkIjoB1WgnArrzNb5mW/pBBm1UthO4Zn2Rs1p6yrphRHYZiTCvhRjc2ob0MTFZqGtC0lYCntG4NFEcBqoEgDRlVgUQI+11hqKDaI4uF0u5uOLgLVKnH1njemhz+yhNByxiaA0OGsliN7oskBLWydVVwWouqqyvRHQ5AUIKjdPL2SlACAQMAMeZJlhdl1rEBeBWyppmUJJIFEQwIcXrr7aT72ReFkoAug2UhEvzKYja6RJAEB4dotJkzDSn2JfC1oIKDdqnWN4dhFgWeWHh7vYPRD1D3ULPPTZAltMcMQmK9jSrpWNCkqDldYUdZm2ANIcP//qBxTq6aXVVh5Du+24hem61DfC04sj1rhVZ7eW9Cp/JQC9kDmC8w2gvdKKcrQOMA+wZDQaXssenGI34CGX28VJF6yos9LsnjkerDPWkfW4KQRVAgM0ICRXgL1hayQGGSoFNoMSg6Lbi38Lz+5QmX37x/mwTYD3cAF47Z980YPyt0B7R4gmT7uBQWlddRX9+sdCOmDP7ejU4/5uyeDg4ZWOu0uvRVrIABRBfGSKg2xZgSfPhXTF0nsBdnH8G40lqDucsNSDzV5jeB1rfLzRKVeVAEsNnqcyOCXh7YXnMoKAtkhu8IrrEWSJdQlOa7mdoFhlWwQAQksbwFcUYYFSWUAAXvOWFh5e87YTd1pkgfOvuptB7n03TmMu8V0P/5tmPf4ynXLc/nTIPjtyIEyhJZFMUkd3eQIgABFIJAHAGfHAFWqzYtwPbyL4o9iAFNMrCNDbUOujdgSzDbEAQLPzho1Ic52P11hnd0xTIUPRR+YUz70xQ6l4zfbLifdhg9BY4yePp/DvJieOT/TJuRZ45HN7KA2HbSwoDc5dFaJnhizQ0dVNyMTWF45w4onlRg4zdH8hFx88+VIa3tRAM2ecxtUg0OyyG+6nn36dT1dMncRJMqwo8CAjGAxH6OVWoOAANQL0vRwDs5R0t/gvNh6l8FYjcxa8cIiuhwyXXi3VclsbVvYX8A3ecTgtETSp9pCDMtJQ7aN4Us5EVlism5XdLmldeBZBN/J5hd5uSQ0vGmMLPGoT4D1UAF6xAsvdAh2dIXr2P+/R1z/8Sj/88geFuvto7dVXpJ222YT2330b8nklwfpilvse/w8989K7dMvlp6TB7bwFS+j8GXfRTn/ZmCYetCt5gJQsKAA9SDlcLB1SC7qYtYqADwDOx9SMcuo/jr8BlnD0jeC0UoBdxYhqWkhXBXjIi7m+1HUzxSHg4TmD8oKS7COM4MKotTSUUo3Jinb4hKLKyymujZTW9i569a1PaElLO620wijabYctKBj0G6lCXCssIAPeP22xxKEbj7GlXSsbFZQGK61ZZnV1hnro+jueoBf/+z9qrK+how/ejYY11dOLr39EX38/l86ZcijtufNWRR9VV3cv7Xro2XTwPjvSlGP2Ja/HQ4lEku565N/08psf0yMzL2RVCasKAqV6wrGcmppWtWV1PZCAaqzzM/81lyao1e2arQ9qE36PizpsBpughFQFPRTqi1E0NkRdkwYnUVEfwJrDJgUKGOV4umBw2JqXg1WF4DSoMUCCzEhZsqydrrvjcfros+9op202pg8//4523HpjOuHIvaihrsZIVeJaYQF67HN7AO8hAvCK1VfOFnjp9Q/p8psepIP33oH+cfS+5Pf1e3MPPOFiWnfNcXTeqUcM+HuxxvvCa/+jG+98gq6YehxN2HQ8NzP75ffojgefp6fuuoxqqq2VUAPkQVR6d5nqhjbV+viIHt43J8qWwaNbL9MJOnudoc2KPiGNMzzklaoXa/XzieN7bFqwxoZqEKAEdj1yYhRjYBf0LDgV/vvOp3TdxSfR+LVWoTnfz6XTLrqN6VoTNl3X6ikT9VW4BR77wibAu5G2hxcypzXVVaznr6cgZTyeC6tObfW0qVwjPLxGrFVB1yaTSQKV4Pb7Z9NbT91EdbXVA0b36LOv0/uffE2XnHk0DR/WWPSRw9t83b8eo6+++5XOPPFAamqoo8eff5PwMN18+SkUDOh7mIx0FC9x8BQBfJGOuJwKXsI4WgXRA/SGQpMHWDl2aJXWIIVtgdq6VvYp/YXnIga9+NKVMo2V17wXwyZadeLEHusLmwQAXciW4Tg/EpM45EPFbnjOamTPrpng2fc+/pouuuZeOvmY/WifXf/CL/m5vy+kMy+5nf+287ablGpKRTsVYoHHbQK8B2cA3j/+XEKTp95Avy9Ywpbdf/dt6aIzJpLP68lqaQDdS66fxZ9fetYxJZ8RAXhLbnLnNPjaO5/S5Tc+wKB2x79szB0DleDzOT/Ro7NfZ07vNRdMpvFrjStJp5EF7rHZbzCNAYB33NjR7HleY9XiZngB6O3qjZZdxDl7nvweCgY87Km2W4JL0icFX9dNveEEReLO1GaFj662WuJhwm5DVVYr20MtZRWTNKDBd1f2BLBXld9Nfp+HesL2r7difylBgQGyYwD6Zkp3Tx/te+wFtPlGa9N5pxxOtTVVXM1/3/2MbrrrKbry3ONp/bVXMVO1uGcIW+AJmwDvQRmA94Szr+M1PX3a8bR4aSsddOKldNHpR9Feu0zQnJ1X3vqYrrjpQWrrCLHsqAC8Q3gR2zF0fCFfesP99OlXP9Kh++5Iy1o76Me581mtoa0zRKuvPIaumDaJ1iwy4FSPHX36fcFi9rguP2o4NTfWWSJLls++UoKKaFmCH7/PxRJJdqbWVSL4w7FEyQPT8s1tts8RmAUvZrkFAZodr5773G7JAy7p8WoHp3GGNtjNgR58PWPUcw3sAEWKqoA5sIs2Xn37Ezr94pn0yO0X0gbrrJpu9vCTr6BxY5ejqVMOHXSypqdv4pqhbYEnvlxoiwEO2nD5dLs4kZ2w1xR66LbzaaPxq/Pfp9/8IC1e2ka3Tv+nZv96+yLU1d1DN975JJ/YCsBryzQOzUYhP4bI4QeffIUem/0mG8Hv99Hyo4bREX//K22zxfo0fFgDB5ANlRKNS1nZYg71TOaaB0hwAfRCGxXjKGVB2011fvYG9uZJWlDKfulpC97MkY1B6ovGqbPHGVxjPf0uxjVIz9xY46OOnnjeNQRvfmOtRDNq64pqavYWo4+lqBOebPCWC82edus9z3AMwqcv/x9VBQN8enb1bQ/T+59+S1eddwKtp+HdxZFvXzjKHMdAwDekvn9LMbeV0MaTNgHeA1WAd+68P2nvo8+nt56+iUbIlMcHn3qVZr/yPj1116U5zXzZjQ9QIpEQgLcSFmM5jCEWj9NJ026kH3/5gxcrfnC0tvtOW7IGbymkyJxqJ4BdgN5Sg0Yr7OH39nss4bUsNj0VwAAUBkhWgRoQLdMED6A4AODgVAFUDCfxoa1YF3rqwDwiQA28Zr2JOhTNXqaGIJVzLFn2wBebN1YW8RW+0f/4i+9pynk30zn/OIRWHjua5nw3l2bOeo5OmrgvTTpsd82Tq3c/mkO33vss9faF6W/bb0a77rA5rT6u/AX/9axBcY0+CzxlE+A9QAV4v/jmZzri5On0wQsz00ojT7zwFt3xwGx648kbBeDVN5XiqlJZ4OFn/ksBv5c2WGc1GjtmZFGCwko1FqvbQUAONFvLMUEFwAeO6RFWj7S9xQouUpI6gP8KPmexwbXVc5xZHzy9SOwRQHKPCJKTlNZLXuzx5aq/Tg5Ow6bFTCY/UBxgO2wYnKoaose+8OjCFlYllEBg8POvfkDPv/I+zZ23kGprgnTQ3jtw9siARhBuV6iHOb+brL8mn7D9/OsC+vDzb2n61ElFj2PQYx9xjTMs4ATAq3h4337mZhre3MCGER5eZ6wP0QsNC+B4DTngzUQeDwWDljPolSLLPeylgrfaatCLwCVokiq6rJWkcwAg3wx6RjheVsk9zDyT8NA21vkoieQS2LQUgPHBeUX2MUXVoZwCAfG8BHweDtRD/60ui5a2cnxEXU01rThmVFY5JtDMNt31RA7UnXL0vpz18u+TLuIkFUizLoqwACzw9Ff2cHj/vkFuDi8C4Je2tGfl8CqzJygNYh0LCzjQAvBYtYdiLMVUjgXeKnitWroilmn1Qv8XHrCWzkjZe3WzzSm8veAkY94h+VZminW6lirrJFcj7bKkr2tVQTbAxpoAdfXFOHixHAqoQE31fvIYTChhdmzw3F55y0M0eeI+tMVGa1MkGqPX3/2MHn3udfrp1wWsTgMpRpfbTXsdOY1pDZeefazZ5sR9FWaBp79aZMuI/r7BcgPanXTWtVRfW8160tjUHTL5srRKA5JJTTz1Sjr+8L1o95224PviiQTF4wmafvNDhNOPC08/iumTpdTjFbJktiwd0Wi5WABgB+oHoDdAu7XcCriZkFXCGAqRLUNAEyLWEUwT6o2XPVcz3zwC9FYHvQQwJPGTC3B/5musxJ+Dq4t10RdJFoW2AzCNzRanko4mHKt8AnyLDSGCPUuEdXmm53z/K9310As06bA9aIN1V2MZxpn3PUs7br0R/W2Hzenafz1GrW1dVFdbRSOHN3HGy+VGDivxKhHNOdUCz9gEePfPALzQ34U02YJFy9hU++22DV185tGsw9vZ1UMT9p5CF5x2JB267078+RPPv8mqUOpy+TnHsn5vqYoAvKWytGinbC3AqYgjcermBBXlNwy/TwI4CMhDUJaRIbBmrczxhMcuHKsc4KdnJgEO66p9DPIRCFjupSboYb4tuLaFbIDy2QEUhyqfpBENnWuneXtB5+LsaVW+koJd2A1Bw12hXvaO+XxeOufyOygWT9CFpx9JzY31hMC1C6+5lyYftTftvcvWlqZVzzdv4nPnW+BZmwDvfhmAV7EUUmdDj9fqbKjFmAkBeIthVVFnxVkAoBfBTPCUliPoRTBbXbWXvdRdOlP9wssJmSq3x0XtoSgffw/F0u+xTFKor3xBL+YfdJROzKWRXU8Bkw75MnCikZ0NnvISNZuzx0qWQiSVcEIMw+2znqOff/uTj3ihO/7Tr/M59fCUo/ejPXbesgDri1sr0QLPzrGH0rDf+gMpDeVoWwF4y3HWRJ9tswC8fB3d5ZeKGAYDgIXkEkpHTywnNxWR9+B4wjMHtYehXgCSENSEoLa2ULSsNj2Yd1AM4NXMN+/FmGclcxvaL0YQpZE+u10S3QKJM5xSwOk9b8ZdtOmGa9FRB+xCT7zwJj3z4rt08xWn0IbrruaUbop+OMQCz81ZbEtP9l1/tC3tWtmoALxWWlPUNSQsUM5Z2VhzttZHLnJRqC82iF8Jj1zQJ8lzDYX0sUYWLGyneElBcSgHXi+41+AiK/JxdgbggUJQFehfV6XuC7zbSiCnkXkvxbXzFiymR555nRYu+f/2zgTMpvr/4++Zu8y+2Pd9XwuJFuqXqKik+peyRCmSUiF7QghlVypLKGRrEVkiSwppT1qIZB9j9u3eO+P/fL7TiBgzc86595w78/4+T089Od/t9f2OeZ/P+Sxn1HStWzZGx9tuRJAz+wWVjQRyCFDwar8LFLza2bFnESbgcmepSHT5tz82ER9BUmgg1XNe9KrCFcE2uDLPqdKyWnKy+iOLgq5Z/HrFD1bOXtCm4coAACAASURBVMrvWrXJOsX/Wvy2xVJvBXcCEZ0hQYHqhUtcHIxOmZfbWcjdFl9s+XJh1eZyuZGQnAqnw678dotyASCrnpEV1vWRSRbejrTwWuH4uQYSMIeAJzMLccn+WYpYiMkvf7FYJklJXfXJ3p4dnOWnIt6Xt8D+j0+0zCl3wGotWJ2tAwnJLvUCY6WmfGiDs1PmxYp7iJed4sV/XfyIjSooYSWWXEvRI/DxT+a4NNzdiC4NRe+2ccckcAEBydUbE5/hM0uV0fCD7IEoHumEiPfsksrWEkdG79fI8cTFQfL1io+qlfx6xUovhRQkwNLKVvpsP3GHKmAimRy84eIgAYcidu3iq8NGAoWAAAWv9kOkS4N2duxJAoqA5KY9m5zt3iD/7S8tp/iALFmi1SVtmVQY86MtWAJ1Tto2CWiUbARmNbFkhgYFquC05DTvlZU2cn852UNkTHFxMLJCmwjqYuFOxYONBAoLgTU/nTJlK3c1KmPKvEZOSsFrJE2OVWQJiC+i/MJOFcHoBxSkPLB8UpYAPLGuKeERYldrN7Lylh+gMGSJ4iMqOW5VSep8pn0zZOJ/BslJneb2nFM5o/3ppUVcHMQnWgSqO1PSl+n3i5bguMgQB2xeKBVs5LlxLBIoKAEK3oIS+/d5Cl7t7NiTBC4ioKqypbmRkuaxNJkSkU61vsSUiz95+3PqLSsAl2ILYlGUeyAuDr5qdpk3wqnKIMvLi7825X4Q7kSGJxMJ4leusYnYjQp10LKrkR+7WZvAJz+bY+G9syEtvNa+GVwdCZhAIDndnV1+12KmXgm0ipQ8vAFAXKIrV0u0RNGLxU0slUZ+YjbhKEyZMiLEpkoSSzUzb/tEO+wBqjSupJgz053CSNDR4Q5IvlzZk1is89tyLMWSa9oKBSXyu24+RwIFIbDWJMHbgYK3IMfEZ0mg6BBISXOrgg2+SruUF1mxekmAmuSOzY8VUASvpLUqiuWE82KZnz8Xl5GQoOzCHWleKEksbqlypiKsxbLrDzmB88Mt55l/+WVnDcnr5VH8dCXzgxSUoMduQUjzWX8jQMGr/cTo0qCdHXuSQK4EVClil0dZes0UvTnFEiRKPVnyBhfAYqbSloXYlWATUcVWMAJO4RdsV2LUyGBAsWTKucjZWumlqmB08n5axLwE4SEgQLkJ5ZZxQlVPC7WrrxIMUMubK5/wbwLrfj5tygbaNyxtyrxGTkrBayRNjkUC/yEgkfu+9Oe8cHrxiRRfRkk5Jp/XtaQ7lWxO4pcqwW0yBlvBCIglVqyODlugYWV1Jc2W5K6VtGNazrRgOzD3aRH3UvkvLMSmfM4v98JWIjIIUlGObgzmnhVn9w2BT/eZI3jvaEDB65sT5iwk4McERHCeSfR+gv0LEYm1S4RWcqpbdyEJsSRKrl5lqUyznm+yP1wNlRvXaVOiV6tftATFqaAudyaSDMhk4A/cctaY87VBXiClup18QckOEgyydPU0f2LMtfoHAQpe7edEC692duxJAvkmIGIx20Ll3TytYtUVcSD/iBuCWGaNaDmWShG/4gOsVbQZsRZ/HUPKOYvfbUq6BxmurAKlr8tJI2f1csbePBv52hAe4oAEX6a6MhEWbFc+zGwkUJQIrDfJwns7LbxF6ZpxrySgj4CIxPgUlypQ4Y0mIldElRSQSHNlGe47nBMFL6JNZSDw0j68wcYqY0pWBbG+S5MXkvz4d0thC4ctoFAGpxX0XOSFSzKNhAYzOK2g7Ph84SCwfl+MKRu5vUEpU+Y1clJaeI2kybFIIA8CmZnnEJfqhsvgyH35ZC5ZAXyRnkqsapI6Sj7PG2VBLkoXR14cJKOAvKDkVZI4Osyh/H/PJrvyJY4LO0cJBCwW7oBN/BnYSKAIEtjwizmC97b6FLxF8LpxyySgn4CIRfm0rbeJq0F0eHYhiYRUN0RQ+6KJ8JCAONmHt900fLEfM+YIC7IpS2V8suuSDARyrpGh2flk45J9V8TCDA75mVM4SGCaFNiQrAxsJFBUCWw0SfC2o+AtqleO+yYBfQQys7KQkpZdGSsrrySjl5lKfuWL6BQXBs8/ZY01DKNrE2KhFD9KCaKSffh6fl2Lt0hnyXUc6rSdz48sWRfE7UHEcGYWsoMELbJWs5Yh+lbueYRUT6PYNesYOK9FCFDwaj8IujRoZ8eeJKCLgKSWkhy3YiUtaJM8rLbAANXfTLcCCZITcSatMOeELej5FOR5CcKStFtixfR4shDksCElo+CBbQWZ05+elbsuGUe0iN209Ay8u2oT/jp6CuFhwXi8y50oUSzKn7bPtZLARQQ27TfHpaFtPbo08CqSAAnoICBWUbGQ5jdXrxi4SkQ4lT+nCGUr5GGVNWVHzAcgPtkaa9JxJKZ0FRcGKYkb7LQpF4bCUiZYL0xxYQh2BGrKsSti98khU3Dg0HHcdnNzHDpyAidj4vDOtMEoXbKY3qWxPwmYQmDT/jOmzNu2XklT5jVyUlp4jaTJsUhAIwGx0sYlua7o3nBhLlKxplqtRYZmp4nKKxDLaus2ez052S9Cg21ITc+EZGUQV4b8lIA2e+3eml9eAMSFQVwZtBSUSM9wYeLspdiwdQ/enDgAjepVR4bLjY6PDEObVs0wqG9nby2d45KAVwl8ZpLgvZWC16vnysFJoMgQEEuvJNWXdF9SqOLCJv66IoZETIoIMtOFIa8DkewDwUGBSEzxMJgtL1gAlLALsavyuSJyxXIvbiLy8uD2nDO0JHE+lmOJR86LXY2px8RV6OONOzF7wQcY0OdB3P6/a9W+PJmZuKfnCNSuVhFTRj9lib1yESRQUAKbTRK8bSh4C3pUfJ4ESOBKBMS9QdwCcvKzSv5VsfjJL3GpMOUPBR8kEEtyzcpnefExZrs8AXEBEVcQyXLx36A/Eb1i3RS/1eR0eQkqGqFryrUj3Hk+V7GWuxMTG4+h499Gjarl8fwT/4egoOwsJpu278WQcW9h0ojeysrLRgL+SGDzr+a4NLSpS5cGf7wvXDMJWJqAiN3YxAyVfzX787ZbiUd/kjwi2MRyKUJNrNZsFxMQa70UULhS6Wex7Isbi6QnS0r3IC2jcL88yJ0pHhGkLNx62h+HjmLQmDcw8tnuaHZVHTXUiVOxGDFxHrKysvDGpOcR7MwWwWwk4G8EtpgkeG+h4PW3q8L1koB/EDh37pyy8kqOVpfHn6Tuv3xzcgRL2jUJsGPasmw2YtnNFrsepOejWp2kKZOAttS0TGUx98/bcOWfO4dd8jrb4XRkZ/zQ037/82+MnDgfLw3sgXq1qkCC1956dw3WbPwSi2cOR7kyJfQMz74kYCqBLb/GmjL/LXX9/+eGQWumXB1OSgJ5E5ASweLX6c9uARKQJQUq5N+Jqdk+qkW1yQuAZGEIcgYiRUozF+BFRqye511b0oVj4aGYY8WWPWoJUPsviVMxcRg5aR4qVyiDa5vUxa8HjmDj1q/x9GP3oW3rZgi8TJW2lNR07D/wFxISkhEWGoKa1SqgZHGmLys8t6zw7ORzkwTv/yh4C88l4k5IwIoEJIBN/DtF+Pprkw/UItZE0GQH5RU90Ss5k8NDbMjKAlIztAlW0WmhQdnp31LSrR28mN+7Kn7K2XfDuFLB4rbw28G/sezDzfhx/59K+Ha8/QbccE3D8/68F67v2MkzmLdkLXZ+/TPsdhvcbg8a1KmGJ7reqSzEbCRgJQJbfzPHwntzHVp4rXQPuBYSKJQExBVABG9SWsELVFgJSIgzUBUQSEh2X1JK10rrNHotYtktFu5U2TWknLReuR+kXBycSEx158slwuj9GDWeCN2IkGzrvzdaalo6xHIbHOREWGjwZS27Mm/3Z8YjMzML/Xreg+pVyiM5NR0L31+PEsUj0bfHPXDY7d5YHsckAU0EKHg1YVOd6NKgnR17kkC+CCSnpCEkOAg2HVasHNErEfvi3+uvTYK1osV/Nb1o5Jm1BwJSPEGCDo0M3lN+vaEOZf1Xfr1+dCVUqeBgOyKC7QiUtwEftd3f/oLnRs3G1DH90KJJPSVyJ8x8Fx+u34ni0RFo2qg2nup5DyqWK4Wk5DQEBAIRYaE+Wh2nIYH8Edj229n8PWjwUzfVKW7wiL4fjoLX98w5YxEiIL9UB4+bg7atm6tqT3qaEr3pHiSl+relNyeDgzszCylphTMIS2Sc05GdZUOsut6onCZuEpIJQwSkv7iKqKp8QTZEhDq9ZtnN7Wfso407lZvD2EGPKR/dPd//iqeGTkXfRzqi+dX1sPKTbdi263tMHd0PVzeoqedHlX1JwGsEKHi1o6Xg1c6OPUkgTwLySfXa9n1QtVJZjBnUE80aZ6dJ0tNS0z3qc7Y/x3/liF7Zg2RwKEwtx2dZBKmkEsvweC/CTOYKC5ZAOJu6E1KswspNsk2IH7K33BiutHd5+Tx89CSqVy6nguMmzV6KTz/fjU/fm6TcHhKSUvDQk2NQpWJZzB7fP1cXCCvz5doKP4Htv5tj4W1dmxbewn+7uEMS0EjA7cnE2CkLsfu7X3B1w1pITErBqOd7oGxp/X9xSFW2hBSXX0frqyIDYQ71WTu7rLJG0BbrVizcoVYkAtRX2RQk04FYk9MzMlWBEqs1OWPxOw52BJoidi/HY+zURaoi29efvqn+WNKX3f/4KBSLCseiGcMoeK12ibgeRWCHSYK3FQUvbyAJkMCVCPz86yHUqVEJvx86iudfnIWu97dDt/vbGQItQ0Rvqtvvsx5I9gIpsuHvacvERVtEnbS4ZJfP/WrFoixi25NlrbzHsi4plRwSZK3gr6++2acqr3W9ty3ubHcdFi3fiJVrt2H0wB5o36alIT+jHIQEjCZAwaudKF0atLNjTxLINwEpDfzh+i8wc/4qjBn0KFq1aJzvvld6UEoRi/+mKx8FDAyZ0EuDhATZVDlZCcIS67W/tZwywe7Mc6amkBOreUSYAwHnoHyHZT1mNimNHRHqUBXjjMixa/Retn75PZZ+uFl9fZHA0pbN6uPRzu1VejI2ErAigS9+jzNlWTfWLmbKvEZOSsFrJE2ORQJXICD+vLMWrMbaz3ZhxLPdcDomDtdcXRd1a1bWxU0KVIjo9UeheOHGRRRJmirZhwTn+UuTXLKydglMs0KREPHrlReIIIcN6S4pXOI9H+IrnZEqKBHmUNZ7K7eY2HhIsYqoyDCUK12CYtfKh8W1Yecf5gjeG2pR8PL6kUCRJhCfmIykpFRUqlA6Xxzk+Qd7j0ZCYjJaX3cVBj3ZGaVKROer75Ueysw8p3xGrSC49GxGtFGp6GBViczINF561nSlvvKpXoRdvAVzC4vVWXykjU6Jlh+WwkTcOyQ4kY0ESMA4AhS82lnSwqudHXsWYQJirX1n+adYvW6HqsxUukQxDH+2KxrXq5Frvl3Jn/v9zwfwwrg5qurToL4PqYT4RjVxmxDfUSlw4M9NJFLxSCfER1kqipn7Uf7yJCXLQGSIHQ67DWeTMiwbcCcsS0Y64fJkITFNcjh7/2ZIOjYptCG+u2wkQALGEvjSJAvv9bTwGnuQHI0E/IXAhq17sGjFRvTr2QnFi0di4qwliItPwtgXHkPDutUuuw23x4PZCz5EnRoV0e6m5rDZjPcTFEETn+JS6bD8uYmlV7IOSClesVpbqRyxPTAAocE2lV0iMcX66eFEnGfn681Okybi1xtN5gl22hAZ6qDY9QZgjkkCACh4tV8DWni1s2PPIkzgtTeXw2m3q8pMgYGBOHo8BmOnLUbWuSy8PXmgIiMC96P1O3H6TJwqUSpNUh9JcIw3m1iSk9PEOupBli9Mel7ajBgIRUCJj6y4N1jBci2f6MWNQdYi4tFfUqmJrTVISjsH25WPtFjOjW6SDzjShIISRu+D45GAlQl8dSDelOVdV1O/650pC79gUgpes0+A8/slgfc/3oLNX3yHMQN7ns+ru++3QyrNUcO61TFh2OPK1eGJQa/ip/1/4r3XR6r0ZL5qInpF1IhQ9OdSxMIr2x/Uoayp6Sa6a4Q4JdetQ/lKW0F8a7lLYjkvHhGk3EXU3dAyyH/65BTaEIu8FTMxGLBFDkECliFAwav9KCh4tbNjTxMJZGVlKX9Em0kR4Ht/+A3PjJyhXBja3NhUkRBhOW76YqxYsw1fr38TTocdZ+MTEZ+QjOpVyptCK1kFf7l94rvpzQ3miF4JDvPWJ/krrV9SpoWF2JGQ7DI91ZdezuJ6EBWanRM3KS0TmTrM1KpUcLBduTGwkQAJeJ/ALpMsvC1p4fX+4XIGErgcgQOHj+HI0VMqn63D4fuE9uKa8M776/HJZ19h8sg+qF+7qlrm4b9PokO3IVj6xkgVwGZ2ExEun7BF2Hh8VfbLS5tW1cSC7UjLyE61ZYR1Mq+liluFpPhy2gNVfl2z89rmtd78/rkSqpK6zGlT+9JisZagNBG74spAy25+yfM5EtBHgIJXOz9aeLWzY08TCUgu2xVrPseYFx5D5XymBDN6uSdOx2LYhLnKgisZGpo0qIXV67bhlVlL8fHC8ahQtqTRU2oeTwSNfIqXnL3+3MSHNjuYLdtlQ491Mi8OklFLiiZIk8//3pwrr7V468+l1K9YrsUfWf7J70uEnIMEwgUH2cFcDN46HY5LApcS2HXQHB/eljXow8v7SAKmEJg5fzW+/ekPjH3hUVQsV8qUNcikInYf6P0SJL9uZHgY0jNcyuJ73TUNTFtTbhOL2JW0ZVbKeKAFkggsEVt2u+S/dXklcEwqhInfcKorE6leCPDSsm9v9RErthSICECAyvCRV5yjKmEc4VRWbzYSIAHfEthtkuBtQcHr24PmbCSQQ6D/izMRHhqCYf27IiwkGG5PJuw2c8qXij/xjt0/4q+jp9CiST3U0Vk5zZunLKI3u0iCf1t6cwKlJPNAXJLbUOurQwo2hDqUBdnfC3nk9y6pl4hQO5wOG+KSXLnyFMuuBL2xoER+yfI5EjCWAAWvdp50adDOjj19SEBEZWJSKmLOxitr6gtj5ihhedvNzdX/T05NQ6N61XFd0/qm+PT6EIXuqeTTvFhGtfht6p7c4AHEh1SyJ0hRBZcBGRxkLPHZTcuwRplgg3FdcTgRvcJTCkekZniQ8R8/afH3lRcBil1fngrnIoGLCVDwar8RFLza2bGnjwj8+MtBzFu6DknJqUhISkFKWjr+PnYakeGhKFemBMqUKo7SJaLRrHFt3HJjU4SHhfhoZf47jZQiluwNKvgrr2/YFt+mBLNJ4JTyQ3Vps1znZBuQcryJqR6/d/vQc2TiqiC5jyWHc3Zau+wcvlGhLBWshyv7koARBPb8mWDEMAUe49rqUQXuY7UOFLxWOxGu5xICLrcbC5Z9Cpfbg5pVyiPD7cHL0xbjye4d8VCnW1ThB1tgYPa/TUpT5o/HpqqyJYvo9fjj8i9as1gdxedWrNaSdaCgrXiEQ1V1k8A+HVm6CjqtZZ8Xv17hKdXkUjMyERXmBCsF531ckj3mi90/ok6Nymh2VR2VmpCNBIwkQMGrnSYFr3Z27GkSgR/2HUS/4dMwakAP3NqqmUmrKDzTinuD+Kr6uaEX8q4THeZU/qf5Fa4SgBUd5lB9ElL9P1+xkbdSBG5xCU5zGF8C28h1mjGWfBXZsO1rFUfQoml9yBeCZR9uwYy5qxAU5EBaugvVKpfF1NH9TA2qNYMN5/QuAQpe7XwpeLWzY0+TCCz7aAvmLVmHGS8/jXq1qpi0isIzrfzyFiteUqp/lyKWExGRJqnERPwmpnjguYK5NsguKc4cyPBkIcWgqmOF5VYIx9Bgu8p7LFZetosJSNnw1+Ysx8pPtmFwv4dRvXI5vPTaO2jSoCZuvr4J/jxyHKvWbofDbsPLQ3qhcb3qREgChhD42iSXhuZ0aTDk/DgICRSIwMLl6/Hxhp1YNHM4wkKDC9SXD1+egPhrig+sWEb93dIrOxShJsFX8SlulbP3vy0kKBChTjtSMjxI1+j3W1jvklgrpXJaqOTYpdbN9ZhjYuMxa8EH2PLFt6hQrhRcLjcWTh+KiPBQeDIzIV+ipBqjiOCJI/rw76rC+gPj4319fcgcH97m1ejD6+Oj5nQkAGRkuLBy7TZ0ubctcRhMIMOdidhEl8GjmjOcBF5JkYrYxAxcmIVNcvhKoFtCiqRny2+pBXP2YMaskmM32CHV08yY3b/mdLs9GD/jXSxfsxUPdWqDEf27XbSBWfNXY82mrzBh2BNo2qiWf22Oq7Ukgb0mCd5rKHgteR+4KBLAmbMJCA5yMmODhrsg6b2kQEVhqCwmwlaCr3LK5+YUrLhSrlkNyApFF/FcELEbpMNnV6zpickpCHI6EBIcVCi45LWJ2LhETHt7JTZt34vxQ3rhxhaNzwer7fpmP0ZOmouXBz+mfH3ZSEAvAQpe7QTpw6udHXtalIDk7B00dg4qlS+NHg/cjuiocIuu1LrLcqkCFf5flU0IS9W0bL/egH+yODATw39vnmS5iAwTy6726ml//nUCO/b8iJ9+OYgypYvj9puvRcO61RBQBEzFp8/EYc7iNfhg3XYM6vsQOt1xo3rpHjtlEZJS0jBtTD+UKVXMuj/wXJnfEKDg1X5UFLza2bGnRQmI4H1v9Wd4Z/l6dLqjFXp3u1sFj7AVjICI3sQUN+Tf/twkt64IXvs/glf8etn+JWCzZWeq0GPZFbH76pxlOHL0FO7tcBOOnYjB/j/+wqsvPonyZUsWCdxn4xPx1rtrsWbTTlx/TUOICP7twBFMGd0PLZvWU2kT2UhAL4FvDifqHUJT/2ZVIzX1s1InCl4rnQbXYhiBjAw3Fq/ciHnL1qJ3l7vQo/Mdho1dlAaST9RnEjKumO3AyjykiIJ8po9PcinhHh0ult5AnEnMsPKyfbY2yWZRMipYWb+1tpTUdEx9azm++mYf3pw0EOVKl4C8dD7/0utoXL8GHu/SQevQftdPSpyLe4ME1nZsdz36P34/SpekZdfvDtLCC6bg1X44FLza2bGnxQmkZ7jUL54br22MBnWqWny11l2epC07mySWXv/J1SvyLTTYpjINiGvGhcFpkaF2VR63qFdUC5ZSwWHZrh562rotu/Hq68swelBPtGrRWA2Vlp6BQWPmoF7tyniqRyc9w5va949Dx7B67Tb1lehsfBKeHDIF44c+rqo65tak9PmO3T/h6gY1lFsVGwkYSYCCVztNCl7t7NjTDwiIpYmfEvUflASwJae5kZph/VLEIt8kO4N8qk+WMsGXSUsmGRxE8KUW0bRkIUE2qAA+nZUJpfrhXd2HosOtLZUolGA1eUH6bPs3eGXWEswa/yzq1aqs/wKaNMLKNVsxbe4qNL+6Lv4+fhqVy5fGyOcfQTHGBZh0Ipz2W5NcGprSpYGXjwT8m0BScir2/vAbEpNScHXDWqhSsYx/b8iLqxfRm5ruQZKG0r1eXNZFQ4u1Uiy4staU9MwrZpqQDA7i25vu8iA5LdNXSzR9njBVUMJmSBlu+dkZMXGuErY1q1ZQezsVE4eBY15HlYplMfK57koE+2vzeDIx9e2VeOf9TxEVEYbFM4ejRtXy/rodrrsQEPj2L3N8eJtWoQ9vIbg+3EJRJCBJ4let2465S9YiLj4Jko1V6t63bFYf08c8XRSR5GvPwik9w4O4ZOsFfombQrFwJ9JdmfkW5WLgLB0drNKWWVnI5+tw8vFQRKgdESHGCdDNO77F1LdXYMHUwShVIlqt4JH+EyBCUVwcckRwPpZm2UcWLt+ANxZ+iHSXG82vqoOZ455FcJBxDC27cS7MkgQoeLUfC10atLNjTz8lkJmZhQXL1mHesnWIjoxAhzYtlHV3z3e/qlyapUpE4bWXnkKp4v5fWcZbRySliKUq2+WqmHlrziuNK9ZacWNISS945TRxgZDANsk/LJXXCkOluf+yCgyQMsp2iHXX6CxhXfqNQ7DTjjatmqlSu1JlrP9j96NNq6ZmXAVD5hS3jMTkVFU9LToqQhW7WfD+p1i4YgOurl9T5dUtW7o4xF9332+Hce3VdeFw2A2Zm4OQwJUIfGeShbcJLby8mCTgXwTkF9mKNVsx+Y1laNm0Pvr3ug81q1U8v4nv9x1A/xEz0LxJPVU1iTl8L3++wjGnFPFlXGR9einEHzXEaVNiN8OtLYWaZIyKCLYrS7+IeU8hqsCmxG6oHWFeKhV84vRZLF6xASdOx6qyuvd3uEnl383Ld97t8eDk6bOIT0hGo3rVfXpnLpxM1nEmNgHFoiNUsZoMlxtf7d2HDVv3qP9/Q4tGuKF5I1SuUBrvrtqEpR9sRr3aVXDbzc2xc8/POHLsFKaPfRol+YJs2hkWpYkpeLWfNi282tmxpx8SOH4qFh17DEe1yuUwaURvVK1U9pJdrP98D8ZOW4RhT3dBh1uv88Nd+m7JIjATkt3wZGkTmnpXKv664rcrLgl6ywRLsoLQYDuC7IFIlPH8PP+wsBVrbrQUlHB6t1SwiMTU1HSEhgYrn92k5DQA55QAzmmSNeX3P/9WX1JE6MbExuN0bLwKnBNf39rVK+m9Dpr6SzDayEnzceet16m83QcOH8NzL85SArhyhTL4bMde1K9dVRWUqF+rMtZv2YPp81YiMSlVBei9Mrw3WrdsnKfA17Q4diKB/xD4/kiSKUyurhxhyrxGTkrBayRNjmV5AqvX7cDISfMw6MnO6PHg7Zddr0Se39zpGfTqcicefai95fdk9gI9niyVtsyXolfEqaTUEkEncxvZRBxGhtiQkOJBhp+L3pKRTlV0xWg3hivxFjeXpR9uVu4Nb786UFk+t331PV6ZtRRnzsajZLEo9SJZrmwJjJ/+LurVrIT5U4fAaVJwm7guTH59KT7dshtjB/fCdz/+jiPHT6svPKVLRuO7n//Ac6Nmo0K5Ulg4fajy35VywlJko0qlsihRLLJIVJMz8meMY2knQMGrnR0Fr3Z27OmHBCbMfE99llw9byzq1MjdorRk9We47fI8QQAAIABJREFUs+11iIwI88Nd+n7Jbs85xKe4fGIVleA0EbvicyuWXXFDMLoFOwMRHmxXuXr9sdKcwx6oGEnhDV83ycErRV8OHDqGlwb2hN1uw5IPNmP+0rUYPehRtG7RGAlJyRj92kJVje39N0ehWJS51iMRsK/NeR9rP9uF0JAgPNH1LvT8p1iNpDb85LNdKs3ai88/gttvbu5rpJyPBM4ToODVfhkoeLWzY08/JPDBpzswYuI89RnyrrZ0VzDyCN2ZWUhKcSNdox9tftaSE5yW4cpUace8IXZz1pEzl/j0SuYHfwlmE5EbGeqAwx5gmuUxNS27kp2IR2lSjW3lJ1uV8H240604dSYOu77Zh9EDe5rqv3vhnRMXixnzVmHjtr3ofn879Ozc/vz65c8GjH4D0ZFhmPHyM/m5qnyGBLxC4AeTXBquokuDV86Tg5KA1whIVLX48FavUh7jhvRC+TIlLjvX0RMxWL12O/53QxPL/EL2GhQDB5b8t0mpHlXQwegmxSLkH/GvFeuuL5pYk8OCbUrsijXZ7AC9vPas3DFCHaqSnNWa2+3BV9/8gnHTFiE2IQlP9bgH3e+/zZB8wEbtVf5+mLPoI2za9g2efKSj8um12QJx+O+TGDLuLfV3wfD+XY2ajuOQQIEJ/PC3OT68V1Uy9ytMgUFdpgMtvEZQ5Bh+RUDSCD3Udwyua9YAowb0uKzo/fnXQ3jh5TmIT0zBlFF9VX5etvwREHGYkOJS2Q6MauEhNgQ7bIhPcfs8g4L4v0aG2BEQGICEFLdlLb2SrSIq1IFAnaWCjTqzy40j/rK3PTQIrgwXalWviAXThiIk2OnNKa84dlJKGka/tgCxZxNxxy0tcG/71khJS8fMeavw4fovlE+vuGDMWvABPvx0B96ZNhR1apoTXGcaJE5sKQIUvNqPg4JXOzv29GMCW7+UIJr3kJCYgqqVy+Hpnp1UJHbM2XgJLkfxYpEqAnvs1EXYtusHLJ4xjJbeApy3BC5JIQex9OpxBRDtJhbLgIAAlfdXLMhmNBG9UopX3AWk6IZZ68ht76FBdlVhzspiV9YuRSkkTdqQpx+G0+lElQqlTcluID/bX+7dh8Evv6lSD8qaJL3aLTc2UV9+5O+FHJ/e8mVLQu7h04/dh3Y3XWPKes2485zTmgR+NMnC25gWXmteCK6KBPIiIIEoR46dxiebvlS/3Drfcwvefm+tErdOuw2N6tdA1/vaolqlcsoaXKtaRbw+4TlLfX7Na49m/3nWuXNI0VHBzGELUKV/s90k3JZwJxBLc5DDptw2rBLMJm4e8lJgdbEr91Gsplc1qIlql0kH6Mv7evjoSQx/ZR4qlSuJAX0eVOWQX5w8XxWTmDSiD8LDQlTatDcWfoQ//jyqBHq9WlX9grEvOXIu3xOg4NXOnBZe7ezYsxAQkKprLrcbO7/+GcNfmYteD3dQlt7NO75R/+++Dq1VoYoKZUvh7dcGwmFnNaWCHLsq5JDuUa4ABWkScCUiTopbyD/m2HUvv2IJZpOKZWK9Tnf5xpc4N3bCyBvV0wpyVv747IatX2PM1IV4b9YIJW5fnrZY5Q9+9vH7Ve7gg38dR90aleHJ9ODYyTPqhVe+MrCRgNkEKHi1nwAFr3Z27FmICIjlSaqvvfHK82hcrzokynzBMiklul799//deZPy92UrOAERq+kZmUjIZyliSQkm7gNiRfVmxoeC7+TfHmJ9jgzLFuRG+irnd03ZLhYOVS6YreAEcgTvO1OHYOLsperLzYvPPYIK5Uri0JETeHLIVAx88kHc2qpZwQdnDxLwIoGfjiZ7cfTch25UMdyUeY2clILXSJocy28JfPPj73j2xZm4s+31eOieW2C32/He6k0qef5NLa/CpJF94MnMxN7vf1UJ9Je+MRIhwdkpl9jyRyCnFHFu/q8i4qREsFgs45Nduiun5W9V2p86nw/YI64bvnO5ENeFyBAHJEiNRsfcz0+yQkhlRSn9K0GoUiCiScNaKF+2BGLjkjBswlvKkhsdGaFSjdWqVkGlT5u3ZC127v0Z4wb3Qs1qFbRfEPYkAS8QoODVDpWCVzs79ixEBNweDzZu/RqLV21CUnKqSoQvJUfv+N+1GPJ0F8iff7H7JxXodvTEGfTuehdubd0MdWpUpl9vAe6B5LMVf9z/lgEODIQq9CBiTiy7VgsKy22LOUF18ucSpOftdUsZZbEsy4sBW+4ERLiu27wL85eug9uTqQLTTp+JUy+t99x2Ix6+91ZVQU2KSRSLDMcT3e5GkNOOvT/8hi07v0Pf7h3R8Y4bYbeRM++ZtQj8bJKFtyEtvNa6CFwNCeghIL8M/zp6Sn3i/PGXg+h2X1t0/7/blE/fzj0/YfyM91Cjank0u6oO9ny3X1mPhj7dBddeXVfPtEWub3aBCnFXyE5bllMmWMSiP+S6/e+BiZVVrNIOW6CqNqcnK8WVLoNkiIgItaugObbcCWRkuFWRiwXvr1dZF267uTkiw8NwJi4Bn+/8His+2Yp772il8uyK6J0xdxVOx8bDZrOpwhJ9ut2NNq2aISw0mJhJwHIEKHi1HwktvNrZsWchJZCQlIINn+9Bp/atVJDabwePoEf/iWjauBaGPdMV5UqXwMnTsRg3fbH6JLp+yeRCSsJ72xJxG5/shmTLKB7hRHK6R1VO8+cmBSpE+MYmZSDT4K3klAqWfzN06sq3RPnjv74MT3S7C5073qKC0XKay+3B7Hc+xKLl61W1xbatm0Fy8f597BQQEIjK5UupILZA+eTARgIWJPDzMXN8eBtWoA+vBa8Dl0QCxhDweDLxzY+/oc/gKbiqfk2MGvAIqlUupwYXFwexDC39cAv2rn/z/IRSMnXp6s14vGsHhIWGGLOQQjqKiF6x7orwTXMZrBBNYiYZHCRzgrhtGBVwJyK3WLjTktXTTMKc67Q/7v8Tjz43Edc2qYuXBvRA6ZLFLnlWvsyIv/7VDWpiUN+H4LDTYm61c+R6ciewzyTB2yAXwXvmbIL6XZffAjIFfd7Iu0ALr5E0OVahISDuDeLGMGHGe/j7RAxGD+yJ+++86V9hGxOHUa8uwInTsfhowbjz///TLbtVerOF04eyUEU+boN8/pcAtcIieGXLQfZAhAbbVJ5evVZrEdDR4U6I7y5b3gTSM1yYMONdbNv1o3JbECtvcNDFldzkmRnzVuOn/Qfx1uSBDD7NGyufsBABqwheCQYVY5C4AUqTKoUvPv9Iri+QV3r+bHwSWt3z9CWU5015AS2bGlfllILXQheZS7EOga/27lMuC1UqlcUfh46iUd3qGPZMF5QoFoW09AxMmPketnzxHQb0eQCd7mil/HlXrd2Gtq2vUcFurVo0vuQXrXV2Z62VZFdlc+sWh1balSqaEWKHWxXN8GhamhSUCA9x0LJbQHryy3P2gtX49POv0eGWFnihn1hx/03fJkGp4qcfn5iM10b1vcjloYBT8XES8DkBqwjeJwa9qtx/xg15XLn4PdB7NF58rjvuanf9ZZlc6fnYuES07vQM5kwcgMoVSp/vL19o8ms5zs9BUPDmhxKfKVIEpOzo3Y8MQ/Uq5VSGhsSkVDzwxEuoW7OyEsC/Hfgbx0/F4KF72qBP97uVsH1q2DTs/+MvTB3dT6U+kvbtT7+jXJkSyueX7coExNIrbgApUmTCW1FfPj4EMcqKdVba2SRXgWaXlGPRYU6mHSsQtX8fTkpJxZgpC7Fx6150vO0GjHy++3nRe/jvk+j57Ct45MHb0e2+dsyyopExu5lD4JfjKaZMXL982Pl5Jc7l+ruewruzhp//fScGopOnz2LmuP6XrC+v53ME7yeLJpx3G/TGJil4vUGVY/o9gdi4BLjdmarUqLRtX/2ANxd/jPjEFAQ57CoY5o42LZCe4cbwiXNx4NBRDOzzINrdfK2KEJdAGfls2qFNSwzq29nvefhqA4mpbqSmZ0LKEheWFhXmUMI1P+nWpJpXmJQKDvs30KqwcPD1PuRLzAtj52DXt/vx4N3/Q+9ud0H88ifOXoLDR09hzMCeqF2jkq+XxflIQBcBKwjeg4eP4e4ew7F11TSUKhGt9rN45UZ8tGEnVr49+pL95fV8juC9+fqrER0Zrn4u77n9RkRF/CuydUH7pzMFrxEUOUaRIJCckgZ5U40IC0FkRBgOHTmJaW+vULk7B/d7CHfeep3K4du6U39IKH3zq+qo6myVyv/7iaZIgNK5SalcJunJPJnmlu3VuY2LuksGBwk+EzEvvr2Xa2IRFhcGeZZlbI2hn+PTu/mL79Dpjhvx9/EYHPzrGAY9+RBuvLYhszEYg5mj+JDAfpMsvPUusPBKOr+u/cbhyzWzz4vS5Wu2Ys6ij7BlxdRLaOT1vPxunT53pQoylf9evW47ShaPwrI5owx1OaLg9eFF5VSFh4D47IqlSCo4SUDb9dc0QGZWFhat2Kh+cJ0Oh6rcJKmPqlQsU3g2fpmduFxuLFqxATFnE3DTdVfh+msa6t6vFKhITC08oldCzoKcgSptmYje/wbp2W2BCA+xIcRppxuD7ttz8QA5Pr3rNu9W0eSvDH8CTRvVotg1mDOH8w0BKwjeHIvtttXTlTDNr4U3v89LIFz7roOx5PWRuKp+DcPAUvAahpIDFSUCkolhx+4fMWHYE7iheUNkZmZh2UdbMGPeKpQpWQyTXuyD6W+tVCLwcp94CgurhMQU9H7hNeXSoVpAAGaP748WBkTWZrizEJfsggS1FZYm5YhLRDpVVTYRvv8gU2nHglk9zWvHLD69i1dsxJ1tr0PlCoX7BdRrEDmwJQjsP2GOD2+9clf24R07dZGqZphfH94rPS+VEq9t3wfzpw5Giyb1DONOwWsYSg5UlAiIwDt2MhatWzZW2xbfpVffeB81q1XAm5MGqM8w8pYqqVhEECcmpyrfpMLU5C+lAS+9jriEJMwc3x9Oux0SiRtzNh6fr5xmyFY9medwNikD8u/C0myBQFSYU1Wac7mzEBXuVKnM2LQTkEBHuoFo58ee/kPgV5MEb90LBK/Q6jVwMiLDQ/Hy4F4qPWfnPmPOZ2mQ33ePPDMej3e5C+3btFBwr/S8xMjI75PrrqmvgkvlK+mH63di84opag6jGgWvUSQ5TpElcOJULO5/fBQa1q2GEc92u8Rnd/nHn+P7fQfQ9b62qFerSqH5xXz0eAyeGTkDs8c/q7JRSJu/bB3mLlmLLz+ebdh9kFLECcnuXH1fDZvIhwNlV06zwxYQwCwBOrnL1xXxEbTZAtXnT1ZJ0wmU3S1NwCqCVww6YuA4eiJG8ZL0nBKzIoVc5Mvf9Xc/pX4fSjYjaVd6ftP2vRg2YS5S09LVs8WjIzB55JNo2cy4HLwyLgWvpa82F+cPBHZ/9yueGT4dg596CPd2aH3Jkrd88S0Wr9qE1NR0DH2mi6rwVBiaWNUkYK/51XXPb+fr73/Fs6NmYedHswzdolh4E1JcEDeHwtBYPc24UxSxO/q1hbjlxibo2+Me2G2snGYcXY5kNQJWEbw5XE7FxKl8vGGhwflCldvzUuwp9myiGqN0yWivGIYoePN1RHyIBHInIClV2vzfc3j0ofbo0+1uOJ0O7Pv1EDZ/8S3q1qqsilEcO3EG42a8q1wc1i5+pdDiXLV2O6bNXYkdH8xQe9y+6wdUr1IBFcuV1L1nceWNT85Ausu/Ra/48ZaMClZlldn0ETh05AS695+ABrWqqCpP5cvqv2f6VsTeJOBdAr+dTPXuBLmMXqesca4FpmyAFl6zsHPewkZgzcadWLzqM2XllVrhr8x6T/kiyedVefOdMOxxxMQmqHLE3e+/Dd3/r915BJI6SQRxjarl/R7L0PFvY/d3v2DV22OwaOVG7PrmFwzq+yCaNqptyN7Eqhyf7Fb+r/6Wqldy8QY7bIgOl7y8VLtGXIiez01UebFHPNcdFcuVMmJIjkECliZAwav9eGjh1c6OPUngPAG3x4OYM/Eq7VH7boNRplRxDH+6CwICAyBWT/nsel2zBti04xv07nonutzbVvVNTk3D6+98iD/+PIpXR/U1PNG2EUckIjM1PQNhIXl/snqw92gVwHDjtY2QkJiM/r3uNzy5v6wnO8uBB/6SwCEwIABSPS0yNLsIBZsxBA7+dRzBTgcqUOwaA5SjWJ4ABa/2I6Lg1c6OPUngEgIifKXkYt2aVTBr3DOIigxHYlIKpry5AqvWbcdVDWqoIC+pICNid8qc5Vi5dhuG9++mKstIdgcrtY837FTrltRgzRrVQs/Od6g9Xa5JFasHer8E+czcvk1LVXa5QtmSXgkikkpsaRmSq9dteUuvCNzwEDtCg+yw0Y/BStebayEBvyPwu0kuDbXp0uB3d4ULJgGvE9j21ffoP3Im7u9wE57pdZ9KSdbj2VdQolgkJo3oowpRiBuD5Ox9d9UmjBvcC3e1u97r6yroBCJ0J7++DA/feyuy/skzLFkmFkwdnOtQ7yxfj4OHj2PsC48WdDpNz4volVy9Vm7RYQ6EBtsNWeLRE2cQl5CI+rWqwFZEgrNenDwfzz3xfygWFWEIQw5CAv5M4PdT5vjw1i5DH15/vjdcOwl4jcCKT7Zi6Qeb1ed9sY7Wrl4Rg596WKUuS03LwIJl6yDPPNm9Ix7seIvX1qF1YEn1NGHmu6qE8jOP3aeG2bD1a0yctQRNGtbCyOe6Izoq29L76ebdOHD4mAray2+krtZ1Xa6fy3MOcUkZyLSYf4NYcyNCsy27epq4cBw5dhpvLPoIkgVD8lIWj45E/8fvR6O61Qq1P7BUSbur+1AleO/r0LpQ71XPHWHfokPgD5MEby0K3qJzybhTEigIgaysLJV38MXJC3AuKwtDnu6ixG5iUipmv/MBNmzdg14P34l727dGaEhQQYb2ybPZgvc9pKVnYNyQXufn/GTTVxg+cS76du+I3t3vhoixFyfNV7kYxwx6FJUqlPbJ+v47iaQrE/cGt8caGRwkE0NkqBNBjkDdPrunY+MxbPzbcLnd6HZ/O9SqVlF9GThy/DQmDn+i0Fs+u/YbhzKlimW/ZBWy4i2m/LBwUr8mQMGr/fjow6udHXuSwBUJiOjdf+AIIsJCUblCacQnJmPS7KVY+9kuDHumC+5qd4MlxW7Opt5+7xO88/56rJ4/VpVLliYCd8kHm/HRhi9UWeUaVcojISkFx0+eQa3qFU3NgeryZCIuyW26pddmC4C4MTjtInb1R6j1HToVcQnJGP5MVzSoU1WNuf7zPZBP/VK2urCXypUS3qNfewfjhz6Oaw0sM8q/vkjAHwlQ8Go/NQpe7ezYkwTyTSAlLV2VHl65Zismv9gHt/8vu9zildqmbXvx1nufYMVbL+X1qFf+XBKBP/DES4iJjceOD2een0OyL7Tu1B9Dn+6CzvdYyx1DBHlMgnmliEXfli0eAv0yNxv3lLeW44N1O/DmxAGoX6eq+n/yIiWBju+u3IR5U15AqRLRXjl/swadOW+1KiLRoE41tQTJXd1rwGT0ePAOdO74P68EQZq1V85LAgUlcOB0WkG7GPJ8zdIhhoxj5iAUvGbS59xFhsBvB/9WuXnvvPU63Nfhpjz3/fnO7/DanOUoVSIKcyYNMC17g4iNJ4dMRdVK5fBC384q1+kvvx9W/08S/be76Zo89+LrB8RnOk5KEUuuXh9NLlZXcWMoHuE0LBODvHB07DECtauVx5TR/c5bi3/YdwADxryBRzvfgQfu/p+pVnWj8a5YsxUL3v8UyanpqFmlHLre105ZsNdt2YXNO77FwulDz/uOGz03xyMBfyBAwav9lCh4tbNjTxLINwHxiT0bn6iCwPJKPSaW3elzVyk3iBee6qzEpplNBNbUt1Yg3eVGy6b18eXen9GiST1lcZPME1ZsEsCWlOpBmsvjk7RlIU6bClCz2wINw5HhcuPO7kOUb7TkcJYm+ZzlS0HJ4lEY3O9hlC9TwrD5rDCQpLaTl8M93++H3LuvvvlFvWTJz8y+3w5jykt90aZVMysslWsgAVMIUPBqx07Bq50de5KA4QTWbPwSr855H9Url8OoAY+gSsWyhviB6lloTpaAL/b8BAmgqlSuFNredI0li2RcuE/J1SuiNyXdo2f7efYVsSsFJcR31+jW+4VX4cnMwlM97sGxk7GYt2StCl6bM/H5K/ruZmZm+nXaMrFuJySm4MCho9j21Q/YtH0vjp+KRbXK5bB63hg4HdbKV230uXM8EsiNwEGTXBpq0KWBl5IESMAoAmLZfXn6YlU5auXcMYgI9/+8h0ax0TNOcppHZXDwRosItiMizHviS/I1d+v3Mn7544ha/jWNa2Puay/A4cg91Vm3fuNUgKQUM2nZrL43tu3zMSUwctb81Xj/48+xaMZwXN2ghs/XwAlJwAoEDsaY48NboxR9eK1w/lwDCfg9AfHZnTh7ibLivTz4sYvErpSlrVOjEsoVss/Xvjq0c+egrLzJUorYoFy9UjAtLMSO8BCHYQFqufEQa6eUng4MDECNqhWUz64ErgUGXt594tuf/sD6z3dj17e/oE+3u3HHLS1M/0pgxFknp6ShfdfBqF+7KmaN6w+73WbEsByDBPyKAAWv9uOiS4N2duxJAoYQyPHZDQ8PQWpauqpUdlX9GggLzX6jPodzuKF5Q3S9ry0cdn1FDAxZsB8OIm4Zaa7sXL16Ra9kYhAXBikoYUDWsQLTPHM2AZu2f4NbWzdDqeJRl+3vcrmxcMUGFQC2YelklRqvMLRRry7Az78ewjvThvALSGE4UO6hwAT+NMnCW50W3gKfFTuQAAlcQECESdvOA1U+W0nztXjVRqxaux2fvjcJTme2uBULpVTtkkCl3Kx6hJo3AcnYIJkbYhO1lyIWgRsV5oT47ZohdmWXEkAoeXglmK1F03q5blw+/7/6xjKsXzLZssGFeZ/axU+ID7m8EF57dV3YDAwQLOg6+DwJmEWAglc7eVp4tbNjTxIwhIAUbShRPEpFoo+duhAr1mzDj1vmGzI2B7mUgASBnY7P0ISmZFSQKihhZktKTsXu7/bjlhuaXPYFSNwd9v74O8ZPX4xTMWexdfWMPDODmLkfzk0CJJB/AofOpOf/YQOfrFYy2MDRzBmKgtcc7pyVBC5L4Onh0yHZEL7bNJeEvEjA5c5CQooL7sz8ZepVpYLDnAh2mCt2/4tk9brtqgiFuLpIVgpXhhtpGRnIysxSBSlGDeiBqpXKepEkhyYBEvAlAQpe7bQpeLWzY08SMJxAj2dfUT6Ke9e/afjYHPBiAiJ6k9LcyHBnXRGNwx6IqH9KBVuN4fyl6/D6wg9xTeM6yqfXZrOhWFQESpeMVmnLwsP8P7Laasy5HhIwkwAFr3b6FLza2bEnCRhO4Ku9+/DcS7Ox65PXDR+bA15KQApUJKa4kebKvCweEbvRYQ7Iv63Y3G4PNn/xLRa8vw4P3XMrOtzakoGNVjworokEDCJw2CSXhqp0aTDoBDkMCZDAeQIxZxNyjb4nJuMJSAaHxBQPUjIuLlAhgWnR4U7TgtMKstOvvtmHEa/Mw1M9O+He9q0K0pXPkgAJ+BGBw7Hm+PBWLUEfXj+6JlwqCZAACVyegKQqS0rzIFWJ3gAEOwMRGeKd6mneOoPv9x3Aa3Pex+wJzyGSRUu8hZnjkoCpBCh4teOnS4N2duxJAiRQiAhI+jfx6ZUWFmTzy7RXx07EoEK5UoXoVLgVEiCBCwn8ZZKFtwotvLyIJEACJFB4CKicDefgF24MhYc6d0ICJJBfAhS8+SV16XO08Gpnx54kQAIkQAIkQAIk4DMCR0yy8FamhddnZ8yJSIAESIAESIAESKBIEzhyVlvRHL3QKhcP0juE6f1p4TX9CLgAEiABEiABEiABEsibAAVv3oxye4KCVzs79iQBEiABEiABEiABnxH42yQLbyVaeH12xpyIBEiABEiABEiABIo0AQpe7cdPC692duxJAiRAAiRAAiRAAj4jcDTOHB/eisXow+uzQ+ZEJEACJEACJEACJFCUCVDwaj99Wni1s2NPEiABEiABEiABEvAZAQpe7agpeLWzY08SIAESIAESIAES8BmBYya5NFSgS4PPzpgTkQAJkAAJkAAJkECRJnAs3mXK/itEO02Z18hJaeE1kibHIgESIAESIAESIAEvEaDg1Q6Wglc7O/YkARIgARIgARIgAZ8ROG6Shbc8Lbw+O2NORAIkQAIkQAIkQAJFmgAFr/bjp4VXOzv2JAESIAESIAESIAGfETiRYI4Pb7ko+vD67JA5EQmQAAmQAAmQAAkUZQIUvNpPnxZe7ezYkwRIgARIgARIgAR8RoCCVztqCl7t7NiTBEiABEiABEiABHxG4KRJLg1l6dLgszPmRCRAAiRAAiRAAiRQpAmcTHSbsv+ykQ5T5jVyUlp4jaTJsUiABEiABEiABEjASwQoeLWDpeDVzo49SYAESIAESIAESMBnBE6ZZOEtQwuvz86YE5EACZAACZAACZBAkSZAwav9+Gnh1c6OPUmABEiABEiABEjAZwROJ5njw1s6gj68PjtkTkQCJEACJEACJEACRZkABa/206eFVzs79iQBEiABEiABEiABnxGg4NWOmoJXOzv2JAESIAESIAESIAGfEYgxyaWhFF0afHbGnIgESIAESIAESIAEijSBmGSPKfsvFW43ZV4jJ6WF10iaHIsESIAESIAESIAEvETgjEmCtyQFr5dOlMOSAAmQAAmQAAmQAAlcRICCV/uFoIVXOzv2JAESIAESIAESIAGfEaDg1Y6aglc7O/YkARIgARIgARIgAZ8RiE0xx4e3RBh9eH12yJyIBEiABEiABEiABIoyAQpe7adPC692duxJAiRAAiRAAiRAAj4jQMGrHTUFr3Z27EkCJEACJEACJEACPiNw1iSXhuJ0afDZGXMiEiABEiABEiABEijSBM6mZpqy/+KhNlPmNXJSWniNpMmxSIAESIBb0iN6AAAJUElEQVQESIAESMBLBOJMErzFKHi9dKIclgRIgARIgARIgARI4CICFLzaLwQtvNrZsScJkAAJkAAJkAAJ+IwABa921BS82tmxJwmQAAmQAAmQAAn4jEB8mjk+vNEh9OH12SFzIhIgARIgARIgARIoygQoeLWfPi282tmxJwmQAAmQAAmQAAn4jAAFr3bUFLza2bEnCZAACZAACZAACfiMQIJJLg1RdGnw2RlzIhIgARIgARIgARIo0gQoeLUfPy282tmxJwmQAAmQAAmQAAn4jEBiepbP5rpwosjgQFPmNXJSCl4jaXIsEiABEiABEiABEvASAQpe7WApeLWzY08SIAESIAESIAES8BkBCl7tqCl4tbNjTxIgARIgARIgARLwGYEkk1waIujS4LMz5kQkQAIkQAIkQAIkUKQJJGWY48MbEUQf3iJ98bh5EiABEiABEiABEvAVgWSTBG84Ba+vjpjzkAAJkAAJkAAJkEDRJkDBq/386cOrnR17kgAJkAAJkAAJkIDPCFDwakdNwaudHXuSAAmQAAmQAAmQgM8IpLjO+WyuCycKcwaYMq+Rk1LwGkmTY5EACZAACZAACZCAlwhQ8GoHS8GrnR17kgAJkAAJkAAJkIDPCFhN8J45m4Cw0BCEBDt9xkDrRBS8WsmxHwmQAAmQAAmQAAn4kECqSS4Nof9xaThy7BT6DJ6Cv46eUru/t31rvPj8I3DYbT6kUbCpKHgLxotPkwAJkAAJkAAJkIApBFLd5vjwhjou9uF9YtCrCA8Lwbghj+Pk6Vg80Hs0XnyuO+5qd70pXPIzKQVvfijxGRIgARIgARIgARIwmUCaSYI35ALBm5CUguvvegrvzhqOJg1rKSLjpi/GydNnMXNcf5MJ5T49Ba9lj4YLIwESIAESIAESIIF/CVhB8B48fAx39xiOraumoVSJaLW4xSs34qMNO7Hy7dGWPS4KXsseDRdGAiRAAiRAAiRAAtYSvN/9/Ae69huHL9fMRlREmFrc8jVbMWfRR9iyYqplj4uC17JHw4WRAAmQAAmQAAmQgLUI5Fh4t62ejpLFo2jhtdbxcDUkQAIkQAIkQAIkQAJ6CVzOh3fs1EU4fSaOPrx64bI/CZAACZAACZAACZCANQj0GjgZkeGheHlwL5w4HYvOfcYwS4M1joarIAESIAESIAESIAESMIKA5N+V1GRHT8So4Trd0QqjBvRgHl4j4HIMEiABEiABEiABEiAB6xA4FROn8vGGhQZbZ1G5rIRBa5Y/Ii6QBEiABEiABEiABEhADwEKXj302JcESIAESIAESIAESMDyBCh4LX9EXCAJkAAJkAAJkAAJkIAeAhS8euixLwmQAAmQAAmQAAmQgOUJUPBa/oi4QBIgARIgARIgARIgAT0EKHj10GNfEiABEiABEiABEiAByxOg4LX8EXGBJEACJEACJEACJEACeghQ8Oqhx74kQAIkQAIkQAIkQAKWJ0DBa/kj4gJJgARIgARIgARIgAT0EKDg1UOPfUmABEiABEiABEiABCxPgILX8kfEBZIACZAACZAACZAACeghQMGrhx77kgAJkAAJkAAJkAAJWJ4ABa/lj4gLJAESIAESIAESIAES0EOAglcPPfYlARIgARIgARIgARKwPAEKXssfERdIAiRAAiRAAiRAAiSghwAFrx567EsCJEACJEACJEACJGB5AhS8lj8iLpAESIAESIAESIAESEAPAQpePfTYlwRIgARIgARIgARIwPIEKHgtf0RcIAmQAAmQAAmQAAmQgB4CFLx66LEvCZAACZAACZAACZCA5QlQ8Fr+iLhAEiABEiABEiABEiABPQQoePXQY18SIAESIAESIAESIAHLE6DgtfwRcYEkQAIkQAIkQAIkQAJ6CFDw6qHHviRAAiRAAiRAAiRAApYnQMFr+SPiAkmABEiABEiABEiABPQQoODVQ499SYAESIAESIAESIAELE+AgtfyR8QFkgAJkAAJkAAJkAAJ6CFAwauHHvuSAAmQAAmQAAmQAAlYngAFr+WPiAskARIgARIgARIgARLQQ4CCVw899iUBEiABEiABEiABErA8AQpeyx8RF0gCJEACJEACJEACJKCHAAWvHnrsSwIkQAIkQAIkQAIkYHkCFLyWPyIukARIgARIgARIgARIQA8BCl499NiXBEiABEiABEiABEjA8gQoeC1/RFwgCZAACZAACZAACZCAHgIUvHrosS8JkAAJkAAJkAAJkIDlCVDwWv6IuEASIAESIAESIAESIAE9BCh49dBjXxIgARIgARIgARIgAcsToOC1/BFxgSRAAiRAAiRAAiRAAnoIUPDqoce+JEACJEACJEACJEAClidAwWv5I+ICSYAESIAESIAESIAE9BCg4NVDj31JgARIgARIgARIgAQsT4CC1/JHxAWSAAmQAAmQAAmQAAnoIUDBq4ce+5IACZAACZAACZAACVieAAWv5Y+ICyQBEiABEiABEiABEtBDgIJXDz32JQESIAESIAESIAESsDwBCl7LHxEXSAIkQAIkQAIkQAIkoIcABa8eeuxLAiRAAiRAAiRAAiRgeQIUvJY/Ii6QBEiABEiABEiABEhADwEKXj302JcESIAESIAESIAESMDyBCh4LX9EXCAJkAAJkAAJkAAJkIAeAhS8euixLwmQAAmQAAmQAAmQgOUJUPBa/oi4QBIgARIgARIgARIgAT0EKHj10GNfEiABEiABEiABEiAByxOg4LX8EXGBJEACJEACJEACJEACeghQ8Oqhx74kQAIkQAIkQAIkQAKWJ0DBa/kj4gJJgARIgARIgARIgAT0EKDg1UOPfUmABEiABEiABEiABCxPgILX8kfEBZIACZAACZAACZAACeghQMGrhx77kgAJkAAJkAAJkAAJWJ4ABa/lj4gLJAESIAESIAESIAES0EOAglcPPfYlARIgARIgARIgARKwPAEKXssfERdIAiRAAiRAAiRAAiSghwAFrx567EsCJEACJEACJEACJGB5AhS8lj8iLpAESIAESIAESIAESEAPAQpePfTYlwRIgARIgARIgARIwPIEKHgtf0RcIAmQAAmQAAmQAAmQgB4CFLx66LEvCZAACZAACZAACZCA5QlQ8Fr+iLhAEiABEiABEiABEiABPQQoePXQY18SIAESIAESIAESIAHLE/h/sWMtttEfaj4AAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 12, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/BCG_incomplete_mkts_21_0.png" } }, "output_type": "execute_result" } ], "source": [ "# Equity Valuation\n", "fig = go.Figure(data=[go.Scatter3d(x=[kss],\n", " y=[bss],\n", " z=[qss],\n", " mode='markers',\n", " marker=dict(size=3, color='red')),\n", " go.Surface(x=kgrid,\n", " y=bgrid,\n", " z=Qgrid,\n", " colorscale='Blues',opacity=0.6)])\n", "\n", "fig.update_layout(scene = dict(\n", " xaxis_title='x - Capital k',\n", " yaxis_title='y - Debt b',\n", " zaxis_title='z - Equity price q',\n", " aspectratio = dict(x=1,y=1,z=1)),\n", " width=700,\n", " height=700,\n", " margin=dict(l=50, r=50, b=65, t=90))\n", "fig.update_layout(scene_camera=dict(eye=dict(x=1.5, y=-1.5, z=2)))\n", "fig.update_layout(title='Equilibrium equity valuation for the grid of (k,b)')\n", "\n", "\n", "# Export to PNG file\n", "Image(fig.to_image(format=\"png\"))\n", "# fig.show() will provide interactive plot when running\n", "# code locally" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAK8CAYAAAANumxDAAAgAElEQVR4XuydB5QkVfXGb+fJM5sXlCQCgqCA/EFQEAGRuGQEiQK7LCBLZpGMsCBBcpQoWZIkQRAQREAURSQKktPmnRw6TP/P92qqp7qmQ3V1hZ6u753jkZ2ueuH3Xnd9dd+994Wy2WxWWEiABEiABEiABEiABEigTgmEKHjrdGY5LBIgARIgARIgARIgAUWAgpcLgQRIgARIgARIgARIoK4JUPDW9fRycCRAAiRAAiRAAiRAAhS8XAMkQAIkQAIkQAIkQAJ1TYCCt66nl4MjARIgARIgARIgARKg4OUaIAESIAESIAESIAESqGsCFLx1Pb0cHAmQAAmQAAmQAAmQAAUv1wAJkAAJkAAJkAAJkEBdE6Dgrevp5eBIgARIgARIgARIgAQoeLkGSIAESIAESIAESIAE6poABW9dTy8HRwIkQAIkQAIkQAIkQMHLNUACJEACJEACJEACJFDXBCh463p6OTgSIAESIAESIAESIAEKXq4BEiABEiABEiABEiCBuiZAwVvX08vBkQAJkAAJkAAJkAAJUPByDZAACZAACZAACZAACdQ1AQreup5eDo4ESIAESIAESIAESICCl2uABEiABEiABEiABEigrglQ8Nb19HJwJEACJEACJEACJEACFLxcAyRAAiRAAiRAAiRAAnVNgIK3rqeXgyMBEiABEiABEiABEqDg5RogARIgARIgARIgARKoawIUvHU9vRwcCZAACZAACZAACZAABS/XAAmQAAmQAAmQAAmQQF0ToOCt6+nl4EiABEiABEiABEiABCh4uQZIgARIgARIgARIgATqmgAFb11PLwdHAiRAAiRAAiRAAiRAwcs1QAIkQAIkQAIkQAIkUNcEKHjreno5OBIgARIgARIgARIgAQpergESIAESIAESIAESIIG6JkDBa5reoWRKUqm0NDTEJRqJqE8f/dNLsqyrR/bbfWv172w2K339gxKJRKSxIa7+9o9/vyOvv/OB7LLtpjKhvdX2oinUvu3KHLzRqfE52CUZGEzKXQ8+Jaut8lXZdKNvOVl12brSmYzceu8TstJXpsuWm65f9no3LugfGJTh4ay0NDe6Ub2lOj/85Et58ZU3ZdGSTtWPn+6ylTQ1Jizd6/RFjzz5onT39ss+u27ldNWu1Ic1NDiYlHgsKvF4rGQbL73yprz9v49l9x02l7aWJsf6gz48/fy/5P2Pv5DhzLBssO4a8t311ypb/+8eekb6Bgblx5tvKF+ZPlldf8vv/ijTpkyQbbfYqOz9hS6wOn+ffL5Qnnr+FWlraZbdd/iBrbZ4EwmQQPAI1JzgvffRZ+XMi24pOhP4QX3m3ktcm6nTLrhJHnjsL3Lt+cfJphuto9rZ9+fz5NU33pM3n9X69dmXi+THe58ga6+xivzuujPU3y75zb1yw51/kAdvPkcJMLulUPt263LyPqfG52SfFi/tkh/sepTsvM33Zd5JhzhZddm6ILY32GaWEruXnz2n7PV2L3jhH2/I3/75luyz21YyfcrEvGq22OMYWbBomfz9sWuluanBbhO273v51bfloGPOz7sf3018R90qpXj85NCz5INPvpR/PH6tW807Wi8E3knn/kZm7rODHD1z95J1n3v5HXLHA3+Sx++4QFb8ylRH+oEX95knXCQQ03r5yU5byOnH7F+y/qee/6ccddoV6uX+lyccJOFwSF3/zc0PlI03+KbccNEJtvpndf4ymWE5+VfXK0PEtecf6/nLrq3B8SYSIAHfCdSc4L3n4T/LWRf/Vlb/2lflq8tNGQNo4oQ2Oev4n7kG7vo7HpXnXnpNTjh8L/n2WquqdsyCF9asY864SlZZcTk5+8SD1DVOCcJC7bs22Aoqdmp8FTRZ9tIgCN6rf/uQXHXz79WLFV6wjGXOaZfL0mU9cv1FJ+R2GspCc/ACiF2IXgj+zTb+tsDi3NLUKJFI2MFW8qsqxcOqYHKtcxVW/PzLr8t1tz0sO/5oY4HQLFXcELz/ev1d2e/Ic9WL/RnH/UymTuqQ3r4BaW9rLtqV/oEh2WH/k9Q8P3DT2bldMC8FL9rCLtxOPztFIH4fumWeNCS0nTYWEiABEihGoGYF77m/mCk7/fh7NTFzZsFbqFO1KAidhFeL4wu64HVyfu3U9X/bzpbWlkZXd1zM/aonwVsJczcE7/1/+IucfuFN8quTZ8mOW29iqTuX33i/XHfbI8qKC2uusXhl4dXbhGHi8F9cIkcetKvM3n+Gpf7zIhIggeASGPeC9/W3P5ArbnpAsNXZ1NggP9j42xIOhSQajQhEMwr8T2+6+3E5aK9t5f/W/UZutr9csER+ecmtsvUPNlDbcygPP/mCPP7M3+XkOfvICstrW4dmwQvrwpzTrlAWYP2HVheEcIWAf9nzL/9HenoH5Hv/t7acctS+MmVSR67d86+6S21FX3DaoYJtTfSvt39ATjt6f3npn2/mtQ/f4ZPPu0Ft2/10ly3zVurxv7xGJk9sl5N+/lP19zf/+5FcefPvZbftN5OPP1sgj/7pRXn3g89ks+9+W46fvacsP32K3HDno/Kn515RPnvfWmtVtX255morlf0GVDI+VAbXlAcee17+89b7stJXp8n3N/yWHHXIbnlb7zqHI362s1x184OKGco2P9xQTjx8L2k1+Sr+4em/ye33/0nViW1zzCW2Ncu5NDz+zMvy8JMvyl47baHWh7Fg/UBE6WsAvM+7/A5553+fyJcLlyqrJXYb4Cu454wtJBbV/LoLuTTc+fun1RjO/cUheX7c+Bs+O/zAnWWdb2hW2oeeeEHue/Q5+Xz+IrUWsJuB9XTwT7eXNVZdQV2Dz2HxhwsN5qqjrUX9XR/HhVffLZ/PXyyX/vLneWNyg72xAfh9HnnK5fKXv72mvnMbfHsN9fF2W2yUE06V9KHQ98D4fdHbLsdDt/Defe3pltbTsy/+W/lhv/7Oh9KQiMm63/y6HH/YXmq9Win4rbjj/qfkjf9+KBM7WtW6/fSLhbLxBmvLAXv8WFXx+8eflyefe0VOO3o/9Z3884uvqjk7YI9t1MvC5Tc+IHvO2Fx+uMl6uSaXLOuWi6+7R/Fd2tkj66+zugwMDsnb731s2aWhHH98b/C7ibWFnQPsnKFcfvaREotFCw4f343v73RkniuX8cJCghffo8tuuF/tQGBnzvydNt6vz99NF58ov7n9Efnbv95WjLb94UbK5aNQv3Y56FT1G/fSo1c76ttsZf55DQmQwPgiMK4FL3wbDz7uAkUc4qettUleeuUtJVLwAHr+wSvUZ489/bKccPY1cuFph8l2W44GVLz/0ecy48BT5OC9t5NjD91TXXvlTb+Xa259SO67/qycEDQL3kJiRxeE+vRDRC5YtFQ9sCBmHr31vNwPNn7Y8ZDEgwb/rxdc84en/pbXPkTXVnseK3vO+KGccewBeasLFjY8nNFXFAir2XMvzl2jP7jxoAUPPGzw3/g7tgLxsIOY+/1N55RdtZWMD0IWQgKidMP11lRt6sL3/hvOzm2/6xz0xsEDPpiYv1232yznLoLPIfwuvf4+dSksSwiwwXY6SjnB+78PP1fbnxutt6bcdMncvLHqPtN3Xn2aEpyffL5Att1nruo75jAWjaqXKfTpoL22k+Nma+uk0BqAKw5ccp6+9+I8f9t7HnlWzvr1LXL1ecfkBPfJ512vRO96a68mUydPkIWLlyk/cQjIh2+ZJ8tNm6QYYtxYQ5gzfIYCn88fb/5/Y17E8Jkb7M2LI5XOyL5HnJNbu/oL0547bq7WaaV9KPQ9gLuQuZTjUcl6uunux+TX196jmgBLBEJBUKL8+b5LZerk0RfUQl8OiMVrb31YzcmG631DbbFjnZjXo/69wQsLvgN6gSvUclMnySHHXygnz9k3F2gHsbvzz07JzfmqKy2vBB2+qyhWfHit8IcgvvyG+3O/T/htiITDcvuVpxQVvE88+3c59syr5ZSj9hvz8o2+mQUvAhr3PPQs9d257YpTZP11Viv5O1No/vTfx2LfcQTKXXjN3XLFvKNki++NvjSU/UHjBSRAAoEjULOCFzOhP+CNs6ILPFiZZhxwshJT+JGGcEDBw3iH/U5SP7J+CF78MB9/2E+UhQ99OfaMK+WZF16V8085VHb40caqj/oPOx5mR8/aQ1n9BoeSMm3yBPnN7Y9WLXghYhHEtdbqK6v2Tjz7WoF1FH8/7+RZ8o2vr6gyTRx31tXyxLP/kGfvvzTPAl3oW6A/uMuNTxeXEDE3XnxiLoOAfj9eLPCCYeRw+AE7yUF7b6+EMMQdAgIxf/95+iblD/rF/MXyo72OV6L97mvPyEWF68GD5QQv2tr78LOV4HjirgtzvuFoAy8NmIeHf3uu6hOE7BfzF8mqK38lhwGR/9vvO1cGh1K5gKhqBS/EAES1cY3fdt+T8qsr71RWd92ns9QWvvlFzA32pX4RIXBgfbztipNzl9npQ6HvQbGsBeVcGiCQyq0nfd1AqN/46xNzPquwxp56/o2y/x4/lrlH7F106Hgp23H/X6iXkFsu/UVOHMO6u81PT8x7AdPXPeYZcQEbf2ctScTjkojH5K13PxojeOdddpvaDThs/53k5wftkuuD/mJWTvBWwv+39z4hF1x1l9x8yUlKtJcr2A1DdoYn774o9x003mMUvPjO/mT2Wer7bLV+/XcRnPbZZSslvOG2tOehZ6pdEON3V28X36Md9v9F2TkrNzZ+TgIkUP8EalbwwipaaFsTW/jYwv3v+5/KrgefVnB7bbt950pPb78vgtecpeG1t96Xnx5+dp6FVv9h//efbhhjTTFbmO1YeI2CCUtYjwaHVQmWU73oD/iLzzxCWblKlWI+vObx6ZbYy84+Urba9Du5KpHGbcPtZiurqW6RLhZkdOyZVykhrlva7nrwaTnn0tvGPNQq8eHVx2r099O5FLJYQdC+98GnsmDxMlnW2aNcKeAG8uIjV0l7a3PVFl4dDLa3P/p0vixZ1iXvffC5wPL4s722leNn/0RdUongdYN9pYK30j5AoBb6HhRrt5zgLZSlwbyebrnnjwJ3ELyE/viHG+aa6u8flE1mHDFGxJv7AkszrKjmHaNC61H/3tx9zemyzppfy6sK2RHMFl68gOkv63jB04tVH95K+FcqeI84+VKBG4j+Imrmogte+ATvc8Q5yipdyNe32NwW+z24+e7H5aJrfzeGN+pJJlOy3tYz1e8XfsdYSIAESKAYgZoVvOWC1iCI8CAzW0Iw0FoSvF09fbLJjkeoSGj496KUiiZ3Q/DCwnzkKZfJmccfKHvssHluLfzpL6/I0adfKefMPTjnw1xsoRQTvObx6ZYouGeYt6UxL7DI6+ndinHQXQP+dPdFsvz0yXLu5bfLHQ88NSYFUSWCV7fmwqr61O8uVqmU9CwDLzx0pXS0a/6x2Dm49rcPKyt7oaJfW62F970PP1OWd2xXmwv8P08csTBWInjdYF+p4HWiD6XatCN4zetJ/3exdsqlPtTvx64ArNN6KSV4C6UrNAte/X7jS2GlgrcS/pUKXnxfFy3tLBqkCMELHtiVwbpG9o5KclQX+z2AyIbYxksgXgbNZdOdj5SVV1gub6eBj3wSIAESMBMYt4IXuXLx446ALf1ACH1wtSR4sR2+8Q6Hq8Cxa351jC+CV39gmAXvM3/9lxx56uVVCV7z+HT3iULbnnqAyRt/vllCoVBR4X/2JbfK3Q89I7rgnTvvOhWc9vgd58uKXxkNKKpE8AK8viV7y6UnKSG99V7HKzcTWPr0okehw/1j5j47ytdX+YpK1wTRDbcQK4L3qXsuluWmjubMNfvwdnb1yvd20gLN4BeMgMQVvjJVurp7ZbdDTlcBT3YErxvsKxW8TvTBacFrXk96HxEIhR0jc8HBGThQoVg55Vc3yIN//KuYrbbVCl59e76Qi45VC28l/O0I3s7uXuVaUKhA8BoLsuycM/eQXJ7eco/fcoIXrg4H7rkNBW85kPycBEigIIFxK3gRIDLrhIvUqT4XnX5Y3uDMghdR+shoYN7SdyNozWzJ0V0vjH6BlVh44buGAwaQNghbhcZSLGjN7NLgpuA1j0+3UENUGjNiIEjuuzscLlMmtctjt2uHFRTjYBYounUZvqLwGdVLpYIX0fh7zT5L+VjC/xLR42b/QviFG10X9Lb0ILNSglcX1Gbrtlnw4mQr5NA1HzigB8wVErx6UJ1x/s0+vG6wr1TwOtEHK4K3EA+r60m3Eley3W7s09W3PChX3fLgmOCtagUvcuButP1hBYMrrQreSvhXKngPO+kSlTni9WduLihiIXjhq3zzpXPlV1fcqYIwjQHB5Z7BxeYPPs3wbb7inDmyxffzTzVEnMS6Wx1Ml4ZycPk5CZCAjFvBqwtB+LlBQOnpbhBpvf+c81SaIT1o7ZXX/isHHHVenh8tjmTFyUUIEnIyS4NZ8OpbjEaf1koEL6K/1/3RISrQCgEr+qlGeJhA8Bi3P/UsDV4KXvP49D6YX0T0CG+4VMDSXInghWUVlitz5gbdVcNK0Jr+XdcFLdYNHs5GprhG96E0pjmC28as4y9SWQlKCV5E7SN63+jbiUT9Z150s7IO61kadAFsdseBFRvWbKPg1R/2F595+Biro1nwusG+UsHrRB9KtVmKh1XBq7sSIHPCby89Ke9YX4jOV9/4X+6UxUJ90U+YQ2Dm9b8+QaXD6uruU24wCDw0rsdS+asL+fDqp+cZg9MQj4CdGKQvLBe0Vgn/SgWv7spR7DQ9Y9AaeOx9+C+VCxMCAPHCbyzwg8Zn39twnVx2hULzh6PWsTOEawu1i+wa2+5zotrl09Mz8rlOAiRAAoUI1KzghZBbeYXpY/o8ob1FWVZQ9K1FPc/rJ5/PF5xehGJMS4Zt9y33OFYFgyD6fWJ7qzz70r9zaYicFLzIFoGcrhBTf3n5NXVOPR6Md11zek6sViJ4MZYDj/6VetjBLQK5Qv/z9vsqeATFa8FbbnzI/oDTmyDIIXo333hd+fTLhSrdG4ruplCJ4EVgypZ7Hqsivn+02QayxtdXkFdff69gGqhyX3M9AA7XFfIJRNoliHOIoR9usq7gVL0H//iCWjsopQSv/mKFuYdo7RsYVLmQ0W8UXfDCvxEPcRSk8YL7w9///U7uiFej4NVfbLCe4b8IAbD2Gl9TgswseN1gX6ngdaIPpdosxcOq4EX9sLDju4nfDuRYxslhb737sXox2XiDtcoeF43dJT0NGXx+8QKul2oEL1x5sMOB+cbagNjFDpW+hsoJ3kr4Vyp49fSOZxx3oCAFnbmY05IhzzkyLKDvxpdA+Ml/e8uD1e3IuqLnptaDebff8ruywbpaqjcEm8KIUcxSDKMFrN8IZMZvAwsJkAAJFCNQe4J3JGdpsQ4bA0qM1jNcD6Fx2AEz5HcP/TkvLZkSWiMBWnq9sJjuu9uPlIX3kJ9uL8fM2kN9hGNcseX5wI1n5w4AKJaHFz+wetJ/5IhFhDSCNrAlrhcIk3N/MUs9wPRSSvAWah+uF4f/4tJcLk6ME/lgkUf0aysup46dVWJsxM0D+XrxsNSLfiIRzr3HoRR60S2kVoLWKhkfrDtnXXyLyrSgFwiLC06bnXc8bjEOemomoy8sXCcOO+ninLAAg1n77qBy8+LQEIzBSkHfEImPUigd28LFnSrAz5gfGQ9gbFfDsvfiw1epNFZ60JpxDaBOnZPeFxw8ghRnsGhde/6xyl9XPehHhI1+Hdb17jtsrtYf/BThr6gXRKnjej0Xq+6LXegEQDfYF+MKgQO3FbivGEu1fSg3j8V4VLKekAYQOVxvvOux3MsM2sU6xWEyM7YufcojXsJwmM3f/vWWpNMZWWv1ldTBE3jZM2bZ0NfDQzfPU/7gxqLnETdmCYEYxD0Yo14232Rdbb2++G/5450X5A7EKcbJKn8928RvL/tF7vCQUux1lw289CIVpLkUOngC31usU7ww3nr5yfKdb62u0gMiTSBeKu+6+rRcNbrgxW+zvtbxIfzc5xyyW+7QF2O7u888QwliPXtKubXDz0mABIJLoOYEr52pgPhY1tkt06dOUlZUsw+vXicEMnJlYgsSif3dKhBNsAyiDaPQraY9PAixfRcSUQFO0Yh24pcfxer4kIoMfqmTJrSXTeRvZRxwQ8H8DQ8Pq+A1RIO7UfR28JBeftrkXJ5Wq23hRKr5C5eWvRc7D599sVAaGxKy0lenlwzugeUOIqCluTHvFLdifXKavdWxG69zsw+V8ijWf9QDIQeRiJeOUieBlWOA3aXZc38tpx69n+y9c/6piOXuNX8Oyy7mG8GVSINnp7jBX3fR+M2Fx6tTJO0UPXWaOa2bXhf8/XECIfqP7wWCCAsVnFr385MvkyN+tovKvcxCAiRAAqUI1IXgNQ+wmODlUiABEiABJwjAl7i1uVFZbSGS3//oC5XJAyLVfNKeE+3VSh0wGuyw/0nqBEKc0FhMjJbqL9IBIi3f0/dcnOc/XckY4Ws948CTVT8eumWeNCTildzOa0mABAJIgII3gJPOIZMACVRHQM9YYK7FeKJidS3U7t26ixRiCi4/Z05BV4NivdddgXCKHII27RS4kxx+8qXK5x0n5X33O2vZqYb3kAAJBIxAXQpe+OvCrw5BUywkQAIk4DQBHJ37+jsfKHcIbMF/dfmp8q01v1Ywr6/TbddCfQjshMvBxt/5ZsXuYXDlgWXYrlsWrOh/f/VtaWluUgHCLCRAAiRghUBdCl4rA+c1JEACJEACJEACJEACwSBAwRuMeeYoSYAESIAESIAESCCwBCh4Azv1HDgJkAAJkAAJkAAJBIMABW8w5pmjJAESIAESIAESIIHAEqDgDezUc+AkQAIkQAIkQAIkEAwCFLzBmGeOkgRIgARIgARIgAQCS4CCN7BTz4GTAAmQAAmQAAmQQDAIUPAGY545ShIgARIgARIgARIILAEK3sBOPQdOAiRAAiRAAiRAAsEgQMEbjHnmKEmABEiABEiABEggsAQoeAM79Rw4CZAACZAACZAACQSDAAVvMOaZoyQBEiABEiABEiCBwBKg4A3s1HPgJEACJEACJEACJBAMAhS8wZhnjpIESIAESIAESIAEAkuAgjewU8+BkwAJkAAJkAAJkEAwCFDwBmOeOUoSIAESIAESIAESCCwBCt7ATj0HTgIkQAIkQAIkQALBIEDBG4x55ihJgARIgARIgARIILAEKHgDO/UcOAmQAAmQAAmQAAkEgwAFbzDmmaMkARIgARIgARIggcASoOAN7NRz4CRAAiRAAiRAAiQQDAIUvMGYZ46SBEiABEiABEiABAJLgII3sFPPgZMACZAACZAACZBAMAhQ8AZjnjlKEiABEiABEiABEggsAQrewE49B04CJEACJEACJEACwSBAwRuMeeYoSYAESIAESIAESCCwBCh4Azv1HDgJkAAJkAAJkAAJBIMABW8w5pmjJAESIAESIAESIIHAEqDgDezUc+AkQAIkQAIkQAIkEAwCFLzBmGeOkgRIgARIgARIgAQCS4CCN7BTz4GTAAmQAAmQAAmQQDAIUPAGY545ShIgARIgARIgARIILAEK3sBOPQdOAiRAAiRAAiRAAsEgQMEbjHnmKEmABEiABEiABEggsAQoeAM79Rw4CZAACZAACZAACQSDAAVvMOaZoyQBEiABEiABEiCBwBKg4A3s1HPgJEACJEACJEACJBAMAhS8wZhnjpIESIAESIAESIAEAkuAgjewU8+BkwAJkAAJkAAJkEAwCFDwBmOeOUoSIAESIAESIAESCCwBCt7ATj0HTgIkQAIkQAIkQALBIEDBG4x55ihJgARIgARIgARIILAEKHgDO/UcOAmQAAmQAAmQAAkEgwAFbzDmmaMkARIgARIgARIggcASoOAN7NRz4CRAAiRAAiRAAiQQDAIUvMGYZ46SBEiABEiABEiABAJLgII3sFPPgZMACZAACZAACZBAMAhQ8AZjnjlKEiABEiABEiABEggsAQrewE49B04CJEACJEACJEACwSBAwRuMeeYoSYAESIAESIAESCCwBCh4Azv1HDgJkAAJkAAJkAAJBIMABW8w5pmjJAESIAESIAESGOcEzvxG1JcRnPlO2pd2nWyUgtdJmqyLBEiABEiABEiABFwiQMFrHywFr312vJMESIAESIAESIAEPCNwlk8W3jNo4fVsjtkQCZAACZAACZAACQSawC99ErynU/AGet1x8CRAAiRAAiRAAiTgGYFfrumPD+/pb9OH17NJZkMkQAIkQAIkQAIkEGQCZ/skeE+j4A3ysuPYSYAESIAESIAESMA7AhS89lkzaM0+O95JAiRAAiRAAiRAAp4ROMcnC++ptPB6NsdsiARIgARIgARIgAQCTWCeT4L3FAreQK87Dp4ESIAESIAESIAEPCMwby1/gtZOeYtBa55NMhsiARIgARIgARIggSATONcnwXsyBW+Qlx3HTgIkQAIkQAIkQALeEaDgtc+aQWv22fFOEiABEiABEiABEvCMwHk+WXh/QQuvZ3PMhkiABEiABEiABEgg0AR+9U1/fHhPepM+vIFeeBw8CZAACZAACZAACXhFoNYE7+KlXdLc1CiNDXGvENhuhy4NttHxRhIgARIgARIgARLwjsD5Pll455osvJ98vkBmz71YPv5sgRr8rtttJqcfe4DEopGSMJLJlBx83IUyMDgk911/lnfgRISC11PcbIwESIAESIAESIAE7BGoFcE764SLpKW5UeadNFPmL1wiex56lpx+zP6y49abFB1YNpuVU8+/UR78419lzdVWouC1twR4FwmQAAmQAAmQAAnUN4EL1vbHh/fEN0Z9eLt6+mSTHY+Q2688RdZbezUFfN5lt8n8hUvlinlHFZ2A6+94VB57+m+yw482kcefeZmCt76XKkdHAiRAAiRAAiRAAvYI1ILgff+jz2XGgafIs/dfKhSQNNMAACAASURBVFMmdaiB3Hbfk/LQEy8UFbFPPPsPOefSW+Xe68+Sv7z0mtzzyLMUvPaWAO8iARIgARIgARIggfomcKFPFt4TDBbeV994T/b9+Tx58ZGrpL21WQGHgL321ofkmXsvGTMBr7/9gRx07AVy86VzZe01VpF7Hv4zBW99L1OOjgRIgARIgARIgATsE7jIJ8F7vEHw6hbe5x64TCZPbC9r4T37klvlpX++KT/YeF117dvvfSxv/vcj2X2HH8jhB+wkrS1N9oFUcCeD1iqAxUtJgARIgARIgARIwC8CtSB4C/nwQtQuXLysoA/v8y+/Lu/87+Mcsn+/+T/5z1vvy/57/Fj22XUraWps8AQnBa8nmNkICZAACZAACZAACVRH4Nfr+BO0dtzr+QdPHHL8hdLW0iTnzD1Evly4RPaa/ctclobu3n45YM65MnOfHWW7LTcaM2C6NFS3Bng3CZAACZAACZAACdQ1gVoRvMi/i9Rkn325SPHeZdtN5YzjDlR5eLu6+2STGUfIqUfvJ3vvvCUFb12vSA6OBEiABEiABEiABBwmcLFPFt5jTRZefVgLFi1T+Xibm7xxS6gGJ10aqqHHe0mABEiABEiABEjAIwKX+CR4jykieD0atiPNUPA6gpGVkAAJkAAJkAAJkIC7BC75lj8+vMf8J9+H191RulM7Ba87XFkrCZAACZAACZAACThK4FKfBO/RFLyOziMrIwESIAESIAESIAESKEKAgtf+0qCF1z473kkCJEACJEACJEACnhG4zCcL71G08Ho2x2yIBEiABEiABEiABAJN4HKfBO8cCt5ArzsOngRIgARIgARIgAQ8I3D5t/0JWpvzGoPWPJtkNkQCJEACJEACJEACQSZwhU+C90gK3iAvO46dBEiABEiABEiABLwjQMFrnzWD1uyz450kQAIkQAIkQAIk4BmBK32y8P6cFl7P5pgNkQAJkAAJkAAJkECgCVy1rj8+vEf8mz68gV54HDwJkAAJkAAJkAAJeEWAgtc+abo02GfHO0mABEiABEiABEjAMwJX+2ThPZwWXs/mmA2RAAmQAAmQAAmQQKAJUPDan35aeO2z450kQAIkQAIkQAIk4BmBa9bzx4f3sFfpw+vZJLMhEiABEiABEiABEggygWt9EryzKXiDvOw4dhIgARIgARIgARLwjgAFr33WdGmwz453kgAJkAAJkAAJkIBnBK7zycJ7KC28ns0xGyIBEiABEiABEiCBQBOg4LU//bTw2mfHO0mABEiABEiABEjAMwK/Wd+foLVZ/2LQmmeTzIZIgARIgARIgARIIMgErvdJ8M6k4A3ysuPYSYAESIAESIAESMA7AhS89lnTpcE+O95JAiRAAiRAAiRAAp4RuMEnC+8htPB6NsdsiARIgARIgARIgAQCTeCG7/jjw3vIP+nDG+iFx8GTAAmQAAmQAAmQgFcEbvRJ8B5MwevVFLMdEiABEiABEiABEgg2gZt8ErwHUfAGe+Fx9CRAAiRAAiRAAiTgFQEKXvukGbRmnx3vJAESIAESIAESIAHPCNy8gT8+vD97hT68nk0yGyIBEiABEiABEiCBIBOg4LU/+7Tw2mfHO0mABEiABEiABEjAMwK3+GThPZAWXs/mmA2RAAmQAAmQAAmQQKAJUPDan35aeO2z450kQAIkQAIkQAIk4BmB3/pk4T2AFl7P5pgNkQAJkAAJkAAJkECgCdz6f/4Ere3/DwatBXrhcfAkQAIkQAIkQAIk4BUBCl77pOnSYJ8d7yQBEiABEiABEiABzwjc5pOFdz9aeD2bYzZEAiRAAiRAAiRAAoEmQMFrf/pp4bXPjneSAAmQAAmQAAmQgGcEbt/QHx/eff9OH17PJpkNkQAJkAAJkAAJkECQCdzhk+Ddh4I3yMuOYycBEiABEiABEiAB7whQ8NpnTZcG++x4JwmQAAmQAAmQAAl4RuBOnyy8P6WF17M5ZkMkQAIkQAIkQAIkEGgCFLz2p58WXvvseCcJkAAJkAAJkAAJeEbgro0inrVlbGjvlzO+tOtkoxS8TtJkXSRAAiRAAiRAAiTgEoG7fRK8e1HwujSjrJYESIAESIAESIAESCCPwO98Erw/oeDlSiQBEiABEiABEiABEvCCwD3f9celYc+/0aXBi/llGyRAAiRAAiRAAiQQeAIUvPaXAH147bPjnSRAAiRAAiRAAiTgGYF7fbLw7kELr2dzzIZIgARIgARIgARIINAE7vNJ8O5OwRvodcfBkwAJkAAJkAAJkIBnBO7f2B8f3t1eog+vZ5PMhkiABEiABEiABEggyAQoeO3PPn147bPjnSRAAiRAAiRAAiTgGYEHfLLw7koLr2dzzIZIgARIgARIgARIINAEfu+T4N2FgjfQ646DJwESIAESIAESIAHPCDy4iT8+vDu/SB9ezyaZDZEACZAACZAACZBAkAk85JPg3YmCN8jLjmMnARIgARIgARIgAe8IUPDaZ82gNfvseCcJkAAJkAAJkAAJeEbg4e/549Iw4wW6NHg2yWyIBEiABNwmkM4Mi4RCEg2H3G6K9ZMACZBAxQQe8Unw7kjBW/Fc8QYSIAESqCkC2axIMp2RgaGMDCSHJZvNSlMiKo2JiMSiIQmHKH5rasLYGRIIMIFHfRK8O1DwBnjVcegkQALjmsBwNqvEbGdvUoZSw5IZzuaNJxIOSSIWlkQ8Ig2xCAy/LCRAAiTgKwEKXvv46cNrnx3vJAESGKcEhlIZ6RtMS1tTTBZ2DpUcRTgckng0LE2JiDTE/fGfG6eY2W0SIAGHCfzh+/78Bm3/V/rwOjyVrI4ESIAE3COQzmRlWU9SUvDVFZEp7QlZ1FVa8Bp7Ew2HpaMlKvGYPw8d98iwZhIggfFA4DGfBO92FLzjYXmwjyRAAkElAH9czUd3WPqH0sp1Af/WS6WCV78vHgtLc0NUEtGwwALMQgIkQAJeEHjcJ8G7LQWvF9PLNkiABEigcgLDw1klctMZkcFkRuCzay52Ba9eD1wc4OeLADcGt1U+R7yDBEigMgJ/3NSf3aVtnqdLQ2UzxatJgARIwGUCsOr2I+PCUEZSGVh4xwrdai28xiEgmC0a0Xx8kd2BwW0uTzCrJ4EAE6DgtT/5DFqzz453kgAJ1BiBweSwLO2x7pNbrYXXPHyI3YltCeXqwEICJEACThN4wicL74+LWHgXL+2S5qZGaWyIlx3qUDIli5Z0SlNjg0zsaC17vdMXUPA6TZT1kQAJeEYA1tvhYc1Ht3cwLam0FoxmtTgtePV2o5GQtDbGVHaHSIQ+vlbng9eRAAmUJvCkT4J3a5Pg/eTzBTJ77sXy8WcLVId33W4zOf3YAyQWLexycer5N8rvH38+N7j111ldrjhnjnS0t8jSzh7ZdOcjxwz8xotPlO+uv5ZjS4KC1zGUrIgESMBLAsibOzCUlmQqK4Mpe/5lbglenUMiFpF4NKRcHSh8vVwdbIsE6pPAnzbzx4f3R3/J/42ddcJF0tLcKPNOminzFy6RPQ89S04/Zn/ZcetNCoK/7rZH5PsbriOrr7qCfLlgsexzxDmy3+5by6x9d5Qly7pls13myLXnHycrfmVq7v6pkydYshxbnWkKXqukeB0JkEBNEIBVF/65fUMZQZqxUj665TrstuA1Wnwb4xFpbowyuK3cpPBzEiCBogRqQfB29fTJJjseIbdfeYqst/Zqqq/zLrtN5i9cKlfMO6rs7KVSadlij2PkyIN2lT1n/DAneB+99TxZZcXlyt5v9wIKXrvkeB8JkICnBJBloX8wLd39acfaNQtePcOY6dA1x9pDRW2NMSV8GdzmKFZWRgKBIPCUTxberQwW3vc/+lxmHHiKPHv/pTJlUofiftt9T8pDT7wg911/VtF5SCZTctPdj8tzf3tNpk2eIOfMPVhZiXUL7+abrCsdbS3KCrzzNt+X9tZmR+eUgtdRnKyMBEjASQJIsJDJZmUoqZ2MBouuk0UXvLFISJ2iFotq/rapdFalMlMWZCcbHKkLuXuR1aExEZVoOETx6wJjVkkC9UjgaZ8E75YGwfvqG+/Jvj+fJy8+clVOlN7zyLNy7a0PyTP3XlIU+8BgUk674EZ59/1Ppb2tRS449VBZbtok6e0bkMtuuE/gwoD/fuCxv8jkie1y97VnSCIec2waKXgdQ8mKSIAEnCIANwWIzYFkRpKpYRWU5kaB4MUxw6FQSAW8QeSiwP0A4heW3qHksAy51H4kHFJtaWI7TOHrxiSzThKoIwLP/MAfH94tnhv14dUtvM89cJkSpihWLLz6NOD3feYJF8n0KROVlddcEAi33b5z5c6rT5Nvr7WqY7NHwesYSlZEAiTgBAEEo/UOpAQpxvDfbhRYdHFSWkMiIst6htThFOa2ImHk19WuQyaIviFkgXCnP8jji4wOzQ2a8GUhARIggUIEakHwFvLhPfuSW2Xh4mWWfHgxrnMvv10++nS+/ObC48cMs69/UDbcbrbcdMlc2Wi9NR1bCBS8jqFkRSRAAtUQyAwPS+9AWvoG7WVcsNI2fHTbmmKCo4F7+lPS0hiTRV3l8/Y2xMLS1hyTVGpYuvpTyvLrVoHAbm2KCU8sdosw6yWB8Uvgzz5ZeH9osPCC3iHHXyhtLU1yztxD5MuFS2Sv2b/MZWno7u2XA+acKzP32VG223Ij6entl+tuf0R22XZTWWG5KfLmux/JrBN+LTP32V5laXjupdcEInfjDdaSWDSq3Bse/OML8vS9F6s2nCoUvE6RZD0kQAIVE4CPbnp4WLkNwEfXTYuu7qObTGelbyCtfHMrzdLQ0og0Y2HXfXzh6tDUEFUHWMC1Ai4XLCRAAiTw7Ob+7ABt/my+WxncDpCa7LMvF6lJgZg947gDVR7eru4+2WTGEXLq0fvJ3jtvqcTsAUedJ2+/93FuAhGUhry98NH9019ekZPPu0H6BwbV5ziU4sLTDpPvfse5HLyol4KX3x8SIAHPCcCHawi+ualh5afrltCFOG2Iwzd21EfXaJ2tVPACFCyvXvn4hkMIpgsrizTapPD1fKmyQRKoKQLP+SR4f2ASvDqUBYuWqUwLzU0NZTlB+C5Z1iWTJ3ZIU2Mi7/p0JiNLlnarv02d3OHKbx0Fb9kp4gUkQAJOEYDQTWU0H134wyLVGKy8ThfdRxeG0f4hZHcY66OLNu0IXr2vXvr4IquDfnpbIuaPhcfpOWJ9JEAClRP4i0+Cd7MigrfyEfh3BwWvf+zZMgkEigCyICzrTTqeWswI0eyjO5Asnd2hGsFrbNdLH1+4O0xsjTO4LVDfHg6WBDQCFLz2VwIFr312vJMESKAMgeHhrEophpPR4LrgVjHm0TX66JZrzynBq7fjlY8v2mtEHt+45lMMCzALCZBA/RN4/of+7PBs+md3UkN6OWMUvF7SZlskEBACSOM1mMqoYLSBpHMno5nxlfPRLYfbacGL9rz08YXLhhK9MfgqR3hscbkJ5+ckMM4J/NUnwft9Ct5xvnLYfRIgAUcJ6P643f0p5Tvrhn8uOmzVR7fc4NwQvHqbfvj4NieikoiHKXzLTTw/J4FxSuAFnwTv9yh4x+mKYbdJgAQcJ4AgtKU9QzKpLS7dfSkZTDm/BVapj265QbopeI1te+njC0YTWhPC4LZys8/PSWD8EaDgtT9ndGmwz453kkDgCRTy0Z3QElMpx/qHnPPZteujW26CvBK8ej+89PFNxCLS1DDi4xtCLt9yNPg5CZBArRN4cQt/fHg3ecZ5A4bXrCl4vSbO9kigDgggby6C0HDymDkYDSeZ4dQ0J05Mq9ZHtxxqrwUv+uOljy/ag6UX/r34/0gkLNS95VYFPyeB2iXwkk+Cd2MK3tpdFOwZCZCA8wRwaMPAYFr6kxlJZ4YL+ui2JCISjoSku99+sJpTPrrlCPghePU+eenjiwMr0B6svq1NUfr4llsY/JwEapTA33wSvN+l4K3RFcFukQAJOEoAZ0PgON7ewbTAjaFUaUpo2+idfamK++C0j265DvgpeI1989LHFxbe1qaYNDdGae0tt0D4OQnUGIGXt/THpWGjp+nSUGNLgd0hARJwkgCsuLo/Lg6OsFJi0ZAgW0AlgtctH91y/a0Vwav3M8/HN5WRdDorLhxEp5qLRELS2hhTLyc4xY2FBEig9glQ8NqfI/rw2mfHO0mgLglAYGUyWRlMZlQu3WSF2RbCYRH48Xb2lrfw5nx0JSSpzLBqs4wB2VHmtSZ4MbgxPr4p7aXDrYIcvh3NcRXUhlPcWEiABGqXwN99svBuSAtv7S4K9owESKByAnBXgNsChCdErx3rIgRve1NMlpUQvF756JYjUIuCV+8zfG5hhYW1HPPQP5gWnCLndIHGbW+JqdPwUPCyEkXjLCRAAjVH4B8+Cd7/o+CtubXADpEACdgggAMiuvuTKpVYtYdFKAHVXFjwGn103crVW8nwa1nwGseBDAtgmk4PK1cRJ63gOJa4vSkqXf0pwQl5KMjqgPZo8a1kNfFaEnCfwCtb+fMyusFT7u0yuU9Na4EuDV6RZjskUGMEhrNZZcVNpoelZ6B8MJrV7hcSvLDoIkNAPBaSZCorfYNpW9Zjq32wet14Ebz6eJobtPRiOOQD7iZO+PhC8LY1aoLX/LLT0hgVBNRFozy9zeqa4nUk4CYBCl77dCl47bPjnSQwLglgU1zLn5tWvqHpjLPb5PAF7Rix8Prto1tugsab4FVWipBIYzwiCA6EQMUcVuPjCysuhG1Xkawayqc4EVFWX8wnUpyxkAAJ+EPgnz5ZeL9DC68/E85WSYAEKieQzWaVZbBnIKVELg6PcKNAD01uSwiyOuC/+4fSks6Ia+1VM4bxKHj18cJXGtkVqvXxLSd49fZwHdqDj28s6s+2ajVzzXtJoB4I/Msnwbs+BW89LB+OgQTqnwDSi+EgCASjuVl0H91EPCLdfUkZSNa239d4FrzGeazGxxdCtrWxsjRysDC3NUXVyW0sJEAC3hF49Uf+fOfW+1Nt/5ZbmQG6NFihxGtIYBwSwHZ3Mp2RoVRWegfKpwirZohGH11YkZHqallP0tHgqmr6V+zeehG8+vjs+PjaEbx6exDKeLlBVgc4OtDbwY1VyjpJYJTAv30SvOtS8HIZkgAJ1BoBJXSVj25GBpNpV0VnIR9dOEpMbI1LV29K0i65TTjFvN4EL7hU6uMbj4akqcKDQoz84dMLi29DPKxedMJUvU4tT9ZDAmMIUPDaXxS08NpnxztJoOYIQOh296eUv6xbProYdKk8urD0Ia8rjiJOORwQ5zTwehS8OiOrPr6NibDEIhG1bqopcGeBi0MLMknEIxS+1cDkvSRQhMBrW/vj0vDtJ+nSwEVJAiTgMwEEoyEIDVH2SDHmZrGSRxeCt61ZO8jA7f5UO9Z6FrxGNqV8fCFQsxJSqeKcKlpwW1xZfVlIgAScI/AfnwTvtyh4nZtE1kQCJFAZAQSiQegiC8Kgy8FhlebRRUATxK7b/aqM2NirgyJ49ZEX8vHFARND6YwMDDn/soR109oUVzsCODWOhQRIoDoCr/skeNeh4K1u4ng3CZBA5QRw/C/8c1X+1WTG1QMc7ObRxUEG8N/FyW21XIImeDEXZh9fzHHvQFoGU84LXn3u0Yaey5ent9XyN4J9q3UCFLz2Z4g+vPbZ8U4S8JQATkaDmwD+l8oMV30EcKnOl/LRtTJoHGQAYU7Ba4WWP9foPr4TW+K5/MzJtDu5mTFCBLPByosAt6aGqMA9hoUESKAyAm/82B83obWfcO+FuDIC9q+m4LXPjneSgCcE4KOL1GLd/UnHT0UzD8CKj66VQcN3EwKHgtcKLX+vmdyekL6BlLQ2xSSdHpbOvpSrmT0wWgS3tTZFpCke9XfwbJ0ExhmBN30SvN+k4B1nK4XdJYFxQgCpxWAhHUoPS99gSlng3CxITZWIIZ9qSPne9g1W54pAwevmbDlbN9w6FncPqR0DBLDhFLVMJiuDqYxad26uPLg6wNqLY5Kj4RCPLXZ2allbHRJ4yyfBuxYFbx2uJg6JBHwmgHRiujsAAtIgRNwqiN5viGlbZNjOHkplHLHuoc5wmBZet+bNyXrNfszw8cX8Iacu1C58xd3078VYILKxFpsS2iEWLCRAAoUJvO2T4F2TgpdLkgRIwCkCesYF+OjiBCtYWt1yCdB9dOHHiYAltO3kGREUvE6tCvfrmdqekIVdQ2MaUnl1w0gvFlVrA+vE7bzKELvxGI46jqm2WUiABPIJvL2NPy+Ea/6RPrxciyRAAlUQgH8urLlwIeg15EFF+ihxODcqugnjGcQELGo4bnjApXRmsNZBsLgl2KtAnndrELM0mNlN7UjIws6xgtd4HVxU8BIGwdvtgY8vrMzNDVFpaYzxyGKnFjvrqQsC7/gkeL9BwVsX64eDIAHPCUDoQjzoJ6OZOwALKaxdRhFcTSc1H12tTvhl4pABFz0lRtrCYQbV+QJXM2Yr9wZd8OIFaFJbecGrs2xpjEgsElY7AnB/cTOrA9rEDkRLQ0wScZwG549ly8o64jUk4BWB//okeNeg4PVqitkOCdQPgZQKCksrlwUIh0IF4lSzwlZ3+lUiGpaGBISCFoyGvL1Oui4UmxVNsIekdxwIXj1gq35WmPWR4EWorTkuiwu4NBSrRfn4xiOCe/HWBP9e+Pm6WbCWEODWjN0JHmDhJmrWXeME3t3Wnxe/1R939zvuBXamJfOCMtsgARElbrv7kXFhWBCYVqpAqMZi9gWv2z665SZUCV4HBHu5dqr9HBbeJd1DnrwEVNtXN+5vjIelIR6VZb3JiqtXPr44Sa0xqgIrsRvhdjYRuMloxxZrbjksJBA0AhS89mecgtc+O95JApYIQNz29qekr4JTx/STqSCQK8nS4JWPbrmBq+wP8bB097ubZaJcP8p9HnTBC+GIV6+e/lQ5VCU/13188VLX1Z+SYQ+MQU2JqLQ2RlROXxYSCAqBd7fzZ72v/pgHX2qXJ5GC12XArD6YBCBSdRcCO364uoW2ZyAlGQu/M1776JabVf1I4p4BCt5yrPz8HKesDabS0j9kYZFZ6GjOxxc5pJPu+/iiS00NEWmMa7l8cdgJCwnUM4H3fBK8q1Hw1vOy4thIoHICELoI5hnAwz5V3nWhWAvYusVWMcRyMT9f3OuXj245MhDssMBBsHvhM1yuP8U+D7qFd1JbfMTNxrkQRt3HNxENKevxYNJ9H1+4VyBvcALHFsejQt1r9xvB+2qdwHvbI4OP92W1P9R2ALIVIrTwWqHEa0igDAFkXcDJVP2D2ulUw5X4IRSoGw/stsaY9CcL+0X67aNbbkHg1KxmCPaBdFl/5XJ1ufl50AXv5LaELO1NqtR4Thfdx7etcSSPrwc+vvjeIJuDZvWN8OQ2pyeV9flOgILX/hRQ8NpnxzsDTkDTtFlJZ0S6+oYcT9EECy+i3+EaoZda8dEtN/V6P+HSUC5Ar1xdbn4edME7pS0hi3u0Y4XdLH74+CKoraM5poLcUEI0+7o5xazbIwL/28EfC+/XH6WF16MpZjMkUFsEIOKQbQFH/2LL1o1iFLy15qNbbryw7rU3xwSCt5RLRrl63P488IK3PaFSkrmsd3PT6IePr3JzSCCNmnYYCgsJjGcCFLz2Z48WXvvseGcACWDrF64LQyN+idW6LpRCCMGLY6a0Z7S3eXSrnVrlktEUU/mGKXirpene/X4cvOGHjy/aTMQiyse3MRaWMIWve4uKNbtK4P0do67WX6zyVR+pLie8L502NUrBWwuzwD7UPAHlo5vUDoxIZYZd3wKGjy4EYygs6ihXiEYX3Cxd5d7WFFVHC1Pwuoq5qsqtHCtcVQMlbvbLxxdWXlh8EVRJ4evW7LJetwhQ8NonS8Frnx3vDAABbPXCdaGzF6LTHdcFI0ajjy6sycnMsPT0j88363EjeHuGcnljIcJgUC9yAF5drXhYPae2J2RB55Dv4/LDxxeDntiWUJlO6N7r+xJgBywSeH+GTxbeh8fnc8iIlYLX4iLjZcEiAKuk5qObUWnG3C6FfHSRZglWKDunYLndXyv1jxfB29mXlOywltYKfp4QPwgUhEW/lgPurMxBqWsQzDWhJSaLuio/Za3atovd74ePLzi0NETVyYbILsLgNrdml/U6QeCDGTEnqqm4jq89XN3hNBU36MINFLwuQGWV45cAhC4C0SB4kEfX7VIqjy5OTm1rjsvSntoRJJXwGC+CF5Z7ZClID2elfzCtAriw5Q3xAzcSuLGMN3cSK/OE0/BaGqOypLu21pcfPr7ghawOePFsbohKlKe3WVlCvMYHAh/s5JPgfYiC14fpZpMk4DwBdfzvADIuZFQOXbfTNFnJo4sH/4QWCl7nZ1urEXlakUmibzClThozW3OheRpiEWlIRGRgKKOs/fVUGpG5IBKSrhp1mfHDxxfzC7ELFwu8DPDktnpa8fUxFgpe+/NIC699drxznBNAIFo2G1IiF9vaXhQEzMDyiYdq70BKBsqkNJvYOp4Fb0xZy2staA2W89ammApYwiEFS3qG1GEhxQpePCCMIX56+lOSqhMHXwg6vNn1Dta+kNd9fDOZrHT1Wztu24nvc0dLXBqY1cEJlKzDIQIf7uyPhXeVB2nhdWgKWQ0JeEdAbV9ntONOsV3thZ+m5qMbUUnwk+nRrfNyo57UGpcl49alISaDSbiHeJXltTTNWDSkrLp46cDRz/DRxUljXf3JkoJXr7UBKa3iYbVe8JJUK+Mqt4aKfd7aFFV+6m7lkbbbr1L3NTdo+XQhfJEeEC8qbq8uLad0XDD/DG5zY1ZZZyUEPtw5Xsnljl27yoPeGIUc63CBimjhdZMu6645ArA2qtRi8NE1nGDmVkfhJwnrlMqjm4LIhsuE9dYgeLvHqVURlmw9+Mv6iJ2/Uj/mGDXrgYh6K7Cg9wykLAle/R6IZohnFBwlDd/f8ViQ9q6WkL6dzAAAIABJREFUXkisMlQ+vrGIxGPaHCAn9qDL/vbKpzsSEiRqwfdZC27kIRZW54zXOUfgw118Ery/p+B1bhZZEwm4SAAWIQgbWHW9sOjCR1dtGUtIegdTyiJlRxd1tMSUSwD8i8dbwcEZSK3W55PvK+QI5gAvHfC/1fyz8ynaEbyoAVY/1NuYiCqf766+lOt+307PPwRvLbqcWB2n7uOrDmjJivQOurebgDaUNTw1rHYIEOCGv+H/WUjASwIf+SR4V6bg9XKa2RYJVE4AQhO+sl6JLqOPLgR2tdvFags3FpFl49CtAVYx8MDxwl6XRBQvHDHBhvfSnuK+Z3YFr3E8EI5wWcFLCV6oxou9VwvYqz0faztrBS8f2FFww8cXwrqtOaas+eZdIbQLjpEwc/namTfeUzmBj3ZNVH6TA3es/ID/+bqrHQZdGqolyPtrjgB8dJNp7fjfflj17JhWKxyV2UcXQsKJgnoROLOwBg4HqHQ88HmEIID104sCiy5y6SLICNvN2ql4peWnE4IXY9OzbuDUCmR0gPtKrQtfJXgH0uPWJaPQmnLDxxcvbbDm4oWmkPsKPBuQLxtZL7AO6Orgxbc9uG187JPgXYmCN7iLjiOvPQLIugALG6yqg6l07vQsN3tarY9uub7BujSlo0EWLBssd2nNfa7nNF3W677ghU8lBIe+BrAOrBQIXghjq9eXqxPrAaInEkH2Dy0wslZLR3NMWd+9cPHxkoHTPr7w3cVuBViVSlcIYax+DxJRwQ4Dha+Xsx6ctj7ezR8L70r308IbnFXGkdY0ARhxEdw1OOTNIQFO+eiWgwqr5bQJDTJ/HApeMIIVcbGLBxvouYohRAaG0jKU1g6RsFogeHFfufRwVuvTr9P8eyMqlRlS3g3XmO7FuoJ/eHd//QlefQ6c8vGF4MVhFFZ3KtCu8vFVri708a30u8PrSxOg4LW/QujSYJ8d7/SZAKx5iJruHkipbWxY07Cd7GZx2kfXSl+Xn9QoXywZsHJpTV0DVji61g3BC6HbGAtLc2NU+Vba9dF2S/DqEwHRi2NrcYIb3GsqEeNuTqbul4qXxFoT426MuxofX6Sii0bD0mPjgA642LQ3xdT9zOngxswGr85Pdm/wZdAr3jf+dhnNoCh4fVk6bLQaAoiKh48kou6RTxUiAluOut9mNXUXu9ctH10rfV1uYoMs7BxU4n48FTzgJ7bFHT26VtuuDqutY1j14VdZjYu224IX84U+I1sE0qMhLR0i/f0WmegL8vDCalkNv/G0HtFXOz6+2KVA3u4+mwd0YP6Rgxvp7BLxME9vG2+Lpsb6S8Frf0IoeO2z450eE0DwGZLNQ+zqQlfvQiIWUtkM7FhhSg3DbR9dKwintCdUSrVqMz5Yacvpaya3xR2x8EI844hfvHhAoOFlp9TpaFbH4YXg1fuC3L3Y4oa1Lwk/c7ysWe2ow9dhy135pcLC61cnHB6T1eoq9fGd2BpTL1ZOHDSi53BGkBtO+mMhgUoJfLKHTxbee2nhrXSueD0J2CKALWFsW2cywwUf0LpPbadD+VC98tG1AqMNeUZD8FF2JvODlTadusYJwQvXCPibIuVU3xAODXFOoSFwC1ZXp314S/HTg6AgOrv7/DmqGC9y+F+5QCyn1kEt1mPVx3dSW1w6e5OO7bBAcONocfgFQwDz/IpaXB2126dPfRK8K1Dw1u6iYM/GPwHNdSErnX1DZbeA9S3aaoNw/PDRLTdTTYmwsl53epDtoFxfKv28GsELQQJXAKQ3gzB04zQtbFcnPRa8OYvvSFAfMqd19SY9tbSCKV7q/MiRXOka8uL6fB/f/EA+7LAs7h5yxf8aYndia0LNBS2+Xsz0+G/j0z0bfRnECveMvzgSMyi6NPiydNhoMQLwx4XQVTl0h7CNaM1xVRdH2Ca2s/Xop49uudUQDou0N8VlWe/4O9rRjuDFXEKQYfsfKbPcFGV+Cl593iHqIXj0Y5i9SBMGvpGw2PZLLbdmx+vn+T6+wxIKiwo6XOJyphHlYqJ8fLXDWlhIoBgBCl77a4OC1z473ukgASV0h7PKN1cFpKUqz7aAB1MqU1nu01rw0S2HUU+9tXQcnrY2uT0ui7usCXU855saokqI4Thl+Cy7Lf5qQfBi/vUcrhA+GDNyA7uZ0QGCF7xx5DJLPgGjj28sogVHevXdg+DFi55+SiHnhgTMBD77iT8W3q/+jhZerkYScIQAHrwIDMkMV5ZH1dh4S0NEiQUr/phwgYBlDduIOHoYAqtWg3fcyHbgyKRZqATbwYu6yicshy9jU0NE0ulh6R3MuC509a7XiuDV+wPhC7GDdFbwW7eyli1Mw5hLdN9RCt7i9PBCgKBG/EaksC4Hyp/cZ2cuzPdAcGMdNDfEBO5MPMDCCar1U8dnP2nyZTBf/V2/L+062SgtvE7SZF0VEYAFCwFDy3qSjkSrQyggIKhUcJfKP9oUU4nhIXTdEhQVgbBwMVwDloCTc/FaFlqt/hII3iXdQ0VfJnRRoQ4O6Ut5fsxtrQleo/Bta4arQ1iWdA1JmROSK54oCl5ryLBDgYA1BJkheBRHVXudym1CS5zpzKxNVyCu+nwvfwTvV+6m4A3EAuMgnSMAwYaclnhw4JAICF6nCqxizYmoekCZdSF8dLFVCKGLKH+1ZexUwx7UA0sTUkiB23gqiHBHv81+1fBZRU5SCDq4ofQOOLcOKuEDwYvMH7Aq12LBSxzcbrSdC2dSsWGcOBADXwDUyVKcwLQJCVnYORqw1tKIYD9tPuzGC9jhrZ/2huBV/De9fO1QrI97KHjtzyMtvPbZ8c4KCOBUNLgN6D66VoPRKmhCbQO2NUHwpnJiFkJX81cMqWNnh5KZmnVdKDVWCDOcJIeH7HgqHS1xSSZxypgWfKgHF2KbVgvS8vf0sVoXvGAGcQOBijy+eGHEy1q1h5Ao9x91HPP4Wk9ern28lE1sS8gC07HeyscXAWbRsAyLFmCL76YXBWIXbWv5fHlssRfMa62Nz/f2ycJ7V2EL7+KlXdLc1CiNDfGyqIaSKVm0pFOaGhtkYkdr2eudvoCC12mirG8MAZwq1T2QVA+F4UzWNcuqHtyFbAYQVq2NsVEf3eFs2dRmtTx1sCxlh8X2Ebp+ja21KSZQab2DaRXtDmslRC6O2fX7tDEwGQ+CV587rGmIHPie47vUN2BvlwICuqUpqnY6xtsLlJfrGD7l2BUqlg4Q2VPUS3ZjVL1EI5sIXurdLnhZRNuJaETg9oKXeZbgEPhi72ZfBrv8XX157X7y+QKZPfdi+fizBervu263mZx+7AESi0YK9u/U82+U3z/+fO6z9ddZXa44Z450tLd4Nh4KXs9QB68hZF3owYERA94dmICtfzyE8AzAA6heLFg4Thd+hBCO46lgS17zF0XgT0a6IdLc1wSWEWFHAOu0Vl0aCg0E8gbHAsPSBzFW6W6Juh+iGTseHlkmLU9IDV2ItZEezkq/BXeXxkRYWhu0I4g7cXqdNwZfRQup1FoaY0xnVkNrx82ufPFTnwTvnfmCd9YJF0lLc6PMO2mmzF+4RPY89Cw5/Zj9ZcetNyk4/Otue0S+v+E6svqqK8iXCxbLPkecI/vtvrXM2ndHN3Hl1U3B6xnqYDQEMQOfTDyEEdUMMeFF0X10cfws+uBm3kwvxmNuA5ZR+A6OF8ELUYUteKQZQ98R6FOLRyND+MHdZjwJXn1t6Omr8G/lKpS2luEEL4NtjTFlZUf2AZbCBGD9Ry7wSk72w3qC2wGEL14m7OQEtzMfKrvHyHcNvxM0+tqhOD7uqQXB29XTJ5vseITcfuUpst7aqylw8y67TeYvXCpXzDuqLMhUKi1b7HGMHHnQrrLnjB+Wvd6pCyh4nSLJetQDFxZV5NDFMbBeFLOPLvwlYPFY7GKieC/GNUbwIuAuhswStW/hRcq3ZrhgZJU3g7LwLrSQmswPruNZ8Oq8NH9O7GqEVCqzcoGNeqYSvDx5sQXvx7w60SZ2i7r6Kj9SGHyRT9cPH189nzOs//gfS/0R+HIffyy8y90xauF9/6PPZcaBp8iz918qUyZ1KMi33fekPPTEC3Lf9WcVhZ5MpuSmux+X5/72mkybPEHOmXuwshJ7VSh4vSJdx+0gYhkWPFiL3D4oQMeIwwkK+ejiYTOpzVru1/E0JbDmNcTDJVOu+T0esIdVDA9diCkcIAJL06TWBAWvy5MDzgiywtY2CjKVFNtc0eepuz9VdfCby8PyrXqsYaxlxAPYdcHxy8cX0ODXG4mIdLRoxxaz1A+BL/fxzufVSG25O3pz/3z1jfdk35/PkxcfuUraWzUBfs8jz8q1tz4kz9x7SVHYA4NJOe2CG+Xd9z+V9rYWueDUQ2W5aZM8mxwKXs9Q119DeBB09iU99ZPVrFNRQXqeQj66+GmfNqFBFnQO2n5Q1eJMKfeARFSl+PLIS8QyBjCHKwmspcgg0GfyeZzaoaV2qsVSDxZeM1ccUYugNMwFDpYwCzYcpIBxI++xN/swtTjzpfukncAYUS/yThQ/fXyRrhEvnXRzcGIm/a/jy319Ery3jwpe3cL73AOXyeSJ7QqKFQuvTg9uZDNPuEimT5morLxeFQper0jXYTt4WOLQCC8ivfPy6GayJbf2p7Qj92taBusoIAcWJ0TnIwAQgTS1UPSsAY3xsJYuayhTcIt8WkdCFlDwejpl2kldyNmqndgGv3o9lZm+lpwSc54OzKPG4CYCC6nT+aH98PGFeId7Bk9s82jxuNzMfJ8E73SD4C3kw3v2JbfKwsXLLPnwAtG5l98uH306X35z4fEuExutnoLXM9T12RAsjrC0ulXG5NFNlU9nhQj2sISkq98Z64xbY6ukXpVmranyIJpK2qjkWi1gSkvAj8CcUtH+FLyVkHX2WpXdIxpSwhcvpggcpOAtzxjZRZBAcWDI+aA+r318mxuiyj2DpT4IzN/P+/y1IDf9tp48gIccf6G0tTTJOXMPkS8XLpG9Zv8yl6Whu7dfDphzrszcZ0fZbsuNpKe3X667/RHZZdtNZYXlpsib734ks074tczcZ3tmaaiPZRmMUcBPc0nP6ElETo0aOdVxBDCsEhCuEFZWfemw/Q//3qU9Sae6UxP1wDoEq7WfkfUISJvQGldR6Fbzjta64MUagz9rPRf4vGOHIB7FNn1SGhNRx7br65EbDubAToqbmUXgYqD7CmOLF7tS5QIO7bCe1IqjiRnAZoddLd6zwCfBO80keJF/F6nJPvtykcIEMXvGcQeqPLxd3X2yyYwj5NSj95O9d95S+voH5YCjzpO33/s4h3Tnbb6v8vYm4t69jNHCW4srehz1CdkYFnY54y8LX1D9wRyNhtX2/cDICV2VIKnXwDWVO1WlOnLe6lSOL/w+9YMjYNWvxF2k1gUvxhaU7X1Y5tVhG8NZJfKZpWHsyldp25piuVMhy303nPgcAan4fiGNY/dASjIZdfKzI2VaR4NEGLjmCMtaqGTB/v5YeKfdmm/h1VksWLRMZVpobmooiwfCd8myLpk8sUOaGhNlr3f6Agpep4kGsL5FnUPKR7CaAj8zPIxh8UBd5sCnSuue0pFQ/sX19ED3Q/AipyjmBfMDoV0oCKrc3Eyf0CDzTcezlrvHq89h9cSaC4rgBVfsgHQ0x5UFM5nKqJeoevqeVLt2cv7yPqRtg9818ugOZzU3oWoPBsHL//SJ3qV9qpY97y9PoNYEb/ke184VFLy1Mxfjtie9Aynb6bIgpBD0JBJS+XvhIuFETNaElpjyWbRjIa7ViYDgxcuAm9us+thh5YIfI8QuOGKr1a4oqmXB25yICHYTgiR48X3DtiMOVdB85KOSTGfUiWJOfPdq9ftjtV96wJ86OMcpM6vVxlVKMRFkVoD/NVIrDKrc5vYMCo2JiExoiVfQOi+tdQILD2jzpYtTf9vtS7tONkrB6yTNgNYFn9JFFR4sUI2PrhXMKso6LOPyBK1i40PwCR6GbgYJom192xsvIIjwr9J4L9MmJGRx11DV9ViZ90qvgaiPBUzwwooYEi1XMgryxTbEIiqrQ6fKp+2Dyqt04ly8HrsaWBfwqfWThBM+vhPbEppwZqkbAhS89qeSgtc+O945QgD+gAssbFk75aNrBby+De+2OLTSF6eucTo3qLlf2OpWgYIiyr/TqWNRp7QnVKCUU/U5xRP1BFHwdjTHZGjkVEQjSwi99qYYNltUjl5Y9P0UfE7OcyV1JaIhFeTV3e9e9plK+oNr7fj4QjBPhf8u3pJZ6obAwgN9svDeQgtv3SwiDqQ6ArDwlsoe4LSPbrneQrw1j0Si18tDWxckSxzOPoGTmJBkH/W74QaCLdXBpL0AxHLzXO3nQRS8cPeBL3Yx/1B8V8EFL7Jwn/EjSLLaea3mfrgOwYe22jiCavpQ7N5KfHyxc4GXTZb6IrDIJ8E7hYK3vhYSR2OfQM9ASm0Bmgu202CdcNpHt1xPYdXAgwsWXq+OOy7Xp2o/h8UG4tGpdGtIMdbUEBFkKVB+uupo6Gp7OfZ+nIwHayFEVq2VIAreyW1xWdarpforVnQ/UrgGIXMA5s6NlFm1th7QH1jA+5NaPEEtljE+viP5lc19Zf7dWpy96vu06GfayWZelyk3d3ndpOPt0aXBcaTBrBD+nku7R/PeRiMibY0j26P9mui0mkfXCYLaEcSaJateLFTYmEQOXCcEL4RMS6O2bQuh62ZwDgLDkOtW9xl1Yn6dqiOQgrc9IUu7hyzNOb5HamcBInAoU5NWT6fWgl7PxNaYCmJ04+XPyb7mfHzhhgI3pIF8/2tk4sALLUt9EVjsk+CdTMFbXwuJo7FPANkDlnQlJRzOSmtDVCKRsBI4XmQUKNZrpJyCmKs2tY99Ks7fiSTydl0a8IBEyiNsaeMlAGLXC+u3nu0BAVG1VoIoeLHNvbi7ssNiEACKw1y0AL+ksvZ6+QLr5bqBBRzfsfE0vpyPb1bzv0ff8T2Pxyh4vVw7XrS1+CB/LLyTb6KF14v5ZRvjgAAshEOpjGTVUbNavla/CyyYsNIM1EBfnGIBwQvBUenZEwnk0o2HJRwKqXRUXgaQaccQaxkAaq3Ushh3i5USvF1DtgLS4O/d1BBVXYMbTD29TGJMsGbDMooXgvFYdB9f7KggtRkD1sbjLJbu8+KDOnwZ1OSbOn1p18lG6dLgJM2A19U3mBacwuXm9ngliCFm8ACrpWjrSvpf6FqVXziVkYEha/6FyLPalIgK4u2HksMqOt9ry5WyDjbFpLO3NgUvIvJxSElQytT2hCysMI2gmY2eMQRuNhC+dvPE1hpzXTDW4suZVVbYyYE1vrkxqjKusNQXgSUH+yN4J91IwVtfK4mjsU0A4S8QvEhnVG3JpFOS7O2WSCwu8Wb7xyhC7CFwA0KrXjI1wE0DwWblHsjaQy+qTkjTA5S8Frr6OkCeV6S7Qj9qrSCosrEhmhO8EOfgVCsvbW7wmtqRkIWd1VswNR9SBHnF1YEoCFod79wmtsSlP5WWQYsvlG7MjxN14ncPwaKw9LLUFwEKXvvzSQuvfXZ1dWcqnZFUKl3V+daw9GjBHpXLy55FX8qnr74gH7/yFyVOs8PDkulcKJnORZJNw59uWCmRb+5xmExeY93S7LMi0USDNLS2S2tTVPm0DQ+LRBsaJdbUUvTeUCgsIaizGi4QsAggKiZYVAR3NCxtzdpJc8hS4ZfQzQnekKg+17Lg7epNCk6lQjAfCrbq8QJnYynX8OrRTvGaDAuvA4LXOFDspuBlDC+8cGkar9wmtyODRVIy/ntk2V5H0LjtCFhL0H/XNsQavnHJIT5ZeG+ghbeGlwW7VgmBx595WV5/+wM5+Kfby6QJ9hJbI0BMO6nJ2na7sX9PnDdH/dMslbPplKQ7F8jwYL8MD/Qp0TtqtDBbL7Kaec5QoF+RVgkVT1x9XVl+/U0Nn+ZfG4k3CP6n96J1+VWkdfmVR68PhSQSS/gqiiFYprQ3yILOwfxxjhxHCveFTAY5RNOSrhHVgT7XsuCFu0UypR2rC25YQtjaRro2BGfVkw848lNDDMGH1+miH8kbjYRlAP69yfF3VPG0joQ6NbJGvjq2pgj8OxCwhuMsWeqOwNJDJvgypok3LPOlXScbpYXXSZrjuK59jjhH3vvwM7nwtMPkBxt/29ZIICyX9iZt5a988lea4C1WsskhyfR3SwoW39SQOho1v5ik8sg/IVqGYd5FJuC87T1NBI/epf2XsVaIXYheY4HgVWYyUwlFojL1W9+TSautoz4JR6Ilrcm2AKsxiEzraJD5hpPtmuIRFaACyzqsa7UWSIQ+I7dprVl4IQhaIGwjYYGF15xnFgFasPpi3UC81YOfKqL5G+NRZcV0q6hTDuNh5XqDtVgLAaxWxgp/fwSFLnDY+m2lbSevAf+JrXH1wsZSfwSWzvRJ8F5PwVt/qymAI+rs7pWdf3aqrLzCNMG2/jW/OkYaEnFbJPAgtWMRg+At//OclWwmLYOfvivZ1Fh/0EL3h2DkyI5NoaRfaxa8xkEX7U8BHwGIomhTi0QTjbkqzO4Rqj70RbIyec0NZPWdZ2oiOxyWho7JlnlPn9gg85cOKv9JWE4h/pG5ARkpKncmsdys7QtrUfC2NeIlIaIEWTQaLhq0po7DjuDIZaS4yyoXkfFc4OKTzWald8DdPXv9GPG25rh6SYOrQ60fXAF3FuStXWLIJz4e5xqnJkLwstQnAQpe+/NKC699dnVz50uvvClX//Yhmb3/DDnjwpvk3JNnyfrrrKbGF41U5gc2MJS2Zcl76vx8C2858Zvu7ZTkos8FLg+FivF+GDoq26IclY3l+mFue/R6s8W5gBTFxXl/zo4R/Wv99BhpW3H1XDPx1g5ZfkqbynEMyy7+f7hp4hgEEOChcGVz59aCVoK3Je57JgTgxpb+hNaEYJ0ie4c5aK0UA6S5g8sIMjrAXcRv32g784WT+oaSaelPVu52ZKc93AOLI17MwHwgidP8avG1TAvyRN/Gi0W62HzAnQHrlKU+CSyb5Y+Fd8JvaOGtzxUVsFGd9etblNXnhMP3ltMvvEne+d8nstv2P5BvrrGybLTemhXRSGeGlQ9cJWIALgd/vvDovHasCM3MQK+kOhcLxC9KsXtgCS11alLptvBwzr+iqKgtS8rkNjFG8OoVjHWv0D/RLWfKLVlZrrPyjT2PHNNyOBqTaENT3t9blltZmg0uGrgG/3O76EciQyj6JXWQsQOWL7wIQHjpeYgrEbzgpPLQjoiJ/iROqfNrRPZmbVJbXKUO9DIPM3qKl04EUSEFnJ6/F8dN11LRTpMbf3NqZoiDM3jgRC2tLGf7smzWWAOHsy0Urm3Cb5Z60YyrbdDC6ype/ypPptLyz9f+q/xyt99q46KBaINDSdl+37ly9Kw9ZOqkCXLZjffLf956X77zrdXltKP3l6+v8pWKBgGhO3/ZQEWCt3fJfPn7DecWbEeJyxKKNJvJSKavSwYXfIbUDgXrQOyGMY7Oipgu1Wbh+/Mf3pbaKNjbwtZl1Ke7IMOFQYndIvJRc50Y4Zb7/6wYBS+uCcdiAt/j0aK1DT/lVXealfszRGKsxf7pPrrg1d0uKlpQVV6sHzGNapC/GLmIjTNVqeDVu4NsGfgf2OgnW1XZVU9un9yWkGW9Q74dmws/WY0d3Ekyyppaycuxm5CQ4xpzWetHCpdigO/a9AmNhsBeN4mxbj8IdB7qj+DtuI6C14/5ZptlCPT2DcixZ16txG46nZZ4PCYnHPYT2eaHG4258+PPFsjuM89Q1tzPv1wkW236Hfnws/myrLNH7rzqNHVEcKVlafdQRQE+nZ++L/+68zLVTCGBa0U8DicHJbl0oaS6x34pMQS1izrWWFt2aFbaNldS7B7t76My1UrdeIBBtEEUaMIAWSpCEgplVaq1km3nWZDHukso2FkwN4n1UFgSBp9i9MHoj4zr27++rqy6y2Fj2w+JJCZMzfs7msE2a+9A2lM/Tv24VVgUIawK7aTbFbxqrYZEpTGDxRdW475xcKIfBO+Snsp2YMp+SWxcgO8kcsVC/MK1xO9AS2SY0DKJjK8jhc3o6b9rYzGOs1soeO1PGC289tnV7J033fWY3PngU3LDRSfKV5efIvvPOVeWLO2Wy+fNkTW+tkJev9OZjCBDw3JTJ8rRM/eQlVeYLp98vlBmHn+hzDl4N9l+q+9WPE5YbioJ/Oj69H159S5N8OqlqGgsoxIHF34uyc7FYxKcFfPjtSI6rfSrXOdLtVPsM/QZn2VMJjBlnS3il2ytneJbyWPvNwhl/UPD7RDeul42u3roFulE20TZ8OgLlHVVT1kXjiUk1lrYapzomGJacyEJVeBLDvHS2hiRSDis0uSV8hmF4Gpriik3HLtF5T1tiglsx/0DmZpJB1doPFPaEurY3FpxJsCamdgWl0xmWAXS+ZVKD37G2iE1/rnd2F1/xvuQDUU/+tmJ+lhH7RHonD3Jl051XLvEl3adbJSC10maNVLX7Lm/VrlYr7/oeNWjpZ09SsBuuN43lKhNxMv7bb721vvy9ZWXl+am0awDVocHgbHAkDar3H0QvP82Cd484WtSYeVE6uDiLyXd3yuZwb5c05EQhKP2z3L3m/tb8fUWbihlBVbuCzjxq0TWBU3wFvH1NVeurLgjZURE54+xEgFcmJ/ZSowGNdeKkT4q9ZuXB25k29XswpGVVXYzBTAiA0bzaG5o4/A6vrmxRJu00/ggdFXarURUBtMhS8FHUQSxNcerErw6y8Z4WPmpIjAL6eFqzUcV/ZzSruWZraWC+cS8NcSRCSOjdgG8tvjCUo93KrezV7jNHTm6EZjJUr8EunwSvO0UvPW7qMbzyM697HZ56Z9vyr3Xn5VLL/bwky8KLL+/OmWWfOPrK0oymZIX/vGGrPjVabLqSss7Olz4l+KhavWBv+yj/8rr91xVVIkW+vk2CrghRPH7AAAgAElEQVRCAjWTHJKhJQskOeLioB1AYW2YVh8Xdk7tLFW3sujmuS8UEOgjFYwK+LFitVz/S1uBC/t95ATtiG41khzDASLXJKzDIc3vOO++vH+NtSSb+6n9O1/k64IXfYB/aCwSVoFkwyof3Vh+y/34AIkbLMixKJL0x2VR56AK4Mv3aba2XoxXYase/qnYWtazElRei3t3OHWssBs9xAsLggvhIoIXBgSQeeVPq59KNp4zNOD3Y9qEBh4n7MbirKE6uw7zx8Lbfg0tvDW0DNgVnQDSjB156mVy+rEHyIytv6f+/MWCJXLi2dfInjO2kB1/tLH69zFnXCXLT5sk5596qCWrbyWEl/YkVTS2lfKP68+Wgc5F6tJSlk+jgrEi6rLDGUkP9knvZx9KJJQt+PAsV49ZNVm+3qIlWdUXEoGAhR4vFMBTqE0984RRBBZibaW/uvF1jBgtenPxLBKF5lC3WCsDL7SwXu+IT7I+6cbmxjad74NsfOGBUELFoz66o9fqfPWxxdsmSSii7XDo/ULmBT3bwmhgoHYBrln92N9IOF5ipyMUlogpIwbmp6UhqqLlcapZLbgQYCxTOpw/VtjKd7ySa/SMDjj0Azm9ewet/Y5U0ob5WhxAAneKQQ/TtVXT30L3NibCMqEl4XS1rK/GCFDw2p8QujTYZ1fTd+41+yxZ7WsryClH7ausvP0Dg3LZDffLUDIlp8zZVz2An3j279La3CSbffdbEoYJ1MHSN5iSrj5rSfpfunyuZIYGCqrdwla+/I4WsrSa7+v56B3JpJIyXMRkVKm11oqQLCXg9RHoMYFWUpMa2zRarMv1pfDYCmeDKLYECorRIg0X+rMSl3khe6MtGUUpXIJzanTsf+a9f+gBferoaEMxj3ds3w1jR1CgOo1vbFCffl+x+kY/H30B0P8WVsGFIsiEvMG8+2S4PyvJ9z+WbEurJFubJRk39TkcFfg1FwqvN/Y/0jYZx/jZ+qbCAj4BPrxd7p2yho5ls8MVuw3lT6D2W4RxT2iLC/6F7Al4KXHjxQHzhBy8cKPw2pXC1kQWuQmHirQ2lndXc7JN1uU9ge7DrR9S5GTv2q5GbMz4LhS843v+ivb+76++LadfdLMcuOc2stv2m6msC+defrt8c41V5KC9trOVfaESVJUErr18xVxJQ/AWKMXEk/GJWtoyqFUaDWdlqGuZdM//QrLD1oS4/tC1Ou5ywlOvR2U9GLEelhK6pepTRk2lLgqbkkvdW8h6micYiw145EYrLyG5sY78hy4adQt2vogsLr4LtQVvBf3vcFMZK0gt1jcyB7rgze9zvig2r4W8fpncN3Rxr3eyOR2W772dlPB/3lBN9K7+Nfn7+s0yjHx5I9ke9Hty9ep90/mNBCq2bzNLwk2aP7Px2jG8TROKa2PhkDS3Nku34bS4MXwLzrH2R+3FBBlCtMrDiWYJxRvyFqB6qUkPFdlWN7VW7J/R/FPCEFjYkIhIeuLKkk60aTtHat1jIYx8max+SQtcpwU5RqVv0NssIlV0ecytwIDT1eBOw1LfBLoPNwf1ejPetqu1XdjxXCh4x/Psleg7fHSvu+1heeK5V+Sbq68sff2D0jcwKCcetpesufpKro8aB1DArcGKH++nL/1RPn3hsaJ9MloA8x70BjGQ98AvoPZgScWjoK+7W7o//7Cg74BVwWoWF2OfPtpfCtWn++lCqBmtVZW0bXzGm10gitVTrv58AVfK13bsNFkRwLrAL2ShK9S30b/lC0+Vkk1ZETVrX+l7C6e5U6nd9LWjW3iNhyAUCOwztlNqPRrFt37PWp8My1f/+loOXDYRl3e3XFs+naBZgY1rxSx4jf3Mu87QR2MdxuvN/421B19qBDvqY8D/63OTq1+J2pH/SUhiU7TfC+1aXfCGJJJoklA8P+drsf6aV80oJ20+Vf1mAZwHPSTx5VaVWNsElekDvyuZrMqXNwrwK2uKTF9jZEBhzRJuYesGghcuDTg22spOi+s/njYawI7PpLaE8mFnqW8C3Uf4JHivouCt75U1zkc3MDgkr7/9gdz36HOyxtdXlF223VTaW5tdt+4CG7aIu/pTygevXBlOp+QfV86V4Uxhy2sloqbYtXggRMMhFQwznE4qa2/fovnlulb51mzBLAhaGjH0rZIHalGROlIXnuWoryIxW8y32FDJmIwLJkolRbX5Q71/I30uJlL1JvKF96iW0YXWGPeFAjNYyqVBU1b57gvhSFi5uowRtaZOFV2HJUQrqpj65YDEP/gg11MExvWvvqJ0TWmS7MiCKCSUzYF/RmE62rVRi6tRxI4K1FE1CUt2OAtfcYMP9oiADYcjEmmfLpGWSQIJmutPKCvhaGIsmzFWbT0bx+icGfGZhbzeP/1q8/iN1xuvhZzDdzkeC6ssJvg+5/zCYw0i+J8+ZHzpUNqmiHx/f+2/cbKgySUErh7NiYjKB+yGy0TZHxkHLkCWi/bmuMpUwlLfBLqPyM9z7tVo265a6FVTrrVDC69raFlxd19KegetuQ8MLJkvb959qWQG+wuCK+2XOfKYMgmPvAduSAQR+bAOjSQRkP5li6VvwZfK57BcMVv1LF0/cpFyj4bQKPI0HfOIMlu6ijQGJjkXgRIdKmXkKvcyUajaYu4IkN7lRLoVq+yoYtHEvH5wSMmAvjzBXhhGIdGFK40uDYXmWbuvgJtEsfVmAh4ZSknH6x9IOK19F9KtjdK91soCoQ0D5ZjsIYUszGPGp11kFrlqDoz9GvmHxhH5jGMyHApJOBSWkIQlNn1VCUU0F4JifPD3vJeBAuPWPx/bn9F7jWzzrh9p3Py3/LU0apVWl4dEZXSIqqwcGS0gNf9nwLiMcp3IG8cGM0Smf10Ssag0NDVKTzoiWSWYtavwkjVeCnIIw4cXFnyW+ibQ/XOfBO+VFLz1vbI4uqoIIMUPjpO1cnQorLyL3/qHfP7iHyTV35PXbmFRVlzk5j3URmrC35CfEpHYRqto/5KFkuzrk6He7uJtlnmGFOyfQbSoU9KsZG0oIqDMk5ATBgbBa7zGKFwKCtZS4rjAZ+Xq028piMkwJqNAH9NMAZGnGavGpjMzWz6L8TGr77z+GfoViYRU3uo80af/q0Te4oJW2UK+tdmsxHr6pWFxt1oH/StOwWJUV6IbeCHCf+l5lfOVmuE1Im99GK2wOYk2ItT0Ra9stRIKRyTc1C7RaETCrVMlG9Ei+Y3ryDyH5rnMF6vWAvwKfg+LiWXT3wvdq3fYKIzxMqRv44MfXB1Gv2v5qe5K/S6AU3r6N0SWX125Saj0dHgxWPFbIuq/tWOka7Xg8JSWRuMx4bXaU/arWgI9R06rtgpb97descDWfbV0Ey28tTQbddYXbDfi5CIrfrwYOrIofPCHW6TzAy24J1+AWBO4xR7k+DvST2FL3GxpzWbS0r90kfQuXlhSmY5u9Rd/8OETfeu5qPuC6fZyj9HCgl9rp6RLg+HGUm0UEoLGpVi2f+UuUAFX2kV5uXjHcND+AAGoB+Tp1vhiQYqFvjJjdEkBkWW8D1vaxtPYSom9glwKcoaEMq/ZsReOik5NwEJUKbeNEYWZL0rz79f+ZbD0qn9qf40kmiXcPFE7EjoUlnBzhyQiIfVd1PczCo5T/96VWKNGwWnoguH7OvblYWQ4BS3F+d9zk0V4dIgFfhNG/IpH1gzmEcOHtVd/gTEgMf2ejLaDoLjM8HBe2kJ9jOEV11GCVztaOyTR7+wggqC6SERChlzPfv50Y4cCJ6wh9zNL/RPoOXK6L4NsvaK8C6AvHaugUQreCmDx0soI4MG9tDcpyVR5lwG9Zlh337rtvDwrb6kHs35fvjAY7afx4QwLL/pkzkymNMLwsKSGBqXri0/V/+c/hMuHWqEKZZHMHflrOFWsqHgwj8y4bV5aRaqmCll4y4g78wxaMVoV7MmYdor0V/c3HgFazNqvC6KRlLqlA/rKjDHXk4JC1EBg5HMleA2u5npfxrAyLbbCIzZYXg3XG68d7V9OsmpXqqAyzCuSmhlfDvLr1Pqn32uMXgtLdPKKEo43aRbJMETZaMuJaEidYmacg3L+znljtBLMV2DMY8c+IuhN/t1G3nluGSMfFGJonivIUvizYoxwX8IvT6nfD7QDwZtKjb12THsYf1PHCFPt08SOx6g3tJAps0Rlv5TVXQ0L94TWuDp4haX+CfTM8UnwXk7BW/+riyO0TQDWvGW9KcsHUBgbeu2ak3JHA4/5Ga/gwWt8oCMtEwKW0qY4OvNDf+H/3pH0iOg1C+oxMFRfQppVcthanlCrj6XR6worPF0cWpqgskJ47AVW+llMMBecM5NAN8o9Zd0s4M9asA8lxmIWaPkvLvmk9L5HwpqFL6c6S7Ey+MTmastdb5ixQgDMmQjy2hn9B/4LVjuUvBeEPB8KzR0CPrkIKotOWknbes8Th/kvahB26RERmCcuDf8oxLsiUWwaY1GxWSCVW6HvmlHQFhK8Bu2vbtevQXYu7Ojg5Va3ahcTzI3xkAymtBcBvb2CHAwdLDSu6Dc2luhqGykLcBjp2nBYiQoKdDdzAuZ1YmvCSkIKSz8VvKi2CfTMWc6XDrZe/qUv7TrZKC28TtJkXWMIdPWlVH7LSkvPp+/KZ8/cI4PLFhQMhCr6IC3xwIW/H4Jc4GpRSsii7mWffyLJ/j5JJ4fGdj3Paomr861m5hvKCceinxdRk/r1RX1iTRUWrr/4RSX7a6XuPDGTLwJzomJEnSjRph+nXEp4GdotoiXzBM9oVYZAuiJ9j0TCkoEyMqorXTjm3ZPfifyPDOM0jsNcZ47NyPV5VearQLiBhEYSLuNVSvdIDYUiEm5sVW8I0fbpEgqPCN1SjGCNLGThNarEMfwL+TVrFxVamgUF6dhhFpwnI6aC9RSy1BYZr/H7gcA25fozsrOTZ90eGQcswsYT1v6fvasAk6S6urervcdnfZdFFhZ3CO5BAkES8hMSLJBgSSAEX1zCIsETgkuQBAhuCRIWC7K4LrCwrjO749Le83/nlXRpl3R1V89Mve9L2OmuZ7dedZ1337nnGvWvUc1QPejyOQTHTKHQ2lsw8AvvL9cykbjmiWWnrtb7HYWkWmOdUrvY7u+tf/3wsUDfaZM9GWzDzcs96dfNTn3A66Y1/bY0FkACis7ejG25H6QFbv/wv7TynRcUEfK672czb5HspQtviJhNSQ/YSS+toSHKJAepS4fiIHJ0MRYxIM0ANxiuCCOwZLaEFC9jeJVNdZQMlBMMUK3ux2bX6qAfPVDKsJtwxly0s1KP2AhMye0izUhnXNJHht8pFwsukwCvTufK9pSNKrFscZGpoW/RPDrXKGxXHBubo9ABO5jgeEYwVzeWAuEYBWM84FUX5bpSfsuO7gWVklLr1QzMiq2qTczX09NwViJTueydwdIyVIxQj1sXnKp+D2A/HPdjA4FTJ9A6xAJPMNQr0lm5VJsA6mXm08xVDXYNwLc4XgZ4W7A5CRLXOJYiG+/Kc4Nd8P6CzhD3+btmP50j5nsf8Dq/lT7gdW47v6YFCyAYqL07ZQGYaRvLZ1K0+IV7qG/RN8ovrVAadF5A+CgW5iiVlWmuysCwHngo5LOUSSZp1aL5fEQ9/k8MLLIwf0NgYYE8awY+9T28YrBUiTew+mWtNw9DkKsrW6BowQh0ihQMDlxDUaZNQOwaUKhEuMZyZ7rAQzV43T+LHyqD1rSAuNiFcrEYgWF+Lmr7y2Cw6ntl9L+ck8vXwfdcvIniLRMoGI7opr81Ao7ykUTD0KEu0m706qiHXhIY66wbBevC4PnQ9Ftiw6paBhIS5dvQB9f6QJy/I7Ew/y1LXFEYYvxdeH+zoh6yrENdkKvze1ESDOvNjQtRIF7Pj2f7gyk0aTrTB3YKfsc3x3z+rsXf4pFwWf8fp3gyjfqblnnSr5ud+oDXTWv6belaoK0rpYiCt2OmdFc7LXrmNsr0KPN42+EVyl/iALyaIDoDbCh+jP9m+nto9fKllM1kNcPXe4FrQJKVl38p1KLTq5Re2I5BDY6jtaE9RcxmOiwdEKCYv/A9SwKlo0dc2n4yWS4j9KXHq1UgJRnYFD+XoVV4+ESVhuJaUdVRoluVrqueAdTAWX6NfMEVPy96rgWgiwQJXIgi49eVZoNsxNCTxnhzMvCqBIZaIAgTIbiJeXgN1rveMioF+jSm1APAqs+ceI/1QLjeUjACuuprsd+KhOHt5dVD8HsgD6vVzlmlwWzyeyH1p2pI/qd8OYn/jmy4I0XX354oHCVOyGJn9mhDUm9CczHZhtn1/vfD3wI+4HV+D33A69x2fk2LFuhP5qh3UAsULVYngN7vH7pCcX6vB8IULxSDlxJ4jHh94VhT9wUkDArfsVSsXIAdecIL1NfdTX1dnZTs7VEO3Qyxydo0R8sWYIeApfQUDXRtqsFjBhDWBhDSlwnTb0DMMscULAyQhQ4klaai6/3VmUKRBmBsQz3AxSgNOh4+OVG1CFD05qiijWh2Y2IdlYSYghRapDCwY+9YAwWhCBBWpu4VwRQ7ooeU3xBkuErzWrDiGX+d4yijlihRA9ISD2XJZ87i2ikHQCvqGhw06Lav3A3wwX5IuhZE8gqOkAYdZpHHLVoC1KxdLRVCvREw+l2SrmMD4ijUOpmCLRNYIGJ4jY0oPHUj059IJJtoiIdNr/MvGDkW6D99DU8mU3/jUk/6dbNTH/C6aU2/LV0LZHNDtKqHl/pyWlZ98DKteu8FRgI1fPFqgB3fG/tYBhKj4aBCOUIPr7JgF16tTAEoCoU8Dfb00OplS2RHqvoAUvdTA6yptIsSPRhVYZSG4jtXNtlia9q6BkYyS4yhGJLJJGRdiNiPJQMQOJRGo1PiRGUfarCjpgwYXq0aqh7/Vw54lUBHz1Zq2TE58uKv1wfocgOqAbDYT4CCDeMY4GEcXYMito+NBMueBuALwFaC0A3Ai2vxLGqoAAa302ypGj6HSiOWpKMYPSMKkFjiR0O7LkrLkIlNMYwZIIpHOLb5ZSl5wdsXvObqcZl5prXjNdENR0BiMEjxDXag4JjJjM4QbJ1MoRZ7klPjmqLM4++X0WOB/jOmejLZ+hvwzhvexQe8w/v+DYvR46d/RUeyrLHm04PU9taT1DNntgLEyl9g8g4kSKHEjuzlG48GKZkuapPJX2YhLsAysjFenxDcwnCESnlgoKeb2hcvKh1QZ4YYSiAaK1VZ8Jyk+2sII3WBsJ6tFMMxQiJ6wFjnWl5PFiCs+KUxQBeAop492FcG30tNqz2sOqvCQDkCTfNBa7Jja1m7xcWmQnECslUCLhXskSsyyNuUzYlfWAHeo1s/hoFddUavUmsB30ESD55KeHrlAVnyegB0uCfy75Uz0pu/9oaYjUVdQzFV4Uu7bajVEXTuhNStpm3hAz0ADZvgWRc5/RF4zQV6i2gnDfBVPTglv1c9KwxkRyIUHjuVGnc9jLXExerK0vCd2Brz0wmX9WYZfpV9wOv8nvmA17nt/Jo2LNDRm9YNtrHRBOUGe2n5i/dRctn3Sq+RlSA24S2Jl04iGiSkPZZjEPD6QoKnJCNEbOu5puQv8HwuR6uXLaXBnm470+C1Oa3WUF2orgcOouTZsxAIJ4EFwwHIAKoObtQfthLUAjQgGr7ocBSO8o1SIRuNWwctFT/STkCCxbooxBgUyzm8Wr2tUh5d2aKSI2M2XXEQKg+wbE4M2CKAKRShcAsfiGJ5XehcC/CGDRtUSNQkh6InWJ56t/Qi1I6FF6o1GqPZ2A3rmaxxFcbUReF6bZuNMxLmZU7UmwQEsqFuNl9gmQyldWzyOyO/f+KSDta3EBcKU3TqhlS/xV7EReNWn3zT66AzPM7n75raaaRdMHDmmp5Mqe76xZ7062anPuB105p+W4YW6E/lqHfAOY9XbLj7i7do1dtPEeWUbRl6WnSipKG7ybIwDQlHwvCwMc+OfnpR7Ru+6DbCv1YtXcKUHNKDAwZ40AbA1UE9ui9u4Y0Kr50JhVOidBgvT2UP5rhZdn3RFAJW5IOBpCK/lAFeLWpQ9W5wJi3BWdU09FQVZIMSrjYEwxQgBP4UebDquvLRqcCvRpJADXJlYxavFQPsghHiwnHeq4vgNJ2bbAYg9YCgKMGFBnOFgsRLZWl3oU6gs1is9qO5LqDkwZsCU/1loVmWsj2B6SZA/9nQB+Xqa6PMK15gPGh1wQYYQX7YHuhlZxQHpvnd4YIUm7IeBRMN7L4273xoxd4K9fEQNSZ8/m7FDFyjDQ+cuZYnI6u7Hieaw7v4gHd4379hM/pUJk+dfRlXxtv54UvU+d7zirYUL55SnhjhRcYyWQlZEBhPV/BIql+2pbmi/BDgqUunktSxbCkl+/rED6156yygjeIl2onpAV7pesO2jdGVfhUtwJUbn8OZesnkGwLwEzy/cjRsPFY7oJXdBeFe6MAu1eJQ3mMB8AL1aG++issiH5M8oYXcPup/i3XwX8HTzYUo1DCBuDCyY1lDuhaWieJ5wGGFmK0NvF3m4Q3wclz8mjV+FK30pQ809QGw4/Zk/Hudu6o7ASMAXFwhxWpqXWLxG2lvImS8EymyLGObChyzuxoMUmTcVEpM24J5cGNTplMwXu/Kb12pRnz93YqbuCY7GDjLI8B7nQ94a3JB+IOqPQvgeHB1T9qRHq96NoVclno+e506331WAJfmgSryQCJ29BsMsJc/83gJHF05EBPRqt4LVBekME9QgdoWzKdkf39ZaELZZ2ndWwQjqaPLLXVeEsOWBrhycMnvG6ADYOTWLY6G0S/wpy62NOpTD8jK4IvmBqmVEFRQRwNq+bWg8PCqALKC+6JGRcKGR1qIcjSp8OryjYYaJxGH7FssDbDWtVgKsEld23i8cewNDza6ErVn9aqXZJWY9Gc8ZmcAuBRA1tuTmF6vHr9QARKFYhKaUraFbRjfF6dAIgWCBZ2Facr/nc5TlJBNLQpFjeoEkGFMrQ0RQgCuX0aXBQbOWtuTCdddt9CTft3s1PfwumlNvy1DCwBXdvWVz+MVO8h2t9PKZ/9Gub5OA9Ar98YJMkQcD27AcMSLSXrZqTGlHsdW9VaV/tRIUBFlUylaMX8eZdM6aYl1g76s+MBkoF52Obx4OHJVgHX5XTDErtZALWtKB1TyCTj0Mr0ZGYrXPMVQ1XhS00HRuMruVZ8Xv9TrUz1owSOrg5jUKg1KjrVmcSg9wYr7L0TqCTbjexTlQUIUqh9LXCSheUaUI3UGgs3AMMAdDjSw8bSbHbAcMGywfIRbpy+nZvY0mAJc4yUo2V4vzbgBLhbGGqBQYwvFGxopMWYCjdvjMBb4akYnqtQrIRoJUnNdmFeX8MuossDA2R4B3mt9wDuqFpo/WecWwKutbzBL0OR1qwwu+oo6Xn+Y8gPQxdUHcHhZI5CHnbqD1ygcS4LHm5GlWWXf6oBXDZAwuEYNgAF22xctlLy9SpBn/SWl59GS248HvJbwroVMEqVAsADfGKYTgtKkbg13A4pbzfSMRckLQ3RRbKs4dx176VIBtCBXDxTzVYvXagCvwr2vA5Sl+kIb4t8KTq8AdpG6ONbIpwOO1pkufSsrQ56aV7kjUDYvbwu2x2YPheekKo/nrfRbTsBaSUAu7SmqB4BhD4BeyJDJi2JpYOMb4Khpkx0ZH7d+/W0ogmx3HFFdLMQ2cNhADKbytlOnmy4EkwsQeNtUFylJTSm3D79+bVpg4Ox1PBlY3bULPOnXzU59D6+b1vTbKmmBchNQqBsHtWFw/qcM9A7li0BafGmJL3lgLPEFL7IXwN9j2aoKug5MGY7QiXpTwCWdoCkBPQD0Dvb10aolS/Rcobq2MgO4xUp8JwDyco+dEsrJAZnRrSl1Df8dkz8T/svTF1RFieY1HYkAE6e9DO9qHNJqwCz0q4Uieu5hfde3niE13li+g5BclkxTT7y/oi3kmwIB1EofyT28/L9DiVbiovX6XN0ST4sVAMpfowMS1eYE6BY8gQC7LJkKTjpESk+p21li2ZQao5XxK9eq0FHJJWscJCcfpum4hE0wbKeXhwN0k7q1NqSG6duwe1i3ljYBBPqA/i02zthQJzMFSmaKUoeVfBVgGdfHQtTgB6xV0sw12/bgOdM8GVviz/M96dfNTn3A66Y1/bZKWgCBaz0DWdPMUHbMOFQo0NIHL6FCUpn9DNw2vBhENQYlduK9O/DQsCAeDd7SIobiJ3qqADrH/gItgkV55ws0/7PPDEGvNZArB1rF2eBTTeCaqcyCEarQQUpysCSCVROAq+a8ipcHWNCawd01NIKOLJjYhBxoSp/pg2eFxVT1AHjB5dbeY9FO8jZ5IFtsQg56ZdcHAhRMtDKvrj7n2/oqtwIezcAvuLxicKbYHuP3crwObali2n9pmrm14E0jSbaSMmilM8zpAmphoqK3W+JuBzjiQiFa87AziIvEGMcacmJWCuzYVMdfu7rXncDcUv3idwv9QU/cL6PPAj7gdX7PfcDr3HZ+TZsWwMulqz/Dcte7XZb94xIq9HdTKBSgYIAPQkI3mpe18AEPeJFWVAV4dZIF6OEqfvx6AVLF0HJ5PWRo61q5krpWthFAeumiD0iVcyleg7loPVX6AFkat3wAUlOqHgT6gh0aggQydAAso0LoTlxvvurxq+8k/7c8GFG8JZo5amgoSgDLUxpwT3QArgRulZ7eoiCt0qsLKBwIRylUN1YZwKTG4S48AKZAVOgD1yFzIEC9fJrwcIryW7jH6qQUVoZoZQyuc4DFgek/JsploDMJrEJ4ZwPxBgpEExRpHk9jd/gxheubrEzZ8Bp4XRlVKluggXTe1Y29vFOA9daGqERRKWvQfuVhZ4HBc9f1ZMyJa+Z50q+bnfqA101r+m2VtABeql19mbITUKg7YVm9OhdRx/8ep1T7Uu2LW4OdeE6vlGpV/uKUvZ11MJt+0ggZstWtI6DAoXyeelZ3GFAc7PBFTlkAACAASURBVIFcuQ2KiROMEIAx2tIoBEv4ja+j65E1mqTwuQYEidqzAhRRpD5QXKw3Th2gK7O3iG4E+Fs0i2aMcleh4obzmdak6CO968QORW8z/pYBYKmvAAtKCyVaSnt1qwx+0R2USbC5M7qfoSARLy5XlC6z83NmBfgq75Wydcv1S3iChcdMd9jFJcNRuK6eJmy8NYUmTafIxHVcV1ZoiIcYZQT2HkzlXA9sQ1Y9KDSIsnN27pN/7fC3wOCM9TyZROLq7z3p181OfcDrpjX9tkpaANm3+gZzNJDKuRbkURcLUjQUpEw2R+0fvkId0OcV9HXFwfB4RPlKxcuClyZjmg3SuC2BXBXgKgVy1UAMw+jv7qHB3l7m8S0CJxVWk4+oJBpQ68gqZq3bqB7I5S8s0geYJ1Z0x6oBpvwum4BcxYKQaB6aBkoAVQHG6AFjvXEpFDaUwLZo0iKAxWdBJCAQPP28prAg9Sa/sdL6Eb36Ms+uAH65SB2F4k32AFQVwK8IeKHHq7mlslsBjjXT7xVOSMQkFXbAaCnQqflxKElXsP5jqrc0NE9BgKPG6VtSwzqbUDRRR+OmTaf+JOhV1vuxcyV+W6CMgWxusDsS7xjSeew0LKRGb6mP2KzlXz5SLOADXud30ge8zm3n13RgAXg8wOM1Z9+VbhweFMjyoMBrzOR08znq+O+9lFo8R8Bv+miC+ecCAd7rVRiiIfGlp35z6ihSCbBQaF9njKyOsl/NkS4+GBqijuXLqWPZcm0jVjm4ArpgHkr25jZGT8YgV5gRx9cuIBOakaauAkXoZI8zHHcRePIKD6op69bT8bQq0JRsrloDy/YRMnArB8gyMMt7ePlEDSJNWZRQk250SfDLMc9uEGCXjVG9zbHwoOigSrtAU68XttYFD69akUADCoUPMPxoGLQgyJjpqBjYfHpN5yHfl+g/UhYMaPDIB8MUGzOJpv74OAqEwkxtARnUErEg23yX+ztkNjDYsikRZhSK7oEMA7/llub6MCWi0HH2y2i0QPK86Z5MO37Vd57062anPuB105p+W6YWgEd1lcMEFHgvAuiCK4f/wlOcyihdNLneDgZ6c10ikDRWUQDfF5HqBTVElQEjOc6RJifn+QogTPNSl4MrCUhoQVrbwkXM24vUxMoiv1ZtVmVvfNBV0Q6lPLiaGxQQgB42DBogyk9OOzcjCKOHXJTzUAJJGcKSG1ewaXGs5uBWgDuyKjKgK90jcXzK9oIcUsiqUjQj3bSgGyygWHGwstMCfiFwoRiF61pN1754gSkAlLekuthW3eKI2eZO9PBabQPBWPBUQr6PMT4M3MPF9qyDOatjKCWFplkm4nxDEYq2jqfWTXekpulbUUDw2otmxbwg69Uz6J5EotnNh7cXUmagdQFog0Jj3VrK1sc1xwhz8MvotIAPeJ3fdx/wOredX9OBBQCq2rpTqmQJ5g1B+gdeGca7zQ+V1PMF6G174ioSXbe6oJV4Dy9eQOpMZRLEU79TVEBXz7Go9rIqIvQ1Oq38K7uQz1HbgoXUu7pDF+PphN4pPmKATf4CNUbfClwojk3P42od5EpoUnYT1Sit+HdRUUIOjvXAvXEbxeAyNYQsxb+Ve16LwBdeXdiB5/Cqx8RTPPA9NkWKmyMsKi4cp3Ci2XwBG1xhC7Y4BL+ohrVu1cMrHyruFzaXaINJ+5XQfFbejRLJUKxmmFPbTG8/JV0ToMTEtSg+bjKFG8fQmM13Nrwn8QjHeNtuaoJbXQCgYGGDCnrXYDovpXq2Wh/rcWILMrpZreFfN9IskDx/fU+mFL9yrif9utmpD3jdtKbfliULgIJgVbMSL1zoTeK/iH6GhFIxwMi4u/45b1Hv+89IoFdCejJMhGNGuK34Y1u51JSyXbWslFrOVQlIZTJaJuoAcoWBfD5HA909tHrJUsqkRG9vKYTDf4f/h9wXDuOLWZ903oayjxhPFUAftSW+c/ECRW0juoEaa2q13XRuDh8sqBmnskMZrtTZcYiTViQaEa8zAtHMSop2sXHi9YvlHGjZdQKg5Y3Mg2IGfCUchwC1OAVjDYyzWy7+sFXfJvDF5fDUmqkwlBoDHIo88OU9vppiULn0vJwlmpAWvkjXaGihsVvvQXWT16VI0xhTGThQDDAHq79Bln7UbFyEZyAWDhK0wLEGewezlgPbkGFtTIPP37Vh7hF3afL8DTyZU/zKbz3p181OfcDrpjX9tixZAC+b1T36aXflDUDipzERZjzbrt6MrSPAQiZFvR8+S4PfztbGhQlv4RDHMRmzNGgRahAhBzzqmDfNd0owJUNWmqQIxdgnfZBWKBRo7nuzVYhbiS61+BDH76ojeQkYKv5BXDDAHN+67AWpGz2YIp+jBu2WAKlC/0J1RWY4qUld4wttykGsfC4m3lzFWbgAZIX/4L5jjyN6tlniCQnDGbQr3Dh40/NDQxQIxSgUbxQC/Qw2C5aeBsVqsVfDIvC1CnhL3FVpXFBzwEYR9AgW6KcuOkvHGpjX4wqbm2P9o8+lYDRBXDhsOVgQCgcIWDPyeJv36s4VsAs289DTRRZKeHzNypjGCEFj3C+j1wLJCzwCvDN9wDt6V50/c8cWgIe2rSulWx+4At43SPsAHPUOZE09U0YDySf7qPuNBynTNl+dC4FVwQsHUdS8x0oGWtRvaJWXs+jxlYEjuZyZ1gUsNC8Hb/y/+Uu1gHn+p59SLpOhQlbgGWpRrgIpaagCcqMwPirfF4CdsimH4LaU51dvrCLgVXhJteoZyt1JiY2EZDbRpvobCN4MAteW5ycoPcws6xafeEKuw6uAsAqFhgCFwhGK1jdTLq+b58wKBrT17FgDjEKTOiAYwwfnsxyAJ2+Wf254D7mYqlux3CyAYNWqt2yPSGMLBSMxalp/Sxq35W6W68kvhIe0ayBrm1blqDMLleB9h9cZrN5ekd9rQPAd3wz9XV5JxC+j0wLJCzb0ZOLxmd940q+bnfoeXjet6bdl2QIru7Q8Xojjs+jjADGvqxtHjoPfzabe2U8SFZTeExFoIpgENAkzPq4VLq6coqBA2CpPphHI5bEZT61gEm5dXdQ2bz7lMvCGl3LniQFWKt4kAqoE1Qi8TCWurmWagg4sMVVUUNVRAXrm4dW8zOUbAXl9I6UGc3BbBLpFHi6Lu2J9K5NIiJnWijYW6C1yoCvem1CUQvEGBpJxxI/2zKgC4kNhC7jqPEm26ssuBj6SNKctP6HGF4pNo12ANWyiWBCW6r7qjtdgEmZzizSPpfop69KYzXakWOsEx7PALR3bGKHVPfZOjBx3aKMiuMWgLKAk03mNXjmCKCe2xmy06F86Ei2QulCb6roa84xd8XU1uqloHz7grah5/caNLNCXzLJoZRTwA5vqI8zjks4VCCmI3dKsRPuppXOo+7V7Bcgo9xryXLpsPq8KXCsCKl0QqwJCEoCVA1vZv4uYT8djKQOEDGYpXGkBpuCQHkzSyu8ESRgVeBbtKyWfEMaG/+AFyXiqMuel9n6owaYVkKu0oQQuFchOB8LA0wzAK/emSt2pfIjqeaq95obfi/PhvbmwAQpjLEgqA0rAXEw8UazL/0vWlvDvUF0LcRwPStA0AB/6AOjVAnn91W8G7sx+NezWBw0BGzYRmNutX2o88DWCJoOgUnh7jfj15YDfSbseTIkJUyk+dhKTFSunIGlDQyJEHVVIAexknLATqFyxSJAtV5xwiesKn4GO4ZfRbQEf8Dq//z7gdW47v2YZFoCcWGdfmurjISYz1pvMUjKVt8XTtdP94Df/o74PntHwecFHhPcTx9MSXhPBlQyMqo/atUBYDhwFuCQHaYq2lEf5CoqEiLNUAK975Upa8R2iZPWBZDHbGg/CmMyWoai+CWAtGkJl4hLg2ACIS8hQaInXDJanc9bZBOgGpAmGMbSj0v6wKcB1kWaqAtQiYmVSd+KYlEBYTV0JRuuJC0U1QVG4VQAjoAxoAV+pVA+6d9POsrYULAfKJ0CTnlSzDNbb6ld9MSyHExp4vZPp0tkcrILfCdvvS2M22Z5RGNTSYk4HC+oAkwZLVk+SzMlYeeAbpKa6MKWyeeruz1JjXZj9VvpldFsgddHGnhgg9idB396T3t3p1Ae87tjRb8WmBQAMctD3JKLuvsofLw7lMtT/2UuU/OYtGbIFfxPyZEHmVZZ4DSpQpQtIVUFRCgCs46ktNikDVXKQKOE11TG+bCxdy1dQ5/JllB4cLIJz4V9i0gSMQwl0S4BUeSsaFGICio0Arh43RHYtjsH5ADHjVL+KG2QR4MqBdVFXV3RtazcjclqDEoSr7w//dzAcp2AEclC6cI1dg40GNh4ZlsKXSUCUQLTG7Rh/Y+0hU9cH35ZxbY1wqKpCOf3j/mITyT/f1pVmxT6hshBrHU9T9jiUwol6axO2cRWCvgaSOUZjGi4FCXZAuxE96cNl3P44K2OB1MUeAd7LfcBbmTvqtzriLQAvC47rrEQmu2UMBK/1vfMIFZI9MkwVYFHS4MwpibwyeTE1OJOBMEM+rkgtYNjOwItpAeTyLjz+QqYXm8/TqgULqHPpUn4OTC6rSF+AXZVBcOJUdWCMJT5usX++P9Xf4oeK5tVgufg3F+RkwUJ6QFRuLwO7qcch0Th46bAiV1e4UDFmJX8XEypSGmRzU9yzIEUSSBlsDgUhOcUA9xDv7S3ypo1Wcek2zXss/XSgfjQSoEzGYqIDl8AvguRgLjnHudRcogJHd9xWu1K0aYxbj7ymnXFNEersQ0ph62C8YoOx0TASZUCxBhtbv4xuC6Qu3sQTA8Qu/8qTft3s1PfwumlNvy3LFgCPE/qT1QS8GFy2fSF1v3p7cZwBPusSPw4xWEkOlLT/VnpzZQBNAFZFfCUCOrXXUOhJeneprpMDNCGITQS3AsqlVYsW0aoF83kQJsO4Wr6uFaArB546AFkX5KrtIgeLxqBYK0sms40eoNYEjokXKRUyGF8ZasQawK9uX/s3TwcR5q0Gx0jaEGsgLsSnsbZaGLcXvFYxS5m8oi5mqRzwjUUgvecA4JUJflnSCo7P5Mfze8XVq7TiFHB0J06l+JhJFAiWx9E1uz8TW2Is8Y2bMQJmfbrxfVygN/iA1w1rDu820pds6skEopd96Um/bnbqA143rem3ZcsCALxeZDvKtC+gnll3SggHGdwQLIc0w+oIfqWHVQ7qtN5HHitpwa3YpjKDm8q7KQNa+l5j5fWMp5vL0rxPPqPBnl6+C8GjZsTzVd4c+fgN0JgR0NWjLSgwrhwpKakLSJKhl9lNCYWsZUzjvbPoSwZY9UCzaBxpmoKxhL81QWtSsBpRKNZIXDBkiSurt/iRXAAlbXSErsG55h488yuUIwHgTckAr936JQVCLDzxAL6wA0CvWtFi42POoXBdk2sc3VLDgde5pSFC7d3mGuAWplXVS7ApB5/XyilDVQfmd1Z1C/iA17nJfcDr3Hajtia8aF9/t4ie/Peb9J9Zs+mIn+5Nxx7+I6pLxG3ZZCCVY7QGB74nW/3oXZxe8iX1f/QMDWUGKRzkKMCRTKdURWdQANkiqFUCUy33tqi6oAK3svaUILk0YAawg4cnEg4yb1lWyHg17/3ZVMjlKJcWPFdGVAUFKJWDd9FCelBIpRwhA4NKkCq0p/Zaq2wnpTNmlQ02B2rQquPlZTm/5PQFHc9scbOitr/yb0MPb4Bj3l29gCk7oBHtY4NSSsVAsUYVjZv3ZHaFGvDqPQ9mbWjq6FQwawOAE5z5UOtEalpvSxq75a5lP8d2GgBoxBh6BHUYO3W9vhZ0BgT4+sW3QPrSzTwxQvTSLzzp181OfcDrpjVdaKt/MEkvznqf9tx5KxrTgkxOtVXAIf3nU6/So8/Moi02WY9i0Qg98e836ayTD6ejfraPrcEi4UMPEkvopSq11ZL9i4eQyvfLVyg1920mK4VAG6QuVvN4i5is+DpXelm0ySf0vxdBllrjtQTIlYFFpAMuejNVaYQDRKm+Pmr79msagLdXjZ5KeRF1vbgGIFcNRMV+DAPV9Dy9RW4nj3lloFfTvopvK4wVVZDOl/GVmVNe3YZ+v/xwi/dBHL7Ww8tfhyA1LhQp6VUzA3lyE2FjhTHradYarmC9DUSJPHl64wGH1yqlwep81EtM/rdRG3WT1qa68ZNpo/0OZbdsMJXXT1Ns/3G2VKMxEWK/NUlkVhxGBRum5vqwn2FtGN2zSg41fenmlWzesO3opZ/rfre6s4c5u+Ixc8m8ZCpDXd29NHH8GE/46D7g9WTpGHeaSmfowKNn0DGH7cf+V2tledtqOuyES+i8PxxFe+28NUUiIdrvF2fTQfvsSH888TBbwwWPt6s/S+mseUpNWw1bvDjXu4r633uU8r1t7GUiHTuLAEoGBs29uSWAl6IdNeAqdXzPfwePLgr2BTzIUwNBHkTmk4O04NNPKd0/oMB2RXPIPZsy8CddYMebK9RXAzINgNZ6vrHBKMYMaQGoEQjGRoJ5dQWcq5kXG5IR+JXBMNU1ekFrgWCIQpGE5aN2q0ARHnp4GZmKgV5qXr21a7VxGfdAXgW6rpABtFMsd6luVKdipK6RJm63N9VPmUaRxla2wQTFIRYNsvtZDZUWDBNqB/2pnHW72zFYBa/FZhz6uwC+fvEtkL7MI8B7iRLwLl7WRiefewMtWtrGbsqhB+xGF5/xK6Z6pFdOveBmmvX2J+yr1uYG+smPdqUzT/45+7uzu492/cmpmmr33HAO7bC1e6oUPuD16PlZuaqTnnvpbTrghzvQlEnjFKM47aK/Ut/AIN17w7kejc6420KhQF/OXUibrr82wev4yZff0YlnXUdXnn8ibbXpejS2tcnymAFcuvrSnkoEDeXS1Pn0TIpFQwx48zFP/IuFx2563kL5Neqof+E7U7CsBa284YqfQ4YIPx75fIGB3WJwGhqX1cc/2bE5R5lMllKDKVrw7v9k98EE6BpxcotGUN5TI5vIKQpSXfk/iil+JcCrAMgGtoQsGJQPoC1smKVNfZ9UfyvupRz88m3zUfvC5xyoDPXMi+ykWIElooSZIbfXqGMrjatIt/EoRykTbdxS87TUpboBWaXNT7iEuLCOfjERCxitj4cJiWgqHcAK0Ng9kCmhT+3kble+DpJljG2KVr4jv4dhYYH0ZVt4Ms7oJZ8p+j3x7Ouovi5OM2ecQCvbO+jnJ11GF59+DB20706647vl3qdo3z1+QGtOGU/vfTSHfn/+TfTIbRfTZhtNo46uXtrtp3+g2685k30vlvFjWyx5jq0axAe8Vi3l8nUr2jrogKNnMIASjYTp8nN+TRuuO5UmTRhDH33+HV107b10/00zaO2pE13u2b3m5s5fQn/+2yPU2d1LuXyBBgaTdMFpR9GeO21lObgCQWt42XkdNZ2cdQulezuUnke591JyVOofs/NYVQDKchCnkLeSeR811xRBKbxeTHcTmq45QdpKt01hLII0GZ8il5eCSvb00OJPPqJ8JqO94baCzkqAflOAq09ZUHh42ViUAFTB7WWJIXiPcHGNaKXFxL0CX9fYmyu/T7xh+MA3OeANcCEKx+pce1CMACPj9oY4XskBEmZOejRBozBvLBSkpCxozhGAVY2tVBtQWoC02Bq7HUwNa6xrOivxyD6bL7DkM1ZTNZs2LLsA3GEkbuiqgua3nXFZubYuFmIBa37xLQALZC73BvBGLi4C3p6+AdrpoN/TQ7dcQFttOp3dmJk3P0gr2zvprzNPs3Sj9jrsdPrFIXvRiUcdJAHe5x+4itZZc5Kl+k4u8gGvE6u5UKe7t5/Ouuw26h9I0uYbT6N3PviSVnX20AE/3J4mjG2lOx96jk79zaF03OH7u9Cb9SbA0cVuKx6LUkN9omTFXD5PS1esoqmTxhO4x1fe/BDlCwW6csbxFIlY+4EGj7ejN+054I1mOqln9uM02LFSNmceWClT/honhpBoD7oeUBHQ6oBeAcwC6AJ8weOYK4hZu8zriSBOFPznvaAB6l+9inrbVlL30iUyj7A4PTXI5OsUiw7VQrpE7zo9kCnrSwbYmTSZhO7U8xM6EbSFMSZeW1g2PjPeL7tUz8Mrn2PxezmlgQuGTRNMWH+atFfqAcVwiKdq6EqYWe3MAIFCxCIUhAqJSBtSXug2+G1ad1NKjJtMYzfbgUJRe0Gs0MNORIIssxg835YpHxZsBAoF/tc7DAPWWhsjLAW6X3wLwAKZP23piSEiF30q9Ttv4TI6+NgL6PUnbqJxY5rZ5w8+/jI989Lb9Phdl5mODzSIA446l2696nTafcctJMC7x05bUnNjPa2/7lT6yY92oaYG9xwP7Nd/iBeu9EuVLZDN5ujOfzxPX34zn66+4CRaurydlrd10BvvfkYvvvY+gcuLG37JmeDEVD46F8vgi2/m06PPvkaLl7UzwHvwvjvRgXvvaMky6XSGbr3/Gfr86/l029Wns2A2KwWerVrQxUTGzkL3Ump/72kqDHSJqR6UiRYUXtYieFKnoJXAmYYLXPTiKoOneKDLe2j5jFj8Q6mkLWgCruTALyBmuJId+4MrWygw4Lv04w9lt0M+DjkIlPcpXq5DMyil1GAGRgUgq6AmqMApqBzgKWvoC+q2FcDWnldXNC/z8AKABzgKIm0wF7J8OmFlfZe6Rg42mWYtkjUQvPr2+LaaPmQNh9FwIEDwnhaLFua6AXwnbLM7TdhyVwrFnb+koNsLPj2oDgPpPJ8QxoUCHVskBRlIudOeC0Oy3MSElpjP37VsrZF/YeZPW3kyychFPP8WBVTGo06ZSe889zcJlP7rudfp9geeoVmP3VhyfHDyHX3qTGpqrKd7rj+HJf7BZzff/TiBwoB/QwEK9MhHbr+EnYC7VXzA65YlHbQDcHvTXY/R7decQRPGtbIWQHFIZ7L07odfUSIRo122q44ECUjjl173d4pGwzTjlCPo8effoPse+TfdeNkptOO25pld5sxdSCedcz2dfuJh9NP9d7UMGgC0AXgN0546sKuTKtEQR0jB2rVyGfW9cbf+sbgM8CqUGAxBnlrBQQ14+e/j0RAhfolXiQBXV9CJlVCI8LeEQfGFyjMq0CAAEovZ1or9ZzNZWvXdt9S9eKESxEvGsuLR1QHsInJUICYdyoFsLryHV54Rjv8SZgQvHF+VAsTSxfKxiw2I45EvAl1vb3HA0UQjxSJByuaG2Iaj2kVuOoDvcJhXDMFmsNwSCQUoz5QhjFoSey/2VRyPNRgM+sK0Hx9NsaaxriWOAE4HBQGezbaulDO6h2zKANCM6oMU4sOoYOlOarXnKR9G0/OH6sACmSs8ArwXFgGv6OF948mbpbgdKx5eqDScdtFfGPXhgb+cT81N+unDRQ/wP2+9iLbY2JwWZdWMPuC1aqkKXLds5Wq68Jq76Zc/+SHtu/sPKtCD9SY//3oeIVju+kt+R1tvtj4NDKboL/c8Qe98+BU9cPN51NLcoGlsVUcX3fWPF+jtD76gvv4kHbDX9nTCUQfZllND5DT0eL0siJyvi4eobzBL6Z4OGpj9MBVSfTJsZXBkL+egKjzA4vV6wWm8qgKoC/DqMX1WgYYgdagLdkt5fHlpNXBR+fgref/8v0FXWfnl59SzTExLLFrcyOPrFOAaUQr49hTZ1gSgiuFiEyFtfEqCVIN7ofA8y8Ga8noEowWCYQpFYtKSA8CC/QAyAXq9PPfCaKMRjvJYF3mH3F5hZmgnC/Asx87WcKzicRS2JIrPIg0ttM7+R1Ld+CkVe3RjYY4aEmFKZfI0kM453hhDwxZxBnbVKio2MYsNg7sLDq9ffAuIFshcsbUnxohc+LHUrx6H9083PkDtq7sMObyoc8r5NzOn3p3XnkVNjcYnQcAf2x1wMt1747m0/VYbuTZfH/C6Zkr7DeHGv/DqexSPRuhHe21vvwEXa3w3fymdPOMGmjnjeEkG5OMv5tKF19xDPz1gVzrhiANZb6s6eui1dz6mnx+0J6NdPP2f/9HSFe201WbT6Ye7bONoRAB87d0pR3XdqgTA05AIMW1QBM3kOhbT4FevUKFvFd+FUfCZ4jvzgDa0IwakAVTx4MoKdUHl0VXQHfjvEACFNnlvnl6bvKd45ZwvKD3QRwPt7cLchOslYxoBYJ0gNLVt5P2K7amC5BhnFghfALmit7pI1ZWBdb32jT6TpqEDdhHYxwXZ/0IRY48ZNj7wsmIN8IFs3hTMQExPjHEwezkoALyZTEHfQ+oA+LJ1Fo1T87qb0vgtdqb4mMoH1eLZrI+FmBIJfisGUzlbHl/2bMfDzLtbNl3EwT0op8rYxogkS1hOO37dkWOB7Exn79lyLRC+4CNFE8efdS011ifoinOPpxXtHfSLky+XVBp6+wfpV3+4kk448iAWlzSYTNH/nXAJq3/Dpb+nRJx3NuBdOHniWEblBMjdcduNGYUT9IanX3ybXn3sBtaHW8UHvG5Zcpi3g0C1S667j9aaMoHp6UIOK5vL0TW3/JNefO0Deunha6kuEaOn/vMWi8Y8/7Sj6dD93cmUBFrDik5vAS/e/fACIWAGR9tDhQLlu5bQ4BcvUWGwSwkgFcBKhwqg4taKgA6ezSDTKOSPmBWBW3reYYX3WOuxVacxBpCEAgIf5S7SIOTAF23wf2dTKWqb8wX1LhcC2tj6tevRldWRgK78M32ALAaJYawYKYNyugkkVO2Lz5ie95ddauzVFTV1AXjNCuPTcnxWO9uyYWaN2/xeHAsLassXbHueAXjTZhq8NoHv9EOOp/pJaxEXco9bZ8Us2IwgsA3rB6DX6r3BvcSzDUUYLzcxVuYovwbLGfxdPCd+8S0gWqBWAC9oB5AmQ+A6CqiMl5x5LMMOPb0DtNPBv6cL/3g0O8FuW9VFUGVQF+jxvvX0X+mVNz+k86+6mwFjFHx+7UW/pR22cU+Dl70i/KA1/0ESLfD3f71Idz74HL38CK+vh/LlNwvouckVYQAAIABJREFUuNOvpivO/Q3tt8d27Mji6lv+QVedf5KrZPJV3amKyBHZubvw8AIciF4gAHF4ePve/ruWM6sBhwZ8XQGI4bgcL2rIjCn4qyLQNQDJEojTgF+VxzfAAzR4eTNZOeAVdYHVgBk82gItePNVSvcK2dnkNIpS4FJXhcII/GoBMKgcKExqrCguLPRYKkjOGNAq73MRuIei9bxn1wFogIcV9y2dyevo/9pZWeVfi2CuSCjI1qYdbq8lwKtAWcZjnbzDvjRu0+0p5KJkmxPLAPi2NEQYzcGK6gIkyRKxIPUlc7Y3DE7G51YdrL1xvv6uW+YcMe1kr9zWk7mEz5cHPheHADALvACHWDkFqk8dnfy7aPzYZke/2Wb9+4DXzEKj6PtVHd00Y+adFI9H6coZJ1BjQ4K++nYBHfvHq+maC06ivXapHHcIovPd/TqasVW0P45NAcH6VZHc+f5O6v/wcRpK85xeBV1AALTS5/K/AUIDAYqAj1kgGaDX4/Wq25UDaFkCBBH4ajzCOLIXUiTnZAFhPDlWCdgVf3OUTSVp4VuzKDs4YCDnpfIwlVRLUANc+d88KEd1ZRCVga6uwtbiQjDh72KmALgsU5o7wT7gkQKcIy2tM2KBe4sYwZWwH4CvFZ6xbcCrHiroAFPXo3X2+QWFE/oBJu7Nzl5LDfEQ8/h292eZ99uIgYKNC4LWrIBjeyOo7NWgYWAT7hffAnIL1BrgHU53xwe8w+luVWGsL73+Pp135V203x4/oI3XX5s+mzOPEJF5z43nUmuTNnDNrSHBW9PZ5y3ghU4n5Iu6dQLoct3LKfntG5TvEXV6S/N1GX0BnkwB3OkpJ2iAqBpMS6BWTUtQgWMZCEYaYubhZUBXvE4FeHXoDqm+XupaMI96ly0qJquQg2o9YK8BpMZgVApKGyK2CTBVYVBQJNQgWn3Ei7ly0hG7W0BXvrYZn5aN20ZKYLceDlU74lhwAmGmVQv1CTxbTkr95LUpPm4yrbnbwU6qV6UOvL0J8HsDxDK1MaUTVcGGJTIMNXib68OUiPqAtyoLaRh1kr3KmwD38HkfDCMr6Q/VB7w1egtve+BZmjyhlQ7Zb5eqjhC6rf97/wumvgCge9zhP6Jdtt+cNpq+VkXHAQ/N6t604yhsNwaHY+OmRJg6+/UVI/IDnTTw2QtUGOjQpzgwXBmQgkxYsJH4/tUDr2oQKXpOdRQW9FQXJMAsq8cAL/PwipzWIm9XyevVfo5a/W0raMm7r5tnKzPi7CrmxCsv4H/wRkrpIwTurjBI4dYZgeVSYJevE4rWMbtzwcqCA5gZaV4xF6+9vZg5n6REUPkQdhDqrUAsGqSUAy1bZEhbc8+fsoxpTuggbjyPVtvAnLFZBbjHKQdOiuTeb3iC8SxWOnWx1fFauQ6bKyScwHrzi28BuQWyV23niUHC573vSb9uduoDXjet6WJbZ152K+XzBcadFfm0LjZv2lQylWb9IwEFuKeVLuAldvZndD00le5bbB+ApqU+UtLTPJTLUM/rt8kAoeBJFTi0IOwj2xzLHSBKjUmeVhl4swpqNWoMOt5eycMboGgkKATziIBWzvWV6fkGhHsqqwvQiCFnk4P0/X+eUkqbyW+CxaAxeLkxfKXGMk+9QEda5Vd5AGApoMt/F4zEiEOyCAf83HLWFLqD1xAbi1oIgsKpBMYhVyAQgW8swtmW4tr4iNMp2thCXNha8phybOlmXcwZFAfImEFeUAS4rfUR6k9lixtBNzutUFvwSDfXhVkUu198C8gtkLvaG8AbmuEDXn8lVsgCr7zxIV13+6NMJmzbLTaoUC+10yyOZ8GxG0jlPB3UmIYIdQ9kSgj188Prnf0wDWUGaCibxmk6LzUWCFAGuqlFV6YwF4PEERqvrwDy1J5eEZyagl8Z4FXxdNlA5OBWbEsBfBkBloFJ3I/V335Fq7/5nClWKIsJj5ZxlwFoec+uVIR5iQBVaydp68H/Q0OpAH8VNJEAhWPe8klF3V7ei++tbi9MhaN9bDDgeRbpIqJHWq5moPYAixbH5iHS0EzrHfxritQ3evoMlts5vN6gA+DUCDKDjYkwdQ1kbQX7lTuGcusjyK6pLqJI9l1um379kWGB3DXeSJiGzp097A3oe3hr9BZCDeHXZ/yZfverQ2j/vbavuhfLC7NANqh30NsEFI1CkIhZgMtQIU9DnQspNf8dCmQH+eQRfMYHVTpiuTqCCtDKQagCkIpoT19STMv9LQamIUsXvOX5gtybK/f2ih5pHQ+vDqBePfcrSvf2UM/C7wxoDhIyZUCUpw6bc3QlHq8CgRkDaXhyIYNVadqC3XUPPi1UALzW7cW4AfRYmmSoixSGhOQmSFWsDbWTm50LR2nqbgdR6wZb1px97d4P+fXwfAM4wiZd/Vm2GRguBTJqAOp+8S2gtkDumh08MUro3Pc86dfNTn3A66Y1XWxrMJmmx55/nTbdYB3aZvP1XWy5dptCcE3PQNbTY+JoKECNdRFa1ZMuaShEfYMz2NO2hDo/eIr3ZEqeWRlglYCsOvuZGtSK3lW9LGkGwFcefCb0A/oJvM3Mq2dAW2AT03h7jQLbiAr5PLV/+TF1zv2Kt4mBSgM8jIyrq+PVlTR++QYI8XwKHWK5tYX2GcgN8i/9amu+2nlKakm3VwS+AOIwIzZipQLbpuy4H8uU1rjmyPyNAehFimJ4e5Pp/LDg8eK+wbuL3xi/+BbQAN4/ewR4z/EBr78aK2gB6NLBE8YJuqUV7KommoaHtKsv42k2JFDmxjZGqa1bH/DiVoxvilE2X2DBMQhKG8qlKdM2l5Lfv1vEdQpKgdzLK+fUCqCXfST3uBpr55opL6DbaCREqQyfyawIwk08unqJKgSPL6gJQLErP5lNXfO+Vnp6MXIYbUgOYEskgRDaBEjkAa+eVzdA4USTgK2NDuFrYskqBlFLur0YWCTEe3yTBokn1tz9EKarGxjBvy/wlAYDAepLZpnHFJtUZHX0MIme6cLFOmptiPj8XVNLjc4Lcn/e0ZOJh85515N+3ezU9/C6aU2/rbIsgKNYAF6rGZTK6qxE5clj4rSiI6nQXAUmgLcIL8yBZI5SOvJH6RVfU3rZV1RI9RRb1wO+moA1NQ2ClzMrZj4TwaoIkEVvrIqeIIDJeDTEgxyFF9eiV1dBydBmayvkcrTg1Wcp3dPF42l4dQH62dBkwF5uX01QGc/x5RkgfB1o5+JoPRiKVuq2Vq3dWtHtDYd4KTVwpnGcLwbYNa45nabtdwSFYu7oFFfNsA46AicfcQHi8wo1BwS1pbN59rmGnu6gD7erIOEExs2CPv3iW0Blgfy13gDe4Nk+4PUXo28BVy0ADVykDfWyjG+OMmoFgDdeOeABQh4IgKHf5CVZyCQpvfQzSq+YIwBWgwxsEhiVg1gzKTE14FWDWP5vCfCKXltFcJwqEYXk2dUBxFI2OR5gS2oIQwVa9u6r1Lt0kQBaZeBcEWZjrLrA6A+BEAO6GHMltHO9XEMIIoO9vNTthYc3h8x+gre3aY1pFBsziSbsdKCXpqlq3+OaoLqipEkBR9bFQgxQgu6B3xuvE4rIjYKNNTLJ+cW3gJ4F8tfu5Ilhgme/40m/bnbqe3jdtKbfVtkWgOcFCSisZJEquzODBhC4hv7hFaqPBVkAUDKTtyVrlFk1nzKr5hESVhS9taW4uCJo1LtGJS3GLpUFoilUHQIUj4UZX7F4jbxtNb1C7l2Wq0kUgTHfPP83ZNcA5JIDA0yzt+3T9yg72K+iOZSQF4NubqyepezNFSBRNnJ5ioxeEvIuSxsAbzbHJ2+Gru56+/yMxk2awGg42NCNhjKhJcYoDHq/J9iUQMYMvHeAXq9PlsT70VQXZoDcL74FdAHvdTt7YpjgWW970q+bnfqA101r+m2VbQEcMbaxF5R3Phdw6JDDHh5dpC2V65tanSAbfyFP+WQP9X/xbxmXVq2LWwSTRQqDXFVB9b0MfGoArQCCkXlqEJQGiTKgBrJoU4/Tqx4LH/jEvLssbXGQT7rANIbhoSUCxeGbx+6WmUUf7AZCYT5BBMPqHPOYO7GrVfvX0nVe6faKgBe6upHGFgqGeZkr8FpxtI/TFLNMbbVkR7tjEbmw7QZ8fLE9AF94VBE0a6bOYncMTq4f1xylsK+/68R0o6JO3ge8ju+zD3gdm666FQGgOrp6qbO7l+YtXE63PfAMJWJRumLG8bTe2lOqO5gK9oYj4LYufY9MBbsVgBgxzyOSTyCq201Pc98X/6ZCLk1D2ZQx+NXIgqnBrgwsq3V2ZbSFWDTEczalxBdybq2RXJnQl0Rd4IEry5TGAaAigxs0XkUwXhwbQHD/8sW07N3/Uj6TEgCy6LlFAJpW1xXC+nppYCt9j71qX9TtzRV4ybBq7OcaW1tpzf2OotjYyZppA/AiiAsJGmpBUq0S90VUUrGashwZ2eDxxSYXz78XgW14rCc0x3z+biUWxAhpM399dbOvimYLnvm/YW9BH/DW8C1Emt8V7Z302tufUHdvP338+Vz65MvvKR6L0GYbTaOFS1fShacdTbtuv3kNz8L+0PCCgrelmkVMTcqoDJk8NSRCkgqDW+PI9bZTtq+NhjJJynQs5JtVc3mNeLeKa1U8XFVwGvPEBnj+plLVQQWg5W3KObpCe1AHCeFIvkC8GgU/YN1gOGzIkh0dtPy9VymXHKBgpHRA1GgDvNJLIxhgSSJANahUljZkSBu3yXa07rY7UL5unGE/uM2JKO/tTab5wK5qAHG3niezdhrjIcrkC7YyzcErDKAMdQtkaqs2zcHn75rdVf/7wg27emIE7oy3POnXzU59wOumNV1qK53J0tMvvkWvvPkRdff00/xFyymTzbFj/mMP/xHtt/sPqKmxnm688zEGfI85bF8Kh0YO5yudKVBHX2kdXJdMzdQCmusRIILgFf4FB2CHTE2pdF5XjaGcvhnVIZ+l7EAHZVYvEDi+KgqD5L0VVRgMvjdQe4BHFqBX8qDK21MDZwHE8gFpwv84SFoFCSF7ALtF+TB9fnFi3NqMpsCFIjS4uo2SHStp0awnSppptAJeGAVrDgFT+K9eUohy1hfqbvCzk6lh4hrU3BhnR/TwKJcqUHOIhYOE/8K76YVns9w569UHF3YwnWObCzsFTwFOegB8cZ+6+qsXUwA5MijB+MW3gJEFfMDrfG34gNe57Spac8cf/456BwZpnakT6bzTjqJN1l+brr3tEQpyHM045UiKREL090dfpLdmf043X34qNTd5m2rVTWPgBb2yC0fjlS14sSBADQEr/SmlR1kUfYeXp5JlKJ+lns+fV0p6AXyqAtGUnmAj2TJB4ivAETKu8YBX3xssKS4ovg9QEB7IUJBw9J5jU9dKk1EwTI2TNxQyqwlcYJmRAOo7535KC15+1NB0LGgtx28uRmuBpxf2ZpssFwwxeft9aMLWu1EQfGkuwLi6yFxoFcBizeN56OzPUCbrwoA8vrEt9WHqwfzLSLCWiHDUUAfqR64qSSt8/q7Hi2YYdF+4cTdPRsmd/qYn/brZqQ943bSmi23deOfj9NW3C+jK846n8WNbKJvL0z3/fJ6efultuuf6c2jKxLH0xAtv0I13PU5P3HU5TRjX4mLv3jcFHm+ljnwRMBWLcAwUwAMGcKcu/PcckyGrRgFIRAKLVNtcyqf6aKiQo0K6X0t50Oj6qgLSBIDKe1BBaVBxbhl1QQCyMjCLoDRkaMN/M1miQDBEXDgmAV4oK0Qbx7PsbUWwbGwZzKf983cZ8B1YuVhzIbyJCJhyA+hV4/5Uqg/cC4B/2AsUFCcwMzF+DWpeZyOauO0exAmqFwDTCF4ER9cq4GWrIkAShx2bveEa1Abd7KZEmAXmlbvGED8GvjN+j1KZQsWCLeHxn9g68rWRK/UsjZZ2Czfu7slUudPf8KRfNzv1Aa+b1nSxrY+/mEvnXHEHzZxxPG2/1Uas5Vlvf0wX/fle2nOnrWj6OlPovY/n0Nz5S+nhWy9ioHgkld6BrOtgEy8uBKUA8OLFBakxo5chACMSCHgRtT1UyFMhm6RszwpBrWKICtk0ZXtX8rdYTXkQqQiSggPHeJlp0UsnJndQ1CsC4XA4RPWtkynNAt14LzEXjgvZzmT6uw4WWD6TpmXvvUztnyklbQDywFEHN9gvRHwqYKRmLp0KWG2r1vW3pKm7HUihWJ1iI4I1jjWADZsTwIe1jxMQbAb7k9XZ9Lm5DkROvpvya9gEg2OLgDb8fiDYz82CDUpzHZ9K2y++BYwsULjJI8D7Rx/w+quyQhZY3dlDvzvvRvrJ/rvS4QftybQiP/nyO7rg6rspmUozbi+O/o/7xf70218dQtHIyPqhhI4suHNulTheVtEQ4+Wmc3lToCV5yJLlHYmWO35enm2IhvK8x5e9YgtymkWABpZ/IUtywQPZWDQoHZUDSCUm8psmOWCOhINUnwgzjmOWi0vePCseXDvzKuSy1Lt0PrV//g71LvqWB9QBYsf5mA8LrvML28dASmxoKGDJiwj6wqRt9qBQLKGxHgAfvOgDybwjrzEaROBWIop2AJzzw0pVA+AU4x9QUZXKXWZYt7AtdHLhAXeT8uTr75Z7d0ZH/cJNe3gyUe6Pr3vSr5ud+h5eN63pYlupdIZuvvtx+s+s9+lfd1xCzY31dOv9z9ADj71ELzx4NQtaAwgeaUBXNGE2X6BVJvqZVswNr+6YpigNFYaooy9jmc+HlyWUGpBG2G1PjpVxl3sNpNX6k7zklF4BIMALtqM3U7Vj61xqkL55/HZKdbVLQwJ4ANCDx8wvvAUQKMVr6Op7wMN1DbThYb+naEOzocngnQU4cwOQ4Rka2xil3mSOT2gyDEqlOfjYVrY2RthmoL0rZYs2YmS+MQ1Rika0nPhhYG5/iFW0QOHmPavYW7Er7rTXPOnXzU59wOumNV1ua87chXTtrY/Qp1/NY0edkCM79IDd6PfH/ZQS8ajLvdVWc+DLQZ4ML30nBS/paDjIaAmQW7L74hcF+lPZvO0obyfjdbsOgo+gAKCWd4PnuiERZqcDOO6uNkcT6/jbp+6k7EAfpbtXs2nD04sNRj5fOakut+1b6fYAVnlJON4mcPRHGloo0tBE0w/+NUsiUaoA8GIj4RZARVvQqQXAA92I8a8rbYQy2keGRNAxKr2RwoatPoZnjf+NcRp3gGcACg1+wokybvooqVq4eS9PZsqdNsuTft3s1Ae8blqzAm3NW7ScXn3rI4JU2dRJ42mHbTamnt5+CoaCIyrhhNp0SECBgBu7R5K8tigkljj2UsYL3+lLCC94KB2A2zrcSl00yAQWRPshiKcuGmIgCHaxuwFwc/4AvQPtS2nx60/TYPsy1rQ8eMuujJSbY6u1tsDtxeYt1DiOpuxyINWvsa4UmFZqrOCawqZu32dw4LFpAtiFjJ/TZ6uSdhbBOTa61UhuwscGhBgPG88WToXsbgawMW+qj7CNn198C5SyQOEvHgHeP/iA11+ZVbAAk3nq7qcHH3+JPv7iO+rq7mXR9BtMm0q//uWPaaPpa1ZhFNXtgmXvSmapz0bADF44AKl42bhBRYDnBn4su6C7upbS7w2eJ6guDKRyjHMoeqHwt52o/UrNBWs61b2avn/uPkr3dPKgVzjOF4FDLYKpStmjVLvR+gba4ucnUuP4idQ7mLd0/yoFeMXNCTaVOEHpT2VrTsIMoLE+HmTPbTVPMLBuYXdstvGc2UlaAQk5nLz4cNeLJ2x49Vn4yw89GTD3h1c96dfNTn0Pr5vWrFBbyVSG9j/ybFrV0UNrTBpLu2y3OTU11NGDj79Mm264Dt10+anU1FhXod69axYvDeiIWokyxwsOWaMgnI/jRTcKgCJe7F39WTeaq2obfNASUgJzBMUJt3iGlZjE4OoVNOfhmxVNw5OI+wiaw2gu6x10HDWvvQEzATZzdbGgJZ1cAC8UKJFUqsAZObY5yvSUu/qytr2alRoXC7aLBZm6hJXfDrfHAf51S0OEedeh32tW4JFmgDc+sgKPzebtf+/MAoW/7u2sYpm1uFP/W2YL3lf3Aa/396DkCOAJu/T6++nF12bTmSf9nH72491ZsBrK2+9/QRddex/dcc0ZNH3aGjU+E/vDA38XSg1GXhq8KKIhjuoTIcaztas5ajYiUX9zOAJeUBrq4iHmaap1DzXWeP/yhbTsvZcYxQGqDiLFAV5e8Fi9AC5m66NS3we4IEFbd+LWu1HztI0VcmPgekK6ChsBnH4YecEBjOHJd4vDW2quUHKAtxd88WQNBB/C04r1D0lBr7ZL8NQi6BWbTYBe/JYZnaxgvMj2iM2pX3wLmFnAB7xmFjL+3ge8zm1XlZrg7h54zHm05uTxdPf1ZytefouWrqQLrr6HDj9kTzpon52qMp5qdgKgA7CZzmq9VOARwguIUimuHkBXa32EqTsMl4KXp8Rhzg3xHvJhMvhCIc+SVSx963lpxJgP/ocNzWihOEzabm8GdrlQWDfJB/MIxkIs2A9ASr2hwf0H0ALH1q3TDrMlJMr44ZnFUX61+tUbF0438D8vNLTV4xF/p6C8AY+vHqcYJzEIWPP5u2arzP8eFijcso8nhuBOecWTft3s1Ae8blqzAm3B+3Xi2dcRx3F0x5/PlHrA5y+9/gFdcdMDNPO8E2j3HbaoQO/eNwmlBrnSAI5RIaeFlz5e9HixVtL7N6YxwqLSh4M0GYAONgH98GwFiPEJ4QUECBkuZahQoJ5F39L3z98vDRlgAVnxEMhYTU6mFzZbZ99fUMu6mxIXCpl2L3oG8/kC29ggiQeeDYAsJFyo9pplXvlggBrrIpRMe3eyAHoASq0kzOD1laHdy3vdcW/kv1nYnIxpjPr8XdMV71/AA959PTEEd8rLnvTrZqc+4HXTmhVq68XX3qfzrrqLfnvMwXTiUQcROL2XXHcvvfjaB7TVJuvRzX86lZqb6ivUu7fNArAheI3JMoUC7IWeyvL0hWoUMQiuVl6eRnMGMMcmCC9TAB8+cIenNAxHkFjI52nJm8/Sqi9nS1OGJwwgrxrH9NVYW/I+mtfdlNbe+zAmN2Y38Qc0lZvrIizAEpvDngFz3mgl5yce50MabVVPuqIbUr15tNSH2bqHLF+tFTyTAL7wPovrGNxd0B/84lvAigUKf9vPymWuX8P9/iXX26x2gz7grbbFHfQHIHPmZbfSZ1/No1WdPRQOBWni+FbaeP216cQjDxyR/F3RTNDSBIiL4Gg7FGDey2p6riAXhGxkq3vSDu5cZatAaoz3HIUY0JEfbYvSTAhaGq4yX4V8jha99hR1fP2RZEhepitASExScCc2sbI3yULrLettRuvs83NGYXBScHzPAp6QwCObZ9kEa2GTw04cIkFKZvOUzphnN3Qyd706oAf0DGRMsym61Z/ddrCGoZMNig5oDo3xMEWFIEO7bfnXjz4L+IDX+T33Aa9z21W1Ziabo9kfz6HP58xjWda22nQ6bbjemiyArX8wSfMWLKctNlm3qmOqVmfgBOKIFOCtkvQFvfkEEYneFKU2F7K+uWkvAF1EooOuAC+4nl3gnQa/2WnyDjfHW05by2a/QsmOldQ97yvWDH90zjGAVw2d1XLGXqpu49TpVDdxKk3efh/bXl20y/RfI0G26RlIY2NTYHqwAJo4FcG9r/bzop6vmMAFm5TBdHW8rmMbed6913Mvde+xhnHveL5xkGXX84tvASsWKNz6IyuXuX4N97sXXW+z2g36gLfaFnepv1w+T2+//yU9/8o7tKK9k3K5HP3lij/Q+LEtLvVQO81092dcF9C3Oju8hia2xmhlZ6pmgr8QSCfqAwPkGB3cAvB6HUBk1c6lrsMJRy7ZT4tff4a65n0pXQpPGYBCbhh6exvXnE5r7fUzitQ3OQK7oPdAt5WByKwyBTEAcCzKUYjjCM9OLVC4QUfBUT5KT3/lAilx6oEUvaBSDIcC/i7SNvvFt4BVCxRu3d/qpa5ex/3uP66250VjPuD1wupl9Llg8Qq66i8P0fuffUvZbJGrt+6ak+iZ+6909PIsYzhVqdo3mKG+ZOX0RM0mMaElRl29acp4rAkLIANJKoCc/pS5PUYK4JXfn1wmRZ/ecaniliFQD6B3uFA3Njv2PIrUNzp+VgH0EeSEYMpSOruNiTDz9nb2p2smOURdlKO6eJjRlOwkZjB7RsXvRYUK6HEPh4JnFBsXv/gWsGqBwm0eAd7f+oDX6j3yryvTAtlcju5/9CW6/7EXac0pE6ilqYH23nVr2nOXramtvZNOu/gW+sEWG9B5fziS4rHa8xh09/TT0hWrqLmxnqZMGmvrZQ8vppcem8a6MOF81CuZIxwHIzAJR5+IxrfKz0SADIBgqga0Uctc/orqmYE+mvv03ZTqbJM+hweRiFdxqNWj7GjzOFp3/yMpMXaiI3OwhApRPqEIgiitBGVBuqylLszsUkq319GAHFbCPBB8CrlBgF6r69lKd60NYRYMVgt6wFbGO64pyu6nX3wLWLVA4bYDrF7q6nXcb//tanteNOZ7eL2wusM+v523mODh3XX7zSkRjylA4zMvvU13PvQczZxxPG25yXoOe3C/GiSTXnj1XXrzvc/p/Y+/prWmTqAjD92HfrTndpY7w5H2yq6UZ0AmHAqwwDAvvEbwXiJwDsfWCEiCAoPVAm8XjvxrXWHC6nzk1yU726nj209o9VfvUy45wL4CkEJgI5IyuAminIxPXocLR2ncZttT6/pbUmLsJFubPbEdyH3BE4isZr020m2jvplub7nzc1IflFWoOGB9A6AieMuNAr59d1+GEOw6HMqk1ji7P37xLWDVAoXbf2z1Ulev405+wdX2vGjMB7xeWL0CfT757zfp+jv+RTPPPZ722GnLCvRgv8lCoUD3PvxvlgL5sIP2oK02W5/ue+Tf9P3C5fT6EzfZarCjN12RI1Arg8ALqaW6wrLOAAAgAElEQVQ+QtAErlYBeMNxJ7yWfECS/Rc4eJ6xSIh5hUdiGRoqUN/yhTT3yTul6QFIhcMcC+bL5cB09r5M/8lvqGHyNOKCPIfVbknEQkySD0oc5XjrAZqb6iMk1+21Oxa3r8eYcHIRCQf4jGRl0obGN0eZospwwLugpoxvjrltUr+9EW6Bwu0HejJD7uRiQiBPBuBCpz7gdcGIXjYhcnrf+WgObb7RNObhXWfNSV4OSeq7p3eATr/0b7TnTlvS0f/Hi2V/O28JHXXKFXTXdWfb8kRDcgtSQ14VHD0C8FYj2xdAAEt4MZgry/Mlyh919o1MwCuuBZwAdM79lBa8/Ki0PHCUDzviyNwrisMaOx9A47fY2THQheMP6wAuwA7o2bq0+EXd3u4BJHWxcWTgUv96zcDb21QXEnjJzsaEgDUASASYDocCjrWYJGM4jNcfY21YoHCHR4D3JB/w1sYKGEWjGBxM0XcLltG7H31J/3r2NUqmszR18jhaY+I4+t2xP6H11plSU9ZYtmIVTZowVpLd+eb7xXTMH66kp++7giZPGGt5rAAu8PJ6VRAshgChSgTaiHMCQIVXF4kH+AQS5UEcAKaWhup6pr26P0OFPLV99g4tn/0KFbL8xohp9iL9brZQVY9fIBiiiVvvTpO23cOxti6i9xORIAO5WAtuFwRAItkB1jM8x7VAAcFJCp4zyM050dsGaGZBelU8iSnnvjTXI6jQTzhRjg1HY93CHQd5Mm3upOc86dfNTn0Pr5vWrEJbi5a20QlnXUtrrTGBtth4PRYAtst2m9GYlkaWfrjWyz+f+i/d8eBz9MaTN9saKl7Iq3vTnqXJrRfSgrrFNVRPHkBXlNiSJ5CwZSSdiyHCP1wAQLlzRf32L96jVNcqav/sbdYcKA6wK/7HJNzK20OYDnHMRttSfMxEmrDlzo64uugAa6EYmObM22k6UIHbWxcN8emoa0S3F+Nm2sLhAEss0p/S15jWmx/sJiZzsDJ/L68BuIfSBjYefvEtYMcChTsPtnO5a9dyJz7rWlteNeQDXq8s77DfbC5Pc+YupPFjm2nC2BYGcpcsb6eHn/wv1dXFab89tqs5L6841VwuT2f/6Xbq6x+gu68/h8DxnfPdIpZAI2TCbwQns2cw61laWQSOwVvoJhiFXSA8Xx+Dp42PLC/Xq6teVqMN8GL+hVyWln8wi1Z++JpkDjFDW6aCoBf0hcnb7U3BqDKg1OqjDgoGjrix1iE75/ZaMBoHS2IiBDjWim4vOOzxCEfwdGOTaYV6gexlwyWzIJMYrA9TCNlD/OJbwIYFfMBrw1iqS33A69x2ntYEb/Hdj+bQzJsfpIVLVkpjgefgiJ/sTeefdlTFx4esb5de93dasGQF/WDLDemmy09h6hFGpau7j6VIPumYg2nTDdehm+58nJ544Q3m7W2oT5QcLzxzfcmsZ4oDfEYkzlVpMhwpw5u1qts9fqbaiOCAdvXVRvKBii9IVQeL33xO8vSKX+HYG8Fu6ay7rt4xG25Na+99mGOvLtYWjvMBONMOAhTdsG1TIsy8vat7UpSrnGPZ9lChg41Mi2aygC31YSa9Vgv0DLNJgsoAgO5nWDOzlP+92gKFuw7xxCjcCc940q+bnfqA101rVrEtgNxTL/wLwWu6zebT6YQjD6JIOER3/uN5evo//6O7rjuLtt1ig4qN6IPPvqELr76HtttyQ5o6eTy9MOs9mjJxLF1yxrE0YZx+trf3P/marrjpQfq/A3enBx57mVExfnPEAay+WQE8wbErIrm9KJAmw0uqbzBbNh9U9Kjxnrxc2e2VsgdAVDqXp2S6hhBMFW9gPpuhuU/dRQNtS6ReoxGOhgpE2Xz5FIfE+Ck0/aDjKJyodzQrUC4AdqHEALDmdapkpuQg6faCR+5oWq5WwiYeWdoioSB7XvRsBDs210eoq7+2UwqLhoEnH0FrfvEtYNcChbt+YreKK9dzJzztSjteNuIDXi+tX0bft9z7JD3z0jt00elHM11eBDqhwIv6sxMuph232ZRmzvgN+yyVzlAsGimjN23V2x94hhYsWUkX/fEYqq+L0xdfz6eLr7uP9t1tWzrhqAN1KQqPPjuL/vy3R2if3X9Ae+28Jf1wl20oaONID8E1Xh254ogVL6mBlHMPEo7V4dEFqBgsU2LK6s0cbpmnrM7LznW5dJLaPnmLehZ9S4Pty1hV3E/8r4C0xQ6ksGIt46l52sY0fsudKZJosDMc6VpsfOqiQZ53WiOBYxicpNsL3nO+4DqNx5GxiJgeNRQmEMuJ3wJ54g08U9DKRoCfu757p6M1rgevLjYV+C3wi28BuxYo3P1Tu1VcuZ47/ilX2vGyER/wemn9Mvr+6z1P0uxP5jAZsrXWUGZuguxXJpujPXfemj7+fC7F41H6y59OLaM3bdX7Hv0PffbVPLr4jGOotbmRkAnun0/+lx584hV66K8X0MTxrYyj+6/nXicoNZx58uG0urOHJc5Yf92p1NRQZ3s8ACbw4CD4qNoFIABBMU45gnhZ18VDjI+YzuQr6tWV2wZAoLUxwjLVIQhotBZQgJIdbfT9C/dTpreLmQH3lGW5GiICt9dqCcXqaN0Dj6H6CVNZI+Jm02p9XAevLhJJ4NQinSnUJEjD2oHXFKAXaYzLFA2xYx7Da3HPYuEg8/jiWRKDSAGEwYcdDklWsPGFrrefYc2VJTHqGvEBr/Nb7gNe57bztObsj7+m0y+9ha6ccYKUaKKvf5Du/9eL9Pd/vUTJFC/hFQ6F6Kf770qXnPkrV8f75nuf0YXX3EPXX/I7xt9FaVvVRWddfis1NdbTLTNPI1GHF1SGFx68milLlFPA4wXghXfHiwLACxknO+AI44QYPugLnf0ZT0AnwBU8SvB+VVJWzYt74qTPD/86Q1ENHjcER2WyeUv3Z5tTrnIEcsVO6+NBlmWspz9bdqIFJ/O3WwdeaIBzrF+vKRfi2HnJPT7oq707zbjH2LkMB+oOgO7YxqifYc3uQvSvZxYo3HOoJ5bgfvOkJ/262akPeN20ZhXbGkym6c+3Pkyv/u9jOvbwH9G///seC14b29rEFBzGtTbTcb/YnzZef21btAGrU+js7qOL/3wPCza77KzjKBLh+Wg33Pkvev6Vd2nWYzeyvz/87FtGeYASgxsFySfcVkqwOi6oKeCligh6syKmToXnCZ5ps4Abs/bK/V7kZiJrG1K5juYCb2/vku9o4X8fo+xAHzOFmKEN2dn01BFC8TqauttB1LLeZsRxzo6iQaGALjLSA3dXQFu3kveUqYnEQ2yziU2TExpIJcYHyg6esQDxNKHhsLYBzuHh9YtvAScWKNzzMyfVyq7D/eaJstvwugEf8Hp9B8ro/9mX36ZLrr2PGusT9MPdtqVJ41tp683Wp03WX5tiscr+oAI0wMt79S0PM8B9+MF7Ej6788Hn6B9P/ZfefOovZczMuCpetp196YrrqeqNAC995pkzASvidWijHM6v2wZkslexEGUL8IRVT/bK7Xm40d5QocA4vQtnPUG5wX7WJI7LAUoBfgHoxCP8YCRGa/3wZ9QybRMKONS6BijD2kG7w+HYXc/GoNvHoyHGpcUcUlnrNBA37plRGyEO1IuwpMFb66cYfsKJSq6Gkd924V6PAO+vfcA78ldXDc+wfXU3zVu0nBrq4jRtrckUj0XKOmq1O9V0OkMPPflf+vuj/2GKC1MmjaMXXnmX9ttzO/rjCf9ntzlL1+fzQ9TenfKE84gXPiKru/r1M1+JPN9IOEi9Axl2XF3pRAeWjCa7SPQ888kGcqOe4jDQtpRSPR204KWHJSsB04aD8MwXaPIuB1PdhDWobsJUx88WvLoA2DiZwJoY7oWpSoBCECDq7vM+SAxrGs8luMbg9+YK4BznPPmNsHJvkf4YPF6/+BZwYoHCvZV5t5qNhfv142aX1Pz3voe35m9R7Q/wP7Nm01mX38Y0eC8+/Rj68d47VDTr24rOpCdAEoAWR5F6mcvgGYTnBgF1XtMXrKwYgBbolq7uzdTM8bSVcVfqmq55X9G8fz8oNY97veUhR9C4jbd1nKkOkGZsU5StVWQJHGkFknfwWmNuXlIc8OwhILRfkAwERzoeCTFFl1rcYExqjfv83ZH2MFRxPoX7Dqtib8WuuOMe86RfNzv1Aa+b1hzFbWWyWfZihxawk6h1O6ZDIgWoJXhRkMgBL1JRnxQv24ig0TuQzlnKCOXFuPX6FHmZGHcmU6iJKHwvbZPPpGjhrKcon0nSOnsfxrR1m+sizBsHzq1VUAegC61fyE5hA2SF8+3lvMvpW1QfQTAb6DteKDng/sDjDI1u0X8uZjBknONc7XCO8Vsxtsk4OU8598KvOzosULjv555MlDvuX57062anPuB105p+W1WxAF5iel7WanTOi/Lzx9Pi0S6AEAC4VUBUjXFa7YN5x2JB4gIBJuo/HOdgda5Wrstn0lTI5ygcL8rmAUyB/ww2wkCy9FE5o7XEQiwNNSgjtehhtGIHO9eAAgJuONYQ+LPV3ozi3iApDFKPywtLTxzlKBoKEjZ1GJvXFCPIvDE6iF98Czi0QOHvHgHeY33A6/CW+dV8Czi3QD5foLZub46IEXyEl3uuwPNzEfxlV6bM+cwrUxMeyTpIZYWDjJ+sp1JQmZ6HT6sifxunF0abLWyAsHmANBbWxGiyI9YQshE21kUomy2wNODV8vYmIhxxJTR4keAjFuUoGOA99V6CXqRJBhD3i28BpxYo/P1wp1XLqscd+2hZ9Wuhsu/hrYW7UKExINHDXf94ntZbZw067MDdK9SLN816xeMF4G1tiNJAMks9HqU5rpTFcTwND/bqvjTlvWGMVGpqrrULTVrIc3UPZCidLQagxSN8IgmA4dHuJW9MhBi3l08SU/kgPRawhvTZmdKqEdiMQEsboDdlcq1rC0bV0OQx8Uo17bc7SixQuP8XnsyU+9UjnvTrZqc+4HXTmh62hUxny1d2UNuqTvr0q+/piRfeoI6uPgK3dvONptFDt1zo4ejc77raerzgCdZFQ8yLBeH4FZ0p9ydVAy2y4Lu6MGVA20h6w8msATOUHIKoaQzQlM7mWdIDRglJ5pjn3y/EtHGR6hcnIKASVNLb3doQob5Ba0k8QL8ALxu0JGRpq+bmBPbAhtIvvgXKsYAPeJ1bzwe8zm3neU3o3n6/cBm9/8k3DOi+99Ecmrd4Oa271mTafuuNqak+QXO+W8TS+V565rG0xSbreT5mtwZQLR4vDh8TMR7oIjAH/SLyHoFrmSp4r9yyl512cOIKTxhCyZH6VgzQs9PGSL8W2q8AL6EQxxJJIAuZl0fltWhv2AibAWwQEdBWKX3cMQ0R5k22utcAzxoBhaCgwAMN7no1Cjzf9XEf8FbD1iO5j8IDv/RketwxRelGTwbgQqc+4HXBiF40AR7rS6+/T3c8+BwtXbGK0pksrTFpHP3miAPoB1tsyDRxWdrNjm466JjzaJcfbEY3XPZ7L4ZakT7BkVzdU1keL7y6AH7wTsm9QXhxAdz0JavzoqyIAU0aFUEBPHUDST7S3S9FC+B4PBriWIAWqAzw7mKN+EVrATG4E4DULGmLXfuJ0m+rHPwWiIAczzkyEFY6bTI80aB6+MW3QDkWKDxwRDnVHdfljvmn47q1UtEHvLVyJxyM4/1Pvqb5i1fQPrttS199u4BuvPMxmjnjeJZOWF6O+v0V1DeYpH/+7SKqS4wMSRwcSVaSLxkPc9RQF9b15MLbi+PJboMEFA5uZc1WARgY2xhhqhQjGeDbuQGQpisUhhh4A4jD5gA0EJy4gNfte3r1rQmd6mg4SB09KXJr/xQLBygR47nTTgsoKowWUcFNC6hC6APebr/4FijHAoUHjyynuuO63NH/cFy3Vir6gLdW7kSZ4/jm+8X02xk30Dm/+yXtt8d2xHEBGkim6Ou5C+mU82+mNdeYSHdeeyY1N9aX2VNtVC8MDTHdTRyVulkA8BAEA0BjJNOFI3/IC5XzknVzzJVuC/PFyxqpZGHv0QroAIwamSwdD3blBZ5GBLNBf7en3xqftNL3rRbbd1u3F89qXshiV858ocKB+xfkOMYHxj12k42NlMygwPgCDeXcJb8uLOADXufrwAe8zm1XUzV7+gbo3Ctup66eftpjpy0pGg7TspWr6bV3PqFCvkAzTj2SfrTndjU15nIGA28avI69Ku1Np23iRQSuLjwxSBZgdjwNLx8SYFjlDTodV63Ug10SsSDzZqZZsNbooThgzrzOLLF5A/gbFXBWAeoAmLCGKhmsVStrw+443NTtxXOIja9b0oC4f5Axw4Z6MOXe/cOJEKhQlU7KY/de+NcPPwsUHjrKk0FzRz3kSb9uduoDXjet6WFbAIALFq+kG+96jN6a/TkbybjWJjr8kL1o+602pk02WKui6X69mPpgOsc8beV6HBHAghcdD3RzloK0kJYXgNutF60X9rPbJ7yYkTDHPODwfiMCf6QXzLmlIcIAEDx/VgL44C1EIgTYajRtiuysBbVuLzauTjyq45uitBobTxd3ntjY4PcA3GNkySuX24u5gucND7JffAuUa4HCQ0eX24Sj+txRxdTrjhqogUo+4K2Bm+D2EJKpDOVyOYrHoxQKBimTybKgtu7efkZpaKhPuN2lJ+0BbIJHCz6vkxIMEDXVR1gWrVW9aSrYaKY+FmTeXTNPsJNx1XodAIIxTdAiHtmBWgA8TYkw2wQ5SQ8savYiA5hXuq+1vpYwvgYkPYkEqWfAnqcWQBKJHFZ2VUYikK3zxij7fRH52k7syaT+BP6yk/p+Hd8CcgsU/uER4D3SB7z+SqxRC/T2DdK8Rcuos7uPXn79A3rj3c+osSFB11x4Em216fQaHbW9YcGrg8xg0EK1U/CixAsWfEtISjkBM1AvAN/PbQ6xnXl4eS3jPMZ4tQooFYykFLoiHxceWmyoyqElYFPVWB+moQLxHmInbkwvb3SV+uaz1IWY7B82slb0caGS0ZAI0epe5wFrVqZXH0dqaY5Pm5zO2/ZEI1ANHHg/w5oVa/vXmFmg8I9jzC6pyPfckQ9UpN1qNup7eKtp7Sr0BV3eV974kOYvWk6ffPkdZbM52m7rjSmZStP3C5bSny88mTbfeN0qjKQ6XSBwDC9JqwXeXHBR8daCd9YpUMPLFoBoNCsXABji6BcSXbDDSPBisvUR5aWjIFVlBXiZrT2JA8yBAzxka72atT2SvscmChtR/A+nB6W40pg31h28sH1J68+/U3thXWCtY81jg2dHgxtgHoDX5+86tb5fT26Bwj9/5YlBuCPu96RfNzv1Aa+b1qyBtr6dt5hOOucGWnPyeDri0L1p2lqTacK4FurvT9L1dzxKCG7725V/pFg0UgOjLX8I8LD2Mikoc9cZgAz4un1JPoreQhXDAfLAOcS8di7SB8s3iActREK8ssVgJs8CfYZrwfpgaYOZykKhrPWhZwMogOBoGyB6NEjaOV0HWE/w9uL5RBpgo4IgMHhdqxVAiY0L7iFoLtjcMcUSC5MEMG+qGxm/txam619SYQsU/nlshXvQb5474u+e9Otmpz7gddOaNdAWgF8mm6NoRJvR5+U3PqArbnqQbr/mDI1Wbw0M3dEQAB5W9aRKghO8qFrrIwwU4wXqBkCFN6ohjsC1nGMvsaMJ12glRN4DCOB+IAmDFSBQK1PhKS44Huf1XN3w6paaWysoDkRso1YOXaJW7FepcUDGC4oXoCyo7QRvKyg1nb3pqtNE8HvSlAixxD4dfeYZ9pCZEcoPfvEt4IYFCg97BHh/6QNeN+6f30aVLLBwyUr6z6zZ9LMf78YC1z787FuaPHEsTVtz0rA9boMXaGVXUhfwAoTFwjgi5fl3UFVwq4g8z1Q2z9KT+oXY8TIy04GziI1FpYGjGzbHWDFmBCYBqLuxGbIyLniT8T+sSRyR+0XfAtFwgOqiIcoJutgILIXd8EyDRuPls8ePI0jpTJ7RL4w2Lwis8/m7/gp3ywKFh49zqylb7XC/vE/3+tWdPVSXiFM8Zn6KgYD6ru5emjh+DMsVUO3ie3irbXGP+kMq4q+/W0SzP5nDtHp/ecgP6Zq//ZM2mr4WnXDUgUzNYbiWVd0pjZcVL0S8jAr5IcbFrIQnDUAJQHo0SZNZWSM4jga/eTCVq9pxs5Vxya+Bly7BAheDDHB6IbEGbicoNlib6B+gzi9aC+C9iDXFvyB5KhKoM7VgL3FswWCA3UM1vQIUiPHNIyO7pb82a8MChUd+7clAuF/cq+h38bI2OvncG2jR0jb2+aEH7EYXn/ErCof0scSpF9xMs97+hF3b2txAP/nRrnTmyT+v6lx8wFtVc1e/s/aObvrXs6/Rex/NoZWrOqmzq5dxeh/86wWUz+eZNu/Y1qZh6+GFRfGi6ernI7XxAoLUGP4Lbc9czt2MSfI7yPMM+QQDflFaAJ5TSLcBlCAxQC0VUVsXm0B4WL0ETlin2JxBtxcUB3/zpL9SECTaVAfQy1E6l2cc6HI4+G6vR6QbB8UCBacb4tjqEyFqjGvpZW7377c3eixQK4D3xLOvo/q6OM2ccQKtbO+gn590GV18+jF00L476d6MW+59ivbd4we05pTxDI/8/vyb6JHbLqbNNppWtZvnA96qmbq6HX30+bf0pxsfoCXLV1EwyFFrcyMdfsiedPC+O9GYlqbqDqbCveHovL07xYTi4XVFAomeKoAsAJVoGPqhxoE1FZ56TTfPuNOITiequHSUVUMAYI5rirIj6Fq6b1hLCPzDMb0X3mar9vPiOj7YL0IDySwlMwWCTBg843Z1e6sxdgTS4XcImzysMZ+/Ww2rj64+Co/+xpMJc4ffI/WL4PedDvo9PXTLBZLM6cybH6SV7Z3015mnWRrfXoedTr84ZC868aiDLF3vxkU+4HXDijXYxtz5S+jmu5+gTTdYh35+8J7U1FjHRplMptmubCRJ5CALFviXUE5AEJkdyaBybl2IC1BjHR/o5BdjCzTG+eNoLwP8GIUB2bNCHE9hyNjIMlKlm8sCIRNhClCAKYkMBw50pU2DoDWcpOAURc515nV7g5JKQy3ZSvT2gl8M1Q8vuIqVvi9++95ZoPDo8Z50zh1+t9TvvIXL6OBjL6DXn7iJxo1pZp8/+PjL9MxLb9Pjd11mOj7QIA446ly69arTafcdtzC93q0LfMDrliVrrB25WkMun6dHnp5FS5a3s0QUY1oaaa3/Z+88oKOqujb8Zlp6CL13kGZHxQYWEDtF/RRFEBUVBUSkCgICgiJKR7EACipKsyAIKEoRBQQLih1FpEMgvcxMJt96zxgETciUM3PvJPus9S+/H+49+5zn3JD37rtLraro0P4SxMeVjvgyen/oHQt3GCQ9mE53PjLDUAvUZI+YX8tRMdV2qzc5TGPyoC+L8GbV20FXc2a229AQBl/Wy1AQu92C3DxPmU1oK2zvy+oGfJktql728bq9diuy8sxVB5rrp9hNkHAGXx55ucYPAp6F9/lxtb5LLbe+fHwy1vi/s884fL5sJsolep1pC5etxax57+GTRZNPaTQzKwfd+o5DuaQEzH5usPoCHa4hgjdcpA2yQ4E7YPRMfP/THyretF6tath/6Cg8Hg8e7nkzbu/U1qCV6TVL76ERn6iZfU3Ry25vjMGUUTwBesRVHVpP+OrQRtuilNeUzUmYvGimuM9TPSv8WkHBxMFugmVpqDj8eLtK5svMdZfY8pt1e1kTm8NM9Y353DHESoYQ0EnADIK30MO7bulUlQPE4YuHl1Ua+o2YpkIf5k0bhuRyCTrRlDiXCN4SEUXuBfTsDh47Cx+v34a7u1yLh3p0Ol6f96XXP8DKTzfj6WH347SGtSN3k3+v3Ony4Eh6nmH7KJ/g/QVNL3OkiCqjYFVMdMCDAvWCwjJToRpMIoqPtSElLRfuENoJ1fo5r2pJGwUcDbLFcSjXqHNuxntXTOILpLdMnD91K1gbl5VZWBvXDCEOPDuuR4YQ0EnAs+h+ndP5PJflfy8dv7aoGF7mDB06cqzYGF7e02fYVDidLrw0ceDxMEufF6DhQhG8GiCadYrDKakYMPoFJMbHYsb4fifF7f6ycw8eHDoJTw69Fxe1bGGKLTBrfscvu2C3WtHstLp+rYmfylOKKFDv1yRBXFzYPpYeXyNjVYPYQlhvZeMAxmcyNlN3pyyeAeN1WSmCojoUJenCCet4vVeXt5OdPyIwnOsM1hY9tfSK8uU10JbdJ9bt5c9hvkEvOvz3oFJStHoGZQgBnQQ8ix7QOZ3Pc1n+9+JJ1/YcOBFJCXF4ckhP7D+Ugi69xhyv0pCemY27Hh6P+7reiOvatkJ2Ti5uuW+Uun/SE70RF+sNpWTzFvYCCNcQwRsu0gbY8Qre59Gofk2M7H9y/202oaDgfaxvV7S5MHxB46fCkJ2Th4Fjnse+A0cwd8pQlC+X6DM1j8frMTSyiD+9UxRyTKYpzNL2eQNl8EJVVSPOpmJV+elaxyhsH83ngGEM4Y7p1rGHouZgpQKGOBT8/ZnfKCEXqv3FOrw1idmemm17gxkMiYiLscJmsagyb0aUDeSzzcoS0nAimJOUe4si4FlskOC95WTBy8Qzlibbs/+wWmbna1tj1IAeqg5vWnoWLu7QG48/0k2FTR48fAysyvDvwXq8G96dHraDFsEbNtThN+R252PouBfx9Y7fsGbhpJMW8P3PuzB3wXL0u+9/qi6e0YPxxWs2bMOYyfOQcixd/ZDwh8XXQa8XRWZmjvHxjvRUlU9wIC3bFfQvb1/3H6nXMa6XZaYKW+0GEw7CFw1m9LMms5EduEJ1FhRyTOJibVd6eo0QcqHYm0rSO0VyWqA2+ZJQPt6uEt74sxjMs+XvGhhTzBJlFrp6ZQgBjQQ8i3tpnM33qSy3zCryYopZVn6KhAR4Eby+n3dEXvnLzr9w96MTcHaLRoEobrcAACAASURBVJg5/hG1B3pDXW63qo9qt9tMUaKM8cYr1mxC1Url4XS5MfzpVzDq0bvQtnVLn7lT7JolcYxJR/TwsPmF7k/2PgOJoAspVmMdNqRm+R9/WdjSmN2umLRUWry6xR0fv5JXSIpWMa6s2RvJIQ4VEu3q359jGc6QnZsRdXuZrMbwDBlCQDcBz5IHdU/p03yWm1/w6TozXySC18yno2ltq9ZuUSL3vLOa4Jff94DhDJ9v/R5xMdGqBt5lF52NxIQ4TdaCn4be3ocfn4Y8lwujB96N6lUq+jQpP2GnZobuF6dPizjhIope9cne6SlVn9f95eDr9QxHoIfWn5cEejxZ+YHeTgrAsjL4qZye0ShLlPL2RlqHNnr2+bNBr2s4vK/hrNvLurv07rJ7ngwhoJuAZ8lDuqf0aT7Lzc/7dJ2ZLxLBa+bT0bi2jMxsvPj6MixdsV7F11SqkIyrLz8f6zd9i4vPa6F6YJtp/PTbbjw+YTbatW6Jnl2vh81acrYzM7MpeM30y5/ChN5LerEoyCI9gSrUzwgFLHmxWx5FbHHeWhWnGW0Di/yzo1VZ7E5WGDPOuHHun3HL4fxsH+izoMqIRdtUebpwvqSEq24vE3FYtUUS1gJ9QuS+UxHwLDVI8N4kgleezAgh8MW2H/DIyOm4p8u1qF2jCmbMfUd1OaGwHDlxDqaNfRgXtmwest2kpmXgo/XbVJwP+2mXJGAZ4vDqwpWYv2g1BjxwK95d+Rlu7XA5rrmiVbFrZMc1fho1WwgBhQmTaNh4gYl1/EUvo3gCFLP09FL8phZRZYF/X17VPvYK3bL+EsFYVT5f1qgoxcvMopdnSs8uha5RP6ehrtvLPbK0WmnqZin/XpmHgGdpb0MWY7lppiF2dRoVD69Omiae6/lX38X6zdsxfmhP1KtdDZfd9AgG9LoV11x5AS6/6RFcd2WrkHl5mTTXd9gUuNz5YOmxqlXKY/FLoxEbE31KYuwM99j4l1QYxqhHe+DqK0oWyvTwmjWZh3F9rMvJesFmFiVmeYz5WTg22oZDqbnHedGjWyHBoZpIhNM7aBYmp1oHeannKy0vZPGwwXBgCAZfZPj8m6HKRGHd3iOayxmyq2CFxFP/2xYMR7m3bBPwvNPHEACWzjMMsavTqAhenTRNPBfDGbb/sFPFxLIzytMz3lRNKDpefQlu6zUGHdpfjBH9u2vfATu93dj9MVxzxQXof///8Puf+zB68jxVv2/iiF7Hu7T82zCLVL84fxmOpaZjQK/bir3u3/cxjpdeXrP6UOOjrYhlnGoWQy/Mukrtj0HAE3rLjFmQ4/SoT8QMEUnLdCJf0BXJlKW9YqNZjqsA2exSZgJOhTWq+ak/LdsZ0mYj/j5orNurwivyC1R7Yh2NUFihhWEmMoRAKAh43ukbimlLnNPSOXzlw0pcTIAXiOANEFyk3fbhJ5vxwrz38fTw+9G8cV1s2Lwdz77wtmrt9/POvzBzXD+0PKuJ9m3t2nMA/7vvCUwb2xcXnedtcPHNjt/w6BMz0e3m9uj+v6tVL21WZvjux99RvWpF1KhaEazJywoT9etU96sjC5PzDp7gEdS+IQ0TRtssiI2xqgL7kZ5lrwFHiVPERVtQLt6hQheOmqSLVomLNvACxqomxLL6gbdUn5EhH1wDPc+AeWPYC0NomGzGFuHB1gGuXE4aThj4+Jd60553DRK8nUTwlvqHq7RscPfeQxgy7kWc0bQ+Bj3YBQePHEPf4VNBT+rYwfeqxLVQxJwdSknFDd2GotM1l2LYw3cqnKzCwPjcpSs2YAIF+Gn18P1Pf6ge2z273oDbOlwJ/vIJdBw4mgvG85p5qEYCMbbj7YjNvFYj18aSUvTAsXIDP9fTw8uOejJOTYBCk7wYQpCT50ZWbn7YkbFKSbl4bwWNSEioK1wvEyZZ3jCQf0HIvXqF2LCzFoNlh4Dn3YcN2ayl0zRD7Oo0Kh5enTRNPBdF5utLPwZjeR/rewduaHcRsrJzEBMTozqjhHJMfnERPly7GVNG91HiloMCvPdjk9Gv5y1o16YlsrJz8fqS1Ti9aX1cfN7pQYlvNh6IhKx9anqW1CqAtw6pjH8I8HWHyU3RjElNzTsuPhgSEh9r+7saRyCSpGxR5jPGFre5rnzl7Q0XMZYBo2eXwtGo5LRAT5rrZuIZy6X528CEISVMqJQhBEJFwPNev1BNfcp5LR2nGmJXp1ERvDppmnwuhg3k5TlVV5RQeHOL235GVg569HsKzU+ri4EPdkG5xHglcKe8tAiVKyXj3tuvV2ENugbLkjFxJxIGPUKM+eMLCcWBkZ+fzcKLYoOxuwxPych1/yfBj4lrSXF2JaSycsIn4szCx9918BljwiQHP9eHumwfRR/Pj+2iI03sFrJl4lmcw6pK3nEPvv5csiFIjF3fv2X+nrVcX/oJeN7zNpAK97B0nBJuk9rtieDVjlQmLIrAZ5u/w9gp89CuzXl4pOfN+OX3v/DklPm446Z2ytusU4AznIFhDZE0WHvWbrUgK9etWqGW1UGhxBJbFLIUZ8WRUCEhsTYVusJqDTqSjUo7cwoxMmN4QahCHCiseTZ8jiM9KZPhM4wf588lwzIofksaVcrHgE01ZAiBUBHwvN8/VFOfcl5Lh8mG2NVpVASvTpoyV7EE8vJcWLJ8Hea8tQLlk5OQk5uLC85uhj73dEaF5CTt5FjKipnXkTToVWLMZSbbEZexCg6qPXCcHfxvRo7bp7NTzSdibKBHkeXoyvKLgq/PuerQFmtVbcXJWVd5MJ4FQwH44spa02aoDuErk5KuY91e/lzSy3uq1uVkW7V8TEnTyd8LgaAIeN5/NKj7A73Z0mFSoLea5j4RvKY5irKxkP2HUvDV9l9RsWISLjirKSyW0Hz+42dIZvQzVCCShqozm+hQ8ZZmrSesm2dhnGm2M7DauoXthZnYFmyGve69mXU+1sTly8LRdGfQjVDo0WRyGkMlKKJL4ygU9HzWUjJc/wlxsERFqXh8JgrKEAKhJOBZNiCU0xc7t+XG5wyxq9OoCF6dNCNwLgpCNnjYdzAFDrsNjevXQmJCXATu5L9LZk1eiqBI8/QynJkCggkzjIOMMM3u87PD2FImN3krCeQHJfDphUuKcyA7zx0RFQF8hhTCC73srSpGlS8KvsapnrgkCkB6dkMZJhFCBH5PzbAQhtycWOeYnl0mWMY66OH2e0q5QQj4RUAEr1+4TrpYBG/g7CL6Tgrd7376Ax+v34pvd+zEr7v2IjbagQvOaYbO116q/lsaBn+Zq3a+ur7dhgkKRW9irF19GqZoL22j8NM6xTzFkr/Z8EXxUC12o62IskSppgs65ixt3P+9Hz5nfOFgU4gMViXwIwyIzRXIm6zZGKSsDDJjqbzCur383+LZLSunb/w+PR8MNGQRlhueNcSuTqMieHXSjKC5WPd26LiXsO/gEVzV5jy0v/x8pKZl4NW3V6omEKsWTIyg3Zx6qfTwej93h78WaTAQCwviO+wWVbastMRFUuzy86/TlY/M3HytHmzlNabXMd6uXnQitUpAMM+Nv/fSKUlvLz2XeUxoyzu1eOX19AzzuWRMa6R9QfGXT3HXMwGQtbSDqRmuay0yT9kh4PlgkCGbtdwQ+ZpABK8hj47xRh+f8Ao2bvleNZ24tNUZxxe05Zuf8NDQyRgz6B5c17aV8QvVtIJ8jwepmZEpgChEWCKJAs4fD5wmdFqnoTeR8aN8AQmlV5Cit1yCHazJLJ5e346QLyIVEu3qGUvLdBVZIaOwPrJq8ZztKrPVMfiCkBzvgNUqMQy+PV1ylS4CnuWDdU3l1zyW65/x63ozXiyC14ynEoY13dXvKVSpVB4j+3c/KWY3NT0TV98+CB3aX4Lh/byd0UrLYFgDk8H4CT3SBis4sBoB1x6JiVmF7W75X754hMNbzc5Z9MIxNpVluAKJUY205yTY9VK+0TvOrwtMmjzRQ86QkXJxdrg9f3cii6x80GDRHL+fP4sMN7LbQpNwq22hMlGpJOBZPsSQfVmun2CIXZ1GRfDqpBlBc02fsxQbNm3H+GH3oVG9mmrlbAbxxbYdGPLki2h51mmYOf4R2G3egvWlZVD0ZOa4QlaHNJScou0UcHYVmhGqOqqhWD8/f1Ms8dM3k9PCIXYL93FiWEh6KfCQh+J8ippThThEW9WZsfJCYbOPXCYXOvWGoYRrTzrsqC8UsTbV4tqfkXIsHavXfqlautetVRXXXtEKMTHSkc0fhnKtl4BnxVBDUFiue9oQuzqNiuDVSTOC5tr11wGMnDgH0Q47unRsi6Ur1uNQyjEcPHwMGZnZuL7dRcr763DYI2hXvi2ViVJZua5T1tT0babwX8USUMmJDhX/eqqaoOFfWdEWWW3CYY1CqsFikyEhsTFWZOS44HSVUdeknw9FYfUBPnN8SWEFjEj8uuDntou8nLHhTE5jNQaWIPNn8N/UZ2e9jc3bfkDb1udi01c/4MpLzsX93W5UXSdlCAF/CIjg9YfWydeK4A2cXUTe6c7PV+2F9x86igkzF+DzL79XojbabsdpDWvjgW434pzTGyEutnQXUKfkYVY6u3RF4iifYFef6Ol9M2PZMnp0k/4OJ0jLNgdjroltnOkhL631YnU/y/x8z5cWPmNlNQnQK3atfzdG8U/sshrOc7MWqmo4z456EKc3bYDtP+7EIyNn4MkhPXHxeS10H5nMV8oJeD58zJAdWq59yhC7Oo2K4NVJMwLmWvPZV5gw800489yoVaMyKpZPwmUXnY3LLzoL5ZISYGWQZRkZ/CXOOEUKX7aojaTBX8L8tMrTYniDO5xxAiWAYq3SeLawDbK2bijOg9woej1/vyxIXG/RlPnFns8XXxIodFm2jJ/z81zeGPKywo3PS/zfnt1A2p9/tuU7jHxmDvrc3Rkdr7lU/fu68899GPDE8+rP2rVpGYrHXOYsxQQ8K4cZsjvLNeMNsavTqAhenTQjYK6fftuN9Zu2o17tqjijWQNUqVi+TIncoo6Iojc92xlxGefK8+SwIibaqjzVRpfg8tYnZbyuBdm5+chzm7M2K310CXHeOExyK6tltYr758rbVcxbA5rx7oXvUuQV67DAYbciK9f45y3U/9yyAgPLjlHoBzIys3LQ6Z7HVU3zYX27IiE+Vk3z8YZtmPLyYox/7D6c2axBIFPLPWWYgGflcEN2b7lmnCF2dRoVwauTZgTMxU9s+fke2GzSAvPE4/I2qHBGpPhx2KNUiSQjW+sWZvDnuvLDnpgW6I8dE7PoxYy0JMBA9+vLfez0TQ+4tx5v0clpqkMbuZnQg+/LHn25hhxYkSI2OjCxSxur132J/qNm4s3nR+Cs5g2Pm+3a50nUr10dQ3rfXmq6WvrCVK7RQ8Cz6nE9E/k5i+XqJ/28w3yXi+A135nIigwi4HR7u7K5TOqZPBUWluCi6GVtVO4jnIO2yyc6lDcwu4SmBeFcly+26M2skhyDHKcbaVnmiDX2Zd2huIbtmZPj7UjNcpf4DNGbn5zgrTJwNN1ZZM3eUKwxHHPSk8245WC7p02fvRSz5r+PrStfRGxMtHI0TJjxBjZu3YGnh92vvrD9e9AhkZPrBP8bHW2HzSqOiXCceSTZ8KwaYchyLVePNcSuTqMieHXSlLkingDFLkVvuEWjDnAO2z8eS3otQx3WS2HAEAaWrGJogNMdWXHQhcwZ4kCBwzhuhmKYKR5ax3Phyxw8RyaoMZnP10YdhTV7VWgIWzm7PBEvfPnypiqL2IMXmlu+/hG9h03F4Ie6oF7tatj+w07MfPVdPHhXJ/S84zoUFRO8YfN2TJ/zDrJzcnH15efjmisuQOP6tXw5QrmmjBDwrDZI8LYXwVtGHjHZZlkiwIQc1myNxAYVFB/8TM+0erbtDVVyUWFTB8a/Mp4z1OI61M8fPb1s7BHN5h55bE4SXi95qPd3qvkT/05O40tLIJ38GOJAdnxhMGvVEF/40qNLFroaSng8Hry/+nO8v2ojdu7ah4T4GNza4Qp06XgloqP/W4M3PSNLxfy2PLMJWrc6E7/+vgebvtqBcUN6qgo6MoQACXhWjzQEhKX9GEPs6jQqHl6dNGWuUkMgkkWvN7PcqrxU9FbrFr1MXGJN0sK6rJHp1y36UaWQr8DwjFx3RDX3COQHjx7a5EQ7PGwuwZeWIDQ+Y17ZfaywqkMkJQLy5yXablWJely/7rH/UAoOp6QiMT4OdWpWLTZJOCc3D+dd8wAe6tEJvXt0Av//m3uOVE0q+t57k+5lyXwRSsDz0ShDVm65arQhdnUaFcGrk6bMVaoI0GN1LMOlSjFF4qC3il6rI+l52mr1sv4vPWBH0vIi3qtb3JnS28uYZJ47S75FWMU6nx5VVSc5jm2XvfV1dQ12A0yOj0Z6jkslL0bCYChQ+SQHrH42lAh0b/Tcjp/2Onrd1RGtzmmGPKcLazZsw4J31+CX3/egfu1qmDq2L6IsFtzYbagKaxg96J5Azcl9pYyA56MnDNmR5Spj7OrcrAhenTRlrlJHgGKH1Q8Y3sDarZE2GJvJskrcQzBly5jQxIx1JtNkZLsjPlazpHOk6I2LsYFiyBufHIT7syRjYf57xuryucjJ84QkbIdimi9bqpW0M9+0lU+ob/lCyGTPMGldddLbf/wdL7++DD3vuB5ntWiElZ9uwcy57+DKS87B1VdcgIkvvIWUo+lITIhFlUrlMbj37ahepWKYnxIxZ1YCno+N8bRa2hnjWdZ5DiJ4ddKUuUolAdWKOM+NTNWgIvK26LB7BQ4T8piU5c8WVM3av2M86bHLdZUe4efLSVIcJsbZlchnImCkj/gYq4q3ZaxtMC9AJXFgiEOs3VsjmnWuzebttfydcMkwjHCKXXJzud1Iz8hGUkIc7HYbBo+dBZc7HyP6d0OF5CQwcW3EM3PQq3sHdGh/CeJio0vCLX9fhgh4PjYmltbSzpjYYZ1HK4JXJ02Zq9QSoOhlMhM9pZEoepnMlhhnU17qdB9b/dLLyTJVFmsUjmU41efvsjj+8Vh6kJETuaKX589wlDSepT9vPUEcOsuXMSaa3dnoKQ+T2VOuuLBLIZtKBNI9LQgcRd76/Kvv4tc/9mJE/+6okJyIX37/S7Ue7t2jM65vd6FuczJfhBPwrDFI8LYVwRvhj44sXwj4R4BevtTMyGtFzF1SwLLkEkdqluuUsanMvGeMJz1zrPZQ1gdFEpOamNR2NMMZUS89PHeGGNCrWdK5h+KcCzu30X4okij9WbMlyhtuwcYZZhmM6R321Ms47+ym6H5Leyxc9imWLt+AqU/2xdktGpllmbIOkxDwrDGmPJilrTHl0HRiFw+vTpoyV5kgEMld2VTN2QQ7ohCFjBzXf+Ir6ZGLsXvLc5WF9rH+PLBkV+glZYhDJMT1MvaasciF5eOMTMBjWE1s9D/PVbjXQu92YSKnP+cejmt37TmAN5euwb6DR5S5NheeiY5XX4poh/cFVYYQKCTg+cSYjmeWK43p8Kbz5EXw6qQpc5UZAk6XR2Wi87+ROCg+otloINt9XPSqxhUxVjjzC1Rr2UBqskYiC3/XzLhexsHy7Nl+16yD62T8NeO26ak3QzgBRWdstEW9cDHEQXfJvOLOgs82Y7H55cKsw+l0IS0zGw67TcXt2m3m8UKblVlZXJfnk3GGbNty5XBD7Oo0KoJXJ02Zq0wRcOd7cCwzMlsR86D4y58eywy21FWf7G3e5KwIFfHhfPhsf8dE0yafAbONGHW2dqRlOtULjJmGiqGN8ZbMS2F4SIiD4hm/zjhiXQ0lzMRS1lL2CHg+HW/Ipi1XDDPErk6jInh10pS5yhwB1uo9nJoXNk+VbsDRNgsqJDlA8e5tqWwucaR7vzrnY4gD6/UyRtVMcb300rORAhMszeyl98aJ21UDE1ZyCEWIAxMOKXZtjNWRIQRKAQHPp08ZsgvLFY8ZYlenURG8OmnKXGWSAGvTHs30hjfwf0fKKGw+wCUzW51ly9hhLIK2YArUhWXbmNDIagRGDXoy46ItKjktMyd0baV17q+wegjnZIiDzg5tFNTlExyKhwwhUFoIeNYaJHgvF8FbWp4h2YcQCIoAYxH5CzubgjGomcJzM9sD85MyE/DoXVPCI9am1q6z81Z4dmO8FcaIssatakntY9k3nasuLJ3mcheomtGR9NLCEAfGRFOguvJZviz4uGgmxyXF2mENQatgnecmcwkBfwl41j7t7y1arrdcPlTLPEZOIh5eI+mL7VJFQHVly3EhK8dt6n1VTHKo9aVnnfzJO5JLb5kBOJst0KPI54AhDuEaNtpNdKg2yHx5idShwg8SHMhz5yONceUBDordcnF28ewGyE9uMzcBz7oJhizQctkQQ+zqNCqCVydNmUsI8NNsrsvbftdkrl4mWiWxDm8UcCzdWawnmln09LjRU6nzE3NZeTgSY62qJTG7mYU6Jtpui1KtcVlizshwCp1nm5xgB+vlck/0WPs6Cj3FrDVthoYSvq5brhMC/hDwrHvGn8u1XWu5bLC2uYyaSASvUeTFbqkmkJXjUg0bwlV2qSSY9HoxQY21Y33xAlLwsqxVWWwnXBJLX/6eISOx0d7GHTkhaEnMsFSeKYU1PbuRUBPYF26F1/zDz1s1pKSXR8bpsvIDG0pIxK4/pOXaSCPgWT/RkCVb2gwyxK5OoyJ4ddKUuYTA3wRUK2KnW3l6jRS9hc0SmKWeybrBfnjMVNmyWJsSbBRVMvwj4CC/GJsSozqTAenJ5LnwbM30UuUfnZKvpphnEh6iolSYUHEVJ1T3tDib+iohCWolc5UrIpuAZ/2zhmzA0magIXZ1GhXBq5OmzCUE/kWAmfvhjOc80TxjIhnLyJJj/LweSLlTVnNiXCqT2ziHDP8I0BNLr6PdatHWVpdltli7lmXHAjlT/3Zg7NUU9+z8Fx9rVTHnRb2wVUyKBjvKSRiDsWcl1sNDwLPBIMHbWgRveE5YrAiBCCZAwXkkPfQF9k9ERG8XhVZmtivoRhL0JLJWr/JU5pgvNjkSHg1VG9dhVaI30LhoJsWppC5XPjI0VDKIBG6Fayz82sAXSHa34xcUb5JgtKm7p0USY1lrZBDwbHjOkIVaWg8wxK5Oo+Lh1UlT5hICxRCgWPR6qEJbp5VeXYoD/h/DEOiZ1TEKPZUUv4wBDlS06VhLpM7Bds6Mu83KdSPP6fGrfF1hGTmztzMO5dnwa0NCrB1Mvsx25iM+xqZimGUIgbJEwPPZJEO2a7n0UUPs6jQqglcnTZlLCJyCAEViapZTNagIxaDIpahiA4kcp0d77HBhFjxFm6pAEKJ9hIKNWeZkVQV63zn4QuJLfDcbW9itUaUyOc3fc+ELFyuNxMVIcpq/7OT60kHA89lkQzZiubS/IXZ1GhXBq5OmzCUESiCQn1+AY9kuODVn7vOTOasChKM8Fb1qLB3Fz/O6PMhl6cHhiwMrCvAFpaSWxMnxdhX/ezTT6ZM4Lu0cmQhYPsEOK+MZZAiBMkjAs3GKIbu2XPKIIXZ1GhXBq5OmzCUEfCRAschP28EOhhokJ3gbSaRlu0BBHY5B4cGEOO4j1GEa4diPETbio63KU5ma6fxPBQKea1Kct57ssczwNbEwgoMvNsmBiWlssMGqDDKEQFkl4Nk41ZCtWy7pZ4hdnUZF8OqkKXMJAR8J5Hs8yMrxdsbylFRktIg5+SufopMhDO6/2xoHMI2Pqy36MnooGUfJJCruI9z2g1q8SW5mreM4h/V4fWRWXWDYA8VwvgfeJEGTrNWoZVDf8jlPZPc0EbtGHYPYNQkBz+fTDFmJ5eKHDbGr06gIXp00ZS4h4AcBlpZijVt6Sf0drMNqtUSp+40MK2CSHMUZR2muCevv+fhzPZOwWHaLXky324NouxVZef4ntvljM5Ku5bPOiiOBiN2c3Dy8vuQj/LnnIBLiY3Bf1xtQsXy5SNq+rFUInETA84VBgvciEbzyKAoBIRAEAXpF6SH1tVYvHVwVEx0qnpNC2Qx1WLkmb8Z8FFIzzbGmII7EkFsZwsCWuDEOqwphKC1tgoOFyRCGGLsloBq7FLsPDp2E3/7Yh6svPx9/7N6PA4eP4dUpQ1ClUvlglyb3CwFDCHi+mG6IXctFfQ2xq9OoeHh10pS5hECABOilPZbhPGV4w4m1SOlNNdtIivOWiSopEcts6zZ6PYXVL+JirMjOzQerMjCUwZcW0EavPVT2+QLAEAaGMgTSUCI3z4kJMxdg1doteHHCAJzRrAHynC50vGsY2rZuiUEPdQnV0mVeIRBSAp5NM0I6f3GTWy7sY4hdnUZF8OqkKXMJgQAJ0NPLovos98VGFScOxutSDFFMUgQZGcJQ0vZYfSAm2oL0LLcks5UEC4ASdrE21T6XIpeee4aJ8OXB5S7Q2pLYh+WY4pLjYjfA0mMMFXp/9UbMnPsOBvS6DddccYHalzs/H53ufhyn1a+FSaN7m2Kvsggh4C8Bz6aZ/t6i5XrLhZH/MyOCV8ujIJMIAT0EGN7AsIDC+qysv0qPH3+Js8NUJDR8YCIWa83yszxjjGUUTYAhIAwFYZWLfyf9UfTSu8m41cxcvgSVjdQ1FdqR4DheqziQZ+dwSioeG/8yGtargUfv/x+io71VTD5avxVDx72EZx5/QHl5ZQiBSCTg2fy8Icu2tHrIELs6jYrg1UlT5hICGghQ7Kak56n6q97P2y4lHiNJ8lCw0XNJoUavtYyTCdBbzwYKp2r9TM8+w1hYniwj142cvNL98sBnpkJitPJwBzN+/WMPBo15ASMe6Y6WZzVRU+0/mILHJ8yGx+PBC888ihiHVwTLEAKRRsCz+QVDlmxp9aAhdnUaFcGrk6bMJQQ0ESgoKFBeXtZodbojSer+A6CwRjDLrjHBTsqWednQs+sVu27k+tCtjmXKmNCWnZOvPOaR+TSc+gfDbmNdZxscdm/Fj2DGL7//eHLA5wAAIABJREFUhRET5uCJgT3QrHFdMHntpdeXYdnqzzF/+nBUr1oxmOnlXiFgKAHPFoME7wUieA09eDEuBEozAbYIZlxnJIcFMCGLDSr43/Rsb4xqWR18AWAVhmiHBVlszezHiwy9nsdDW3LJsfRQLPRic4+BJKj9m8TBw8cw4pnZqFOzKi44pyl++m03Vq/9En3vvRlXtWkJSxFd2rKyc/Hjb38iLS0T8XGxaFS/JipVkPJlpecpKz078WyZZchmLBf0MsSuTqPi4dVJU+YSApoJMIGN8Z0UvpE6+IGaYo2CxpuUV/ZEL2smJ8Ra4fEA2XmBCVbqtLhob/m3rFxzJy/6+qwyTtn7bOhrFcywhZ93/oW33l2D7T/+roRvx2suwSXnnX48nvfE9e09cASz31yOjV9+D5vNCpfLjRZN6uP+O29QHmIZQsBMBDxfvmjIciznP2CIXZ1GRfDqpClzCYEQEGAoAAVvRo7/DSpCsJyAp4x1WFQDgbRM139a6QY8aQTcSM9u+QSHqq7BdtLByv1oFeLgQHq2y6eQCLMiotBNjPV6/0MxsnNyQc9tTLQD8XExRXp2abf7w+ORn+9Bn7s7oUHdGsjMzsVrb69ExQpJeKhHJ9httlAsT+YUAgER8Hz5UkD3BXuT5fz7g53C8PtF8Bp+BLKA0k4gMysHsTHRsAbhxSoUvczYZ3xvpA4mayUzfjW3bNSZtVkANk9g0qHO5D0V1xtnV95/FdcbQY+EahUcY0NijA0Wvg2EaWz+6gf0HzUTk8f0QatzmimR+9T01/Huyo2okJyIc884Db3v7oRa1SsjIzMHURYgMT4uTKsTM0LANwKerS/7dqHmqyzn3ad5xvBPJ4I3/MzFYhkiwF+qQ8bNwlVtzlfdnoIZSvTmupGRHdme3sIKDq58D7JySmcSFmWcw+6tskGvbig6pzFMgpUwKCAjJVREdeWLtiIxzhEyz25xP2Pvrd6owhzGDrpXxehu+eYn9H5sMh66qyPOP7sZFn+wDus2fYPJo/vg7BaNgvlRlXuFQMgIeLa+ErK5TzWx5byehtjVaVQEr06aMpcQ+BcBflK94LpeqFe7GsYMuhstz/SWSQpmZOe61efsSM7/KhS93AMrOJSmURizTEHKUmJ57tBlmNFWfAwT4azqmWCzCjMPVptgHHKowhhOtXe+fO7acwAN6lRXyXHPzFyADz/djA/feEaFPaRlZOH2B8egbq1qmDm+X7EhEGbmK2sr/QQ82wwSvC1F8Jb+p0t2KAQCJOBy52PspNew+esfcPbpjZGekYVRj/ZAtSoVApzxn9vYlS0tyxnR2fqqyUC8XX3W9rZVDhqLKSYon2BX66AADVc1BVY6oDc5Ny9fNSgx2+AZM+44xm4xROwWxWPs5HmqI9uXH3qTgFi+7Jb7RqF8uQTMmzZMBK/ZHiJZjyLg2TbbEBKWlvcWaffI0TRV2SQ2xrfa1myixLC8YEL8AgUgHt5Aycl9QsAHAt//9AeaNKyNX/7Yg0dHzsCdt7RHt1va+3BnyZfkUfRmuyK+6gGrF7DJRqSXLWOINkUdx7FMZ9jjaulRpth2e8xV95jrYqvk2GhzJX99sW2H6rx2501X4Yb2F2HewtVYvHwdRg/sgevaXljyD6BcIQQMIOD5ao4BVgHLufecZHf33oPoNWQS/txzUP35Tde1wchH74LdVnwtbQrdJ557VV0/euDdx+c7mpqB1p36/mdfsycNxoXnNte2XxG82lDKREKgeAJ8q3135WeYPmcJxgy6B61bnakFF1sRM37T6UMDAy0GQzRJbLRVtZNlEha915E2CtsEu/ILDC0hR695YrwdUQVQscNcj5GDrbET4+yqY5yOGru697L282+w4N016usLE0svbNkc93S5TpUnkyEEzEjA89VcQ5ZlOfcfgcoF3D/oWSTEx2Lc0Ptw4FAKbn1gNEb2744b219c5PpWrd2CJ6fMB8XtLTdcdpLgTTmWjjadH8asCQNQp2aV4/dXqVTeZ8+xL1BE8PpCSa4RAhoIMJ53xtylWP7xJjz+SDccOnwM553dFE0b1QlqdjaooOiNRKF44sYpilimivtgcl6kDNaS5dqZmGaGJiGM6+ULRLTdilwnG5eELob4VGekGkrE25X33szjcEoq2KyiXFI8qlepKGLXzIcla4Pna6+HNNzDck6P4yYZ737xjb3x+ozhOOf0xurPx02djwOHjmL6uH5FLi07Jw/pmVmY/NIiFTN/ooe3UPB+MO8p1K9TPWRbE8EbMrQycVkgkJqeiYyMbNQ+4a30VPvm9bc9MBpp6Zloc9FZGPRgF1SumBw0qvz8AhUzagbBFcxmqI0qJ8eoTmQ6y3gFs6ZT3ctP9RR2qSasLUyvM2OkdZdE84UlmTC8g8mJMoSAENBHwPP1a/om82Mmyzl3Hb9656696NBjONYumXL899f8xavx3qqNWPzy6FPOOmbyPOTn5xcpeC+/+GwkJyXgtIa10emaS1EuMd6PFZZ8qQjekhnJFULgPwTorX114YdYumKD6sxUpWJ5DH/kTpzZrGGxwfiMX/rm+98weNws1fVp0EO3q4L4ugbDJhg7ygYHkTwokSokOcAYZXYUM/ajfNEkWWUgKdam4tWOZuSZNuGOLCslOeB0e5CewxrOoX8yWI6NjTYYuytDCAgBvQQ83xgkeM/+R/B+/f2vuLPPOHy+bOZxUbpw2VrMmvcePlk02W/By1r1U19ZDIYw8H8vXbFetfZ+a9YoRDu8ScA6hgheHRRljjJHgPFI8xatRp+7O6NChSRMmPEmjqVmYOzge3F60/pF8nC53Zg59100aVgL7S87H1ar/jhBCprULKcqhxXJg55eVh1gK156rc3UjthmiUJcjFVVl0jPMn95OIpzb71eb5k0it9QDNqJcViRFGcXsRsKwDKnEGCVhm/mGcLBcnb343YLPbzrlk5VwpQjGA/vvzfERLjr7hyCN58fgbOaN9S2XxG82lDKRGWJwHMvLoTDZlOdmSwWC/bsO4yxU+bDU+DByxMHKhQUuO+t3IhDR46pFqUcLH3E5JhQDnqSM3PoHXXDEw6XXog2QwchBRRjZBneYAbPNT/RM4yBa6F4jJRSavS1RrO1c4xNxUjTc657sB5wkgENJXTvQ+YTAmYm4Pl2viHLs5zV7bjdomJ4WeaPv+uKi+EtvLmokIZ/b6iwfv2cyUNUV0RdQwSvLpIyT5ki8Pb7n2DNZ19jzMC7j9fV3fHzH6rM0elNG+CpYfepUAdmsn734+944/kRqjxZuAZFL0UNhWIktyImL288qF15U3MNDNeIdbDWrV3FSptBfAfyLNFzXiExWoWLqGcjkEn+dU9how165M1YiUHDFmUKIWAaAp5vXzdkLZaz7jzJbs+BE5GUEIcnh/TE/kMp6NJrzPEqDemZ2bjr4fG4r+uNuK5tK3WfOz8fbnc+xk19HR6PByP6d4fdZlMhgOu++BYUuRed11z9GcMb2PJ7zaJJyoauIYJXF0mZJ6wE+AND56URxau50a3f/oyHR0xTIQxtLz1X7Z3Ckpmqi5atw5crX4TDbsPR1HSkpmWiQd0aYeVTaCxTJX+5whK7GcoNFopeJoeF6pP8qdbPkmnxsTakZToNL/UVLGeGHpSL89bEzcjJR34QbmrVKjjGpsIYZAgBIRB6AmYRvAw7oENnz/7DatOdr22NUQN6qLyGtPQsXNyht6pGdHunturvF77/KUZPOjn+eOzge1T93o/Wb8Wwp15Bdk6uurZCciImjnhQlQnUOUTw6qQpc4WNwG+79mL3noOqnq3dHv6C9gxNePXtlfjg4y8wcUQvND+tntr7rr8O4PpuQ7HghREqgc3oQRHOT9gUNu5wtf0K0aZVN7EYG3LyvKW2dHgnS1oqwypY4sths6j6ukbXtS1pvb7+vRKqLF3msKp9BeKxZlIaxS5DGcSz6yt5uU4IBEfAs/2N4CYI8G7LmV2LvJMl/ViPN9gEbHqAU46mKxtVKiWH5N8UEbwBHr7cZiwB1rJdtOxTjBl870mFqsO5Kn7G4VspPbis0HBOi8ZYumIdnp6xAO+/Nh41q1UK53JOaYuChp/iWbM3kgdjaL3JbN6QjWC8kyVxYEUtNk3g4Of/UNoqaS2h+nu2+qXnmvHI/D9fXyJ4DkyEi4m2QWoxhOp0ZF4h8F8Cnu1vGoLFcuYdhtjVaVQEr06aMlfYCEyfsxRfffcr+EmkVvXKYbP7b0MUu7c+8ARYXzcpIR65eU7l8b3ovBaGrak4wxS7LFtmpooHgUCiwKLYstlY/9YZksQxdghj3HC2Mx/ZIUjwCmTfobqHXmw2iIhClKrwUVKeo2phnOhQXm8ZQkAIhJeACN7AeYvgDZyd3GkggX4jpyMhLhbD+t2J+NgYuNz5sFmNaV/KeOINm7ernuLMKG0SZOe0UGKl6PU2SYhsT29hohQrDxzLcGn1vtrZsCHOrjzIkd7Iw9dnSb1ExNngsFtxLMNZLE96dpn0Jg0lfCUr1wkBvQQ83y3QO6GPs1nOuN3HK817mQhe856NrOwEAhSV6RnZOHw0VXlTB4+ZpYTl1Zefr/48MzsHZzRrgIvObW5ITG8kHRY/zdMzGkjcptn2yRhSVk9gUwWnhgoOnIsxuzl55mgTHE7eFL3kycYR2Xlu5P0rTprxvnwRELEbzlMRW0LgZAKe794yBInljC6G2NVpVASvTpoyV0gIbP9hJ2YvWIGMzGyw/l9WTi7+2ntIlSupXrUiqlaugCoVk9HyzNNw5aXnqgB6GacmwFbErN6gkr9K+oZtcphMZmPilIpDdQbmuS6sNsB2vOnZ7ogP+wjmyBiqwNrHrOHsLWvnreFbLk5aBQfDVe4VAjoIiOANnKII3sDZyZ1hIuB0uTD3rQ/hdLnRqG4N5LnceHLKfDzYvSNu73ylavxgtVi8/2WhURk+EVBd2TIpet0+XW/mi+h1ZMwtvdasOuDvqJBoV13dmNgXRJUuf82a9nrG9ZInu8ll5+WjXLwD0im45ONi9ZjPNm9Hk4Z10PKsJqo0oQwhoJOA5/u3dU7n81yW02/z+VqzXiiC16wnI+sqlsC3O3aiz/ApquZfu9YthVSQBBjewFjVCHf0gu86yfEOFX/qq3BlAlZyvF3dk5Yd+fWKg3wUTrqdArcCk9Ps+ltg61ynEXPxq8iqdV+qPIJW5zYHvxC89e4nmPbKEkRH25GT60T9OtUweXQfQ5NqjWAjNkNLwPP9wtAaKGZ2y+m3GmJXp1ERvDppylxhIfDWe59g9psrMO3JvmjWuG5YbJZmI/zlTS9eRnZktyLmGVGksZQYxW96lhvuU7hro20scWZHntuDLE1dx0rLc0KOcTE2VfeYXl4ZJxNg2/DnZi3E4g/WYUifO9CgTnU88dyrOKdFI1x+8Tn4ffc+LFm+XhXhf3JoT5zZrIEgFAJaCIjgDRyjCN7A2cmdBhF4beFKvL9qI+ZNHx50sWuDtmA6s4zXZAwsPaOR7uklXAo1Jl+lZrlUzd5/j9hoC+IcNmTluZEbYNyv6Q5R04LorWTntDjW2BWtWyzVwympmDH3HXzy2VeoWb0ynE4XXpv6GBIT4lQbVX6JYjdGiuAJj/eSf6s0PZ9lfRrPjkWGILC0+J8hdnUaFcGrk6bMFRYCeXlOLF6+Dl1vuios9sqSkTxXPlLSnaViy0y8YpOKlPQ8nFiFjTV8meiWlsXybL62WigVSHzaBGvsxtjZPc2ny8v0RS6XG+OnvY6Fy9bi9s5t8Xi/bifxmDFnKZZ99AWeGnY/zj2jcZlmJZvXQ8CzY7GeifycxdLiFj/vMN/lInjNdyayIg0EjhxNQ0y0Qyo2BMCS5b3YoKI0dBajsGXyVWH73MKGFaeqNRsAslJxCyMXKHajg4jZpTc9PTML0Q47YmOiSwWXkjaRciwdU15ejI/Wb8X4oT1xaaszjyerbdr2I0Y88wqeHHKvivWVIQSCJSCCN3CCIngDZyd3mpQAa/YOGjsLtWtUQY9br0FyuQSTrtS8y3KqBhWR35WNhNk1zRvXG/V3FQepxPDvJ49VLpLi6dkNvMrJ73/ux4Yt2/HdDztRtUoFXHP5BTi9aX1ElQFX8aEjxzBr/jK8s2I9Bj10Ozpfeyn40j120jxkZOVgypg+qFq5vHl/4GVlEUPA88MSQ9ZqaX6zIXZ1GhXBq5OmzGUKAhS8byz9GK8uXInO17bGA906qOQRGf4RoOhNz3KB/43kwdq6FLy2vwUv43pl/EPAavVWqgjGs0ux++yst7B7z0HcdP1l2Lv/MH789U88O/JB1KhWqUzgPpqajpdeX45lH23ExeedDorgn3/bjUmj++DCc5upsokyhECwBDw/LA12ioDutzS/KaD7zHSTCF4znYasRRuBvDwX5i9ejdlvLccDXW9Ejy7Xapu7LE3ET9RH0vJOWe3AzDzYRIGf6VMznEq4JyfQ02vBkfQ8My87bGtjNYtK5WKU9zvQkZWdi8kvLcQX23bgxWcGonqViuBL56NPPI8zmzfEfV2vD3TqiLuPLc4Z3sDE2o7tL0a/+25BlUri2Y24gzTxgkXwBn44IngDZyd3mpxAbp5T/eK59IIz0aJJPZOv1rzLY9myoxn09EZOrV7Kt7gYq6o0wNCME5PTkuJsqj1uWe+oFsNWwfHeUI9gxopPNuPZ59/C6EF3o3WrM9VUObl5GDRmFpqdVge9e3QOZnpD7/31j71Yunyd+kp0NDUDDw6dhPGP3ae6OhY32Pp8w+bvcHaLhiqsSoYQ0EnA8+M7OqfzeS5Ls8j9OS7cpAhen49bLoxEAvQ0yafE4E+OCWyZOS5k55m/FTHlG6sz8FN9JtsEF1GWjBUcKPiyy2hZsthoK1QCX5CdCdn98Mbuj+H6dhcqUchkNb4gfbx+G56e8SZmjH8EzRrXCf4BNGiGxcvWYsorS3D+2U3x175DqFOjCkY8ehfKS16AQSciZj0/vmsIBEuzTobY1WlUBK9OmjJXxBHIyMzG1m9/RnpGFs4+vTHq1qoacXsI14IperNz3cgIoHVvuNZIbyU9uFxrVm7+KStNsIIDY3tznW5k5uSHa4mG24lXDSWsWtpw82fn8QmvKGHbqF5NtbeDh49h4JjnUbdWNYzo312J4Egdbnc+Jr+8GK++/SHKJcZj/vThaFivRqRuR9ZdCgiI4A38EEXwBs5O7oxgAiwSv2TFerzy5nIcS80Aq7Gy7/2FLZtj6pi+Ebyz0C6dnHLz3DiWab7EL4YplE9wINeZ77Mop4OzSnKMKltmZiGv61QT42xIjNUnQNds+AqTX16EuZOHoHLFZLXMu/o9BQpFhjgUimBd6zdintcWrsILr72LXKcL55/VBNPHPYKYaH0MjdiT2IxcAp6f3jNk8ZamHQ2xq9OoCF6dNGWuiCCQn+/B3LdWYPZbK5CclIjr27ZS3t0tX/+kamlWrlgOzz3RG5UrlIuI/RixSLYiZle2orqYGbEeemsZxpCV63/nNIZAMLGN9YfZea00dJr79xlYothG2QZ6d3VXCevaZxxiHDa0bd1Stdpll7F+996Ctq3PNeJR0GKTYRnpmdmqe1pyuUSw2c3ctz/Ea4tW4ezmjVRd3WpVKoDxujt+3oULzm4Ku92mxbZMIgRORcDz0/uGALI07WCIXZ1GRfDqpClzmZ4Af5EtWrYWE194Cxee2xz9et6MRvVrHV/3Nzt+Q7/Hp+H8c5qprklSw7foIyXHwlbERYTIhvU5YDxqrMOqxG6eK7ASaqwYlRhjU55+inl3KerApsRunA3xIWoVvP/QUcxftAr7D6Wotrq3XH+Zqr9bUuy8y+3GgUNHkZqWiTOaNQjrM3OiMa7jSEoayicnqmY1eU4Xvti6A6vWblF/fkmrM3DJ+WegTs0qeH3JR1jwzho0O60urr78fGzc8j127z2IqWP7opK8IBt2hmXJsAjewE9bBG/g7OTOCCSw72AKOvYYjvp1quOZxx9AvdrV/rOLlZ9uwdgp8zCsb1dc3+6iCNxl+JZMgZmW6YLbE5jQDHaljNdl3C5DEoJtE8xiBXExNkTbLEjnfBFef5hs6c1NZkMJR2hbBVMkZmfnIi4uRsXsZmTmAChQArhwsGrKL7//pb6kUOgeTknFoZRUlTjHWN/TGtQO9nEI6H4mo414Zg5uaHeRqtv926696D9yhhLAdWpWxccbtqL5afVUQ4nmjetg5SdbMHX2YqRnZKsEvaeHP4A2F55ZosAPaHFykxD4FwHPz8sMYWJpcqMhdnUaFcGrk6bMZXoCS1dswIhnZmPQg13Q47ZrilwvM88v7/wwena9Affcfp3p92T0At1ujypbFk7RS3HKkloUdLStc1AcJsVakZblRl6Ei95KSQ7VdEV3GMOpeDPMZcG7a1R4w8vPDlSez3VffIOnZyzAkaOpqFS+nHqRrF6tIsZPfR3NGtXGnMlD4TAouY2hCxOfX4APP9mMsUN64uvtv2D3vkPqC0+VSsn4+vtf0X/UTNSsXhmvTX1Mxe+ynTCbbNStXQ0VyyeViW5yOn/GZK7ACXh+/iDwm4O409LkhiDuNsetInjNcQ6yijAReGr6G+qz5NLZY9GkYfEepTeXfowbrroISYnxYVpZZJtxuQuQmuUMi1eUyWkUu4y5pWeXYQi6R4zDgoQYm6rVG4md5uw2i2LExhvhHqzBy6Yvv/2xF08MvBs2mxVvvrMGcxYsx+hB96BNqzORlpGJ0c+9prqxvf3iKJQvlxjuZZ5kjwL2uVlvY/nHmxAXG43777wRd//drIalDT/4eJMqszby0btwzeXnG7pWMV62CYjgDfz8RfAGzk7ujEAC73y4AY9PmK0+Q954lYQr6DxCV74HGVku5AYYR+vLWgqT0/Kc+arsWCjEbuE6Cm0xppeVHyIlmY0iNynODrstyjDPY3aOt5MdxSMHu7Et/mCtEr53dG6Hg0eOYdO2HRg98G5D43dPfOYYYjFt9hKsXrcV3W9pj7u7XHd8/fy7AaNfQHJSPKY9+bAvj6pcIwRCQsDzy/KQzFvSpJbTIr9jogjekk5Z/r5UEWBWNWN4G9StgXFDe6JG1YpF7m/P/sNYunw9rrjkHNP8Qo6Eg2D924xst2rooHuwWQT/j/G19O6GY9CbHB9jVWKX3mSjE/RK2rMKx4izq05yZhsulxtfbPsB46bMQ0paBnr36ITut1ytpR6wrr3y34dZ897DR+u24cG7OqqYXqvVgl1/HcDQcS+pfwuG97tTlzmZRwj4TcDzywq/79Fxg+W0yA/vE8Gr40mQOSKKAMsI3f7QGFzUsgVGDehRpOj9/qc/MPjJWUhNz8KkUQ+p+rwyfCNAcZiW5VTVDnSNhFgrYuxWpGa5wl5BgfGvSbE2RFmikJblMq2nl9UqysXZYQmyVbCuMytqHsbLXn37IDjznGjcoBbmTnkMsTGOUJo85dwZWTkY/dxcpBxNx7VXtsJN17VBVk4ups9egndXfqZiehmCMWPuO3j3ww14dcpjaNLImOQ6wyCJYVMREMEb+HGI4A2cndwZwQTWfs4kmjeQlp6FenWqo+/dnVUm9uGjqUwuR4XySSoDe+zkeVi36VvMnzZMPL1+nDcTl9jIgZ7eYEIBqN3osYyKilJ1f+lBNmJQ9LIVL8MF2HTDqHUUt/e4aJvqMGdmscu1sykFy6QN7XsHHA4H6tasYkh1A/5sf751B4Y8+aIqPcg1sbzalZeeo7788N+FwpjeGtUqgc9h33tvRvvLzjNkvUY882LTnAQ8v35oyMIsja81xK5OoyJ4ddKUuSKGABNRdu89hA8++lz9cuvS6Uq8/MZyJW4dNivOaN4Qd958FerXrq68wY3r18LzT/U31edXs8P2FBQgK4gOZnZrlGr96w2TcJkinICe5mi7VYVtmCWZjWEefCkwu9jl80qv6VktGqF+EeUAw/k879pzAMOfno3a1SthQK/bVDvkkRPnqGYSzzzeCwnxsaps2guvvYdff9+jBHqzxvUignE4OYqt8BPw/Loy/EYBWBoXXdXIkMUEaFQEb4Dg5LbSQYBd15wuFzZ++T2GP/0Ket5xvfL0rtmwTf3Zzde3UY0qalarjJefGwi7Tbop+XPyqpFDrluFAvgzmHBFEcfmFvw/Y/y6Ra+YyWzsWEbvda4zPLHExbEjo1B0T/PnrCLx2lVrv8SYya/hjRmPK3H75JT5qn7wI/fdomoH7/xzH5o2rAN3vht7DxxRL7z8yiBDCBhNQARv4CcggjdwdnJnKSJAzxO7r73w9KM4s1kDMMt87ltsJbpS/e//3XCZiveV4T8BitXcvHyk+diKmCXBGD5AL2ooKz74v5N/7qD3OSneK8h1xir7uiZviIVdtQuW4T+BQsH76uShmDBzgfpyM7L/XahZvRL+2L0fDw6djIEP3oZ2rVv6P7ncIQRCSMDz26oQzl781JZGVxtiV6dREbw6acpcEUtg2/Zf8MjI6bjhqotxe6crYbPZ8MbSj1Tx/MsuPAvPjOgFd34+tn7zkyqgv+CFEYiN8ZZckuEbgcJWxMXFv1LEsUUwPZapmc6gO6f5tqrArzpeD9jN0I3whVwwdCEp1g4mqYnTsfjzY1UIdlZk618mobJBxDmnN0aNahWRciwDw556SXlyk5MSVamxxvVrqvJps99cjo1bv8e4IT3RqH7NwB8QuVMIhICA57fVIZi15CktjdqXfJHJrxDBa/IDkuWFh4DL7cbqtV9i/pKPkJGZrQrhs+XotVdcgKF9u4J//9nm71Si2579R/DAnTeiXZuWaNKwjsT1+nFErGfLeNx/twG2WKAaPVDM0bNrtqSw4rZYmFTHv2eSXqjXzTbK9CzzxUBG8QQoXFes2YQ5C1bA5c5XiWmHjhxTL62drr4Ud9zUTnVQYzOJ8kkJuL9bB0Q7bNj67c/4ZOPXeKh7R3S89lJDdyb/AAAgAElEQVTYrMJZnjNzERDBG/h5iOANnJ3cWcoI8Jfhn3sOqk+c23/YiW43X4Xu/7taxfRt3PIdxk97Aw3r1UDLs5pgy9c/Ku/RY3274oKzm5YyEqHdjrdBBcMVvGXLCtsEUyxGQq3bf9Ohl5VeabvVorrNBVOV4lTkWSEiMc6mkuZkFE8gL8+lmlzMfXulqrpw9eXnIykhHkeOpeHTjd9g0QdrcdO1rVWdXYreaa8swaGUVFitVtVYole3DmjbuiXi42IEsxAwHQHPzo8MWZOl4VWG2NVpVASvTpoyV6kgkJaRhVWfbkHn61qrJLWfd+5Gj34TcO6ZjTHs4TtRvUpFHDiUgnFT56tPoivfnFgq9h3OTVDcpma6wGoZFRIdyMx1q85pkTzYoILCNyUjD/mat1LYKpj/ldSpUz8lKh7/+bdwf7cb0aXjlSoZrXA4XW7MfPVdzFu4UnVbvKpNS7AW7197DwJRFtSpUVklsVn4yUGGEDAhAc/Ojw1ZlaVhO0Ps6jQqglcnTZmrVBFwu/OxbfvP6DVkEs5q3gijBtyF+nWqqz0yxIGeoQXvfoKtK188vm+2TF2wdA3uu/N6xMfFlioeujdD0UvvLoVvjlOzQtS9WB/nYwUHVk5g2IauhDuK3PIJDlN2T/MRS9gu2/7j77in/wRccE5TPDGgB6pUKv8f2/wyw3j9s1s0wqCHbofdJh7zsB2QGAqagAjewBGK4A2cndxZigkwvIFhDE9NewN/7T+M0QPvxi03XPaPsD18DKOenYv9h1Lw3txxx//8w082q/Jmr019TBpV+PB88PM/E9RKi+DllqNtFsTFWFWd3mC91hTQyQkOMHZXRskEcvOceGra61i3absKW6CXNyb65E5uvGba7KX47sedeGniQEk+LRmrXGEiAp7f1xiyGkuDtobY1WlUBK9OmjJXqSHwxdYdKmShbu1q+PWPPTijaQMMe7grKpYvh5zcPDw1/Q188tnXGNDrVnS+trWK512yfB2uanOeSnZr3erM//yiLTVwNG/E25XNFbQ41LysoKZTTTNibXCpphnugOZiQ4mEWLt4dv2kdzQ1AzPnLsWHn36J669shcF96MX9p3wbk1IZp5+anonnRj10UsiDn6bkciEQdgKe3z8Ju00atDS40hC7Oo2K4NVJU+YqFQTYdrTDXcPQoG51VaEhPSMbt97/BJo2qqME8M+//YV9Bw/j9k5t0at7ByVsew+bgh9//ROTR/dRpY84vvruF1SvWlHF/Mo4NQF6ehkGkMUmE6HK+grzIdApS+8sx9EMp1/WWXIsOd4hZcf8ovbPxRlZ2Rgz6TWsXrsVHa++BCMe7X5c9O766wDufuRp3HXbNeh2c3upshIgY7nNGAIieAPnLoI3cHZyZykmkHIsDS5Xvmo1yrHui2/x4vz3kZqehWi7TSXDXNu2FXLzXBg+4RX89sceDOx1G9pffoHKEGeiDD+bXt/2Qgx6qEspJqV3a+nZLmTn5oNtiUvLKBdvV8LVl3Jr7OYVz1bB8f8kWpUWDuHeB7/EDB47C5u++hG3dbgCD3S7EYzLnzDzTezacxBjBt6N0xrWDveyxJ4QCIqA549Pg7o/0Jst9a8I9FbT3CeC1zRHIQsxO4HMrBywgkNifCySEuPxx+4DmPLyIlW7c0if23FDu4tUDd82nfuBqfTnn9VEdWerXaOK2bdmqvWxcxnLk7nzjW3bqxMKKzgw+YxinrG9RQ16hBnCwGulja0e+oUxvWs++xqdr70Uf+07jJ1/7sWgB2/HpRecLtUY9GCWWcJIwPPH2jBa+8eUpf7lhtjVaVQEr06aMleZIcCYXXqK2MGJCW0Xn9cC+R4P5i1ajamvLIbDbledm1j6qG6tqqWai9PpwrxFq3D4aBouu+gsXHze6UHvlw0q0rNLj+hlylm0w6LKllH0/jtJz2a1ICHWiliHTcIYgn56Tp6gMKZ3xZrNqnLK08Pvx7lnNBaxq5mzTBceAp5d68Jj6F9WLPX+Sdo2ZAEajIrg1QBRpih7BFiJYcPm7Xhq2P245PzTkZ/vwVvvfYJps5egaqXyeGZkL0x9abESgYtfHl1qAaWlZ+GBwc+pkA41oqIwc3w/tDq3edB7znN5cCzTCSa1lZbBdsQVkxyqKxuF79/IVNmxGOmeFrJjZkzv/EWrccNVF6FOzdL9AhoyiDKxKQiI4A38GETwBs5O7izDBCjw9h5IQZsLz1QU3lu1Ec++8DYa1a+JF58ZoGJ42bVt996DShCnZ2YjOSmhVBFj+9YBTzyPY2kZmD6+Hxw2G+4f9CwOH03Fp4unaNmrO78ARzPywP+WlmG1AOXiHarTnNPlQbkEhyplJiNwAkx0lDCQwPnJnZFDwLNrvSGLtdRrY4hdnUZF8OqkKXOVSQL7D6bglvtG4fSm9fH4I93+E7O78P1P8c2O33DnzVehWeO6peYX8559h/HwiGmYOf4RVY2CY85bK/DKm8vx+fsztT0LbEWclukqNvZVm6EwTuTtnGaDNSpKqgQEyZ1fV9gi2Gq14KzmDSVUIUiecru5CXj+3GDIAi11WxtiV6dREbw6acpcZZLA5q9/wsPDp2JI79tx0/X/fQv+5LOvMH/JR8jOzsVjD3dVHZ5Kw6BXjQl755/d9Ph2vvzmJzwyagY2vjdD6xbp4U3LcoJhDqVhSPc0fadIsTv6uddw5aXn4KEenWCzSuc0fXRlJrMREMEb+ImI4A2cndwpBBSBlGPpaPu//rjn9uvQq1sHOBx27PjpD6z57Cs0bVxHNaPYu/8Ixk17XYU4LJ//dKklt2T5ekx5ZTE2vDNN7XH9pm/RoG5N1KpeKeg9M5Q3NTMPuc7IFr2M461ULka1VZYRHIE/du9H935PoUXjuhj56F2oUS345yy4FcndQiC0BDx/fhZaA8XMbql7qSF2dRoVwauTpsxVZgksW70R85d8rLy8R46m4ekZb6hC9xaLBfFxMXhq2H04nJKm2hF3v+VqdP9f++OsWDqJgrhhvRoRz++x8S9j89c/YMnLYzBv8Wps2vYDBj10G8494zQte6NXOTXTpeJfI61UL2vxxtitSE5gXV5RuzoeiLv7T1B1sR/v3x21qlfWMaXMIQRMTcCze6Mh67PUucQQuzqNiuDVSVPmKrMEXG43Dh9JVWWPrus2BFUrV8Dwvl0RZYkCvZ787HpRyxb4aMM2PHDnDeh601WKVWZ2Dp5/9V38+vsePDvqIZRLjDcdQ4rM7Nw8xMfGlLi22x4Yjf2HUnDpBWcgLT0T/Xreor24P9fjrXLgRqQUcLBERYHd05LivE0oZOghsPPPfYhx2FFTxK4eoDKL6QmI4A38iETwBs5O7hQC/yFA4Xvxjb3RtFFdzBj3MMolJSA9IwuTXlyEJSvW46wWDVWSF4Utxe6kWQuxePk6DO/XDZ2uuVRVdzDTeH/VRrVulgZreUZj3N3lWrWnoga7WN36wBPgZ+br2l6o2i7XrFYpJElE7MSWk8davS7Te3opcBNibYiLtsEqcQxmerxlLUIg4gh4dn9uyJotdS42xK5OoyJ4ddKUuYSAakP8DfqNmI5brr8MD/e8WZUk6/HI06hYPgnPPN5LNaJgGANr9r6+5COMG9ITN7Y33z8mFLoTn38Ld9zUDp6/6wyzysTcyUOKPedXF67Ezl37MHbwPWF5Fih6WavXzCM53o64GJuWJe7ZfwTH0tLRvHFdWMtIctbIiXPQ//7/oXy5RC0MZRIhEMkEPH99YcjyLbUvMsSuTqMieHXSlLmEwN8EFn2wFgveWaM+79M7elqDWhjS+w5Vuiw7Jw9z31oBXvNg9464reOVpuPGUk9PTX9dtVB++N6b1fpWrf0SE2a8iXNOb4wR/bsjuZzX0/vhms34bddelbTHeOVwD6e7AMcy8pBvsvgGenMT47ye3WAGQzh27z2EF+a9B1bBSEqIQ4XkJPS77xac0bR+qY4HZpe0G7s/pgTvzde3KdV7DeYZkXvLDgERvIGftQjewNnJnUKgWAIej0c1nhg5cS4KPB4M7dtVid30jGzMfPUdrFq7BT3vuAE3XdcGcbHRpiPpFbxvICc3D+OG9jy+vg8++gLDJ7yCh7p3xAPdO4BibOQzc7Bn/2GMGXQPatesYsheWK6M4Q0utzkqOLASQ1KcA9F2S9Axu4dSUjFs/Mtwulzodkt7NK5fS30Z2L3vECYMv7/Uez7v7DMOVSuX975klbLmLYb8sIjRiCbg+WuTIeu31L7QELs6jYrg1UlT5hICJxCg6P3xt91IjI9DnZpVkJqeiWdmLsDyjzdh2MNdcWP7S0wpdgu38PIbH+DVt1di6Zyxql0yBwXum++swXurPlNtlRvWrYG0jCzsO3AEjRvUMrQGqtOdj2MZLsM9vVZrFBjG4LBR7AafofbQY5NxLC0Twx++Ey2a1FNzrvx0C/ipn22rS3urXLbwHv3cqxj/2H244Jxm8m+MECjTBDx7Nhuyf0utVobY1WlUBK9OmjKXECiGQFZOrmo9vHjZWkwc2QvXXFHyPx4frduKl974AIteesIQru78fNx6/xM4nJKKDe9OP74GVl9o07kfHuvbFV06mSscg4L8cJpxrYipb6tViEXwMteLe9JLC/HOig14ccIANG9ST/0ZX6SY6Pj64o8we9JgVK6YbMjzESqj02cvVU0kWjSpr0ywdnXPARPR47Zr0aXjFSFJggzVXmReIaCbgAjewImK4A2cndwpBHwm8PPOv1Rt3hvaXYSbr7+sxPs+3fg1npu1EJUrlsOsZwYYVr2BYuPBoZNRr3Z1DH6oi6p1+sMvu9SfsdB/+8vOK3Ev4b6AMdPH2IqYtXrDZJxeV4YxVEh0aKvEwBeOjj0ex2n1a2DS6D7HvcXf7vgNA8a8gHu6XItbO1xhqFddN95Fy9Zi7tsfIjM7F43qVsedN7dXHuwVn2zCmg1f4bWpjx2PHddtW+YTApFAwLNniyHLtNS6wBC7Oo2K4NVJU+YSAsUQYEzs0dR0lQRWUukxenanvrJEhUEM7t1FiU0jBwXW5JcWIdfpwoXnNsfnW79Hq3OaKY8bK0+YcTCBLSPbjRynOyxly2IdVpWgZrNatOHIc7pwQ/ehKjaaNZw5WM+ZXwoqVSiHIX3uQI2qFbXZM8NELG3Hl8Mt3/wIPndfbPtBvWTxZ2bHz7sw6YmH0LZ1SzMsVdYgBAwh4Nn7pSF2LTXPN8SuTqMieHXSlLmEQJAElq3+HM/OehsN6lTHqAF3oW6talriQINZVmGVgM+2fAcmUNWuXhlXXXaeKZtknLhP1uql6M3KdQez/RLvpdhlQwnG7uoeDwx+Fu58D3r36IS9B1Iw+83lKnlt1oRHTxm7m5+fH9Fly+jdTkvPwm9/7MG6L77FR+u3Yt/BFNSvUx1LZ4+Bw26uetW6z13mEwLFERDBG/izIYI3cHZypxDQSoCe3Senzledoxa/MgaJCXFa5y+rk2XmuFUFh1CMxBgbEuNDJ75Yr7lbnyfxw6+71fLPO/M0vPLcYNjtxZc669ZnnEqQZDOTC1s2D8W2wz4nEyNnzFmKt9//FPOmDcfZLRqGfQ1iUAiYgYBn71ZDlmGpab7wNX9BiOD1l5hcLwRCQIAxuxNmvqm8eE8Oufckscu2tE0a1kb1Uvb5OgQYi5yyoADKy5vJVsSaavWyYVp8rA0JsXZtCWrF8aC3k62nLZYoNKxXU8XsMnHNYik6fOKr737Fyk83Y9NXP6BXtw649spWhn8l0HHWmVk5uO7OIWh+Wj3MGNcPNptVx7QyhxCIKAKefdsMWa+lRuSHEongNeTREaNC4B8ChTG7CQmxyM7JVZ3KzmreEPFxseqiAhTgkvNPx503XwW7LbgmBmWVO8MycpzeWr3Bil5WYmAIAxtKaKg65veRHDmaho/Wb0O7Ni1RuUK5Iu93Ol14bdEqlQC2asFEVRqvNIxRz87F9z/9gVenDJUvIKXhQGUPfhMQwes3suM3iOANnJ3cKQSCJkBhclWXgaqeLct8zV+yGkuWr8eHbzwDh8MrbumhZNcuJioV59ULeiFlYAJWbGDlhpT0wFsRU+CWi3eAcbtGiF0eExMIWYeXyWytzi2+Li0//z/7wltY+eZE0yYX+vvYMYacL4QXnN0UVo0Jgv6uQ64XAkYR8Oz7yhDTlhrnGmJXp1ERvDppylxCIAACbNpQsUI5lYk+dvJrWLRsHbZ/MieAmeQWXwgwCexQap4vl/7nmkrlolVDCSNHRmY2Nn/9I6685JwiX4AY7rB1+y8YP3U+Dh4+irVLp5VYGcTI/YhtISAEfCdQsP9r3y/WeGVU9XM0zmbMVCJ4jeEuVoVAkQT6Dp8KVkP4+qNXhFAICThdHqRlOeHK961Sr2oVHO9AjN1YsftvJEtXrFdNKBjqwqoUzjwXcvLy4Mn3qIYUowb0QL3a1UJIUqYWAkIgnARE8AZOWwRv4OzkTiGgnUCPR55WMYpbV76ofW6Z8GQCFL0ZOS7kuTynRGO3WVDu71bBZmM4Z8EKPP/auzjvzCYqptdqtaJ8uURUqZSsypYlxHvjwGUIASFQOgiI4A38HEXwBs5O7hQC2gl8sXUH+j8xE5s+eF773DLhfwmwQUV6lgs5zvwi8VDsJsfbwf+acbhcbqz57CvMfXsFbu/UDte3u1ASG814ULImIaCJQMH+bzTN5N80UdXPLvIGJtEywTo2xuHThEwaZhKxETH4Inh9OiK5SAiEj8Dho2nFZt+HbxVlxxL/8U3PciMr7+QGFUxMS05wGJac5s8JfLFtBx5/ejZ6390ZN13X2p9b5VohIAQiiIBZBC/bzvcaMgl/7jmo6N10XRvVbt5+inKB/Lf2iedeVdePHnh32KmL4A07cjEoBISA2QjQ65CR40a2Er1RiHFYkBQbmu5podr7Nzt+w3Oz3sbMp/ojSZqWhAqzzCsEDCVQcOBbQ+xHVTvrJLv3D3pWhUyNG3ofDhxKwa0PjMbI/t1xY/uLi1zfqrVb8OSU+TiamoFbbrhMBK8hpyhGhYAQEAJ/l39jTC9HfLTVkE9uwR7E3v2HUbN65WCnkfuFgBAwKQEzCF52Prz4xt54fcZwnHN6Y0Vq3NT5OHDoKKaP61ckueycPKRnZqmyijHRDhG8Jn2+ZFlCQAiUEQKqZkMBIiKMoYwciWxTCAiBEwgUHNhuCI+oamcet7tz11506DEca5dMUdVgOOYvXo33Vm3E4pdHn3J9YybPQ35+vgheQ05RjAoBISAEhIAQEAJCIAIImEHwfv39r7izzzh8vmwmyiXGK2oLl63FrHnv4ZNFk0XwRsBzJEsUAkJACAgBISAEhIBpCRQc/M6QtUVVPeM/Ht51S6eqDqDi4TXkSMSoEBACQkAICAEhIARKJwEzCN6iYnjHTp6HQ0eOFRvDW3gaEtJQOp9L2ZUQEAJCQAgIASEgBLQRMIPg5WZ6DpyoqsE8OaQn9h9KQZdeY45XaUjPzMZdD4/HfV1vxHVtW6m9u/Pz4XbnY9zU18H25yP6d1c1w8NZj1fKkml7DGUiISAEhIAQEAJCQAiEjkDBwe9DN/kpZo6qevpJf8v6uyxNtmf/YfXnna9trVqZsw5vWnoWLu7QG48/0g23d2qr/n7h+59i9KTXTppj7OB7VP3ecA0RvOEiLXaEgBAQAkJACAgBIRAEgYJDBgneKicL3sItHDx8TNXjjY+LCWJX4blVBG94OIsVISAEhIAQEAJCQAgERaDg0I6g7g/05qgqLQK91TT3ieA1zVHIQoSAEBACQkAICAEhUDwBEbyBPx0ieANnJ3cKASEgBISAEBACQiBsBAoO/RA2WycaiqrS3BC7Oo2K4NVJU+YSAkJACAgBISAEhECICIjgDRysCN7A2cmdQkAICAEhIASEgBAIG4GCwz+GzdZJHt7KzQyxq9OoCF6dNGUuISAEhIAQEAJCQAiEiIAI3sDBiuANnJ3cKQSEgBAQAkJACAiBsBEQwRs4ahG8gbOTO4WAEBACQkAICAEhEDYCBYd/CputEw1FVW5qiF2dRkXw6qQpcwkBISAEhIAQEAJCIEQECo4YJHgrieAN0ZHKtEJACAgBISAEhIAQEAInEig48rMhQKIqNTHErk6j4uHVSVPmEgJCQAgIASEgBIRAiAiI4A0crAjewNnJnUJACAgBISAEhIAQCBuBgiO/hM3WiYaiKp1miF2dRkXw6qQpcwkBISAEhIAQEAJCIEQERPAGDlYEb+Ds5E4hIASEgBAQAkJACISNQEGKQR7eiuLhDdshiyEhIASEgBAQAkJACJRlAgUpvxqy/aiKjQ2xq9OoeHh10pS5hIAQEAJCQAgIASEQIgIieAMHK4I3cHZypxAQAkJACAgBISAEwkagIOW3sNk60VBUxUaG2NVpVASvTpoylxAQAkJACAgBISAEQkSg4KhBgreCCN4QHalMKwSEgBAQAkJACAgBIXAigYKjOw0BElWhoSF2dRoVD69OmjKXEBACQkAICAEhIARCREAEb+BgRfAGzk7uFAJCQAgIASEgBIRA2AgUHP09bLZONBRVoYEhdnUaFcGrk6bMJQSEgBAQAkJACAiBEBEoOGaQ4C0vgjdERyrTCgEhIASEgBAQAkJACJxIQARv4M+DeHgDZyd3CgEhIASEgBAQAkIgbAQKjv0RNlsnGooqX98QuzqNiuDVSVPmEgJCQAgIASEgBIRAiAiI4A0crAjewNnJnUJACAgBISAEhIAQCBuBgmO7wmbrZA9vPUPs6jQqglcnTZlLCAgBISAEhIAQEAIhIlCQapDgTRbBG6IjlWmFgBAQAkJACAgBISAETiRQkPqnIUCikusaYlenUfHw6qQpcwkBISAEhIAQEAJCIEQERPAGDlYEb+Ds5E4hIASEgBAQAkJACISNQEHq7rDZOtFQVHIdQ+zqNCqCVydNmUsICAEhIASEgBAQAiEiUJBmkOAtJ4I3REcq0woBISAEhIAQEAJCQAicSEAEb+DPg3h4A2cndwoBISAEhIAQEAJCIGwECtL+CputEw1FlattiF2dRkXw6qQpcwkBISAEhIAQEAJCIEQERPAGDlYEb+Ds5E4hIASEgBAQAkJACISNQEH6nrDZOsnDm1TLELs6jYrg1UlT5hICQkAICAEhIASEQIgIiOANHKwI3sDZyZ1CQAgIASEgBISAEAgbgYL0vWGzdbKHt6YhdnUaFcGrk6bMJQSEgBAQAkJACAiBEBEQwRs4WBG8gbOTO4WAEBACQkAICAEhEDYCBen7wmbrZA9vDUPs6jQqglcnTZlLCAgBISAEhIAQEAIhIlCQYZDgTRTBG6IjlWmFgBAQAkJACAgBISAETiQggjfw50E8vIGzkzuFgBAQAkJACAgBIRA2AgUZ+8Nm60RDUYnVDbGr06gIXp00ZS4hIASEgBAQAkJACISIgAjewMGK4A2cndwpBISAEBACQkAICIGwESjIPBA2Wyd5eBOqGWJXp1ERvDppylxCQAgIASEgBISAEAgRARG8gYMVwRs4O7lTCAgBISAEhIAQEAJhI1CQeTBstk728FY1xK5OoyJ4ddKUuYSAEBACQkAICAEhECICIngDByuCN3B2cqcQEAJCQAgIASEgBMJGoCDzUNhsnezhrWKIXZ1GRfDqpClzCQEhIASEgBAQAkIgRAQKsgwSvPEieEN0pDKtEBACQkAICAEhIASEwIkERPAG/jyIhzdwdnKnEBACQkAICAEhIATCRqAg63DYbJ1oKCq+siF2dRr9f7t1cAIAEAJBrP+ur4fhfCykAEXiZwTvT027CBAgQIAAAQJHAoK3wwrebmeSAAECBAgQIEBgQEDwDjzJiQQIECBAgAABAl1A8HY7kwQIECBAgAABAgMCgnfgSU4kQIAAAQIECBDoAoK325kkQIAAAQIECBAYEBC8A09yIgECBAgQIECAQBcQvN3OJAECBAgQIECAwICA4B14khMJECBAgAABAgS6gODtdiYJECBAgAABAgQGBATvwJOcSIAAAQIECBAg0AUEb7czSYAAAQIECBAgMCAgeAee5EQCBAgQIECAAIEuIHi7nUkCBAgQIECAAIEBAcE78CQnEiBAgAABAgQIdAHB2+1MEiBAgAABAgQIDAgI3oEnOZEAAQIECBAgQKALCN5uZ5IAAQIECBAgQGBAQPAOPMmJBAgQIECAAAECXUDwdjuTBAgQIECAAAECAwKCd+BJTiRAgAABAgQIEOgCgrfbmSRAgAABAgQIEBgQELwDT3IiAQIECBAgQIBAFxC83c4kAQIECBAgQIDAgIDgHXiSEwkQIECAAAECBLqA4O12JgkQIECAAAECBAYEBO/Ak5xIgAABAgQIECDQBQRvtzNJgAABAgQIECAwICB4B57kRAIECBAgQIAAgS4geLudSQIECBAgQIAAgQEBwTvwJCcSIECAAAECBAh0AcHb7UwSIECAAAECBAgMCAjegSc5kQABAgQIECBAoAsI3m5nkgABAgQIECBAYEBA8A48yYkECBAgQIAAAQJdQPB2O5MECBAgQIAAAQIDAoJ34ElOJECAAAECBAgQ6AKCt9uZJECAAAECBAgQGBAQvANPciIBAgQIECBAgEAXELzdziQBAgQIECBAgMCAgOAdeJITCRAgQIAAAQIEuoDg7XYmCRAgQIAAAQIEBgQE78CTnEiAAAECBAgQINAFBG+3M0mAAAECBAgQIDAgIHgHnuREAgQIECBAgACBLiB4u51JAgQIECBAgACBAQHBO/AkJxIgQIAAAQIECHQBwdvtTBIgQIAAAQIECAwICN6BJzmRAAECBAgQIECgCwjebmeSAAECBAgQIEBgQEDwDjzJiQQIECBAgAABAl1A8HY7kwQIECBAgAABAgMCgnfgSU4kQIAAAQIECBDoAoK325kkQIAAAQIECBAYEBC8A09yIgECBAgQIPek7d4AAAFTSURBVECAQBcQvN3OJAECBAgQIECAwICA4B14khMJECBAgAABAgS6gODtdiYJECBAgAABAgQGBATvwJOcSIAAAQIECBAg0AUEb7czSYAAAQIECBAgMCAgeAee5EQCBAgQIECAAIEuIHi7nUkCBAgQIECAAIEBAcE78CQnEiBAgAABAgQIdAHB2+1MEiBAgAABAgQIDAgI3oEnOZEAAQIECBAgQKALCN5uZ5IAAQIECBAgQGBAQPAOPMmJBAgQIECAAAECXUDwdjuTBAgQIECAAAECAwKCd+BJTiRAgAABAgQIEOgCgrfbmSRAgAABAgQIEBgQELwDT3IiAQIECBAgQIBAFxC83c4kAQIECBAgQIDAgIDgHXiSEwkQIECAAAECBLqA4O12JgkQIECAAAECBAYEBO/Ak5xIgAABAgQIECDQBQRvtzNJgAABAgQIECAwIPAAOLd/a/07TnQAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "execution_count": 13, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/BCG_incomplete_mkts_22_0.png" } }, "output_type": "execute_result" } ], "source": [ "# Bond Valuation\n", "fig = go.Figure(data=[go.Scatter3d(x=[kss],\n", " y=[bss],\n", " z=[pss],\n", " mode='markers',\n", " marker=dict(size=3, color='red')),\n", " go.Surface(x=kgrid,\n", " y=bgrid,\n", " z=Pgrid,\n", " colorscale='Oranges',opacity=0.6)])\n", "\n", "fig.update_layout(scene = dict(\n", " xaxis_title='x - Capital k',\n", " yaxis_title='y - Debt b',\n", " zaxis_title='z - Bond price q',\n", " aspectratio = dict(x=1,y=1,z=1)),\n", " width=700,\n", " height=700,\n", " margin=dict(l=50, r=50, b=65, t=90))\n", "fig.update_layout(scene_camera=dict(eye=dict(x=1.5, y=-1.5, z=2)))\n", "fig.update_layout(title='Equilibrium bond valuation for the grid of (k,b)')\n", "\n", "\n", "# Export to PNG file\n", "Image(fig.to_image(format=\"png\"))\n", "# fig.show() will provide interactive plot when running\n", "# code locally" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Comments on equilibrium pricing functions\n", "\n", "The equilibrium pricing functions displayed above merit study and\n", "reflection.\n", "\n", "They reveal the countervailing effects on a firm’s valuations of bonds\n", "and equities that lie beneath the Modigliani-Miller ridge apparent in\n", "our earlier graph of an individual firm $\\zeta$’s value as a\n", "function of $k(\\zeta), b(\\zeta)$.\n", "\n", "### Another example economy\n", "\n", "We illustrate how the fraction of initial endowments held by agent 2,\n", "$w^2_0/(w^1_0+w^2_0)$ affects an equilibrium capital structure\n", "$(k,b) = (K, B)$ well as associated equilibrium allocations.\n", "\n", "We are interested in how agents 1 and 2\n", "value equity and bond.\n", "\n", "$$\n", "\\begin{aligned}\n", "Q^i = \\beta \\int \\frac{u^\\prime(C^{i,*}_1(\\epsilon))}{u^\\prime(C^{i,*}_0)} d^e(k^*,b^*;\\epsilon) g(\\epsilon) \\ d\\epsilon \\\\\n", "P^i = \\beta \\int \\frac{u^\\prime(C^{i,*}_1(\\epsilon))}{u^\\prime(C^{i,*}_0)} d^b(k^*,b^*;\\epsilon) g(\\epsilon) \\ d\\epsilon \\\\\n", "\\end{aligned}\n", "$$\n", "\n", "The function `valuations_by_agent` is used in calculating these\n", "valuations." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.178', '0.502', '0.407', '0.092', '-0.000', '-0.000', '-0.570', '0.250', '0.131']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.155', '0.487', '0.381', '0.073', '-0.001', '0.000', '-0.518', '0.125', '0.022']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.145', '0.480', '0.367', '0.065', '0.000', '-0.000', '-0.490', '0.062', '0.034']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.150', '0.484', '0.374', '0.069', '0.000', '0.000', '-0.504', '0.094', '0.006']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.153', '0.485', '0.378', '0.071', '0.000', '-0.000', '-0.511', '0.109', '0.008']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.151', '0.484', '0.376', '0.070', '-0.000', '-0.000', '-0.508', '0.102', '0.001']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.151', '0.483', '0.375', '0.070', '0.000', '-0.000', '-0.507', '0.098', '0.003']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.151', '0.484', '0.375', '0.070', '-0.000', '0.000', '-0.506', '0.100', '0.001']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.151', '0.484', '0.376', '0.070', '0.000', '0.000', '-0.507', '0.101', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.151', '0.484', '0.376', '0.070', '-0.000', '0.000', '-0.507', '0.101', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.151', '0.484', '0.376', '0.070', '0.000', '0.000', '-0.507', '0.101', '0.000']\n", "finished\n", "1\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.180', '0.544', '0.404', '0.081', '-0.000', '-0.000', '-0.498', '0.250', '0.130']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.158', '0.531', '0.378', '0.063', '-0.000', '-0.000', '-0.443', '0.125', '0.020']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.148', '0.525', '0.364', '0.055', '0.000', '-0.000', '-0.414', '0.062', '0.036']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.153', '0.528', '0.371', '0.059', '0.000', '0.000', '-0.428', '0.094', '0.008']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.156', '0.530', '0.374', '0.061', '-0.000', '-0.000', '-0.435', '0.109', '0.006']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.154', '0.529', '0.373', '0.060', '0.000', '-0.000', '-0.432', '0.102', '0.001']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.155', '0.529', '0.373', '0.061', '0.000', '0.000', '-0.433', '0.105', '0.002']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.155', '0.529', '0.373', '0.060', '-0.000', '0.000', '-0.433', '0.104', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.154', '0.529', '0.373', '0.060', '-0.000', '0.000', '-0.433', '0.103', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.154', '0.529', '0.373', '0.060', '0.000', '-0.000', '-0.432', '0.103', '0.000']\n", "finished\n", "2\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.184', '0.590', '0.400', '0.070', '0.000', '0.000', '-0.427', '0.250', '0.128']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.162', '0.581', '0.373', '0.053', '0.000', '-0.000', '-0.366', '0.125', '0.017']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.152', '0.577', '0.359', '0.046', '-0.000', '-0.000', '-0.335', '0.062', '0.039']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.157', '0.579', '0.366', '0.049', '0.000', '0.000', '-0.351', '0.094', '0.011']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.159', '0.580', '0.369', '0.051', '-0.000', '-0.000', '-0.359', '0.109', '0.003']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.158', '0.579', '0.368', '0.050', '-0.000', '-0.000', '-0.355', '0.102', '0.004']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.159', '0.579', '0.369', '0.051', '-0.000', '-0.000', '-0.357', '0.105', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.159', '0.580', '0.369', '0.051', '0.000', '0.000', '-0.358', '0.107', '0.001']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.159', '0.580', '0.369', '0.051', '-0.000', '-0.000', '-0.358', '0.106', '0.001']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.159', '0.580', '0.368', '0.051', '-0.000', '-0.000', '-0.357', '0.106', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.159', '0.580', '0.368', '0.051', '0.000', '-0.000', '-0.357', '0.106', '0.000']\n", "finished\n", "3\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.187', '0.642', '0.395', '0.059', '0.000', '0.000', '-0.354', '0.250', '0.125']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.166', '0.638', '0.366', '0.044', '-0.000', '-0.000', '-0.289', '0.125', '0.014']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.156', '0.637', '0.351', '0.037', '0.000', '-0.000', '-0.255', '0.062', '0.042']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.161', '0.637', '0.359', '0.040', '-0.000', '-0.000', '-0.273', '0.094', '0.014']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.164', '0.637', '0.363', '0.042', '-0.000', '-0.000', '-0.282', '0.109', '0.000']\n", "finished\n", "4\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.192', '0.702', '0.387', '0.049', '0.000', '-0.000', '-0.281', '0.250', '0.122']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.172', '0.704', '0.357', '0.035', '-0.000', '0.000', '-0.211', '0.125', '0.010']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.162', '0.706', '0.342', '0.029', '-0.000', '-0.000', '-0.173', '0.062', '0.046']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.167', '0.705', '0.350', '0.032', '-0.000', '-0.000', '-0.192', '0.094', '0.018']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.170', '0.705', '0.354', '0.033', '-0.000', '-0.000', '-0.202', '0.109', '0.004']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.171', '0.704', '0.356', '0.034', '0.000', '0.000', '-0.206', '0.117', '0.003']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.170', '0.704', '0.355', '0.034', '-0.000', '-0.000', '-0.204', '0.113', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.170', '0.704', '0.355', '0.034', '-0.000', '0.000', '-0.205', '0.115', '0.002']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.170', '0.704', '0.355', '0.034', '-0.000', '0.000', '-0.205', '0.114', '0.001']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.170', '0.704', '0.355', '0.034', '-0.000', '-0.000', '-0.205', '0.114', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.170', '0.704', '0.355', '0.034', '0.000', '0.000', '-0.204', '0.114', '0.000']\n", "finished\n", "5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.198', '0.771', '0.377', '0.039', '-0.000', '-0.000', '-0.205', '0.250', '0.118']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.178', '0.781', '0.346', '0.027', '-0.000', '0.000', '-0.129', '0.125', '0.006']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.169', '0.788', '0.330', '0.022', '0.000', '-0.000', '-0.088', '0.062', '0.050']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.174', '0.784', '0.338', '0.024', '-0.000', '0.000', '-0.109', '0.094', '0.022']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.176', '0.783', '0.342', '0.026', '-0.000', '-0.000', '-0.119', '0.109', '0.008']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.177', '0.781', '0.344', '0.026', '0.000', '-0.000', '-0.125', '0.117', '0.001']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.178', '0.781', '0.345', '0.027', '0.000', '0.000', '-0.127', '0.121', '0.003']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.178', '0.782', '0.345', '0.026', '-0.000', '0.000', '-0.125', '0.119', '0.001']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.177', '0.782', '0.345', '0.026', '-0.000', '-0.000', '-0.125', '0.118', '0.000']\n", "finished\n", "6\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.205', '0.851', '0.366', '0.030', '-0.000', '-0.000', '-0.126', '0.250', '0.114']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.186', '0.872', '0.333', '0.020', '0.000', '0.000', '-0.043', '0.125', '0.001']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.177', '0.885', '0.316', '0.016', '0.000', '0.000', '0.001', '0.062', '0.055']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.181', '0.878', '0.324', '0.018', '-0.000', '0.000', '-0.022', '0.094', '0.027']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.184', '0.875', '0.328', '0.019', '0.000', '-0.000', '-0.033', '0.109', '0.013']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.185', '0.874', '0.330', '0.019', '0.000', '0.000', '-0.038', '0.117', '0.006']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.185', '0.873', '0.332', '0.019', '0.000', '0.000', '-0.041', '0.121', '0.002']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.186', '0.872', '0.332', '0.020', '-0.000', '-0.000', '-0.042', '0.123', '0.001']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.186', '0.872', '0.332', '0.020', '-0.000', '-0.000', '-0.044', '0.124', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.186', '0.872', '0.332', '0.020', '-0.000', '0.000', '-0.043', '0.124', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.186', '0.872', '0.332', '0.020', '0.000', '0.000', '-0.043', '0.124', '0.000']\n", "finished\n", "7\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.212', '0.945', '0.351', '0.022', '0.000', '0.000', '-0.043', '0.250', '0.108']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.194', '0.980', '0.316', '0.014', '0.000', '0.000', '0.047', '0.125', '0.005']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.203', '0.961', '0.334', '0.018', '0.000', '0.000', '-0.000', '0.188', '0.052']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.199', '0.970', '0.325', '0.016', '-0.000', '0.000', '0.023', '0.156', '0.024']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.196', '0.975', '0.321', '0.015', '0.000', '0.000', '0.034', '0.141', '0.010']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.195', '0.977', '0.319', '0.014', '0.000', '0.000', '0.041', '0.133', '0.003']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.195', '0.979', '0.318', '0.014', '-0.000', '0.000', '0.044', '0.129', '0.001']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.195', '0.978', '0.318', '0.014', '-0.000', '0.000', '0.042', '0.131', '0.001']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.195', '0.979', '0.318', '0.014', '-0.000', '0.000', '0.043', '0.130', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.195', '0.978', '0.318', '0.014', '0.000', '-0.000', '0.042', '0.130', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.195', '0.978', '0.318', '0.014', '0.000', '-0.000', '0.043', '0.130', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.195', '0.978', '0.318', '0.014', '-0.000', '0.000', '0.043', '0.130', '0.000']\n", "finished\n", "8\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.221', '1.056', '0.334', '0.016', '0.000', '0.000', '0.044', '0.250', '0.103']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.204', '1.110', '0.298', '0.009', '0.000', '0.000', '0.143', '0.125', '0.011']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.212', '1.081', '0.316', '0.012', '0.000', '0.000', '0.092', '0.188', '0.046']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.208', '1.095', '0.307', '0.010', '0.000', '0.000', '0.117', '0.156', '0.018']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.206', '1.102', '0.302', '0.010', '-0.000', '0.000', '0.130', '0.141', '0.003']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.205', '1.107', '0.300', '0.009', '-0.000', '-0.000', '0.137', '0.133', '0.004']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.205', '1.105', '0.301', '0.009', '-0.000', '0.000', '0.133', '0.137', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.206', '1.104', '0.302', '0.010', '0.000', '0.000', '0.131', '0.139', '0.002']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.205', '1.104', '0.301', '0.009', '0.000', '-0.000', '0.132', '0.138', '0.001']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.205', '1.104', '0.301', '0.009', '0.000', '-0.000', '0.133', '0.137', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.205', '1.104', '0.301', '0.009', '-0.000', '0.000', '0.133', '0.137', '0.000']\n", "finished\n", "9\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.231', '1.189', '0.315', '0.010', '0.000', '-0.000', '0.137', '0.250', '0.096']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.214', '1.269', '0.277', '0.005', '0.000', '-0.000', '0.247', '0.125', '0.018']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.222', '1.226', '0.296', '0.008', '-0.000', '0.000', '0.190', '0.188', '0.039']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.218', '1.247', '0.286', '0.006', '0.000', '-0.000', '0.218', '0.156', '0.011']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.216', '1.258', '0.282', '0.006', '-0.000', '-0.000', '0.233', '0.141', '0.003']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.217', '1.252', '0.284', '0.006', '-0.000', '-0.000', '0.225', '0.148', '0.004']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.216', '1.256', '0.283', '0.006', '-0.000', '0.000', '0.229', '0.145', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.216', '1.256', '0.282', '0.006', '-0.000', '0.000', '0.231', '0.143', '0.002']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.216', '1.256', '0.282', '0.006', '0.000', '0.000', '0.230', '0.144', '0.001']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.216', '1.255', '0.283', '0.006', '0.000', '-0.000', '0.229', '0.144', '0.000']\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "k,b,p,q,kfoc,bfoc,epstar,V,V_crit\n", "['0.216', '1.255', '0.283', '0.006', '-0.000', '0.000', '0.229', '0.144', '0.000']\n", "finished\n" ] } ], "source": [ "# Lists for storage\n", "wlist = []\n", "klist = []\n", "blist = []\n", "qlist = []\n", "plist = []\n", "Vlist = []\n", "tlist = []\n", "q1list = []\n", "q2list = []\n", "p1list = []\n", "p2list = []\n", "\n", "# For loop: optimization for each endowment combination\n", "for i in range(10):\n", " print(i)\n", "\n", " # Save fraction\n", " w10 = 0.9 - 0.05*i\n", " w20 = 1.1 + 0.05*i\n", " wlist.append(w20/(w10+w20))\n", "\n", " # Create the instance\n", " mdl = BCG_incomplete_markets(w10 = w10, w20 = w20, ktop = 0.5, btop = 2.5)\n", "\n", " # Solve for equilibrium\n", " kss,bss,Vss,qss,pss,c10ss,c11ss,c20ss,c21ss,𝜃1ss = mdl.solve_eq(print_crit=False)\n", "\n", " # Store the equilibrium results\n", " klist.append(kss)\n", " blist.append(bss)\n", " qlist.append(qss)\n", " plist.append(pss)\n", " Vlist.append(Vss)\n", " tlist.append(𝜃1ss)\n", "\n", " # Evaluations of equity and bond by each agent\n", " Q1,Q2,P1,P2 = mdl.valuations_by_agent(c10ss, c11ss, c20ss, c21ss, kss, bss)\n", "\n", " # Save the valuations\n", " q1list.append(Q1)\n", " q2list.append(Q2)\n", " p1list.append(P1)\n", " p2list.append(P2)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAALMCAYAAAAW+C9eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3zV1f3H8deHQNh7kxD2nrIdKK6KWuusq24RsM7WWq212q2tdtifVkQFRFAcoKKiaFs3KEtWEDBAgBBCCCMhkJ3P749cbRoDuYEk997c9/PxuA/yvd9zvvdzvHLy4XzPOV9zd0RERERE5L/qhDoAEREREZFwoyRZRERERKQMJckiIiIiImUoSRYRERERKUNJsoiIiIhIGUqSRURERETKUJIsUcnMxprZhmOoP8PMfl+VMYmIRKNg+1MzSzazM2oiJhFQkixRyt0/cfc+3xyr8xURiVxmNs7MUkIdh9QuSpJFRERERMpQkiwRwcw6m9k8M9ttZnvM7HEz62Fm/wkcZ5jZbDNrUapOspn9wszWmdk+M5tuZg0C574ddTCz54EE4E0zyzaznwfef8XM0sws08w+NrMBoWi7iEhtYmbHmdkKMztgZi8BDUqd+76ZrTSz/Wa2yMwGl6k+smyfbmaNgXeAToE+PNvMOtVkm6R2UpIsYc/MYoC3gK1AVyAOmAMY8BDQCegHdAZ+Xab6j4CzgB5Ab+D+std396uBbcB57t7E3f8cOPUO0AtoB6wAZldhs0REoo6ZxQKvA88DrYBXgIsD54YB04BJQGvgKWC+mdUvdYnv9OnufhA4G0gN9OFN3D21hpoktZiSZIkEoyhJhO9294Punuvun7p7kru/7+557r4b+CtwSpm6j7v7dnffC/wBuCLYD3X3ae5+wN3zKEm+h5hZ86ppkohIVBoD1AP+7u4F7v4qsDRw7ibgKXf/wt2L3P05IC9Q5xtH3aeLVJaSZIkEnYGt7l5Y+k0za2dmc8xsh5llAbOANmXqbi/181ZKku0KmVmMmT1sZpsC104OnCp7fRERCV4nYIe7e6n3tgb+7ALcFZhqsd/M9lPS/5fut4+qTxc5GkqSJRJsBxLMrG6Z9x8CHBjs7s2AqyiZglFa51I/JwCHuwXnZY6vBM4HzgCaUzLNg3KuLyIiwdsJxJlZ6b40IfDnduAP7t6i1KuRu79Yquzh+vSyfbjIMVOSLJFgCSUd68Nm1jiwUONEoCmQDew3szjg7nLq3mJm8WbWCrgPeOkwn7EL6F7quCklt/n2AI2AP1ZNU0REotpioBC43czqmtlFlEypA3gamGxmo61EYzM718yalqp/uD59F9BaU+KkKilJlrDn7kXAeUBPShbYpQCXAb8BhgGZwNvAvHKqvwC8B2wOvA63Yf1DwP2BW3w/A2ZScitvB7AO+Lyq2iMiEq3cPR+4CLgO2EdJXz4vcG4ZJfOSHw+cSwqUK63cPt3d1wMvApsD/bimYcgxs/+dFiRSe5hZMjDB3f8V6lhEREQksmgkWURERESkDCXJIiIiIiJlaLqFiIiIiEgZGkkWERERESmj7L6zYaFNmzbetWvXUIchIlJpy5cvz3D3tqGOoyapzxaRSHWkPjssk+SuXbuybNmyUIchIlJpZra14lK1i/psEYlUR+qzNd1CRERERKQMJckiIiIiImUoSRYRERERKUNJsoiIiIhIGUqSRURERETKUJIsIiIiIlKGkmQRkTI+WJ/O1I83hToMEREJwtY9B7n/9TXkFRZV6XWVJIuIlPLu2jQmPr+M+atSq7zDFRGRqrX7QB7XTFvC26t3kpaZW6XXVpIsIhLw5qpUbnlhBQPjmjN7whjq140JdUgiInIY2XmF3DBjKbuycnn2upF0ad24Sq8flk/cExGpaa8uT+Hnr65iRNdWTLtuJE3qq3sUEQlX+YXF3DxrOet2ZvH0NcMZltCyyj9DvwVEJOq98MU27nttDSf1bMPT14ygYaxGkEVEwlVxsXP3q6v45OsMHrlkMKf1bV8tn6MkWUSi2vTPtvCbN9dxap+2PHnVcBrUU4IsIhLO/rjgK95YmcrdZ/XhhyM6V9vnKEkWkag15aNNPPzOes4a0J7/u2IYsXW1TENEJJxN/XgTz3y6hetO6MqPx/Wo1s9SkiwiUcfd+ce/k/jbvzZy3pBO/PXSIdSLUYIsIhLO5q1I4Y8L1nPu4I488P3+mFm1fp6SZBGJKu7Onxdu4MkPN3HxsHj+fMlgYupUb0crIiLH5qONu/n5q6s5oUdr/nrpEOrUQL+tJFlEooa787u3vmLaZ1u4cnQCvz9/YI10tCIicvRWbd/PzbOW06t9U566eniNbc+p+4siEhWKi537X1/LtM+2cP2JXfnDBdGXIJvZNDNLN7O1hzn/IzNbHXgtMrMhNR2jiEhpWzIOcv2MpbRqHMtz14+kaYN6NfbZSpJFpNYrKnZ+Pnc1s7/YxuRTetTIXLYwNQMYf4TzW4BT3H0w8Dtgak0EJSJSnvQDuVwz7QsAZt4winbNGtTo52u6hYjUaoVFxfz05VXMX5XKnWf04o7Te0Vrgoy7f2xmXY9wflGpw8+B+OqOSUSkPAdyC7hu2lL2ZOfz4k1j6N62SY3HoCRZRGqt/MJibn/xS95NTOOe8X25uZq3C6plbgTeCXUQIhJ98gqLmPT8cjbuOsCz141kSOcWIYlDSbKI1Eq5BUX8ePYK/rM+nQe+358bTuoW6pAihpmdSkmSfNIRykwEJgIkJCTUUGQiUtsVFzs/fXkVizbt4a+XDuGU3m1DFktQc5LNbLyZbTCzJDO7t5zzh13sUdFCERGRqpaTX8RNM5fxn/Xp/P6CgUqQK8HMBgPPAOe7+57DlXP3qe4+wt1HtG0bul9iIlJ7uDu/fWsdb6/eyS/O7stFw0I746vCJNnMYoAngLOB/sAVZta/TLEjLfaYwZEXioiIVJnsvEKum76Ez5IyeOSSwVw1pkuoQ4oYZpYAzAOudveNoY5HRKLLkx9tYsaiZG48qRsTT+4e6nCCmm4xCkhy980AZjYHOB9Y902BIy32qGihiIhIVcnKLeC6aUtYlZLJ3y4byvlD40IdUlgxsxeBcUAbM0sBHgTqAbj7FOABoDXwz8DixkJ3HxGaaEUkmryybDt/fncD5w/txC/P6RcWC6yDSZLjgO2ljlOA0Ucof1SLPTS/TUSOxf5D+Vz97BLWp2XxxJXHMX5gx1CHFHbc/YoKzk8AJtRQOCIiAPxn/S7unbeGsb3a8MglNfM0vWAEMye5vEi93IL/XexxT2UD0fw2ETlaGdl5XD71czbsOsBTVw9XgiwiEiG+3LaPH89eQf+OzXjyquHE1g2fR3gEM5KcAnQudRwPpJYtVGqxx9lHWuwhIlKVdmXl8qNnviBl3yGevXYEY3vpH9kiIpFg0+5sbpixlPbNGjDtupE0qR9em64Fk64vBXqZWTcziwUuB+aXLqDFHiISCjv253DZU4vZuT+HGdePUoIsIhIhdmXlcs2zS4ipY8y8YRRtm9YPdUjfUWGS7O6FwK3AQuAr4GV3TzSzyWY2OVCs9GKPlWa27Jv6gYUii4E+ZpZiZjdWeStEJOps33uIy55azJ7sfGbeOJox3VuHOiQREQlCZk4B105bwv5D+cy4fhRdWjcOdUjlCmpc290XAAvKvDel1M+HXexR0UIREZHK2rw7myuf/oKcgiJeuGkMg+KbhzokEREJQm5ByT72m3ZnM/26UQyMC9/+O7wmf4iIVGDjrgNc+fQXuDtzJo6hX8dmoQ5JRESCUFTs3DlnJUu27OUfVxzHSb3ahDqkI1KSLCIRIzE1k6ufXULdOsYLE8fQs13TUIckIiJBcHd+PT+RdxPT+NX3+/ODIZ1CHVKFwmefDRGRI1i1fT9XTP2cBnXr8PKk45Ugi4hEkMf/k8Tzn29l0sndufGkbqEOJygaSRaRsLcseS/XTV9Ky8b1eGHCGDq3ahTqkEREJEhzlmzjL+9v5KLj4rhnfN9QhxM0JckiEtYWbcpgwnPL6NCsAbNvGk3H5g1DHZKIiATp/XW7uO+1NZzSuy1/umRw2DxNLxiabiEiYeujjbu5fvpS4ls2ZM6kMUqQRUQiyLLkvdz6wgoGxTXnnz8aRr2YyEo7NZIsImHp3bVp3P7il/Rs14RZE0bTqnFsqEMSEZEgfb3rADc+t4xOLRoy7bqRNA6zp+kFI7JSehGJCs8vTubm2csZENeMF25SgiwiEkl2ZuZwzbQlxNatw8wbRtG6Sfg9TS8YkZfWi0it5e48+t4GnvhgE6f3bcfjVw6jYWxMqMMSEZEgZR4qeZregdxCXpoU2QutNZIsImGhoKiYu19dzRMfbOLykZ156urhSpCrmJlNM7N0M1t7mPN9zWyxmeWZ2c9qOj4RiWy5BUVMmLmU5IxDTL1mOAM6he/T9IKhJFlEQu5gXiE3zVzGq8tTuPOMXjx00SDqRtgCjwgxAxh/hPN7gduBR2skGhGpNQqKirntxS9ZtnUff7tsKCf0CO+n6QVD0y1EJKQysvO4YcZS1u7I5KGLBnHFqIRQh1RrufvHZtb1COfTgXQzO7fGghKRiJdbUMStL6zgX1+l85sfDODcwR1DHVKVUJIsIiGzdc9Brp22hLSsXKZePYIz+rcPdUgSJDObCEwESEjQP2xEolVWbgETnlvG0uS9/O6CgVw9pkuoQ6oySpJFJCTWpGRy/YwlFBY7syeMYXiXlqEOSSrB3acCUwFGjBjhIQ5HREIgIzuPa6ctYUPaAR67/Dh+MKRTqEOqUkqSRaTGfbRxNzfPWk7LRrHMuWEUPds1CXVIIiJSCTv253D1M1+QmpnD09eO4NQ+7UIdUpVTkiwiNWru8hTumbuaXu2bMuP6kbRv1iDUIYmISCUkpWdz9bNfkJ1XyKwbRzOia6tQh1QtlCSLSI1wd578aBN/fncDJ/ZszZSrhtO0Qb1QhxVVzOxFYBzQxsxSgAeBegDuPsXMOgDLgGZAsZndCfR396wQhSwiYWZ1yn6um76UOma8NPF4+ndqFuqQqo2SZBGpdkXFzm/fTOS5xVv5wZBOPPrDIcTW1RZvNc3dr6jgfBoQX0PhiEiEWbQpg5ueW0bLxrHMunE0Xds0DnVI1Sqo31JmNt7MNphZkpndW875H5nZ6sBrkZkNCbauiNRuuQVF3PbiCp5bvJWbxnbj75cNVYIsIhJhFiamcd30pcS1bMirk0+o9QkyBDGSbGYxwBPAmUAKsNTM5rv7ulLFtgCnuPs+MzubkhXPo4OsKyK1VOahAm56fhlLtuzl/nP7MWFs91CHJCIilfTKsu3cM3c1g+NbMOP6kbRoFBvqkGpEMNMtRgFJ7r4ZwMzmAOcD3ya67r6oVPnP+e/tugrrikjttDMzh2unLWFLxkH+cUXt2xpIRCQaPPPJZn7/9lec1LMNT109nMb1o2embjAtjQO2lzpOAUYfofyNwDuVrauN6UVqj427DnDttCUcyC3kuetHcULPyH88qYhINHF3/vLeRh7/IImzB3bg75cPpX7dmFCHVaOCSZKtnPfK3TjezE6lJEk+qbJ1tTG9SO2wZMteJjy3lAb1Ynh5Uu1e+SwiUhsVFzsPzF/LrM+3cfnIzvzhwkHE1CkvpavdgkmSU4DOpY7jgdSyhcxsMPAMcLa776lMXRGpHd5Zs5M7XlpJfMuGPHf9KDq3ahTqkEREpBLyC4u565VVvLkqlcmn9OCe8X0wi74EGYJLkpcCvcysG7ADuBy4snQBM0sA5gFXu/vGytQVkdrhuUXJ/PrNRIZ2bsG0a0fSsnF0LOwQEaktcvKLuHn2cj7csJt7z+7L5FN6hDqkkKowSXb3QjO7FVgIxADT3D3RzCYHzk8BHgBaA/8M/Guj0N1HHK5uNbVFRELA3Xlk4Qb++eEmzujXnv+74jgaxkbXvDURkUiXmVPAjTOWsmLbPh6+aBCXj9L6sKCWKLr7AmBBmfemlPp5AjAh2LoiUjsUFBVz79w1zF2RwhWjEvjd+QOoG6M9kEVEIkn6gVyunbaUpPQDPH7lMM4Z1DHUIYWF6NnHQ0Sq1MG8Qn48ewUfbdzNT87oze2n94zaeWsiIpFq+95DXPXsF+w+kMe060YytlfbUIcUNpQki0ilZWTnccOMpazdkanbciIiEWrjrgNc/ewX5BYUM2vCaIYltAx1SGFFSbKIVEpyxkGunb6EXVm5TL16BGf0bx/qkEREpJK+3LaP62csJTamDi9POp4+HZqGOqSwoyRZRIK2OmU/109fSrE7L9w0RqMOIiIR6NOvM5j4/DLaNq3PrBtHa7vOw1CSLCJB+XBDOj+evYJWjWN57oZR9GjbJNQhiYhIJb2zZid3zFlJ97aNmXnjKNo1bRDqkMKWlqGLSIVeXZ7ChOeW0bV1Y+bdfIIS5AhlZtPMLN3M1h7mvJnZP8wsycxWm9mwmo5RRKrPS0u3ccsLKxgU35yXJh6vBLkCSpJF5LDcnSc+SOJnr6xidPdWvDRpDO2aqVONYDOA8Uc4fzbQK/CaCDxZAzGJSA146qNN3DN3DWN7teX5G0fRvFG9UIcU9jTdQkTKlVtQxH3z1jDvyx2cP7QTj1wyhNi6+nd1JHP3j82s6xGKnA/MdHcHPjezFmbW0d131kiAIlLl3J0/vbuBKR9t4rwhnfjLD9WXB0tJsoh8x87MHCY9v5zVKZnceUYvbj+tF3XqaA/kKBAHbC91nBJ47ztJsplNpGS0mYQEbQEoEo6Kip37X1/Di0u2c9WYBH7zg4HEqC8PmpJkEfkfy7fuZdLzK8jJL+Spq4dz1oAOoQ5Jak55vz29vILuPhWYCjBixIhyy4hI6OQVFvHTl1bx9pqd3HZaT356Zm898KmSlCSLyLdeXLKNB95YS6cWDXnhptH0bq99M6NMCtC51HE8kBqiWETkKB3MK2TyrOV88nUG95/bjwlju4c6pIikJFlEKCgq5rdvruP5z7cytlcb/u+K42jRKDbUYUnNmw/camZzgNFApuYji0SW/YfyuX7GUlZt388jlwzmhyM6V1xJyqUkWSTK7cnO4+bZK1iyZS8TT+7Oz8/qQ90YLeqojczsRWAc0MbMUoAHgXoA7j4FWACcAyQBh4DrQxOpiByNzbuzmfj8crbtOcSTV2m63LFSkiwSxRJTM5k4czkZ2Xn8/bKhXHBcXKhDkmrk7ldUcN6BW2ooHBGpQgsT07jr5VXE1q3DczeM4vgerUMdUsRTkiwSpd5clcrdr66iZaNYXp18AoPim4c6JBERqaSiYufR9zbw5IebGBLfnH9eNZy4Fg1DHVatoCRZJMqU7lBHdGnJk1cNp23T+qEOS0REKmlPdh53zFnJp0kZXDk6gQfP60/9ujGhDqvWUJIsEkUycwq4Y86XfLhhN1eOTuDX5w3QpvIiIhFo1fb93DxrORkH8/nzJYO5VAv0qpySZJEokZSezcSZy9i29xC/v2AgV43pEuqQRETkKLy4ZBsPvpFI26b1mXfzCQyM03S56hDUEJKZjTezDWaWZGb3lnO+r5ktNrM8M/tZmXN3mNlaM0s0szurKnARCd6/v9rFhU98RmZOAS/cNEYJsohIBMotKOKeV1fzi3lrGNOjNW/ddpIS5GpU4UiymcUATwBnUrLR/FIzm+/u60oV2wvcDlxQpu5A4CZgFJAPvGtmb7v711UUv4gcgbvzzw838eh7GxjQqRlPXT1CCzpERCLQ9r2H+PHsFazZkcntp/XkjjN66xHT1SyY6RajgCR33wwQ2GT+fODbJNnd04F0Mzu3TN1+wOfufihQ9yPgQuDPVRC7iBzBofxC7n5lNW+v2cn5Qzvx8EWDaRirBR0iIpHmo427uWPOlxQVO89cM4Iz+rcPdUhRIZgkOQ7YXuo4hZInMQVjLfAHM2sN5FCySf2y8gqa2URgIkBCQkKQlxeR8mzfe4ibZi5j464D3HdOX24a2x0zjTiIiESS4mLniQ+S+Ou/NtKnfVOmXDWcrm0ahzqsqBFMklzeb1YP5uLu/pWZ/Ql4H8gGVgGFhyk7FZgKMGLEiKCuLyLftWhTBrfMXkFRsTP9+lGc0rttqEMSEZFKyswp4K6XV/Kvr9K5YGgnHtLdwBoXTJKcApTeVyQeSA32A9z9WeBZADP7Y+B6IlLF3J3nFiXzu7e/olubxjx9zQi6acRBRCTirE/LYvLzy0nZl8NvfjCAa47voruBIRBMkrwU6GVm3YAdwOXAlcF+gJm1c/d0M0sALgKOP6pIReSw8gqLuP+1tbyyPIUz+rXnb5cNoWmDeqEOS0REKumNlTu4Z+5qmjWox0uTxjC8S6tQhxS1KkyS3b3QzG4FFgIxwDR3TzSzyYHzU8ysAyVzjZsBxYGt3vq7exYwNzAnuQC4xd33VVdjRKLRrqxcJj2/nJXb93P76b248/Re1NGKZxGRiJJfWMwfF3zFjEXJjOrWisevPI52TRuEOqyoFtTDRNx9AbCgzHtTSv2cRsk0jPLqjj2WAEXk8L7cto9Jzy8nO6+QKVcNY/zAjqEOSUREKmlXVi63zF7Bsq37mHBSN+45uy/1YvQ01FDTE/dEItTLy7Zz/2trad+8PjNvPIG+HZqFOiQJc2Y2HniMkruCz7j7w2XOtwSmAT2AXOAGd19b44GKRJElW/ZyywsrOJhXyP9dcRznDekU6pAkQEmySIQpKCrmD2+X3JI7sWdrHr9iGC0bx4Y6LAlzQT4Y6j5gpbtfaGZ9A+VPr/loRWo/d2faZ8n8ccFXdGnViNkTRtO7fdNQhyWlKEkWiSB7D+Zzy+wVLN68hxtP6sYvzu5LXd2Sk+BU+GAooD/wEIC7rzezrmbW3t131Xi0IrXYwbxC7p23hjdXpfK9/u159NIhNNNi67CjJFkkQny1M4ubZi4j/UAef/nhEC4eXu4yAJHDCebBUKso2YXoUzMbBXShZL2JkmSRKrJ5dzaTZy0nKT2be8b3ZfIpethTuFKSLBIB3l69k5+9sopmDevy8qTjGdq5RahDksgTzIOhHgYeM7OVwBrgSw7zACg9JVWk8hYmpvGzl1dRr24dZt4wmpN6tQl1SHIESpJFwlhOfhG/fWsdLy7ZxrCEFky5ajjtmmlLIDkqFT4YKrBt5/UAVjK0tSXw+g49JVUkeEXFzqPvbeDJDzcxJL45/7xqOHEtGoY6LKmAkmSRMLUuNYvb53xJUno2k07pzl1n9iG2ruYfy1Gr8MFQZtYCOOTu+cAE4ONA4iwiR2lPdh53zFnJp0kZXDEqgQfP60+Denq8dCRQkiwSZtydGYuSeWjBelo0qsesG3VLTo5dMA+GAvoBM82siJIFfTeGLGCRWmDV9v3cPGs5GQfz+fPFg7l0ZOeKK0nYUJIsEkYysvO4+5VVfLBhN2f0a8efLh5M6yb1Qx2W1BJBPBhqMdCrpuMSqY1eXLKNB99IpG3T+sydfAKD4puHOiSpJCXJImHi4427ueuVVWTmFPDb8wdw9ZguWvEsIhJhMg8V8Os3E3ntyx2c3Lstj102VHvZRyglySIhll9YzKPvbWDqx5vp3b4Jz984Sk/PExGJQP9at4v7XlvD3oP53HlGL247rRcxdTTYEamUJIuE0Obd2dw+50vW7sjiqjEJ3H+uFnSIiESa/Yfy+e2b65j35Q76dmjKtOtGMjBO0ysinZJkkRBwd15ZnsKv5ycSW7cOU68ezvcGdAh1WCIiUknvB0aP9x3M5/bTe3HrqT21E1EtoSRZpIZl5hTwy9fW8NbqnRzfvTV/u2woHZpr72MRkUiy/1A+v56fyOsrU+nXsRnTNXpc6yhJFqlBy7fu5fYXV5KWlcvdZ/Vh8ik9NF9NRCTCvJeYxn2vrWX/oZK5xz8ep9Hj2khJskgNKCp2Hv9PEv/4z9fEtWjIq5OP57iElqEOS0REKmHfwXx+8+Z/R4+fu2EkAzpp9Li2UpIsUs127M/hJ3NWsiR5LxceF8dvzx9A0wb1Qh2WiIhUwsLENH4ZGD3+yRm9+fGpPagXo9Hj2iyoJNnMxgOPUfKUpmfc/eEy5/sC04FhwC/d/dFS535CyeNNHVgDXO/uuVUTvkh4W7BmJ/fOXU1RsfO3y4Zw4XHxoQ5JREQqYd/BfB6cn8j8Van079iMmTeMon8nbdMZDSpMks0sBngCOBNIAZaa2Xx3X1eq2F7gduCCMnXjAu/3d/ccM3sZuByYUTXhi4SnQ/mF/O6tdby4ZDtDOrfgH5cPpUvrxqEOS0REKuHdtWnc//oaMnMK+OmZvbl5nEaPo0kwI8mjgCR33wxgZnOA84Fvk2R3TwfSzezcw3xGQzMrABoBqccctUgYS0zN5PYXv2RzxkF+PK4HPzmztzpVEZEIsjcwevzmqlQGdGrG8zeOpl9HjR5Hm2CS5Dhge6njFGB0MBd39x1m9iiwDcgB3nP39yodpUgEcHemfZbMn95ZT8vG9Zh942hO6Nkm1GGJiEglvLt2J/e/vpbMnALuOrM3kzV6HLWCSZLL25/Kg7m4mbWkZNS5G7AfeMXMrnL3WeWUnQhMBEhISAjm8iJhY/eBPO5+dRUfbtjNGf3a8+dLBtOqcWyowxIRkSDtPZjPA2+s5a3VOxkY14xZE0bTt4NGj6NZMElyCtC51HE8wU+ZOAPY4u67AcxsHnAC8J0k2d2nAlMBRowYEVQSLhIOPtq4m7teXsWB3AJ+d8FArhqdgJn2PhYRiRTvrCkZPc7KLeBn3+vNpFM0eizBJclLgV5m1g3YQcnCuyuDvP42YIyZNaJkusXpwLKjCVQk3OQVFvHIuxt45tMt9GnflNkTRtOnQ9NQhyVyWEHsVNSckkGMBEp+Pzzq7tNrPFCRGrInO48H5ifydmD0ePYPNXos/1VhkuzuhWZ2K7CQko51mrsnmtnkwPkpZtaBkuS3GVBsZndSsqPFF2b2KrACKAS+JDBaLBLJNu3O5vYXvyQxNYtrj+/CL87pR4N6MaEOS+Swgtyp6BZgnbufZ2ZtgQ1mNtvd80MQski1WrBmJ78KjB7ffVYfJp7cXaPH8j+C2ifZ3RcAC8q8N6XUz2mUTMMor+6DwIPHEKNI2HB3Xl62nV/PX0eDenV45poRnNG/fQ0/yVwAACAASURBVKjDEglGhTsVUbLepKmVzBdqQsn2noU1HahIddqTnccDbyTy9pqdDI5vzguXjNFdQCmXnrgnEqTMQwXc99oa3l6zkxN7tuavlw6lfbMGoQ5LJFjB7FT0ODCfknUnTYHL3L24vItpsbVEordX7+RXb6wlO7eQu8/qw6STu1NXo8dyGEqSRSrg7ry9Zie/eXMd+w7mc8/4vkw6uTt16mhxnkSUYHYqOgtYCZwG9ADeN7NP3D3rOxW12FoiSEZ2Hg+8sZYFa9IYHN+cRy4ZotFjqZCSZJEjSNl3iF+9vpYPNuxmUFxzpl83koFxzUMdlsjRCGanouuBh93dgSQz2wL0BZbUTIgiVe+t1ak88EYi2bmF/Hx8HyaO1eixBEdJskg5CouKmf5ZMn99fyNm8Kvv9+fa47uoY5VIFsxORdso2YXoEzNrD/QBNtdolCJVJD0rl1+/mciCNWkMiW/Ooz8cQq/2Gj2W4ClJFiljdcp+fjFvDYmpWZzRrx2/OX8gcS0ahjoskWMSzE5FwO+AGWa2hpLpGfe4e0bIghY5CrkFRTz76Rae+CCJwiLnnvF9uWlsNw1ySKUpSRYJyM4r5C/vbeC5Rcm0bVqfKVcN46wBHfRgEKk1gtipKBX4Xk3HJVIVvlk/8tCC9ezYn8P4AR34xTl96dK6cahDkwilJFkEeC8xjQfnJ5KWlcvVY7rws7P60KxBvVCHJSIiQViTkslv30pkafI++nVsxiM/HMwJPdqEOiyJcEqSJaqlZeby4Py1LEzcRd8OTXniR8MYltAy1GGJiEgQdmXl8sjCDcxdkULrxrE8fNEgfjiiMzHafUiqgJJkiUpFxc7zi5N59L2NFBYXc8/4vkwY201PWxIRiQBl5x1PPLk7t57ak6a6AyhVSEmyRJ11qVn84rU1rNq+n7G92vCHCwaR0LpRqMMSEZEKuDsL1qTxxwVfsWN/DmcNaM995/TTvGOpFkqSJWocyi/ksX99zTOfbqFlo3o8dvlQfjCkkxbmiYhEAM07lpqmJFmiwocb0rn/9bWk7Mvh8pGduffsvrRoFBvqsEREpALpgXnHr65IoVWjWB66aBCXat6x1AAlyVKrpR/I5XdvfcWbq1Lp0bYxL086nlHdWoU6LBERqUB5845vObWndh6SGqMkWWql4mJnztLtPPzOV+QWFPOTM3ozeVx36teNCXVoIiJyBJp3LOFCSbLUOl/vOsB9r61hafI+xnRvxR8uHESPtk1CHZaIiFRg7Y5MfvvmOpYk76Vvh6a8cNNozTuWkFGSLLVGbkERT3yQxJSPNtG4fl0euWQwlwyP18I8EZEwp3nHEo6UJEutsCgpg1++vpYtGQe56Lg4fnluP1o3qR/qsERE5Ai+mXf8zw+SyC8qZuLY7txymuYdS3hQkiwRbe/BfH7/9jrmrdhBl9aNmHXjaE7qpVtzIiLh7Jt5xw+98xUp+3L4Xv+Secdd22jesYSPoJJkMxsPPAbEAM+4+8NlzvcFpgPDgF+6+6OB9/sAL5Uq2h14wN3/XgWxSxRzd+au2MEf3l7HgdxCbj21J7ee1pMG9bQwT0QknH1n3vGE0ZzQU4MbEn4qTJLNLAZ4AjgTSAGWmtl8d19Xqthe4HbggtJ13X0DMLTUdXYAr1VN6BKttmQc5JevrWHRpj0M79KShy4aRO/2TUMdloiIHIHmHUukCWYkeRSQ5O6bAcxsDnA+8G2S7O7pQLqZnXuE65wObHL3rccQr0SxzEMFPPnRJqZ9toX6devwhwsHcsXIBOqogxUJShB3Be8GfhQ4rAv0A9q6+94aDVRqFc07lkgVTJIcB2wvdZwCjD6Kz7ocePFwJ81sIjARICEh4SguL7VVbkERMxcn88QHm8jKLeDCoXHce3Zf2jVrEOrQRCJGMHcF3f0R4JFA+fOAnyhBlqOVX1jMvBUp/N9/ktixX/OOJfIEkySXN0znlfkQM4sFfgD84nBl3H0qMBVgxIgRlbq+1E5Fxc68FSn87f2NpGbmMq5PW35+Vl/6d2oW6tBEIlGFdwXLuIIjDGyIHE5eYRGvLEvhyQ83sWN/DoPjm/PIJYM171giTjBJcgrQudRxPJBayc85G1jh7rsqWU+ikLvzn/Xp/Ond9Wzclc2Q+OY8eukQbSgvcmyCvitoZo2A8cCth7uY7v5JWbkFRcxZso0pH20mLSuXYQkt+MOFAzmld1vtVy8RKZgkeSnQy8y6UbLw7nLgykp+jkYkJCjLt+7jT++sZ0nyXrq1acw/fzSMswd2UAcrcuwqc1fwPOCzI0210N0/+UZOfhGzv9jKUx9vZveBPEZ1bcVfLh3CCT1aq++WiFZhkuzuhWZ2K7CQksUe09w90cwmB85PMbMOwDKgGVBsZncC/d09KzAicSYwqdpaIREvKT2bRxauZ2HiLto0qc/vLxjIZSM7Uy+mTqhDE6ktKnNX8IhrSEQADuYVMuvzrTz9yWYysvM5oUdr/u+K4xjTvXWoQxOpEkHtk+zuC4AFZd6bUurnNEo63PLqHgL0N0bKlZaZy2P/3shLS7fTKLYud53ZmxtO6kbj+nrOjUgVC+quoJk1B04BrqrZ8CRSHMgtYObirTzzyWb2HSpgbK823H56L0Z2bRXq0ESqlDIRCYnMnAKeCmznVlTsXHtCV249taceJS1STYK5KxgoeiHwnrsfDFGoEqYycwqY8Vky0z7bQmZOAaf1bcdtp/XkuISWoQ5NpFooSZYalVtQxKzPt/L4B0lk5hRwwdA4fnpmbzq3ahTq0ERqvYruCgaOZwAzai4qCXf7D+Uz7dMtTP8smQN5hZzZvz23n9aLQfHNQx2aSLVSkiw1oqjYee3LHfzt/Y3s2J/DKb3b8vPxfRjQSZ2siEg42nswn2c+2cxzi5I5mF/E2QM7cOtpPdVvS9RQkizVyt35YEM6f3pnAxt2HdB+mSIiYW73gTye/mQzsz7fSk5BEecO6shtp/WiT4emoQ5NpEYpSZZqs2LbPh5+Zz1Ltuyla+tGPHHlMM4ZpO3cRETC0a6sXJ76aDMvLNlKfmEx5w+N45ZTe9CznZJjiU5KkqXKbdqdzSPvbuDdxDTaNKnP7y4YyOXazk1EJCztzMxhyoebeHHpdoqKnQuPi+OWU3vSTY+PliinJFmqzK6sXP7+r695edl2GtStw0/P7M2N2s5NRCQspew7xJMfbuKVZSkUu3PJ8Hh+PK4nCa21kFoElCRLFcjKLdnO7dlPS7Zzu3pMF249rSdttJ2biEjY2brnIP/8YBNzV6RgBpeO6MzN43oQ31LJsUhpSpLlqOUVFvH84pLt3PYfKuD8oZ2468w+GoUQEQlDm3dn88QHm3h95Q5i6hg/Gp3ApFN60KlFw1CHJhKWlCRLpRUUFTN/ZSp/DWznNrZXG+4Z35eBcdoWSEQknLg7K7btZ8aiZN5enUps3Tpcd0JXJp3cnXbNGoQ6PJGwpiRZgpadV8icJduY/lkyO/bnMCiuOX++ZDAnajs3EZGwkltQxPxVqcxcnMzaHVk0rV+XCWO7c9PY7rRtqqlwIsFQkiwVSsvMZfqiLbzwxTYO5BYyulsrfvODAZzWtx116mg7NxGRcLF97yFmfbGVl5ZuZ/+hAnq3b8LvLxjIhcfFaRG1SCXpb4wc1lc7s3j6k83MX5lKsTvnDOrITWO7M6Rzi1CHJiIiAe7OZ0l7eG5xMv/+ahdmxvf6t+ea47sypnsr7U0vcpSUJMv/cHc+Tcpg6seb+eTrDBrFxnD18V244cRudG6lBXkiIuHiQG4B81bsYObiZDbtPkirxrHcPK4HPxrdRYvxRKqAkmQBIL+wmLdWpzL1482sTztAu6b1+fn4PvxoVBeaN6oX6vBERCQgKT2bmYuTmbs8hYP5RQzp3IK/XjqEcwZ1pEG9mFCHJ1JrKEmOclm5Bbz4RclivLSsXHq3b8IjlwzmB0M7Ub+uOluR2sTMxgOPATHAM+7+cDllxgF/B+oBGe5+So0GKeUqKnb+/dUuZi7eyqdJGcTG1OH7QzpyzfFdGaopcCLVQklylNqxP4fpn25hztLtZOcVcmLP1jx88SBO6d1W89dEaiEziwGeAM4EUoClZjbf3deVKtMC+Ccw3t23mVm70EQr39h7MJ+Xlm5n1udb2bE/h47NG3D3WX24bGRnPbBJpJopSY4ya3dk8vQnm3lr9U4AzhvckQlju2uPY5HabxSQ5O6bAcxsDnA+sK5UmSuBee6+DcDd02s8SgFK+urnFiXzxqpU8guLGdO9Fb/6fj/O6NeeujF1Qh2eSFQIKkmu6BadmfUFpgPDgF+6+6OlzrUAngEGAg7c4O6LqyZ8CYa78+HG3Tz98WYWbdpDk/p1ueHErlx3YjfitLhDJFrEAdtLHacAo8uU6Q3UM7MPgabAY+4+s7yLmdlEYCJAQkJClQcbjfILi3ln7U6eW5TMim37aVgvhh8Oj+ea47vSp0PTUIcnEnUqTJKDuUUH7AVuBy4o5xKPAe+6+yVmFgtoi4QakldYxBsrU3n64818nZ5Nh2YNuO+cvlw+KoFmDbQYTyTKlDePyssc1wWGA6cDDYHFZva5u2/8TkX3qcBUgBEjRpS9jlTCrqxcZn+xjRe+2EZGdh7d2jTmge/35+Lh8TRvqL5aJFSCGUmu8BZd4JZcupmdW7qimTUDTgauC5TLB/KrJHI5rP2H8pn9xTZmLEpm94E8+nVsxt8uG8K5gzoRW1e36USiVArQudRxPJBaTpkMdz8IHDSzj4EhwHeSZDk27s7S5H08tziZhWvTKHLn1D7tuPaErozt2UYPahIJA8EkycHcojuc7sBuYLqZDQGWA3cEOuD/oVt3x2773kM8++kWXl62nUP5RZzcuy1/u7Q7J/ZsrcV4IrIU6GVm3YAdwOWUzEEu7Q3gcTOrC8RS0tf/rUajrOUO5RfyxspUnluUzPq0AzRrUJfrT+zKVWO60KV141CHJyKlBJMkB3OL7kjXHwbc5u5fmNljwL3Ar75zQd26O2ort+/n6Y83887ancTUMX4wJI4JY7vRr2OzUIcmImHC3QvN7FZgISXrS6a5e6KZTQ6cn+LuX5nZu8BqoJiSNShrQxd17eDuJKZm8eryFOatSCErt5C+HZry8EWDOH9oHA1jtd2mSDgKJkkO5hbdkeqmuPsXgeNXKUmS5RjlFxbzn/W7mPZpMkuS99K0QV0mndKD607oSvtmDUIdnoiEIXdfACwo896UMsePAI/UZFy1VfqBXN74MpW5K1JYn3aA2Jg6nDmgPdce35WRXVvqDp9ImAsmSQ7mFl253D3NzLabWR9330DJYpB1FdWT8rk7a3ZkMnd5CvNXpbLvUAFxLRrywPf7c+nIzjSprx39RERCKa+wiH9/lc6ry1P4aONuioqdIZ1b8LsLBnLe4I60aBQb6hBFJEgVZlXB3KIzsw7AMqAZUGxmdwL93T0LuA2YHdjZYjNwfTW1pdZKy8zltS93MG9FCl+nZxNbtw7f69+ei4fFM7ZXG+2ZKSISQu7OqpT/DmBk5hTQvll9Jp7cnYuHxdGznbZvE4lEQQ09VnSLzt3TKJmGUV7dlcCIY4gxKuXkF7EwMY25K1L4LCmDYocRXVryxwsHce7gjtoWSEQkxL4ZwJi7IoWk9Gzq163DWQM6cMnweE7s2YYY7VAhEtF0fz6MFBc7S5L3Mm9FCgvWpJGdV0hci4bcempPLhoWT9c2WvksIhJKuQXfDGDs4NOvd387gPHQRSUDGNqDXqT2UJIcBpIzDjIvMJ0iZV8OjWNjOGdQRy4eHs+orq20X6aISAi5Oyu27ePV5Sm8tWonB/IK6dS8AbcEBjC6aQBDpFZSkhwiWbkFvL16J3OXp7Bs6z7M4KSebfjZ9/rwvQHtaRSrr0ZEJJR27M/htRUpzF2xgy0ZB2lYL4azB5ZMpxjTvbUGMERqOWViNaiwqJhPkjKYuzyF99ftIq+wmJ7tmnDP+L5ccFwnOjZvGOoQRUSi2qH8Qt5dW7IeZNGmPbjD6G6t+PG4Hpw9qKN2ERKJIvrbXgPWp2Uxd3kKr69MZfeBPFo0qsflIztz0bB4Bsc3116ZIiIh9M16kLnLU1iwZicH84vo3Kohd5zei4uHxdO5VaNQhygiIaAkuZpkZOcxf2XJJvKJqVnUrWOc2rcdFw+L57S+7Yitq23bRERCadueQ8xdkcK8L1PYvrdkPci5gzty8bB4Rmo9iEjUU5JchfIKi/jPV+nMXZHChxt2U1jsDIprzq/P6895QzrRukn9UIcoIhLVMnMKWJiYxqvLU1iyZS9mcEKP1vz0zN6cNaCD1oOIyLfUGxwjd2fl9v3MXZHCm6t2fruJ/I1ju3HxsHh6t9cm8iIioZR5qID31qXxzto0Pvl6NwVFTrc2jfnZ93pz4bB44lpoPYiIfJeS5KNwKL+QxZv28MGGdD5Yv5sd+3O+3UT+4uHxnKRN5EVEQmrfwXzeX7eLBWt38llSBgVFTlyLhlx7fFfOGdyR4zq30HoQETkiJclBSs44WJIUb9jN55v3kF9YTKPYGE7q2YY7Tu/F2YM60FSbyIuIhMzeg/ksTExjwZqdLN60h8JiJ75lQ244sRtnD+rIEC2UFpFKUJJ8GLkFRSzZspcPNqTz4YbdbMk4CED3to25ZkwXTu3bjhFdW1K/bkyIIxURiV4Z2XksTEzjnTVpLN68h6JiJ6FVIyaM7c65gzoyMK6ZEmMROSpKkkvZsT+HDzek88H6dD5L2kNOQRH169bh+B6tue6Erozr05YurfVkJRGJTGY2HngMiAGecfeHy5wfB7wBbAm8Nc/df1ujQQYh/UAuCxN3sWD1Tr7Ysodih66tGzHp5O6cM6gjAzopMRaRYxfVSXJBUTHLt+4rGS1ev5sNuw4AEN+yIT8cEc+pfdoxpntrGsZqtFhEIpuZxQBPAGcCKcBSM5vv7uvKFP3E3b9f4wFWID0rl3fWlkylWJK8F/eSO3u3nNqTswd2pF/HpkqMRaRKRV2SnH4glw837ObDDel8sjGDA3mF1K1jjOrWil8O78epfdvSo20TdbYiUtuMApLcfTOAmc0BzgfKJslhIy0zl3fW7mTBmp0s27oPd+jVrgm3ndaLcwd1pHd79dUiUn1qfZJcVOysStnPh+tLFt2t2ZEJQPtm9Tl3cEfG9WnHiT1ba9GdiNR2ccD2UscpwOhyyh1vZquAVOBn7p5Y3sXMbCIwESAhIaHKgkzdn/PtiPHyrfsA6NO+KXee3ptzBnWgl7bVFJEaUiuT5H0H8/n46918sD6djzbuZt+hAuoYDEtoyd1n9eHUPu10a05Eok15HZ6XOV4BdHH3bDM7B3gd6FXexdx9KjAVYMSIEWWvUykp+w7xzpo0FqzdyZfb9gPQr2Mz7jqzN2cP6kjPdk2O5fIiIkelViTJ7k5ialbJorsNu/ly2z6KHVo1juXUPu0Y17cdJ/dqQ4tGsaEOVUQkVFKAzqWO4ykZLf6Wu2eV+nmBmf3TzNq4e0ZVB7N97yEWrCmZSrEqpeQO34BOzbj7rD6cPbAD3dsqMRaR0AoqSQ5iRXRfYDowDPiluz9a6lwycAAoAgrdfUTVhP5fLy/bzj1z1wAwOL45t53Wi1P7tmNQXHM91ENEpMRSoJeZdQN2AJcDV5YuYGYdgF3u7mY2CqgD7KnqQJLSsznjrx8BMCiuOfeM78s5gzpo9yARCSsVJslBrojeC9wOXHCYy5xaHSMR3xjXpx2P/nAIp/RuS9um9avrY0REIpa7F5rZrcBCSgY8prl7oplNDpyfAlwC3GxmhUAOcLm7H9NUivL0aNuY310wkHG929K5VaOqvryISJUIZiS5whXR7p4OpJvZudUSZQXaN2vAJcPjQ/HRIiIRw90XAAvKvDel1M+PA49XdxxmxtVjulT3x4iIHJM6QZQpb0V0XCU+w4H3zGx5YDW0iIiIiEhYC2YkOZgV0Udyorunmlk74H0zW+/uH3/nQ6ppOyERERERkcoKZiS5whXRR+LuqYE/04HXKJm+UV65qe4+wt1HtG3bNtjLi4iIiIhUuWCS5G9XRJtZLCUroucHc3Eza2xmTb/5GfgesPZogxURERERqQkVTrcIZkV0YNugZUAzoNjM7gT6A22A1wIP7agLvODu71ZPU0REREREqkZQ+yQHsSI6jZJpGGVlAUOOJUARERERkZpm1bAF5jEzs93A1kpWawNU217MYSwa2x2NbYbobHcktrmLu0fVwoqj7LMhMr/fYxWNbYbobHc0thkir92H7bPDMkk+Gma2rDqe5hfuorHd0dhmiM52R2Obo0k0fr/R2GaIznZHY5uhdrU7mIV7IiIiIiJRRUmyiIiIiEgZtSlJnhrqAEIkGtsdjW2G6Gx3NLY5mkTj9xuNbYbobHc0thlqUbtrzZxkEREREZGqUptGkkVEREREqoSSZBERERGRMiIiSTaz8Wa2wcySzOzecs6PM7NMM1sZeD1Q6lyyma0JvL+sZiM/ehW1OVBmXKBdiWb2UWXqhqtjbHet/K7N7O5S/2+vNbMiM2sVTN1wdoztjsjvOlpEY58N0dlvR2OfDdHZb0dln+3uYf2i5FHYm4DuQCywCuhfpsw44K3D1E8G2oS6HdXQ5hbAOiAhcNwu2Lrh+jqWdtfm77pM+fOA/0TDd324dkfqdx0tr2jssyvR7lrVb0djn30031dt6Lejtc+OhJHkUUCSu29293xgDnB+iGOqbsG0+UpgnrtvA3D39ErUDVfH0u5IVdnv6wrgxaOsG06Opd0S3iL5/8tjEY39djT22RCd/XZU9tmRkCTHAdtLHacE3ivreDNbZWbvmNmAUu878J6ZLTezidUZaBUKps29gZZm9mGgbddUom64OpZ2Q+39rgEws0bAeGBuZeuGoWNpN0Tmdx0torHPhujst6Oxz4bo7Lejss+uG+oAgmDlvFd237oVlDx7O9vMzgFeB3oFzp3o7qlm1g5438zWu/vH1RhvVQimzXWB4cDpQENgsZl9HmTdcHXU7Xb3jdTe7/ob5wGfufveo6gbbo6l3RCZ33W0iMY+G6Kz347GPhuis9+Oyj47EkaSU4DOpY7jgdTSBdw9y92zAz8vAOqZWZvAcWrgz3TgNUpuGYS7CtscKPOuux909wzgY2BIkHXD1bG0uzZ/19+4nP+9fVXbv+tvlG13pH7X0SIa+2yIzn47GvtsiM5+Ozr77FBPiq7oRcm/QjcD3fjvZPEBZcp04L8PRhkFbKPkXz2NgaaB9xsDi4DxoW5TFbW5H/DvQNlGwFpgYDB1w/V1jO2utd91oFxzYC/QuLJ1w/F1jO2OyO86Wl7R2GdXot21qt+Oxj472HYHytWafjta++ywn27h7oVmdiuwkJLVldPcPdHMJgfOTwEuAW42s0IgB7jc3d3M2gOvmRmUfMEvuPu7IWlIJQTTZnf/yszeBVYDxcAz7r4WoLy6IWlIJR1Lu82sO7X0uw4UvRB4z90PVlS3ZltwdI6l3UBE/r2OFtHYZ0N09tvR2GdDdPbb0dpn67HUIiIiIiJlRMKcZBERERGRGqUkWURERESkDCXJIiIiIiJlKEkWERERESlDSbKIiIiISBlKkkVEREREylCSLBHNzMaa2YYQfv59ZvZMqD5fRKQmmFmymZ1RA5/T1czczKrkOQ6h/h0hkU37JEutYmbJwAR3/1eoYxERqS1qqm81s67AFqCeuxdW52eJVEQjySJHqapGOkREpOqpj5ZjpSRZaoSZdTKzuWa228y2mNntpc41NLMZZrbPzNaZ2d1mllLqvJtZz1LHM8zs94Gfx31T1syeBxKAN80s28x+bmZvm9ltZWJZbWYXlBPjN7f5JppZqpntNLO7Sp3/tZm9amazzCwLuC7w3qxSZU4ys0Vmtt/MtpvZdYH365vZo2a2zcx2mdkUM2t47P9lRURqzMhAH73PzKabWYNvTpjZTWaWZGZ7zWy+mXUqdc7NbLKZfR2o+4QFnlFsZjGBvjHDzDYD5x4pgMC0j1+UF8c3vw/M7B4zSwOml/4dESjT2czmBX4X7TGzx0udu8HMvgpcd6GZdam6/3QSiZQkS7UzszrAm8AqIA44HbjT/p+9+w6vqsr6OP5daYQEAiSEUELvvYUOoqAIoiI6ilgQFJFmd2wzo1N0dOZ1LIgNEBWliCKCghVRegm9S+id0HsJ7PePe9EYA7lgkpPy+zxPHrnn7HPvOs8MO4tz117b7Gr/kGeByv6fq4G7LuVznHN3ApuB65xzhZxz/wU+AO5IFUt9fwyTL/BWVwBVgQ7Ak2nq8LoAnwJFgZFp7rMc8BXwOhALNAAW+0//B6jmP1bFH8Mzl3KfIiIeuR3fHF0Z33z2VwAzawe8ANwClAI2AWPSXHst0ASo7x93bv6/13+uIZAA/OlS4/ArCUQD5YE+qS8ys2DgS398FfDNw2P8524AngZuxDd/TwdGBxCL5GFKkiU7NAFinXP/dM6dcs6tB4YCt/rP3wI875zb55zbAgzKxM+eAFQ1s6r+13cCHzvnTl3gmn84544655YB7wHdU52b7Zz73Dl31jl3PM11twPfO+dGO+dOO+f2OucW+5+Y3As87L/Hw8C/+fX+RURyg8HOuS3OuX3A8/w6N94ODHfOLXTOnQSeAlr464vPedE5d8A5txmYiu+BAfjm/1dTve8LfyAOgLPAs865k+nM0U2B0sCf/XP8CefcDP+5+4AXnHOr/LXQ/wYa6Gly/qYkWbJDeaC0vwThgJkdwPcv9jj/+dLAllTjN2XWB/sn7LHAHf4n2t2BDzO4LG0spc9zLq2ywLp0jscCEcCCVPf/tf+4iEhucb65sTSp5m3n3BFgL74ntefsTPXnY0ChVNde7Px/oTk62Tl34jzXlQU2nWdBYHngtVRz9D7A+O09SD6jonbJDluADc65quc5vwPf5LXC/7pcYjUaBwAAIABJREFUmvPH8CWZ55QEtpK+9Nq1fIAvMZ4BHHPOzc4g3rLA6lSxbM/g/c/Zgu9JRVp7gONAbefctgw+W0Qkpyqb6s+p58bt+JJMAMwsEogBApnvzs3/qd/3UuOAjOfocmYWkk6ivAXfN5oj07lO8ik9SZbsMA845F9MUdC/UKOOmTXxnx8LPGVmxcwsHrg/zfWLgdv813UE2l7gs3YBlVIf8CfFZ4H/kfFTZIC/mVmEmdUGegEfB3AN+GqUrzSzW8wsxMxizKyBc+4svvKSV8ysBICZlUlVky0ikhsMMLN4M4vG923gublxFNDLzBqYWQF8pQpznXMbA3jPscAD/vctBjz5B+LIyDx8SfmLZhZpZuFm1sp/7m18v4dqA5hZETO7OcD3lTxKSbJkOefcGeA6fDVoG/A9WR0GFPEP+Qe+r8w2AN/y+0T2Qf/1B/DVvn1+gY97Afir/yuzx1IdHwHUBT5K/7Lf+AlIAqYALznnvg3gGvy1dtcAj+L7qm4xvkUqAE/433OOvzPG90D1QN5XRCSHGIVvjl7v/3kOwDk3BfgbMA5fElqZwNdcDAW+wbeweyHw2aXGkZFUv4uq4FvkvRXo5j83Ht8C6zH+OXo50CnAe5A8SpuJSI5jZpcDHznn4jPxPXsAfZxzrS8wpgJqYi8ikmOZNoySbKQnyZLnmVkE0B8Y4nUsIiIikjsoSZY8zV/3m4yvVnmUx+GIiIhILqFyCxGRPMa/wPU1IBgY5px7Mc35LsC/8C1oTQEeOtcv1sweBnrj6xKwDOh1gZZaIiJ5lpJkEZE8xL+r2M/AVfgWJs0HujvnVqYaUwg46pxzZlYPGOucq2FmZfC1SqzlnDtuZmOByc6597P9RkREPKZyCxGRvKUpkOScW+/fWXIMvu3Uf+GcO+J+fUISyW97y4YABc0sBF9/8tQ9aEVE8o0cuZlI8eLFXYUKFbwOQ0Tkoi1YsGCPc87L3RTL8NsdybYCzdIOMrOu+FomlgA6AzjntpnZS/jaYx0Hvj1fC0Qz6wP0AYiMjGxco0aNzLwHEZFscaE5O0cmyRUqVCAxMdHrMERELpqZZdq26pcaQjrHfldX5+8LO97MLsNXn3ylfzOHLkBFfH3JPzGzO5xzv+sv7pwbgr9jTEJCgtOcLSK50YXmbJVbiIjkLVv57ba98VygZMI5Nw2obGbFgSvxbSGf7Jw7jW9jh5ZZGayISE6lJFlEJG+ZD1Q1s4pmFoZv57OJqQeYWRUzM/+fGwFhwF58ZRbN/duyG9AeWJWt0YuI5BA5stxCREQujXMuxcwG4tvqNxgY7pxbYWZ9/effBm4CepjZaXy1x938C/nmmtmn+LYHTgEWoU14RCSfCihJDqDnpvnPXwMcA3o65xaaWXXg41RDKwHPOOdezYzgRUTk95xzk4HJaY69nerP/wH+c55rnwWezdIARURygQyTZH/PzTdI1XPTzCam7rkJdAKq+n+aAW8BzZxza4AGqd5nGzA+U+9ARERERCSTBVKTnGHPTf/rEc5nDlDUzEqlGdMeWOecy/SV3ydTzvDpgq1oYxQRkZzv7FnH54u2sXL7IU6mnPE6HBGRdAVSbhFIz830xpQBdqQ6disw+nwfkrrnZrly5QII61fjFmzj6fHLmLN+L//uWpewEK1HFBHJqbbuP85DHy8GIDjIqFg8kuolC1MjrrDvvyWjiC9WkKCg9LrZiYhkj0CS5EB6bl5wjH+F9fXAU+f7kLQ9NwOI6xfdm5Zl16ETvDZlLdv2H+ftOxpTJCL0Yt5CRESySemi4Xz38GWs3nmYNTsPs3rnYZZuPcCkpb8+V4kIC6ZqXOrEuTDVShameKECHkYuIvlJIElyID03MxrTCVjonNt1KUFmxMx4+KpqlI+J4IlxS7nxrZm817Mp5WIisuLjRETkDwgJDqJqXGGqxhXmuvq/Hj9yMoW1u35NnNfsPMx3q3bxceKvX1QWLxRG9ZKFqR4X9UviXC2uEBFhatYkIpkrkFnll56b+Bbe3QrclmbMRGCgmY3BV4px0DmXutSiOxcotcgsNzaKp3TRgtz34QK6vjmToXcl0Khcsaz+WBERyQSFCoTQsFwxGqaat51zJB85yc87j7B65yHW7DzMml2HGTVvEydOnwXADMpFR1A9zvfEuXrJKKqXLESFmEhCglV+JyKXJsMkOcCem5PxtX9LwtcCrte5680sAl9njPsyP/zfa14phs/6t+Tu9+fTfcgcXr6lAZ3rpV1DKCIiuYGZUaJwOCUKh9O6avFfjp8569i875gvad55mDW7DrF652G+X7WLs/6CvbCQIKrEFvInzr6nzjVKFqZkVDj+vVRERM7LcmJHiISEBJeYmPiH3mPf0VP0GZFI4qb9PNGxBn3bVtKkKCJZzswWOOcSvI4jO2XGnJ1ZTpw+Q9LuI788cfaVbRxi16GTv4wpFhFK80oxtK5anNZVilM+JtLDiEXESxeas/NsEVd0ZBgf9W7Gnz9dyn++Xs2mvUf51w11CNVXbyIieVZ4aDB1yhShTpkivzl+4NgpVu88zM+7DrN060FmJu3hq+U7ASgbXZDWVYrTqkpxWlYuTnRkmBehi0gOk2eTZPBNlq91a0D56AgGT01i6/7jvHlHI6LC1flCRCQ/KRoRRvNKMTSvFAP4ap3X7znKjLV7mJG0hy+X7GD0vC2YQe3SUbSqUpw2VWJJqFCM8NBgj6MXES/k2XKLtMYmbuHpz5ZRsXgk7/VqQnwxdb4QkcyncovcKeXMWZb4nzDPSNrDos37OX3GERYSRJMKxWhdJZbWVYpTu3SU+jeL5CEXmrPzTZIMMCtpD/d9tIACIcG8e1cC9csWzfTPEJH8TUly3nD0ZArzNuxjRtIeZqzdw5pdhwEoGhFKq8q+0ozWVYqr1ahILqckOZWk3Yfp+d589hw5yavdGtKxTsks+RwRyZ+UJOdNuw+fYFbSXqav3cPMpD3sPHQC8LWea1WlOG2qFqdFpRiKqZ5ZJFdRkpzGniMnuXdEIou3HODpTjXp3aaiOl+ISKZQkpz3OedYl3yUGWuTmZG0lznr93LkZApmUKd0kV+6ZjQur3pmkZxOSXI6Tpw+w6NjlzBp2Q5ub1aOf1xfW03nReQPU5Kc//jqmQ8wY+1eZibtYeHm/aScdRQICaJpxehfSjNqlVI9s0hOky9bwGUkPDSY17s3pFxMBG/9uI6t+48z+LaGFFbnCxERuQghwUE0Lh9N4/LRPHhlVY6cTGHehr3MWLuXGUnJvPjVasDXn7lttViub1CaNlVj1ZJUJIfLt0kyQFCQ8UTHGpSPjuAvny/n5rdnM7xnE0oXLeh1aCIikksVKhBCuxpxtKsRB8DuQyeYuW4P09fu4YfVu/l88XaKRYTSuV4pujQoQ+NyxfSEWSQHyrflFmlNX5tM/48WUjAsmHfvakLd+CIZXyQikobKLeRCTqWcZdrPyUxYsp3vVu7kxOmzlClakOsblKZLg9LUKBnldYgi+YpqkgP0867D9HpvPvuOnmJQ94ZcVSsu22MQkdxNSbIE6ujJFL5duZMJi7czfe0ezpx1VI8rTJeGpbm+fmn18xfJBkqSL8Luwye494NElm47yN8616JXqwrqfCEiAVOSLJdi75GTTFq2gwmLt7Ng034AEsoXo0vDMnSuW0pbZYtkESXJF+n4qTM89PEivlmxi7talOdv19ZS5wsRCYiSZPmjtuw7xsQl2/l80TbW7j5CSJDRpmpxbmhYhitrxhFZIF8vJxLJVEqSL8GZs44Xv1rF0OkbuKJ6LK/f1ohCmphEJANKkiWzOOdYvfMwny/exheLt7P94AkKhgZzVa04bmioDhkimUEt4C5BcJDxl861KB8TybMTV/g7XyRQqog6X4iISNYzM2qWiqJmqSieuLoGiZv28/nibUxetoOJS3wdMq6pW4obGqpDhkhW0JPkAPy4ZjcDRy0isoCv80WdMup8ISLp05NkyWrn65BxXf3S3NBQHTJELobKLTLBqh2HuPv9+Rw8fprXuzekfU11vhCR31OSLNnpfB0yrm/g65BRNlodMkQuRElyJtl16AT3fDCfldsP8ex1tbmrZQWvQxKRHEZJsnjlvB0yGpSmc73S6pAhko4LzdkBVfybWUczW2NmSWb2ZDrnzcwG+c8vNbNGqc4VNbNPzWy1ma0ysxaXfiveiosKZ+x9LWhXI45nJ67gH1+s4MzZnPePDBERyX9iChWgR4sKjOvXkumPX8Gfr67OweOn+duEFTR9/nsGjFrIqh2HvA5TJNfIcOGemQUDbwBXAVuB+WY20Tm3MtWwTkBV/08z4C3/fwFeA752zv3JzMKAXP3dT0RYCO/c2ZjnJ61i+MwNbNl3jNdubaiWPCIikmOUjY5gwBVV6H95ZVbvPMxnC7cyet4WJi3dwZU14xjYrgoNyhb1OkyRHC2QJ8lNgSTn3Hrn3ClgDNAlzZguwAjnMwcoamalzCwKuAx4F8A5d8o5dyAT4/dEcJDxzHW1+Mf1tflh9W5ueWc2Ow4e9zosERGR3zjXIeMvnWsx84l2PHxlNeZv3McNb8zkznfnMn/jPq9DFMmxAkmSywBbUr3e6j8WyJhKQDLwnpktMrNhZhaZ3oeYWR8zSzSzxOTk5IBvwEt3tazAsLsS2LT3GNcPnsmizfu9DklEJJASuS7+0rjF/nm3dapzeaZETn6rSEQoD15ZlZlPtuPJTjVYteMQN789m27vzGbG2j3kxDVKIl4KJElOr/Fi2r9J5xsTAjQC3nLONQSOAr+bsAGcc0OccwnOuYTY2NgAwsoZ2tWI47P+LQkPDaLbkDmMX7TV65BEJB9LVSLXCagFdDezWmmGTQHqO+caAHcDw1KdO1ciVwOoD6zK+qglOxUqEELftpWZ/ng7nrm2Fhv3HuWOd+fS9c1ZTFm1S8myiF8gSfJWoGyq1/HA9gDHbAW2Oufm+o9/ii9pzlOqxRVmwoDWNCxblIc/XsJ/vl7NWS3oExFvZFgi55w74n7NhCLxP/jIqyVykr6CYcHc3boi0x6/gue71mHPkZPc80EinQfN4KtlO/R7TPK9QJLk+UBVM6voX3h3KzAxzZiJQA9/l4vmwEHn3A7n3E5gi5lV949rD6wkD4qODOPDe5rRvWk53vpxHX0+XMCRkylehyUi+U8gJXKYWVczWw1Mwvc0GfJ4iZykr0BIMLc3K8/Uxy7n//5Uj+Onz9Bv5EKufnUany/aRsqZs16HKOKJDJNk51wKMBD4Bt/XbmOdcyvMrK+Z9fUPmwysB5KAoUD/VG9xPzDSzJYCDYB/Z2L8OUpYSBD/7lqHf1xfm6lrdnPTm7PYsu+Y12GJSP4SSIkczrnx/pKKG4B/+Q/n+RI5Ob/Q4CBuTijL94+0ZVD3hpjBQx8v5sqXf2Ls/C2cSlGyLPmLNhPJItPXJjNg5EJCgoN46/ZGNKsU43VIIpINvN5MxL/Q7u/Ouav9r58CcM69cIFrNgBN8CXJc5xzFfzH2wBPOuc6X+gz88KcLb939qzj25W7GDx1Lcu3HaJM0YL0bVuJmxPKEh4a7HV4IpniD28mIhevTdVYPh/QiqIFQ7nj3bl8PH+z1yGJSP6QYYmcmVUxM/P/uREQBuzNTyVykrGgIKNjnZJ8MbA17/VqQlxUAf42YQWX/Xcqw6av59gplRRK3qYkOQtVii3E+P6taF4phifGLeOfX6xUbZeIZKkAS+RuApab2WJ8nTC6pVrIl29K5CQwZsYV1Uswrl9LRt3bjMqxhXhu0ipa/2cqb0xN4vCJ016HKJIlVG6RDVLOnOW5Sat4f9ZGLqsWy+vdG1KkYKjXYYlIFvC63MILeW3OlowlbtzH4KlJ/LgmmajwEHq2qsjdrSpQNCLM69BELorKLTwWEhzE36+vzQs31mVW0h66vjmTDXuOeh2WiIjIJUmoEM37vZryxcDWtKgcw6Apa2n14g+8+NVq9hw56XV4IplCSXI26t60HB/1bsb+o6e44Y2ZzFi7x+uQRERELlnd+CK8c2cC3zx0Ge1qxvHOtHW0/s8P/OOLFew8eMLr8ET+ECXJ2ax5pRgmDmxNXFQB7npvHiNmb9TuRiIikqtVL1mY17s35PtH2nJtvdKMmL2Jy/47lb+MX6ZWqJJrKUn2QNnoCMb1a8nl1WJ5ZsIK/vr5ck5rQZ+IiORylWML8dLN9fnxscu5OSGeTxK3csVLP/Lclys5qg22JJdRkuyRwuGhDOmRQN+2lRk5dzN3vjuX/UdPeR2WiIjIH1Y2OoLnu9Zl2uNXcHNCPMNmbOCql3/i2xU7vQ5NJGBKkj0UHGQ82akGL99Sn4WbDtDljZms3XXY67BEREQyRcki4bxwYz3G9WtBVMFQ+ny4gHtHJLL9wHGvQxPJkJLkHODGRvGM7tOcY6fO0PXNWUxdvdvrkERERDJN4/LRfHF/a57qVIMZa/dw5cs/MWz6eu0dIDmakuQconH5Ykwc2IryMRHc/cF8hk5brwV9IiKSZ4QGB3Ff28p8+/BlNK8Uw3OTVnH94Jks3nLA69BE0qUkOQcpXbQgn/RtQcfaJXl+8ir+/OlSTqac8TosERGRTFM2OoJ370rgrdsbsffoSbq+OZO/fb6cQ9q5T3IYJck5TERYCG/c1ogH21fl0wVbuW3oXDVmFxGRPMXM6FS3FN8/0paeLSswcu4m2v/vJyYu2a5vUSXHUJKcAwUFGQ9fVY3BtzVkxfaDdBk8k5XbD3kdloiISKYqHB7Ks9fVZsKA1pSMCueB0YvoMXwem/ZqV1rxnpLkHOzaeqX55L6WnDnruOmtWXy9XK1zREQk76kbX4TPB7Ti79fVYtHmA3R4ZRqDf1jLqRQt7BPvKEnO4erGF2HiwFZUK1mYvh8tYPAPa/VVlIiI5DnBQUbPVhX5/pG2tK9Zgpe+/ZlrBk1n7vq9Xocm+ZSS5FygRFQ4H/dpzg0NSvPStz/zwJjFnDitBX0iIpL3lCwSzpu3N+a9nk04cfoM3YbM4c+fLGGfNtySbKYkOZcIDw3mlW4NeLxjdb5cup1b3pnNrkMnvA5LREQkS1xRowTfPdyWvm0rM37RNtr/70c+Sdyib1Ml2wSUJJtZRzNbY2ZJZvZkOufNzAb5zy81s0apzm00s2VmttjMEjMz+PzGzOh/eRXeuaMxSbuPcP3gGeovKSIieVbBsGCe7FSDLx9oTaXYQvz506V0GzKHpN3anVayXoZJspkFA28AnYBaQHczq5VmWCegqv+nD/BWmvNXOOcaOOcS/njI0qF2Scb1a0lIUBC3vD2bUXM361/WIiKSZ9UoGcUn97XghRvrsmbnYTq9Np2Xvlmj0kPJUoE8SW4KJDnn1jvnTgFjgC5pxnQBRjifOUBRMyuVybFKKjVLRfHl/a1pXjmGp8cv47FPlnL8lCYLERHJm4KCjO5NyzHl0bZcW680g6cmcfWr05j2c7LXoUkeFUiSXAbYkur1Vv+xQMc44FszW2BmfS41UPm9YpFhvNezCQ+0r8q4hVu58a1Z6i0pIiJ5WvFCBXilWwNG9m5GkBk9hs/j/tGL2H1Y63QkcwWSJFs6x9J+t3+hMa2cc43wlWQMMLPL0v0Qsz5mlmhmicnJ+ldhoIKDjEeuqsZ7PZuw/cBxrn19Bt+v3OV1WCIiIlmqVZXifPVgGx66sirfLN9J+//9xIdzNnH2rMoPJXMEkiRvBcqmeh0PbA90jHPu3H93A+PxlW/8jnNuiHMuwTmXEBsbG1j08osrapTgy/tbUz4mgt4jEvm/b1ZzRhOFiIjkYeGhwTx0ZTW+fqgNdcsU4W+fL+fGt2Zpl1rJFIEkyfOBqmZW0czCgFuBiWnGTAR6+LtcNAcOOud2mFmkmRUGMLNIoAOwPBPjl1TKRkfwad+W3NqkLG9MXUeP4XPZe+Sk12GJiIhkqUqxhRjZuxmvdKvPln3HuG7wDJ6ftJKjJ1O8Dk1ysQyTZOdcCjAQ+AZYBYx1zq0ws75m1tc/bDKwHkgChgL9/cfjgBlmtgSYB0xyzn2dyfcgqYSHBvPiTfX47031mL9xP9e+PoOFm/d7HZaIiEiWMjO6NoxnyqNtuSUhnqHTN9DhlWnM37jP69Akl7Kc2DosISHBJSaqpfIftXzbQfqNXMDOgyf427W1uLN5eczSKx8XkcxiZgvyW7tLzdmSEyVu3Mejnyxh6/7jPHJVNfq1rUxQkH4Hym9daM7Wjnt5WJ0yRfhyYBvaVI3lmQkrePjjxRw7pa+eREQk70uoEM0X97emY52S/N83a+j5/nz2qARRLoKS5DyuSEQow3ok8OhV1ZiwZDtd35jF+uQjXoclIiKS5aLCQxncvSHP3VCHOev3cs1r05mzfq/XYUkuoSQ5HwgKMu5vX5UPejVl9+ETXD94Jl8v3+F1WCIiIlnOzLijeXnG929JZIEQbhs6h0FT1qoDlGRISXI+clm1WL58oA2VYyPp+9FCXpi8ipQzZ70OS0REJMvVLl2EL+5vzXX1S/Pydz/TY/hckg+r/ELOT0lyPlOmaEHG9m3BHc3L8c609dw+bK52KRLJY8yso5mtMbMkM3synfNdzGypmS32b+LUOs35YDNbZGZfZl/UIlmvUIEQXu3WgBdvrEvixv10em06s5L2eB2W5FBKkvOhAiHBPHdDXV6+pT5Lth7g2kEzSFSLHJE8wcyCgTfw7XJaC+huZrXSDJsC1HfONQDuBoalOf8gvpafInmOmXFr03JMGNiKIgVDuP3dubz83c8qv5DfUZKcj93YKJ7x/VsRERbMrUPm8O6MDeTEloAiclGaAknOufXOuVPAGKBL6gHOuSPu17/skcAvf/HNLB7ozO8TZ5E8pUbJKCYObE3XhmUYNGUttw+bw+5D+mZVfqUkOZ+rWSqKife3pl2NEvzry5UMHL2II9qhSCQ3KwNsSfV6q//Yb5hZVzNbDUzC9zT5nFeBx4ELLlgwsz7+Uo3E5OTkPx61iAciC4Tw8i0N+L8/1WPJloNcM2g609fq/8/ioyRZiAoP5Z07G/Nkpxp8tWwHN7wxk6Tdh70OS0QuTXq7JfzuKyLn3HjnXA3gBuBfAGZ2LbDbObcgow9xzg1xziU45xJiY2P/aMwinro5oSwTB7YiOjKMHsPn8dI3a7SwXZQki4+Z0bdtZT7q3YwDx07RZfBMvly63euwROTibQXKpnodD5z3L7NzbhpQ2cyKA62A681sI74yjXZm9lEWxiqSY1SNK8yEAa25uXE8g6cmcdvQuew8qPKL/ExJsvxGy8rF+fL+NlQvWZiBoxbxzy9Wclr/mhbJTeYDVc2sopmFAbcCE1MPMLMq5t+j3swaAWHAXufcU865eOdcBf91Pzjn7sje8EW8UzAsmP/+qT6vdKvP8u2+8oupa3Z7HZZ4REmy/E7JIuGM6dOCni0rMHzmBroPmcMuLWYQyRWccynAQOAbfB0qxjrnVphZXzPr6x92E7DczBbj64TRzWnVrsgvujaMZ+LA1pQoXIBe783nha9W6YFRPmQ5cV5MSEhwiYmJXochwMQl23ly3FIiwkIYfFtDmleK8TokkRzNzBY45xK8jiM7ac6WvOrE6TP888uVjJq7mcblizGoe0PKFC3odViSiS40Z+tJslzQ9fVL8/mAVkQVDOH2YXMZMm2d2sSJiEi+EB4azL+71mVQ94as2XmYzoOm8/3KXV6HJdlESbJkqFpcYSYMaMXVteP49+TV9PtoIYdPnPY6LBERkWxxff3SfHF/a8oULUjvEYk89+VKTqWo/CKvU5IsASkcHsobtzXir51r8t2qXVw/eCardhzyOiwREZFsUbF4JOP6taRHi/IMm7GBW96ZzZZ9x7wOS7KQkmQJmJnRu00lRt/bnCMnU+jyxkw+nLNJ5RciIpIvhIcG888udXjz9kas232EzoOm882KnV6HJVlESbJctKYVo/nqwTa0qBTD3z5fTv+RCzl4TOUXIiKSP1xTtxRfPtCa8jGR3PfhAv7xxQqVX+RBSpLlkhQvVID3ejbh6Wtq8N3KXVwzaDoLNu33OiwREZFsUT4mkk/7taBXqwq8N3Mjf3p7Fpv3qvwiLwkoSTazjma2xsySzOzJdM6bmQ3yn1/qb06f+nywmS0ysy8zK3DxXlCQ0eeyynzaryVBQXDLO7N5Y2oSZ8+q/EJERPK+AiHBPHtdbd65szEb9xyl86DpfLVsh9dhSSbJMEk2s2B8zeY7AbWA7mZWK82wTkBV/08f4K005x/E19Re8qAGZYsy6YE2dKxTkv/7Zg09hs9j92FtPiIiIvnD1bVLMumBNlQuUYh+IxfyzITlnDh9xuuw5A8K5ElyUyDJObfeOXcKGAN0STOmCzDC+cwBippZKQAziwc6A8MyMW7JYaLCQxncvSEv3liXxE37uOa16fz0c7LXYYmIiGSLstERjL2vBfe2qciI2Zu45Z3ZemCUywWSJJcBtqR6vdV/LNAxrwKPAxesaDezPmaWaGaJyclKrnIjM+PWpuWYOLA10ZFh3DV8nrbyFBGRfCMsJIi/dK7FkDsbs3bXEW58cxbrko94HZZcokCSZEvnWNqi03THmNm1wG7n3IKMPsQ5N8Q5l+CcS4iNjQ0gLMmpfJuPtOa2ZuV456f13Py2ekmKiEj+0aF2ST6+rzknTp/hprdmkbhxn9chySUIJEneCpRN9Toe2B7gmFbA9Wa2EV+ZRjsz++iSo5Vco2CYbyvPN27z9ZK85rXpTFqqxQwiIpI/1Isvymf9WlEsIozbhs3Vgr5cKJAkeT5Q1cwqmlkYcCswMc2YiUAPf5eL5sBB59wO59xTzrl451wF/3U/OOfuyMwbkJytc71STH7Qt5hhwKiFPD1+mRYziIhIvlAuJoJx/VpSp3QU/Uct5L2ZG7wOSS5Chkmycy4FGAh8g69DxVjn3Aoz62tmff3DJgPrgSRgKNA/i+JSqnSiAAAgAElEQVSVXKhsdASf9G1B37aVGTV3M9cPnsHPuw57HZaIiEiWi44MY9S9zelQK45/fLGS5yetVKvUXMJy4pbCCQkJLjEx0eswJAv89HMyj3y8mKOnUvj7dbXp1qQsZumVtIvkTma2wDmX4HUc2UlztkjGzpx1/POLFXwwexOd65XifzfXJzw02Ouw8r0LzdnacU+yVdtqsXz1YBsaly/Gk58t4/7Rizh0Qltai4hI3hYcZPz9+to8fU0NJi3dQY/h8zh4TL//cjIlyZLtSkSF8+Hdzfjz1dX5avlOOg+azuItB7wOS0REJEuZ+XaqHdS9IYs3H+Cmt2exdb+6P+VUSpLFE0FBxoArqjD2vuacPQt/emsWQ6atU52WiIjkedfXL80Hdzdl16ET3PjmLFZsP+h1SJIOJcniqcblo5n8QBva1yzBvyevptf789lz5KTXYYmIiGSpFpVjGNevJSFBxi1vz2aadqnNcZQki+eKRITy9h2N+dcNdZi9fi+dXpvOzKQ9XoclIiKSparFFeaz/q0oGx3B3e/P59MFW70OSVJRkiw5gplxZ/PyTBjQiqjwEO54dy4vfbOGFG1pLSIieVjJIuF80rcFzSvF8NgnS3h9ylpyYuex/EhJsuQoNUtF8cX9rbm5cTyDpyZx65A5bDtw3OuwREREskzh8FCG92zCjQ3L8L/vfubp8cv0kCgHUJIsOU5EWAj//VN9Xru1Aat2HOKa16bz9fKdXoclIiKSZcJCgvjfLfUZeEUVRs/bwr0jEjl6MsXrsPI1JcmSY3VpUIZJD7ShXHQEfT9awDMTlmtLaxERybPMjMeurs7zXevw08/JdB86h+TDWszuFSXJkqNVKB7JuH4tuad1RUbM3kTXN2eRtPuI12GJiIhkmdublWdojwTW7jrCjW/NZH2yfu95QUmy5HhhIUH87dpaDO+ZwM6Dx7nu9RmMmL1RPZVFRCTPal8zjtF9mnPs5BluemsWCzbt8zqkfEdJsuQa7WrE8dWDl5FQoRjPTFjB7cPmsmWfdioSEZG8qUHZonzWvyVFCoZy29C5Wp+TzZQkS65Sskg4I+5uygs31mXZtoN0fHUaI+duUrscERHJk8rH+MoOa5WOot/IBXwwa6PXIeUbSpIl1zEzujctx9cPtaFBuaL8Zfxy7nx3Hlv366myiIjkPTGFCjCqd3OurBnHsxNX8MLkVSo5zAZKkiXXii8WwUf3NOO5G+qwcPN+Or46nTHzNuupsuR7ZtbRzNaYWZKZPZnO+S5mttTMFptZopm19h8va2ZTzWyVma0wswezP3oRSU/BsGDevqMxdzYvzzvT1vPgx4s5maKOT1lJSbLkambGHc3L881Dl1GnTBRPfraMu96bz46D2oBE8iczCwbeADoBtYDuZlYrzbApQH3nXAPgbmCY/3gK8KhzribQHBiQzrUi4pHgIOOfXWrzZKcafLFkOz3encfB46e9DivPUpIseULZ6AhG9W7OP66vzfwN++jw8jTGJm7RU2XJj5oCSc659c65U8AYoEvqAc65I+7XvxyRgPMf3+GcW+j/82FgFVAm2yIXkQyZGX3bVua1WxuwcPN+bn57lnamzSJKkiXPCAoy7mpZga8fakPNUlE8/ulS7n5/PjsPnvA6NJHsVAbYkur1VtJJdM2sq5mtBibhe5qc9nwFoCEwN70PMbM+/lKNxOTk5EwIW0QuRpcGZfjg7qbsOHCCG9+cycrth7wOKc8JKEkOoL7NzGyQ//xSM2vkPx5uZvPMbIm/vu0fmX0DImmVj4lkTJ/mPHNtLWav30uHV37is4Vb9VRZ8gtL59jv/s/vnBvvnKsB3AD86zdvYFYIGAc85JxL9zevc26Icy7BOZcQGxubCWGLyMVqWbk4n/RrQZAZt7wzmxlr93gdUp6SYZIcYH1bJ6Cq/6cP8Jb/+EmgnXOuPtAA6GhmzTMpdpHzCgoy7m5dka8evIyqcYV5ZOwS7h2RyO5Deqosed5WoGyq1/HA9vMNds5NAyqbWXEAMwvFlyCPdM59lpWBisgfV6NkFJ/1b0l8sYL0fG8eny3c6nVIeUYgT5IzrG/zvx7hfOYARc2slP/1ub0UQ/0/epwn2aZi8UjG3teCv3auyfS1e7jqlWlMWLxNT5UlL5sPVDWzimYWBtwKTEw9wMyqmJn5/9wICAP2+o+9C6xyzr2czXGLyCUqVaQgY/u2oGnFaB4Zu4Qh09Z5HVKeEEiSHEh923nHmFmwmS0GdgPfOedU3ybZKjjI6N2mEpMeaEPF4pE8OGYxfT9aQPLhk16HJpLpnHMpwEDgG3wL78Y651aYWV8z6+sfdhOw3D83vwF08y/kawXcCbTzt4dbbGbXeHAbInKRosJDeb9XU66tV4p/T17N0GnrvQ4p1wsJYEwg9W3nHeOcOwM0MLOiwHgzq+OcW/67wc4NAYYAJCQk6DGfZLoqJQoxrl9Lhk5fz8vf/UyHV37in13qcF390l6HJpKpnHOTgclpjr2d6s//Af6TznUzSH8+F5FcICwkiFe7NcABz09ehRn0blPJ67ByrUCeJAdS35bhGOfcAeBHoONFRymSSYKDfK1zJt3fmnLREdw/ehEDRi5k7xE9VRYRkdwvJNiXKF9TtyTPTVrF8BkbvA4p1wokSc6wvs3/uoe/y0Vz4KBzboeZxfqfIGNmBYErgdWZGL/IJakaV5hx/Vry56ur8+3KnXR4ZRpfLdvhdVgiIiJ/WGhwEK/d2pCOtUvyzy9X8sGsjV6HlCtlmCQHWN82GVgPJAFDgf7+46WAqWa2FF+y/Z1z7stMvgeRSxISHMSAK6rw5f1tKFU0nH4jF3L/6EXsP3rK69BERET+kNDgIAZ1b8hVteJ4duIKPpy90euQch3Liav8ExISXGJiotdhSD5y+sxZ3v5xHYN+WEuRgmE837UOV9cu6XVYkguZ2QLnXILXcWQnzdkiOdeplLP0H7mA71ft5vmudbi9WXmvQ8pRLjRna8c9EXz/4r6/fVUmDGhNicIFuO/DBTw0ZhEHjumpsoiI5F5hIUG8cXsj2tUowV/GL2f0vM1eh5RrKEkWSaVW6Sg+H9CKB9tX5culO7jqlWl8v3KX12GJiIhcsgIhwbx1RyMurx7LU58tY+z8LRlfJEqSRdIKCwni4auq8fmAVsREhtF7RCKPjl3CweOnvQ5NRETkkhQICebtOxpzWbVYnvhsKZ8kKlHOiJJkkfOoU6YIEwe25v52Vfh88TY6vPITU1bpqbKIiORO4aHBDLmzMa2rFOfxcUsZt0BbWF+IkmSRCwgLCeLRDtUZ378lRQqGcs8HifT+YD4b9xz1OjQREZGLFh4azNAeCbSsHMNjny5h/CIlyuejJFkkAPXii/Ll/W14qlMNZq/bS4dXpvHfr1dz9GSK16GJiIhclPDQYIb1aELzijE8OnYJExZv8zqkHElJskiAwkKCuK9tZaY+djnX1ivFmz+uo93/fmTC4m3kxFaKIiIi51MwLJh3eybQtGI0D3+8mC+WpN1MWZQki1ykElHhvNytAeP6taBE4XAeHLOYW96ZzfJtB70OTUREJGARYSEM79mEhPLRPPTxYiYt1c6zqSlJFrlEjctH8/mAVrx4Y13WJR/lusEzeHr8MvZpxz4REcklIsJCeK9XExqVK8oDYxbx1TIlyucoSRb5A4KDjFublmPqo5fTs2UFPp6/hSte+pERszeScuas1+GJiIhkKLJACO/1akqDskW5f/Qivl6+0+uQcgQlySKZoEhEKM9eV5uvHmxD7dJRPDNhBde+PoPZ6/Z6HZqIiEiGChUI4f1eTagbX4SBoxby7QolykqSRTJRtbjCjOzdjLfvaMThEyl0HzqHAaMWsu3Aca9DExERuaDC4aF8cHdTapcpwoBRC/P9jrNKkkUymZnRsU4pvn+kLQ9dWZXvV+6i/f9+ZNCUtZw4fcbr8ERERM4rKjyUEXc3pWapKPqPXMjU1bu9DskzSpJFskjBsGAeurIaUx5tS7saJXj5u5+58uWf+Hr5TrWMExGRHKtIwVA+vLsZ1UoW4r4PF/DjmvyZKCtJFsli8cUiePP2xozq3YyIsGD6frSAHsPnkbT7sNehiYiIpKtIRCgf3dOMqnGF6PPhAn76OdnrkLKdkmSRbNKySnEmP9CGv19XiyVbDtDx1en868uVHDpx2uvQREREfqdoRBgf3dOMyrGF6DMikRlr93gdUrZSkiySjUKCg+jZqiJTH7ucmxPKMnzmBtq99CNj52/h7FmVYIiISM5SLDKMkb2bUbF4JPd8MJ+ZSfknUVaSLOKBmEIFeOHGukwc0Jpy0RE8Pm4pXd+cyaLN+70OTURE5Dei/YlyhRhfojxrXf5IlANKks2so5mtMbMkM3synfNmZoP855eaWSP/8bJmNtXMVpnZCjN7MLNvQCQ3qxtfhHH9WvJqtwbsOHiCrm/O4rFPlrD78AmvQxMREflFTKECjLy3GWWLRXDP+4nMWZ/39wHIMEk2s2DgDaATUAvobma10gzrBFT1//QB3vIfTwEedc7VBJoDA9K5ViRfMzNuaFiGHx67nL5tKzNh8TbavfQTQ6et51SKdu0TEZGcoXihAoy6tzllihXk7vfnM2/DPq9DylKBPEluCiQ559Y7504BY4AuacZ0AUY4nzlAUTMr5Zzb4ZxbCOCcOwysAspkYvwieUahAiE82akG3z7clqYVo3l+8io6vjYtX64oFhGRnCm2cAFG3duMUkXC6fnePBI35t1EOZAkuQywJdXrrfw+0c1wjJlVABoCc9P7EDPrY2aJZpaYnKykQPKvisUjGd6zCcN7JnD2rOOu4fPo/UEi65OPeB2aiIgIJQqHM/re5pSMCueu4fNYsClvrqcJJEm2dI6lXYZ/wTFmVggYBzzknDuU3oc454Y45xKccwmxsbEBhCWSt7WrEcc3D1/Gk51qMHvdHq58+SceGbuYDXuOeh2aiIjkcyWiwhl1b3NiCxfgruHzWJgHF54HkiRvBcqmeh0PbA90jJmF4kuQRzrnPrv0UEXynwIhwfRtW5mpf76cu1tVZPKyHbT/349KlkVExHMli4Qzuk9zYgqFcde781i85YDXIWWqQJLk+UBVM6toZmHArcDENGMmAj38XS6aAwedczvMzIB3gVXOuZczNXKRfKRE4XD+em0tpj1+hZJlyVAAHYm6+DsRLfaXubUO9FoRkdRKFSnI6HubUywyjDvfncvybQe9DinTZJgkO+dSgIHAN/gW3o11zq0ws75m1tc/bDKwHkgChgL9/cdbAXcC7fyT8WIzuyazb0IkvziXLE9/vB33tFayLL8XYEeiKUB951wD4G5g2EVcKyLyG6WLFmR0n+YULhBCr/fns3X/Ma9DyhTmXM7b5SshIcElJiZ6HYZIjpd8+CRDpq3jwzmbOJVylhsalGFguypUii3kdWj5lpktcM4lePj5LYC/O+eu9r9+CsA598IFxg93ztW82GvP0ZwtIgA/7zrMTW/NIi4qnE/7tqBoRJjXIWXoQnO2dtwTycViCxfgL51TPVlevsO3wO/jxeqGkX8F0pEIM+tqZquBSfieJgd8rf96dSQSkd+oFleYIXcmsHnvMfqMWMCJ02e8DukPUZIskgcoWZZUAulIhHNuvHOuBnAD8K+LudZ/vToSicjvtKgcw0u31Gfexn08OnYJZ8/mvIqFQIV4HYCIZJ5zyXKfyyozdPp6RszeyOeLt6kMI38JpCPRL5xz08ysspkVv9hrRUTSc3390uw8eJx/T15NqSK+tTS5kZJkkTwotnABnr6mJve2qaRkOf/5pSMRsA1fR6LbUg8wsyrAOuecM7NGQBiwFziQ0bUiIoG4t00lth84wbAZGyhVtCD3tK7odUgXTUmySB52vmS5iz9ZrqxkOc9xzqWY2bmORMH4FuWtONeNyDn3NnATvradp4HjQDfnW8Wd7rWe3IiI5Gpmxt+urcWOg8d5btJKShUJ55q6pbwO66Kou4VIPrLnyEmGTPMly6dSzipZzgJed7fwguZsETmfE6fPcNvQOSzffoiRvZvRpEK01yH9hrpbiAgAxQv5nizPeKIdvdtU4qvlO7jq5Z94+OPFrNMCPxERyWThocEMu6sJ8UUL0vuDRJJ2557fNUqSRfKh1MnyvW0q8fXynUqWRUQkS0RHhvF+r6aEBht3DZ/H7sMnvA4pIEqSRfKx4oUK8NQ1NZn+xBVKlkVEJMuUi4lgeM8m7Dt6irvfn8/Rkyleh5QhJckiomRZRESyXL34orx5eyNW7ThM/5ELOX3mrNchXZCSZBH5xfmS5d4fzGfq6t2cycVN4UVExHtX1CjBczfU4aefk/nr+OXkxAYS56gFnIj8zrlk+d7LKvH+zI2Mmb+F71fNp0zRgtzWrBw3J8RTonC412GKiEgu1L1pOXYcOM6gH5IoXbQgD15Z1euQ0qUkWUTOq3ihAjx2dXUeaF+V71ftYuTcTfzfN2t45bufubp2SW5vVo4WlWMwS283YxERkfQ9fFU1th04wSvf/0ypouHcklA244uymZJkEclQWEgQ19QtxTV1S7E++Qij523mkwVbmbRsB5WKR9K9aTn+1DieYpFhXocqIiK5gJnx4k112X34BE99toy4qHDaVov1OqzfUE2yiFyUSrGF+EvnWsx5qj2vdKtPdGQYz09eRbMXpvDwx4tJ3LgvR9eYiYhIzhAaHMSbtzeielxh+n+0gOXbDnod0m8oSRaRSxIeGkzXhvF82q8lXz/UhlublOX7lbv409uz6fjqdEbM3sihE6e9DlNERHKwwuGhvNerCUUjwuj1/ny27DvmdUi/UJIsIn9YjZJR/LNLHeb+pT3/uakuYSFBPDNhBc2en8ITny5l6dYDXocoIiI5VFxUOO/3asLJ02fo+d48Dhw75XVIgJJkEclEEWEhdGtSji/ub83Ega3o0qA0E5ds5/rBM7nu9RmMmbeZY6dyfgN5ERHJXlXjCjO0RwJb9h3n3hGJnDh9xuuQAkuSzayjma0xsyQzezKd82Zmg/znl5pZo1TnhpvZbjNbnpmBi0jOVi++KC/eVI+5f2nPP7vU5lTKWZ78bBnNnp/CMxOWs3rnIa9DFBGRHKRZpRhe7laf+Rv388jYxZz1uDd/hkmymQUDbwCdgFpAdzOrlWZYJ6Cq/6cP8Faqc+8DHTMjWBHJfaLCQ+nRogJfP9SGT/u24MpacYyZv4WOr07nT2/NYvyirTniiYGIiHjv2nql+WvnmkxetpPnJ6/yNJZAniQ3BZKcc+udc6eAMUCXNGO6ACOczxygqJmVAnDOTQP2ZWbQIpL7mBkJFaJ5pVsD5j7Vnr9cU5O9R0/x8MdLaP7CFJ77ciXrtQW2iEi+d0/rivRqVYF3Z2xg2PT1nsURSJ/kMsCWVK+3As0CGFMG2PGHohORPKlYZBj3XlaJe1pXZPb6vYyau5n3Z21k2IwNtKwcw+3NynNVrTjCQrRsQkQkvzEz/tq5FjsPnuD5yasoVaQgneuVyvY4AkmS09tKK22RSCBjLvwhZn3wlWpQrly5i7lURHKpoCCjVZXitKpSnN2HT/BJ4lZGzd3MgFELKV6oADcnxNO5bilql47Srn4iIvlIcJDxSrcGJA+by8NjFxNbuABNK0ZnawyBPKbZCqTeKzAe2H4JYy7IOTfEOZfgnEuIjc1ZO66ISNYrUTicAVdUYdrjV/BezyY0KFuEd35ax7Wvz6DViz/w94krmJW0h9NnznodqoiIZIPw0GCG9kggvlhB7h2RSNLuw9n6+YE8SZ4PVDWzisA24FbgtjRjJgIDzWwMvlKMg845lVqIyEULDjKuqFGCK2qUYN/RU0xZtYtvV+5i9DxfSUaRgqG0r1GCDrXjuKxaLBFhgUxjIiKSGxWLDOODXk3p+uYs7ho+n/H9W1IiKjxbPjvD3y7OuRQzGwh8AwQDw51zK8ysr//828Bk4BogCTgG9Dp3vZmNBi4HipvZVuBZ59y7mX0jIpL3REeGcXNCWW5OKMuxUylMX7uHb1fsYsrqXXy2aBsFQoJoU7U4HWqVpH3NEsQUKuB1yCIiksnKRkfwXs8mdBsym17vz+fj+1pQqEDWPyAx57ztQZeehIQEl5iY6HUYIpJDpZw5y7yN+/h2xS6+W7mLbQeOE2SQUD6aDrXj6FCrJOViIjyJzcwWOOcSPPlwj2jOFpHsMHXNbnp/kEirKsV5964EQoP/+OLuC83ZSpJFJFdzzrFi+yG+XbmLb1fsZPVOX81ajZKF6VArjg61S2brwj8lySIiWefj+Zt5Ytwybm4cz3//VO8Pz+0XmrNVzCciuZqZUadMEeqUKcIjV1Vj895jfLtyJ9+u3MXgqUkM+iGJMkULclWtODrUjqNphWhCMuHpg4iIZL9uTcqx/cAJXpuyltJFC/LwVdWy7LOUJItInlIuJoLebSrRu00l9h45yZTVu/l2xa8L/4pGhNKuRgk61CrJZdWKa+GfiEgu89CVVdl+4Lg/UQ6nW5OsaR2s3w4ikmfFFCrALQllucW/8G/az3v4duVOpqzazWcLzy38i6VD7Tja19DCPxGR3MDM+PeNddl1+CRPj19OiahwrqheItM/R0myiOQLEWEhdKxTko51SnL6zFnmp1r49/2qXb6FfxWi6VArjqtrl6RstDcL/0REJGOhwUG8eXsjur0zmwEjF/JxnxbUjS+SqZ+hhXsikq/9svBvha+O+dzCv4blivJZv5YXvShEC/dERLLP7kMn6PrmLE6mnOXzAS2JL3ZxDzi0cE9E5Dx+s/CvQ3U27T3Kdyt3cfD4aW2FLSKSw5WICueDu5vw5tR1REeGZep7K0kWEUmlfEwkvdtU8joMEREJUJUShXm5W4NMf1/1QRIRyWPMrKOZrTGzJDN7Mp3zt5vZUv/PLDOrn+rcw2a2wsyWm9loM8ue/V9FRHIYJckiInmImQUDbwCdgFpAdzOrlWbYBqCtc64e8C9giP/aMsADQIJzrg4QDNyaXbGLiOQkSpJFRPKWpkCSc269c+4UMAboknqAc26Wc26//+UcID7V6RCgoJmFABHA9myIWUQkx1GSLCKSt5QBtqR6vdV/7HzuAb4CcM5tA14CNgM7gIPOuW/Tu8jM+phZopklJicnZ0rgIiI5iZJkEZG8Jb2WHOn2+jSzK/AlyU/4XxfD99S5IlAaiDSzO9K71jk3xDmX4JxLiI2NzZTARURyEiXJIiJ5y1agbKrX8aRTMmFm9YBhQBfn3F7/4SuBDc65ZOfcaeAzoGUWxysikiMpSRYRyVvmA1XNrKKZheFbeDcx9QAzK4cvAb7TOfdzqlObgeZmFmG+JtHtgVXZFLeISI6SI3fcM7NkYNNFXlYc2JMF4eR0+fG+8+M9Q/6879x4z+Wdc57WH5jZNcCr+LpTDHfOPW9mfQGcc2+b2TDgJn6dZ1PO7ThlZv8AugEpwCKgt3PuZAafdylzNuTO/33/qPx4z5A/7zs/3jPkvvs+75ydI5PkS2FmifltK1jIn/edH++Z/2fvvsOjrNI+jn9vQu+9E0IvUgQCiBVsi1iwr2Jv6K5lfV0LlrW74q66u666iNh7A0EBG4oV6Z0QCD0JECAQQkL6/f6R0Y3ZBBJIMpPM73NduTIzz3meuU8GTu6c5xTCs97hWOdwEo6fbzjWGcKz3uFYZ6ha9dZwCxERERGRQpQki4iIiIgUUpWS5InBDiBIwrHe4VhnCM96h2Odw0k4fr7hWGcIz3qHY52hCtW7yoxJFhEREREpK1WpJ1lEREREpExUiiTZzEaaWayZxZnZuCKODzezFDNbEvi6v8CxjWa2PPD6goqN/NAdrM6BMsMD9VppZt+W5txQdZj1rpKftZndUeDf9gozyzWzpiU5N5QdZr0r5WcdLsKxzYbwbLfDsc2G8Gy3w7LNdveQ/iJ/nc91QGegJrAU6F2ozHDg02LO3wg0D3Y9yqHOjYFVQGTgecuSnhuqX4dT76r8WRcqfybwdTh81sXVu7J+1uHyFY5tdinqXaXa7XBssw/l86oK7Xa4ttmVoSd5CBDn7uvdPQt4Fxgd5JjKW0nqPAaY7O6bAdw9qRTnhqrDqXdlVdrP62LgnUM8N5QcTr0ltFXmf5eHIxzb7XBssyE82+2wbLMrQ5LcDthS4Hl84LXChpnZUjObaWZHFHjdgS/MbKGZjS3PQMtQSercHWhiZrMDdbu8FOeGqsOpN1TdzxoAM6sLjAQ+Ku25Iehw6g2V87MOF+HYZkN4ttvh2GZDeLbbYdlmVw92ACVgRbxWeEmOReRvK7jP8rdj/RjoFjh2jLsnmllL4EszW+3u35VjvGWhJHWuDgwCTgLqAHPM7OcSnhuqDrne7r6GqvtZ/+JM4Ed3Tz6Ec0PN4dQbKudnHS7Csc2G8Gy3w7HNhvBst8Oyza4MPcnxQIcCz9sDiQULuPted98XeDwDqGFmzQPPEwPfk4Ap5N8yCHUHrXOgzGfunubuO4HvgP4lPDdUHU69q/Jn/YuL+O3tq6r+Wf+icL0r62cdLsKxzYbwbLfDsc2G8Gy3w7PNDvag6IN9kf9X6HqgE/8dLH5EoTKt+e+az0OAzeT/1VMPaBB4vR7wEzAy2HUqozr3AmYFytYFVgB9SnJuqH4dZr2r7GcdKNcISAbqlfbcUPw6zHpXys86XL7Csc0uRb2rVLsdjm12SesdKFdl2u1wbbNDfriFu+eY2U3A5+TPrnzZ3Vea2Q2B4xOA84E/mFkOsB+4yN3dzFoBU8wM8j/gt939s6BUpBRKUmd3jzGzz4BlQB4wyd1XABR1blAqUkqHU28z60wV/awDRc8BvnD3tIOdW7E1ODSHU2+gUv6/Dhfh2GZDeLbb4dhmQ3i22+HaZmvHPRERERGRQirDmGQRERERkQqlJFlEREREpBAlySIiIiIihShJFhEREQkCM2tiZkDJjykAACAASURBVFFmdqWZNQl2PPJbIb+6hYiIiEgVNQg4DegI1ABeDG44UpB6kkVERCo5M3vVzB4tYdkeZrbYzFLN7JbDfN+NZnZysM6viPc52Lml+dkXd4nDOFfKkZJkERGR8HInMNvdG7j7M2V10ZIkohWVFFciC4FngE+BD4McixSiJFmCpnBvhplNMLO/BDuuwsxsuJnFBzsOEZEy0hEI+Q0sCjOzKjdE1N13u/tGd3/V3XcHOx75LSXJEky/6c1w9xvc/ZFgByUiEurMbICZLQp0MrwH1C5wrK2ZfWRmO8xsQ8EhFWb2NTACeNbM9plZdzMbZ2brAtdaZWbnFCjvZta1wPMihxaY2RtAJPBJ4Lp3lqLMkWa2zMxSzOw9MytYl41mdpeZLQPSzKz6Qep3l5klBOoSa2YnFQjhQO/Ty8xmm9keM1tpZmcdys++iLKNzOwdM9sZKL/EzJR7VRL6oCSYStybURV7EEREDoWZ1QQ+Bt4AmgIfAOcFjlUDPgGWAu2Ak4Bbzex3AO5+IvA9cJO713f3NcA64DigEfAQ8KaZtSlNTO5+GbAZODNw3b+VosyFwEigE9APuLLQqRcDpwONyd/ausj6mVkP4CZgsLs3AH4HbCxwnSLfx8xqBK75BdASuBl4K3C93zjQz74YTwC55P++awRc6u55BygvIURJsgRFMb0Zv/ZQ/DLEIdArsA14xcweNLMPzOzNwF/kywPn3W1mSWa2xcxOLeb9xpnZh4Ve+5eZPRN4fJWZxQSuu97Mrj9A7AfsWTGzMwK9BXvM7Ccz63dYPywRkd86ivyVEP7p7tnu/iEwP3BsMNDC3R929yx3X0/+igkXFXcxd//A3RPdPc/d3wPWAkPKuQ4FPRN4/2Tyk9Ujizi+xd33c+D65QK1gN5mViMwjGFdCd7nKKA+MD5wza/JHyN8cRGxHuhnX5Rs8n+e6YGf74oS/1Qk6JQkS1AU05tRWGvy/1LvCIwNvHYm+X/BNwEWA5+T/++4HfAw8EIxb/kOMMrMGgKYWQT5vQpvB44nAWcADYGrgH+Y2cDS1itwzsvA9UCzQDzTzKxWaa8lIlKMtkCCu3uB1zYFvncE2gb+SN9jZnuAe4BWxV3MzC4v8If9HqAP0Ly8gi/CtgKP08lPWAvaUuBxsfVz9zjgVuBBIMnM3jWztiV4n7bAlkI9vJvI/71S2IF+9kVZDdxO/lCRYjtfJDQpSZZQlgc84O6ZgR4EgO/d/XN3zyH/NlcL8v/6zwbeBaLMrHHhC7n7JmARcHbgpRPJ/8v+58Dx6e6+zvN9S/5tt+MOIebrgBfcfa6757r7a0Am+b0PIiJlYSvQzswKLh0WGfi+Bdjg7o0LfDVw91FFXcjMOpLfE3sT0MzdGwMr+O+yZOlA3QKntD5AXH6AY6Upc6BzDlg/d3/b3Y8lP5l28oc7HEwi0KHQWOFIIKGIsgf62f9GYFzzTcBAd6/r7sV14kiIUpIsoWyHu2cUem17gcf7gZ3unlvgOfxvL8Qv3ua/t8/G8N9eZMzsNDP72cySAz0Tozi0npSOwJ8L9XJ0IL/3QUSkLMwBcoBbAhPZzuW/wyPmAXsDQ9XqmFmEmfUxs8HFXKse+cnkDsgfekZ+T/IvlgBjAtcZCZxwgLi2A50PEntJyhxIsfWz/BWTTgzcucsg/3dC7oEvB8BcIA2408xqmNlw8u9avltE2QP97AvrQ36ivR3AzCJNu+pVKkqSJZQdSo/DgXwADDez9sA5BJLkQIP6EfAk+bfsGgMzKH6B9wP1rGwBHivUy1HX3d8p47qISJhy9yzgXPInnu0Gfg9MDhzLJT/BOxLYAOwEJpE/aayoa60CniI/+dsO9AV+LFDkT4Hr7QEuIX/SWnEeB+4LdBDcfhhlinWQ+tUCxgde20b+JLx7SnDNLOAs8ne+2wk8D1zu7quLKVvkz74IrwBZwBYzSwmU0yT0SsR+O6xGpOKY2WzgTXefFHj+KhDv7vcF/pJ/093bFyj/INDV3S8NPD8ZmOTuUYHn1cmfJNHB3Ytc19jMZpLfSDV39wGB1xqQ/wvgROA78mc/fwQ8XVQsZvYj+eOp7wVOAaYATwXKRgeen09+j0ddYDjwnbunHt5PTERERCqKepIl3LwNnEyBoRaB5PUW4H3yewbGANMOcI1ie1bcfQH545KfDVwrjv9dzkhERERCnHqSRUREREQKUU+yiIiIiEghSpJFRERERApRkiwiIiIiUoiSZBERERGRQkJyvb7mzZt7VFRUsMMQESm1hQsX7nT3FsGOoyKpzRaRyupAbXZIJslRUVEsWLAg2GGIiJSamW0KdgwVTW22iFRWB2qzNdxCRERERKQQJckiIiIiIoUoSRYRERERKURJsoiIiIhIIUqSRUREREQKUZIsIlJIelYO8bvTgx2GiIiUgLsTl5Ra5tdVkiwiUkBqRjZXvDyPMS/OJTMnN9jhiIjIAaRmZHPLu0sY9cwPrNuxr0yvHZLrJIuIBMOe9Cwuf3keqxL38s+LjqRW9YhghyQiIsVYHp/CTe8sIn73fm47pTudmtUr0+srSRYRAXakZnLZS3NZvzONFy4bxEm9WgU7JBERKYK78+pPG/nrjBia16/Fu2OPYnBU0zJ/HyXJIhL2tqbs55JJc9m6J4OXrxjMsd2aBzskEREpwp70LO74cBlfrtrOyb1a8vfz+9OkXs1yeS+NSRaRsLZ5VzoXTJhD0t5MXr9mSJVOkM1spJnFmlmcmY0r4vglZrYs8PWTmfUPRpwiIkVZuCmZ05/5gdmxSfzljN68eHl0uSXIoJ5kEQljcUn7uHTSXDJycnn7uqH0a9842CGVGzOLAJ4DTgHigflmNs3dVxUotgE4wd13m9lpwERgaMVHKyLyX3l5zgvfrefJL2Jp17gOH/3h6Appr5Uki0hYitm6l0snzcUM3h17FD1bNwx2SOVtCBDn7usBzOxdYDTwa5Ls7j8VKP8z0L5CIxQRKWTnvkxue38p363Zwen92vD4uX1pWLtGhby3kmQRCTtLtuzhipfnUbdmBG9dO5TOLeoHO6SK0A7YUuB5PAfuJb4GmFmuEYmIHMBPcTv503tL2Ls/m8fO6cOYIZGYWYW9v5JkEQkr8zYkc/Wr82lSrwZvX3sUHZrWDXZIFaWo3yxeZEGzEeQnyccWezGzscBYgMjIyLKIT0QEgNw851+z1vLvr9fSuXk9Xr96CL3aVPzdPiXJIhI2vl+7g+teX0C7xnV469qjaN2odrBDqkjxQIcCz9sDiYULmVk/YBJwmrvvKu5i7j6R/DHLREdHF5lsi4iU1raUDP707mLmbkjmvIHteXj0EdSrFZx0VUmyiISFL1dt58a3FtG5RT3evHYozevXCnZIFW0+0M3MOgEJwEXAmIIFzCwSmAxc5u5rKj5EEQln36xO4s8fLCUjO5enLujPeYOCOy1CSbKIVHmfLE3k1veW0KddI167ajCN65bfkkGhyt1zzOwm4HMgAnjZ3Vea2Q2B4xOA+4FmwPOBcX857h4drJhFJDxk5+bx5OexvPDdenq2bsCzYwbStWXw54ooSRaRKu39BVsY99Eyojs25aUro2lQQbOiQ5G7zwBmFHptQoHH1wLXVnRcIhK+tiSnc/M7i1myZQ+XHhXJfaf3pnaNiGCHBShJFpEq7PU5G7l/6kqO69aciZdFU6dmaDS8IiICn63Yyp0fLsMdnhszkNP7tQl2SL+hJFlEqqQJ365j/MzVnNK7Fc+OGUCt6kqQRURCQUZ2Lo/PiOG1OZvo374R/754IJHNQm+loRJtS12CrUx7mtkcM8s0s9uLOB5hZovN7NOyCFpEpDjuztNfxDJ+5mrO7N+W5y8ZqARZRCRErN+xj3Of/4nX5mzi2mM78cENR4dkggwl6Eku4VamycAtwNnFXOZPQAxQ5be0EpHgcXcemx7DpB82cGF0ex4/tx8R1Spu4XkRESnex4sTuHfKcmpUr8ZLV0RzUq9WwQ7pgErSk/zrVqbungX8spXpr9w9yd3nA9mFTzaz9sDp5K+7KSJSLvLynPs+XsGkHzZwxbCOjFeCLCISEtKzcrjzw6Xc+t4SerdtyMw/HRfyCTKUbExyabcyLeyfwJ1AgwMV0u5NInKocnLzuPPDZUxenMANJ3ThrpE9KnTrUhERKVrstlRuensRcTv2cfOJXfnTSd2oHlGi0b5BV5IkucRbmf7PiWZnAEnuvtDMhh+orHZvEpFDkZWTx63vLWbG8m38+ZTu3HRiVyXIIiJB5u68N38LD0xbSYPaNXjj6qEc2615sMMqlZIkySXayrQYxwBnmdkooDbQ0MzedPdLSxemiMj/ysjO5Y9vLeLr1Uncd3ovrj2uc7BDEhEJe6kZ2dwzZQWfLE3k2K7Nefr3/WnZoHawwyq1kiTJB93KtDjufjdwN0CgJ/l2JcgiUhbSMnO47vUFzFm/i8fO6cMlQzsGOyQRkbC3IiGFG99exJbkdO74XQ/+cEIXqlXS+SEHTZJLspWpmbUGFpC/ekWemd0K9Hb3veUYu4iEqb0Z2Vz1ynwWb97NUxf059yB7YMdkohIWHN3XvtpI3+dsZpm9Wvy3vXDGBzVNNhhHZYSbSZSgq1Mt5E/DONA15gNzC51hCIiBSSnZXH5y3OJ3ZbKc2MGclrf0NqhSUQk3CTtzeCOD5fx7ZodnNSzJU9e0J8m9WoGO6zDph33RKTSSErN4NJJc9m4K52Jl0UzomfLYIckIhLWZi7fyt1TlpORncvDo4/gsqM6VpnJ00qSRaRSSNyzn0smzWX73gxevXIwR3etXLOkRUSqkr0Z2Tw4dSWTFyfQv30jnv79kXRpUT/YYZUpJckiEvI27UpjzItz2bs/mzeuGcKgjpV7nJuISGU2Z90ubv9gKdv2ZvCnk7px04ldqVFJ1j4uDSXJIhLS1m5P5ZJJc8nOzeOdsUfRp12jYIckIhKWMrJzeeqLWCb9sIGoZvX48IZhDIhsEuywyk3VS/tFpMpYmZjC7yf+jAPvjh2mBPkwmdlIM4s1szgzG1fE8Z5mNsfMMs3s9mDEKCKhaVXiXkY/+yMvfr+BS4ZGMv2WY6t0ggzqSRaRELVw026uemUe9WtV563rjqJT83rBDqlSM7MI4DngFPI3iZpvZtPcfVWBYsnALcDZQQhRREJQbp7z4vfreeqLWBrXrckrVw1mRI/wmDStJFlEQs7Xq7fzx7cW0bphbd68dijtm9QNdkhVwRAgzt3XA5jZu8Bo4Nck2d2TgCQzOz04IYpIKNmSnM6f31/KvI3JnNanNY+d05emVWBpt5JSkiwiIeWjhfHc+dEyerVpwKtXDaF5/VrBDqmqaAdsKfA8Hhh6qBczs7HAWIDIyMjDi0xEQoq788HCeB6atpJqZjx9YX/OGdCuyiztVlJKkkUkZLzw7Toen7maY7o2Y8Klg2hQu0awQ6pKivrt5od6MXefCEwEiI6OPuTriEho2bUvk3umLOfzldsZ0qkpT1/YP2zv5ilJFpGgy8tzHp8Zw4vfb+D0fm14+sL+1KoeEeywqpp4oEOB5+2BxCDFIiIhaFbMdu76aDl792dzz6ieXHNsZyKqhVfvcUFKkkUkqLJz87jrw2VMXpzAFcM68sCZR1AtjBvlcjQf6GZmnYAE4CJgTHBDEpFQkJaZw6PTY3hn3mZ6tm7Am9cOoWfrhsEOK+iUJItI0KRn5fDHtxYxO3YHt5/anRtHdA27MW8Vxd1zzOwm4HMgAnjZ3Vea2Q2B4xPMrDWwAGgI5JnZrUBvd98btMBFpFwt3LSb295fwubkdK4/oTO3ndJdd/IClCSLSFDsTsviqlfnsyx+D4+f25eLh2jyV3lz9xnAjEKvTSjweBv5wzBEpIrLzs3jmVlree6bONo0qsO71x3F0M7Ngh1WSFGSLCIVLmHPfi5/aS5bdu/n+UsGMbJP62CHJCISNuKSUvm/95ayPCGF8we154Eze2uidBGUJItIhVqzPZXLX5pHWlYOb1w9RD0XIiIVJC/PeX3ORh6fuZp6taoz4VJ1UhyIkmQRqTALNyVz9asLqFm9Gu9fP4xebTQxRESkImxLyeCOD5fy/dqdnNizJePP60vLBrWDHVZIU5IsIhViVsx2bnx7EW0a1eH1q4fQoWl4rrspIlLRPlmayL1TlpOd6zx2Th/GDInUJOkSUJIsIuXugwVbGDd5Ob3bNOSVqwZrFz0RkQqQkp7N/dNWMHVJIgMiG/P0hUfSqXm9YIdVaShJFpFy4+5M+HY9T3y2mmO7NmfCZYOoX0vNjohIefth7U5u/2ApO/dl8udTuvOH4V2oHlEt2GFVKvptJSLlIi/PeWxGDC/9sIEz+7flqQv6U7O6GmgRkfKUkZ3LE5+t5pUfN9K5RT0mX340/do3DnZYlZKSZBEpc1k5edz54VI+XpLIlUdHcf8ZvbWLnohIOVu8eTd3fLiMuKR9XHl0FHeN7EmdmtoY5FApSRaRMpWWmcMf3lrEd2t2cMfvevDH4V00QUREpBxlZOfy1BexvPTDBlo3rM3rVw/h+O4tgh1WpackWUTKTHJgF73l8XsYf25fLtIueiIi5Wr+xmTu/HAZG3amMWZoJHef1lMbg5QRJckiUibid6dz+cvzSNi9nwmXDuLUI7RAvYhIeUnPyuFvn8Xy2pyNtGtch7euHcoxXZsHO6wqRUmyiBy22G2pXP7yXNKzcnnjmqEM6dQ02CGJiFRZP63byV0fLWNL8n6uPDqKO37Xg3paOajM6ScqIodl/sZkrnl1PrVrRPDBDcPo2Vq76ImIlId9mTk8PiOGt+ZuJqpZXd6/fpg6JcqRkmQROWRfrcrfRa9d4zq8pl30RETKzXdrdnD35OUkpuzn2mM78edTe2jlinKmJFlEDsn787dw95Tl9GnbkJevHEwz7aInIlLm9mZk89inMby3YAtdWtTjwxuOZlDHJsEOKywoSRaRUnF3np+9jr9/Hstx3Zoz4dJBGgtXSZjZSOBfQAQwyd3HFzpugeOjgHTgSndfVOGBiggA36xO4u7Jy0lKzeCGE7pw68ndqF1DvccVRb/ZRKTE8vKcR6av4pUfN3JW/7Y8qV30Kg0ziwCeA04B4oH5ZjbN3VcVKHYa0C3wNRT4T+C7iFSgPelZPPzpKiYvSqB7q/q8cNkx9O+gXfMqmpJkESmRrJw87vhwKVOXJHLVMVH85XTtolfJDAHi3H09gJm9C4wGCibJo4HX3d2Bn82ssZm1cfetFR+uSHj6fOU27vt4BclpWdx8YlduOrErtaqr9zgYStQFZGYjzSzWzOLMbFwRx3ua2RwzyzSz2wu8XtvM5pnZUjNbaWYPlWXwIlIx0jJzuOa1+UxdksidI3tom+nKqR2wpcDz+MBrpS0DgJmNNbMFZrZgx44dZRqoSDhKTsvi5ncWc/0bC2levxZTbzyGP5/aQwlyEB20J7mEt+iSgVuAswudngmc6O77zKwG8IOZzXT3n8smfBEpb7v2ZXL1q/NZnpDC387rx4WDOwQ7JDk0Rf1V44dQJv9F94nARIDo6Ogiy4hIyUxftpX7p65gb0Y2t53SnT8M70KNCA1lC7aSDLc46C06d08Ckszs9IInBm7Z7Qs8rRH4UmMqUkls2JnGNa/OJ2HPfl64LJpTercKdkhy6OKBgn/htAcSD6GMiJSRHamZ3D91BTNXbKNvu0a8dcFQrTUfQkqSJBd1+63EEzkCPdELga7Ac+4+t5hyY4GxAJGRkSW9vIiUk2/X7ODmtxcRUc1489qhDI7SgvWV3Hygm5l1AhKAi4AxhcpMA24KdIYMBVI0Hlmk7Lk7U5ck8uAnK0nPyuXOkT0Ye1xnqqv3OKSUJEku8e23orh7LnCkmTUGpphZH3dfUUQ53boTCQHuzovfr2f8zNV0b9WAFy+P1iYhVYC755jZTcDn5C8B97K7rzSzGwLHJwAzyF/+LY78JeCuCla8IlXV9r0Z3DtlOV/FJDEgsjF/P78fXVs2CHZYUoSSJMllcvvN3feY2WxgJPA/SbKIBF9Gdi7jPlrGx0sSGdW3NU9e0J+6NbUITlXh7jPIT4QLvjahwGMHbqzouETCgbvz4cJ4Hvl0FZk5edx3ei+uOqYTEZoEHbJK8tuvJLfoimRmLYDsQIJcBzgZeOJQgxWR8rM1ZT9jX1/I8oQUbj+1OzeO6Er+3hIiInI4Evfs554py5kdu4MhUU154vx+dGpeL9hhyUEcNEkuyS06M2sNLAAaAnlmdivQG2gDvBYYl1wNeN/dPy2nuojIIVqwMZkb3lxERnYuL16uCXoiImXB3Xl3/hYemx5Dbp7z4Jm9uXxYlJbQrCRKdB+1BLfotpE/DKOwZcCAwwlQRMrXu/M285epK2jXuA7vXDeUbq00Nk5E5HBtSU5n3ORl/Bi3i2Gdm/HEef2IbKb5HZWJBhuKhKns3Dwe+XQVr8/ZxHHdmvPsxQNpVLdGsMMSEanUcvOcN3/exBOfrcaAR8/uw5ghkeo9roSUJIuEoV37Mrnx7UX8vD6Zscd35s7f9dDSQyIihylm617unrycJVv2cFy35jx+bl/aN1HvcWWlJFkkzKxK3Mt1ry9gx75M/vH7/pwzoKiRUiIiUlL7s3L516y1TPp+PY3q1OCfvz+S0Ue21eTnSk5JskgYmb5sK7d/sJRGdWrwwfXD6N+hcbBDEhGp1L5fu4N7p6xgc3I6F0a35+7TetGkXs1ghyVlQEmySBjIy3P+8dUa/v11HAMjGzPh0kG0bFg72GGJiFRau/Zl8uj0GKYsTqBz83q8c91RDOvSLNhhSRlSkixSxaVmZPN/7y3hq5gkLoxuzyNn96FW9YhghyUiUin9sinIYzNiSMvM4ZYTu/LHEV2pXUPtalWjJFmkCtuwM43rXl/Ahp1pPHTWEVw+rKPGyImIHKL1O/Zx75QVzFm/i+iOTXj83L5aNrMKU5IsUkV9u2YHN7+9iIhqxhtXD+Hors2DHZKISKWUlZPHC9+u49/fxFGrejUeO6cPFw/Wsm5VnZJkkSrG3Zn0/QYenxlD91YNePHyaDo01RJEIiKHYsHGZO6evJy1Sfs4vV8bHjijt+Z0hAklySJVSEZ2LvdMXs7kxQmc1qc1T17Qn3q19N9cRKS0UvZn87fPVvPW3M20bVSbl66I5qRerYIdllQg/fYUqSK2pWRw/RsLWBqfwm2ndOemEV11K1BEpJTcnZkrtvHgtJXs3JfJNcd24rZTuqvDIQzpExepAhZu2s0Nby4kPTOHiZcN4tQjWgc7JAkxZtYUeA+IAjYCF7r77iLKvQycASS5e5+KjFEk2BL27Of+j1cwa3USR7RtyEtXDKZv+0bBDkuCRPvQilRy78/fwsUTf6ZuzQim3HiMEmQpzjhglrt3A2YFnhflVWBkRQUlEgpy85yXftjAKU9/y0/rdnHvqF5MvfEYJchhTj3JIpVUdm4ej02P4dWfNnJct+b8++IBNK6rXZ6kWKOB4YHHrwGzgbsKF3L378wsqqKCEgm2FQkp3DNlOcviUxjeowWPjO6jyc4CKEkWqZSS07K48a1FzFm/i2uP7cS403pSPUI3huSAWrn7VgB332pmLYMdkEgwpWfl8M+v1vLSDxtoUrcG/754AGf0a6O15OVXSpJFKpmYrXu57vUFJKVm8tQF/TlvUPtghyQhwsy+Aooab3NvObzXWGAsQGRkZFlfXqRczY5N4r6PVxC/ez8XD+nAuJG9aFS3RrDDkhCjJFmkEpm5fCu3vb+UhnWq8/71wziyQ+NghyQhxN1PLu6YmW03szaBXuQ2QNJhvtdEYCJAdHS0H861RCrKjtRMHv50FZ8sTaRLi3q8f/0whnRqGuywJEQpSRapBPLynH9+tYZnvo5jQGRjXrh0kBazl9KaBlwBjA98nxrccEQqjrvz/oItPDY9hozsPG49uRt/GN6FWtUjgh2ahDAlySIhbk96Frd/sJSvYpK4YFB7Hj2njxp2ORTjgffN7BpgM3ABgJm1BSa5+6jA83fIn+DX3MzigQfc/aXghCxy+OKS9nHPlOXM25DMkE5N+es5fenasn6ww5JKQEmySAibtyGZW99dzI59mTx4Zm+uODpKk0rkkLj7LuCkIl5PBEYVeH5xRcYlUl4yc3L5z+x1PP/NOmrXqMYT5/XlgkEdtMmSlJiSZJEQlJvnPPdNHP/8ag0dmtZl8h+0XqeISEn9GLeTv3y8gvU70zirf1v+ckZvWjSoFeywpJJRkiwSYralZHDre4v5eX0yo49sy6Nn96FBbc26FhE5mKTUDB6bHsPUJYl0bFaX164ewgndWwQ7LKmklCSLhJBZMdu5/YOlZGTn8ffz+3H+oPYaXiEichC5ec5bczfx989jyczO45aTuvHH4V2oXUPzN+TQKUkWCQGZObk8MTOWl3/cQK82DXl2zAC6tNDEEhGRg1kWv4d7p6xgeUIKx3ZtzsOjj6Cz2k8pA0qSRYJsw840bn5nESsS9nLl0VGMO62nej9ERA4iZX82T30Ryxs/b6J5/Vo8c/EAztSOeVKGlCSLBNGUxfHcN2UF1SOqMfGyQZx6RFGbpYmIyC/cnWlLE3nk0xiS0zK5YlgUt53anYaauyFlTEmySBCkZeZw/9SVfLQoniFRTfnnRUfStnGdYIclIhLS1u3Yx/1TV/Bj3C76t2/EK1cO1so/Um6UJItUsBUJKdzyzmI27ErjlpO6ccuJXakeUS3YYYmIhKyM7Fye+yaOF75dT60a1Xjk7D6MGRJJhNY8lnKkJFmkgrg7r/20kb/OWE2TejV4+9qjGNalWbDDEhEJad/EJvHA1JVsTk7nnAHtuGdUL615LBVCSbJIBdidlsUdHy7jq5jtnNizJU9e0J+m9WoGOywRkZC1NWU/D3+yipkrttG5RT3evnYoR3dtHuywJIwoSRYpZ3PX7+LW95awc18mfzmj10pFIAAAIABJREFUN1cfo62lRUSKk5Obx6s/beQfX64hJ8+5/dTuXHd8Z2pV16o/UrFKlCSb2UjgX0AEMMndxxc63hN4BRgI3OvuTwZe7wC8DrQG8oCJ7v6vsgtfJHTl5jn//notz8xaS6S2lhYROaiFm3Zz75TlrN6WyogeLXjorD5ENqsb7LAkTB00STazCOA54BQgHphvZtPcfVWBYsnALcDZhU7PAf7s7ovMrAGw0My+LHSuSJWzNWU/t767hLkbkjlnQDseObsP9Wvpxo2ISFH2pGfxxGereWfeFto0qs2ESwfyuyNa666bBFVJfmsPAeLcfT2Amb0LjAZ+TXTdPQlIMrPTC57o7luBrYHHqWYWA7QreK5IVfPVqu3c8eFSMnPyeOqC/pw3qH2wQxIRCUnuzocL43l85mpS9mdz3XGduPXk7tRTp4KEgJL8K2wHbCnwPB4YWto3MrMoYAAwt5jjY4GxAJGRkaW9vEjQZebkMn7mal75cSO92zTk39paWkSkWLHbUrnv4+XM37ibQR2b8OjZfejVpmGwwxL5VUmS5KLudXhp3sTM6gMfAbe6+96iyrj7RGAiQHR0dKmuLxJs63fs4+Z3FrMyUVtLS2gys6bAe0AUsBG40N13FyqjeSRS7tKzcvjXrLW89P0G6teuzhPn9eWCQR2opjWPJcSUJEmOBzoUeN4eSCzpG5hZDfIT5LfcfXLpwhMJfZMXxXPfxyuoWb0aL14ezSm9WwU7JJGijANmuft4MxsXeH5XoTKaRyLl6ouV23jok1Uk7NnPhdHtGXdaLy2HKSGrJEnyfKCbmXUCEoCLgDElubjlj7h/CYhx96cPOUqRELQvM4f7P17B5MUJDIlqyr8uPpI2jbS1tISs0cDwwOPXgNkUSpI1j0TKy5bkdB76ZCVfxSTRo1UDPrhhGIOjmgY7LJEDOmiS7O45ZnYT8Dn5S8C97O4rzeyGwPEJZtYaWAA0BPLM7FagN9APuAxYbmZLApe8x91nlENdRCrMioQUbn5nMZt2pfGnk7pxs7aWltDXKpAE4+5bzazlgQprHomUhaycPCb9sJ5nZq2lmhn3jOrJVcd0oobaS6kESjR9NJDUzij02oQCj7eRPwyjsB8oekyzSKXk7rzy40bGz1xN03o1efu6oziqs7aWltBgZl+RP564sHtLeR3NI5HD9t2aHTw4bSXrd6Zxau9WPHjWEbRtrLttUnlojRWREkpOy+LOD5fyVUwSJ/Vsyd+1tbSEGHc/ubhjZrbdzNoEepHbAEnFlNM8Ejks8bvTefTTGD5buY2oZnV55crBjOh5wBsXIiFJSbLIQeTlOe8v2MITn60mLTOXB87szZVHa2tpqXSmAVcA4wPfpxYuoHkkcjgysnN58bv1PDc7DoA7fteDa4/rpO2kpdJSkixyACsTU7jv4xUs3ryHwVFNeOTsPvRsrXU8pVIaD7xvZtcAm4ELAMysLTDJ3UcBx6B5JHIIvl69nYc+WcWmXemM6tuae0/vTTsNrZBKTkmySBH2ZmTz9BdreH3ORprUrcmTF/TnvIHt1HsslZa77wJOKuL1RGBU4LHmkUipbN6VzsOf5q9a0blFPd64ZgjHdWsR7LBEyoSSZJEC3J2PlyTw2PTV7ErL5NKhHbn91B40qlsj2KGJiISMjOxcnp+9jgnfrqN6NePu0/JXrahZXatWSNWhJFkkYM32VP7y8Qrmbkimf4fGvHLlYPq2bxTssEREQoa788Wq7Tzy6Srid+/nrP5tuWdUL1o3qh3s0ETKnJJkCXtpmflbpL78wwbq1arOX8/py0WDtUWqiEhBG3am8eC0lXy7ZgfdW9XnneuOYlgXLYEpVZeSZAlb7s6M5dt45NNVbNubwe+jO3DXaT21rJuISAHpWTk8+3Uck77fQK3q1fjLGb25fFhHbQgiVZ6SZAlL63fs44FpK/l+7U56t2nIc5cMZFDHJsEOS0QkZPzSkfDo9FVsTcng3IHtGHdaT1o20NAKCQ9KkiWs7M/K5blv4pj43XpqVa/Gg2f25tKjOmpLaRGRAuKSUnlg2kp+jNtFrzYN+ffFA4iOahrssEQqlJJkCRtfrtrOQ5+sJH73fs4Z0I67R6lHRESkoH2ZOTwTmKNRt2YED48+gjFDItWRIGFJSbJUeVuS03lw2kpmrU6iW8v6vDv2KI7qrMkmIiK/cHemLU3ksekxJKVm8vvoDtw5sgfN6tcKdmgiQaMkWaqszJxcJn67nme/iSOimnHPqPx1PDXZRETkv1Zv28v9U1cyb0Myfds14oXLBjEgUnM0RJQkS5X07ZodPDB1BRt3pXN63zbcd0Yv2jTSFqkiIr9I2Z/NP79aw+tzNtGgdv7yl78f3IEILX8pAihJlipma8p+Hvl0FTOWb6NT83q8fvUQju+uLVJFRH6Rl+dMXpzA+Jkx7ErLYsyQSG4/tQdNtPylyG8oSZYqITs3j5d/2MC/Zq0lN8+5/dTuXHd8Z2pVjwh2aCIiIWNFQgoPTFvJwk27ObJDY165coh2FhUphpJkqfTmrNvF/VNXsDZpHyf3asUDZ/amQ9O6wQ5LRCRk7EnP4qkv1vDW3E00qVuTv53fj/MHttfOoiIHoCRZKq2k1Az+Oj2Gj5ck0r5JHSZdHs3JvVsFOywRkZCRk5vHO/O38PQXsaTsz+byYVH83yndaVSnRrBDEwl5SpKl0snJzeONnzfx9BdryMzJ4+YTu/LH4V2pU1NDK0REfvHTup08/MkqVm9LZWinpjxw5hH0btsw2GGJVBpKkqVSmbNuF498uopVW/dyXLfmPDy6D52a1wt2WCIhz8yaAu8BUcBG4EJ3312oTG3gO6AW+b8fPnT3Byo2Ujlcm3el89cZMXy2chvtm9ThP5cMZGSf1phpaIVIaShJlkph9ba9jJ+5mtmxO2jbqDbPXzKQ09Toi5TGOGCWu483s3GB53cVKpMJnOju+8ysBvCDmc10958rOlgpvbTMHJ6fHceL328gwozbT+3Otcd1pnYN3WUTORRKkiWkJezZz9NfrGHy4nga1KrO3af15Iqjo9Toi5TeaGB44PFrwGwKJcnu7sC+wNMagS+vmPDkUOXlOVMWJ/DEZ6tJSs3k3AHtuHNkT1o3qh3s0EQqNSXJEpL2pGfx/Ox1vPrTRgDGHteZPwzvQuO6WsdT5BC1cvetAO6+1cxaFlXIzCKAhUBX4Dl3n1tMubHAWIDIyMjyiVgOavHm3Tz4ySqWbtlD/w6NmXDZIAZqtzyRMqEkWUJKRnYur/60kee/iSM1M4dzB7TntlO7066xdssTORgz+wpoXcShe0t6DXfPBY40s8bAFDPr4+4riig3EZgIEB0drd7mCrZ9bwZPzFzN5MUJtGxQi6cu6M85A9ppSTeRMqQkWUJCbp4zeVE8//hyDYkpGYzo0YI7R/akVxvNxBYpKXc/ubhjZrbdzNoEepHbAEkHudYeM5sNjAT+J0mW4MjIzuWlHzbw3Ddx5OQ6fxzehT+O6Er9Wvp1LlLW9L9Kgsrd+SY2iSdmxhK7PZX+7Rvx1IVHMqxLs2CHJlLVTAOuAMYHvk8tXMDMWgDZgQS5DnAy8ESFRilFcnc+W7GNx2bEEL97PyOPaM09o3oR2UwbJ4mUFyXJEjRLtuzh8RkxzN2QTFSzujw3ZiCj+mrFCpFyMh5438yuATYDFwCYWVtgkruPAtoArwXGJVcD3nf3T4MVsOSL2bqXhz5Zyc/rk+nZugFvXzuUo7s2D3ZYIlWekmSpcBt2pvH3z1czY/k2mtWrycOjj+DiIZHUiKgW7NBEqix33wWcVMTricCowONlwIAKDk2KkZyWxVNfxPLOvM00qlODR87uw8WDO1BdbaVIhVCSLBVmR2omz8xayzvzNlOzejX+dFI3rju+s8bSiYgUkJ2bxxtzNvHPr9aQlpXL5cOiuPXkblrdR6SCKTuRcrcvM4cXv1vPi9+vJzMnj4uHdOCWk7rRsoHW8BQRKWh2bBKPfLqKdTvSOK5bc+4/ozfdWjUIdlgiYUlJspSb7Nw83pm3mWdmrWXnvixG9W3N7af2oHOL+sEOTUQkpKzfsY9Hp8fw9eokoprV5aUrojmxZ0vN0RAJohIlyWY2EvgXEEH+BI/xhY73BF4BBgL3uvuTBY69DJwBJLl7n7IKXEKXuzNj+Tb+/vlqNu5KZ0inprx4eU8GaIF7EZHf2JuRzb9nreXVnzZSq3oE94zqyZVHd6JmdY07Fgm2gybJgVnOzwGnAPHAfDOb5u6rChRLBm4Bzi7iEq8CzwKvH3a0EvLmrNvF+JkxLI1PoXur+rx8ZTQjeqg3RESkoNw854MFW/j757Ekp2dx4aAO3P67HrRoUCvYoYlIQEl6kocAce6+HsDM3gVGA78mye6eBCSZ2emFT3b378wsqkyilZC1ettenpi5mm9id9CmUW3+dn4/zhvYngjt/iQi8hvzNiTz0CcrWZm4l8FRTXjtzCH0adco2GGJSCElSZLbAVsKPI8HhpZ1IGY2FhgLEBkZWdaXl3KSsGc/T3+xhsmL46lfqzrjTuvJlUdHUbtGRLBDExEJKQl79vPXGTFMX7aVto1q8++LB3BGvza60yYSokqSJBf1v9fLOhB3nwhMBIiOji7z60vZSknP5vnZcbzy00YArjuuM38c3kVLFImIFLI/K5f/fLuOF75dhxncenI3rj++C3VqqjNBJJSVJEmOBzoUeN4eSCyfcCTU7U7L4pUfN/DqTxtJzczhnAHtuO2U7rRvoq1RRUQKcnc+WbaVx2fEsDUlgzP7t2XcaT1p17hOsEMTkRIoSZI8H+hmZp2ABOAiYEy5RiUhZ/veDF78bj1vz9tMelYup/Zuxa0nd6d324bBDk1EJOQsj0/hoU9WsmDTbo5o25BnLh7A4KimwQ5LRErhoEmyu+eY2U3A5+QvAfeyu680sxsCxyeYWWtgAdAQyDOzW4He7r7XzN4BhgPNzSweeMDdXyqn+kgZ27wrnQnfrePDBfHkunNW/7b8YXgXumtxexGR/7EjNZMnP4/l/YVbaFavJk+c15fzB3XQJGaRSqhE6yS7+wxgRqHXJhR4vI38YRhFnXvx4QQowbFmeyr/mb2OaUsTiTDj/Oj23HB8FyKbaViFiEhhWTl5vPrTBp6ZFUdmTi7XHdeZm07sSsPaNYIdmogcIu24J7+xdMsenp8dx+crt1OnRgRXHR3Fdcd3plVDbSEtIlKYu/P16iQenR7Dhp1pnNSzJfee3ks7i4pUAUqSBXdn7oZknvsmju/X7qRh7erccmJXrjymE03rabUKEZGixCWl8vCnMXy3ZgddWtTj1asGM7xHy2CHJSJlRElyGHN3Zsfu4Nlv4li4aTfN69dk3Gk9uWRoJA10i1CkSjGzpsB7QBSwEbjQ3XcXUzaC/HkmCe5+RkXFWFmkpGfzz1lreH3OJurWjOAvZ/Tm8mEdqRGhraRFqhIlyWEoN8+ZuWIrz32zjpite2nXuA4Pjz6CC6M7aBMQkaprHDDL3ceb2bjA87uKKfsnIIb8ydgSkJvnvDNvM099Ecue/dlcPCSSP5/SnWb1tZW0SFWkJDmMZOfmMWVxAhNmr2P9zjQ6N6/H38/vx9kD2qkHRKTqG03+SkMArwGzKSJJNrP2wOnAY8BtFRRbyJuzbhcPfbKS1dtSGdqpKfef2Zsj2moraZGqTElyGMjIzuW9+VuY+N16Evbsp3ebhjw3ZiAj+7TWskQi4aOVu28FcPetZlbc4Nl/AncCWucR2JKczl9nxDBzxTbaNa7D85cM5LQ+rbWVtEgYUJJchaVmZPPmz5t56Yf17NyXxaCOTXj07D4M79FCDbxIFWRmXwGtizh0bwnPPwNIcveFZjb8IGXHAmMBIiMjSxlp6EvLzOE/s9cx8fv1RJjx51O6c93xnTUkTSSMKEmugpLTsng1sHX03owcjuvWnJtGdGVIp6ZKjkWqMHc/ubhjZrbdzNoEepHbAElFFDsGOMvMRgG1gYZm9qa7X1rEe00EJgJER0d72dQg+Nydj5ckMH7marbvzWT0kflbSbdppK2kRcKNkuQqZFtKBi9+v563525mf3YuI49ozR9HdKFf+8bBDk1Egm8acAUwPvB9auEC7n43cDdAoCf59qIS5Kpq6ZY9PPTJShZt3kPfdo14bsxAorWVtEjYUpJcBWzelc5/vl3HRwvzt44eHdg6upu2jhaR/xoPvG9m1wCbgQsAzKwtMMndRwUzuGBK2pvB3z6P5cOF8TSvX4u/nd+P8we2p5rmbIiENSXJldiqxL1M/C5/6+jq1apxQXR7rtfW0SJSBHffBZxUxOuJwP8kyO4+m/wVMKqszJxcXv5hI89+vZas3DyuP6EzN43oqnXiRQRQklzpbElOZ9rSRKYtSSR2eyp1a0ZwzbGduPY4bR0tIlIS7s6Xq7bz2IwYNu1K5+Rerbj39F50al4v2KGJSAhRklwJ7EjNZMbyrUxdksCizXsAiO7YhEdGH8EZ/drSRFtHi4iUyJrtqTz8ySp+iNtJ15b1ef3qIRzfvUWwwxKREKQkOUSlZmTz+crtTF2SwE/rdpGb5/Rs3YA7R/bgzH5t6dBUQypEREoqJT2bf3y1hjd+3kS9mhE8cGZvLj1KW0mLSPGUJIeQjOxcZscmMW1pIl/FJJGVk0f7JnW44YTOnNW/HT1aayKeiEhp5OY5b8/bzNNfxJLyy1bSp/agqe7AichBKEkOstw8Z866XUxdksBnK7aRmplD8/o1GTMkkrOObMuADo21trGIyCH4ef0uHpyWv5X0kE5NeUBbSYtIKShJDgJ3Z8mWPUxdksiny7ayc18m9WtVZ2Sf1pzVvy1Hd2lGdd0CFBE5JPG703l8xmqmL99K20a1eXbMAE7v20YdDiJSKkqSK9Da7alMXZLItKWJbE5Op2b1apzYoyWjj2zLiJ4ttd2piMhh2J+Vy4Rv1zHh23UA3HpyN64/vgt1aqptFZHSU5JczhL27OeTpYlMXZJIzNa9VDM4pmtzbj6xK7/r05qGWo9TROSwuDvTl2/lr9NjSEzJ4PR+bbhnVC/aNdZW0iJy6JQkl4PktCymL9/KtCUJzN+4G4ABkY158MzejOrXhpYNtJ6xiEhZWJmYwkOfrGLehmR6tWnI078/kqM6Nwt2WCJSBShJLiP7MnP4ctU2pi5J5Ie1O8nJc7q1rM/tp3bnrP7ttAueiEgZSk7L4skvYnl33mYa1anBo2f34eIhkURoK2kRKSNKkg9DSno238ft4LMV2/gqZjsZ2Xm0a1yHa4/rzOgj29KzdQNNFBERKUPZuXm8+fMm/vHlGtKycrl8WBT/d3J3GtXV0DURKVtKkkvB3Vm1dS+zY3cwOzaJRZv3kJvnNK1XkwsGdeCsI9syKLIJ1dSTISJS5n5Yu5OHPlnJ2qR9HNu1Ofef2ZvurbR+vIiUDyXJB7E3I5sf1u5kdmwS367Zwfa9mQD0adeQP5zQheE9WnBkh8Zask1EpJxs3pXOI9NX8eWq7XRoWocXLhvEqb1b6U6diJQrJcmFuDurt6UyO3YH38QmsWjTbnLynAa1q3N8txYM79GCE3q00OQ7EZFylpaZw3PfxDHp+w1UjzDu+F0Prjm2k5bLFJEKoSQZSM3I5se4nYFhFDvYtjcDgN5tGjL2+M6M6NmSAeotFhGpEO7Ox0sSGD9zNdv3ZnLOgHbcNbInrRupc0JEKk5YJsnuzprt+5gdm8Q3sUks2BjoLa5VnWO7NWdEj5ac0KMFrRqqQRaRqsHMmgLvAVHARuBCd99dRLmNQCqQC+S4e3TFRQnL4vfw4LSVLNq8h37tG/H8JYMY1LFJRYYgIgKEUZK8LzPn197ib2OTSEzJ7y3u2boB1x7XmRE9WjCwYxNqqLdYRKqmccAsdx9vZuMCz+8qpuwId99ZcaHBjtRM/v75aj5YGE+zerX42/n9OH9ge02EFpGgqbJJsrsTl7Tv17HF8zcmk53r1K9VnWO6NuOWk7pxQo8WtGmkHZlEJCyMBoYHHr8GzKb4JLnCZOXk8epPG3hmVhyZOblcd1xnbj6xKw20G6mIBFmVSpLTMnP4ad0uZscmMTt2Bwl79gPQo1UDrj6mE8N7tGRQxybUrK7eYhEJO63cfSuAu281s5bFlHPgCzNz4AV3n1hUITMbC4wFiIyMPKSAvlmdxCOfrmL9zjRG9GjBX87oTecW9Q/pWiIiZa1KJMlz1+/i31/HMW9DMlm5edSrGcHRXZtz44iunNCjBe0aq7dYRKo+M/sKaF3EoXtLcZlj3D0xkER/aWar3f27woUCyfNEgOjoaC9NnNtSMrh78jK+id1B5+b1eOXKwYzoWVzOLiISHCVKks1sJPAvIAKY5O7jCx3vCbwCDATudfcnS3puWch1Z/veDK44uiMjerQkOqqpeotFJOy4+8nFHTOz7WbWJtCL3AZIKuYaiYHvSWY2BRgC/E+SfDjq1Ixg/c407h3ViyuOjlJ7LSIh6aBJsplFAM8BpwDxwHwzm+buqwoUSwZuAc4+hHMP27DOzfjythPK8pIiIlXNNOAKYHzg+9TCBcysHlDN3VMDj08FHi7rQBrVqcGs207QspoiEtJK0kINAeLcfb27ZwHvkj8B5FfunuTu84Hs0p5bFrTrkojIQY0HTjGzteR3XIwHMLO2ZjYjUKYV8IOZLQXmAdPd/bP/b+/cg+6qyjP+e0JACRACBkQIIURBW7C0lUtrQFPQSnGQWnEKTqBVqkTECvVStEJjh6IVHaeO7TCINAUGay0Xi9zCpRFLDbcKlTuEBhISIJFLCMZKyNs/1jpkZ+ec79vn8n3nnG8/v5k95+y9Lnu96/Kctfda66yxSIw7yMaYQafKdIs9gOWF8xXAIRXjrxy2F4tAjDHGNCcifg4c0eT6SuCo/P0x4IBxTpoxxgwkVR7lm72mrbpIo3LYiDg/Ig6MiAN32WWXitEbY4wxxhjTe6p0klcAexbOZwArK8bfTVhjjDHGGGP6QpVO8h3APpL2lrQNcBxpAUgVuglrjDHGGGNMXxh1TnJEbJB0KnA96W/cLoyI+yTNz+7nSdoNuBOYCmyUdBrw6xGxtlnYsTLGGGOMMcaYXlDpf5Ij4hrgmtK18wrfnyJNpagU1hhjjDHGmEFGEW1tlDQuSFoNPN5msOnAmjFIzqBTR7vraDPU0+5htHmviKjV6uMONRuGs3y7pY42Qz3trqPNMHx2t9Tsgewkd4KkOyPiwH6nY7ypo911tBnqaXcdba4TdSzfOtoM9bS7jjbDxLLb/+ZujDHGGGNMCXeSjTHGGGOMKTGROsnn9zsBfaKOdtfRZqin3XW0uU7UsXzraDPU0+462gwTyO4JMyfZGGOMMcaYXjGR3iQbY4wxxhjTE9xJNsYYY4wxpsRQdJIlHSnpIUmPSjqjiftcSS9IujsfZxXclkn6Wb5+5/imvHNGszn7mZvtuk/Sj9oJO6h0afeELGtJny3U7XslvSJp5yphB5ku7R7Ksq4LddRsqKdu11GzoZ66XUvNjoiBPkjbWS8FZgPbAPeQtrwu+pkL/LBF+GXA9H7bMQY2TwPuB2bm812rhh3Uoxu7J3JZl/wfDdxch7JuZfewlnVdjjpqdht2TyjdrqNmd1JeE0G366rZw/Am+WDg0Yh4LCJ+BfwLcEyf0zTWVLH5Q8DlEfEEQEQ800bYQaUbu4eVdsvreOC7HYYdJLqx2ww2w1wvu6GOul1HzYZ66nYtNXsYOsl7AMsL5yvytTK/K+keSddK2q9wPYBFku6S9LGxTGgPqWLzvsBOkhZn205sI+yg0o3dMHHLGgBJU4AjgcvaDTuAdGM3DGdZ14U6ajbUU7frqNlQT92upWZP7ncCKqAm18r/W/ffpL2310k6CrgS2Ce7zYmIlZJ2BW6Q9GBE3DKG6e0FVWyeDLwNOALYFviJpCUVww4qHdsdEQ8zccu6wdHArRHxbAdhB41u7IbhLOu6UEfNhnrqdh01G+qp27XU7GF4k7wC2LNwPgNYWfQQEWsjYl3+fg2wtaTp+Xxl/nwGuII0ZDDojGpz9nNdRLwUEWuAW4ADKoYdVLqxeyKXdYPj2Hz4aqKXdYOy3cNa1nWhjpoN9dTtOmo21FO366nZ/Z4UPdpBegp9DNibTZPF9yv52Y1NG6McDDxBeurZDtghX98O+C/gyH7b1CObfw24KfudAtwL7F8l7KAeXdo9Ycs6+9sReBbYrt2wg3h0afdQlnVdjjpqdht2TyjdrqNmV7U7+5swul1XzR746RYRsUHSqcD1pNWVF0bEfZLmZ/fzgGOBj0vaAKwHjouIkPR64ApJkAr40oi4ri+GtEEVmyPiAUnXAf8DbAQuiIh7AZqF7YshbdKN3ZJmM0HLOnt9P7AoIl4aLez4WtAZ3dgNDGW7rgt11Gyop27XUbOhnrpdV832ttTGGGOMMcaUGIY5ycYYY4wxxowr7iQbY4wxxhhTwp1kY4wxxhhjSriTbIwxxhhjTAl3ko0xxhhjjCkxNJ1kSTtLul7SC5LuGsf7fkHSVeN1vxZpOEPS05LWSTqoift5kr7VRnyj+u8gzpB0aFX/3SJpRr7nrPG6Z7+RtEDSjV3GMWI5SbpA0sJOwxvTwJptzS7dz5rdWRzW7D4y8P+TXGA+sD3wuojYMBY3kLQYuDEizm5ci4hzxuJeVZE0AzgH2D8i7m/mJyLmtxNn2b+kZcAXI+KSTuM03dGs7pmxR9JcUr631EJJrwG+CRxO2gTjOeB7wJkR8cvxSOeQYs22Zk9YrNn9Ybw1e2jeJAOzgQdaia2krcc5PePFLGBjK7E1xow5k4E1wNHANOAwkvj+XT8TNQRYs40x/aB3mt3vLf+qHMBVwMv5WAd8CZgLbABOIG2V+GL2+yngQeBF0lanXwa2KsS1C/Cd7LYWuAt4M/At4BXg//I9Hsr+F5CeWhoiiSrDAAAId0lEQVThXwdcBKwCngL+Gdi54L4M+AJpG851pC043z6KfR8HHgJeAJYAh+Xrf0zajSpyXEtbhF9I2sWocR7AKcAdOR+WAG9p5j/n7Ubgl/kei1rEeU7O53XAUuC0UhoCOHQEG/cn7dSzplAuW2e3WTn8CcD9Oc2LgDcUwu8G/HvOo4eBP8thZmX3ycBZOY3P5vzfP7tNz2W7ez4/Iof9cCHsWuCggi2nAncCL5G20JwBnA4sB34O/G2v7KNF3WuShwuyXecAz+TjS1XT0aycgI/k8lwLXAxcAiwcoRwDOA24O9vxH8CbstsfAKuBbQr+d8g2HdYivtHa677Aj3L67sn+o+A+mdTeHgaeB24F3laq6xcD387uTwInZ7fd2bx9rQP+pKImfQK4p9/aOKgH1mxrtjUbrNlDr9l9F9PKCd1SAObmjLqUtFf4lHz9A6S9xQX8FvB0IYMn5cZzGWmbxEnAb7CpIS4mDWGVK3lRcK8jidRO+bgauLrgvgx4FNiPtHXjN4BHRrDr+Nw4DsmV5yRSI9+rYOeGNvMmgNuBmcBrgO8DN4zgfxkwb5Q45+UKKtIT2XrgPa0acimuXUkidTJpz/c9SGJ2VnaflcP/kCSOU0kN59uFOG4CrshlvRvwn2wuuJ/P+f6WbPMC0o/i1Oz+U+DE/P3LwCOkrTEB5pBEelLBliUkkZ0C3Exq0H+T038ASRzf3kP7FlOqe03ycQGp0zE/15VD8vmcKukolxPp6Xo98O4c34k5vtEE937gTcC2pB+L+0l1fRKpLn2w4P9jpLeJreIbqb1OJnVEvpnvNZvUgYlC+HOA27LbVqT2swbYqVCP1wPvy+n7o2xj5fbVIt2XAxePpwYO24E1u528sWZbs63Zm+rxwGh234W0DQMX0lxwZ44S7mvAv+bvB+fM3rGF3y0qPQXBJQlOAPsU3N+crzWeMJcBny2475fdW91zEVs+4f4E+HzVCtEkb6JU6d8LPDeC/2WMIrhN7vlvwFdL92wluJ8Bbi5d+wDwaP4+K4c/qOD+CeCn+fse2f2NBfd3s7ngPgx8tOA+CVgBHJ/PzwUuyt/vIL3xeZrU0P8auGyE/DuF9FQ8qXDtduBTvbCvVd1rko8LgPtK1+6omo5yOZGe1C8u+b+V0QX3pML5FDb/8fkicF3B/Tbg0yPZNUJ7PTTHvW3B/SSy4OayexF4RymOn5HrM6keX11yXw0cU7V9NUnjaaQ3QiNqT90PrNnt5I0125q9RTrK5YQ1G8ZZs4dp4V4zNpKGUl5F0vHAX5CeUiaTns6WZOdZwDMR8UKH99szf/5v4drSgtuq/H1Vwf2l/LkDadipWZzfK11bWrhXp5TTsEM3kUn6c+CjpCd1kZ4SL60YfG9gjqTni1GSniKLtErzjPz5eMG9WAaQ8uuxxklEbMyLWxr5eCNwoaSdSMNBl5OG+g4A3tXElmJafkGqNxtL1xrp69a+dlhVOi/GUzUdDWaQ3loUKedrM5Y1vkTELyStZlMZfQc4U9JM0tuX3yT94DdllPa6Bynf1xeCFOvAdNLCsKskReH61oX0wMh51haSTgf+Ejg8Ip7oJI6aY81ujTXbmt0qHQ2s2W3SrWYP08K9ZkTj8QRA0p6k+Tlnk94S7Aj8A6nSQaoou0qa2iK+jS2uN2iI+6zCtdklt3ZZTmooRWZ3EV8njGi3pDmkCe8nA9MjYhpp+FIjhSvwOOnNzrTCsWNEbF8x/JP5c6/CtXKebZaPkiaRyqmRj7eQ5iaeCvw4Il4mifD7SUNg3fxNT7f2weh1byzS8SSb12XYMl+b8WoYSVNIc0ZXAETEKtJw9odJcxCvjIg1zSKp0F6fBHaRtG0h2MzC9zUk8XxXyebtIuIrFeyANvJd0pnAp4F3RsS9VcOZzbBm9wZrtjW7gTW7Bb3Q7GHvJJfZnmTTauBlSb9Dmnjf4E7Soo8LJO0qaZKkt0p6Q3Z/ijRvpykRsZI01PZ1SdPyE+7XgWtzReuEhcDJkg6WNFnSn5Ke5L7bYXyd8BSwzwjuU0mLFFYDIem9pAn/VbkIOFDSRyS9Nuf7bElHVgkcEStIQ1tflTRV0uuBM0veFgKfk7SvpG2AvyI95V6d41hPGhL9DHBDDnMTaRhmVUQ80oY9PbUvM2LdG6N0XAQcK+mIXPfmkYa3R+N0SW+U9FrgK6S3QbcV3M8nLS6ZRxoebMVo7XUJeWFItmdvUnkBr47f/T3wNUn7AEjaXtJ7JO1ewQ5I+b5Vjrslks4l/YC8MyIeqhi3GR1rdmdYs63Z1uwR6JVmT6hOckQ8QJqr9APSqsgzKAhXHnp5H2lS+N3Zzz+x6TX+N0gV9nlJ97W4zTzSnJoH8/E8afJ8p2m+lLTy+xLSBP5TgKMiYlmncXbA2cA8Sc9JuraJ+/Wk1aa3k54EjyUtyKhERDwF/B7wh6Q3Q8/l8LNHCFbmQ6TFHcuBH5PEosi5pLJeRJq3djjw+xGxtuDnBtKPR0NwF5PmZ3X1Z+89sq9K3etpOiLiFuCTwAWkRTBHsuUwcjMuIA19riYNfR4TEa8U3BeRnvZfIP2otUrvaO11A6m9/na+15WkevirQjSN8D+QtJa0uGc+FbUtIh4G/hG4Pef9CWU/kvYi/VDvBtyjtEHEuk7LyWzCmt0x1uwusGZbs6uiwsiXMcb0BKU/2l8UPd7YQdLJpEUl+/YyXmOMqTPW7OYM+8I9Y8yAIekdwEHAB3sQ1xzS8NpjwFuBz5He4BljjOkB1uzWuJNsjOkZku4gzdP7ZESs7kGUM0nDedNJw3ffJ/1nqjHGmC6xZo+Mp1sYY4wxxhhTYkIt3DPGGGOMMaYXuJNsjDHGGGNMCXeSjTHGGGOMKeFOsjHGGGOMMSXcSTbGGGOMMabE/wN4CSEg+hPvXQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/BCG_incomplete_mkts_25_0.png" }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Plot\n", "fig, ax = plt.subplots(3,2,figsize=(12,12))\n", "ax[0,0].plot(wlist,klist)\n", "ax[0,0].set_title('capital')\n", "ax[0,1].plot(wlist,blist)\n", "ax[0,1].set_title('debt')\n", "ax[1,0].plot(wlist,qlist)\n", "ax[1,0].set_title('equity price')\n", "ax[1,1].plot(wlist,plist)\n", "ax[1,1].set_title('bond price')\n", "ax[2,0].plot(wlist,Vlist)\n", "ax[2,0].set_title('firm value')\n", "ax[2,0].set_xlabel('fraction of initial endowment held by agent 2',fontsize=13)\n", "\n", "# Create a list of Default thresholds\n", "A = mdl.A\n", "𝛼 = mdl.𝛼\n", "epslist = []\n", "for i in range(len(wlist)):\n", " bb = blist[i]\n", " kk = klist[i]\n", " eps = np.log(bb/(A*kk**𝛼))\n", " epslist.append(eps)\n", "\n", "# Plot (cont.)\n", "ax[2,1].plot(wlist,epslist)\n", "ax[2,1].set_title(r'default threshold $\\epsilon^*$')\n", "ax[2,1].set_xlabel('fraction of initial endowment held by agent 2',fontsize=13)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## A picture worth a thousand words\n", "\n", "Please stare at the above panels.\n", "\n", "They describe how equilibrium prices and quantities respond to\n", "alterations in the structure of society’s *hedging desires* across\n", "economies with different allocations of the initial endowment to our two\n", "types of agents.\n", "\n", "Now let’s see how the two types of agents value bonds and equities,\n", "keeping in mind that the type that values the asset highest determines\n", "the equilibrium price (and thus the pertinent set of Big $C$’s)." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAGDCAYAAAAmtT30AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdZ3QVVReH8WcnEAKE3gQCJNJ7CIReAiJVei/SpCoWrIiFpqLYAEUQBESkSpcuYOgd6aFL772XwHk/zMB7CUkImGRS9m+tLO+90/5zJTtzZs6cEWMMSimllFJKKaWU09ycDqCUUkoppZRSSoE2UJVSSimllFJKxRLaQFVKKaWUUkopFStoA1UppZRSSimlVKygDVSllFJKKaWUUrGCNlCVUkoppZRSSsUK2kBVkSYiFURkTyzI0UdEfo+mdceKfVRKPT0ROSQiVWNgOz4iYkQkURSvN1BEjkXlOkOt/5qIPB9d61dKPbuoPP74LzXqSXVIRH4Vkc/s1zF+zCQi7URkZUxuU8U8baCqSDPGrDDG5H3wPqYOBqOTXcBzPXgfeh+VUiouEpEgEeno+pkxxssYc9CpTEqp8MXFYyw9Zno2ro38CObpLyLbRSRERPrEULRYQxuoSimllFJKKRV77AfeB+Y6HcQJ2kCNh0Qki4hME5GzIvKviLzhMi2pfebmoojsEpH3XLtyhL6iGKorx8NuHyIyDsgO/Gl3G3tfROaKyOuhsmwTkfphZFwgIt1DfbZVRBrarweLyFERuSIim0SkQjj7+lhXFNezjiJSUkTWiMglETkpIj+KiIc9bbm9yFZ7H5qFXp+I5LevRFwSkZ0iUjfUdzPU3u+rIrJORHLa00REvheRMyJy2f4eCoW1D0qpKBVg17aLIjJGRDwfTBCRTiKyX0QuiMhsEcniMs2ISFcR2WcvO1RExJ7mLiLfiMg5ETkI1A5v4yLSU0SmhvpssIgMsV+3F5Fgu2YcFJEuEawronqcRkTm2HX+ov3a2572OVAB+NGubT+GXp+IpBKR3+zlD4vIxyLiZk9rJyIr7X2+aP8dqemSo52d/ao9rVUk/r8oFS9IHDjGctFKRI7Ytesjl+WSiMggETlh/wwSkSTh7G8xEdls/75PBlxrauhjpkMi8q6d67KITA5Vg98X61jshIh0DFWTatnf2VUROS4i70awXyIiP9jb2C0iL9gfNhGRTaFmfEdEZoazkgjr8RPyJrFr5BEROS0iw0Ukqev3Ym/7jL2O9va0zkAr4H37/+2fYWUzxow1xswHrkbwPcRb2kCNZ+wDjD+BrUBW4AXgLRGpbs/SG8hp/1QH2j7LdowxLwNHgDp2t7GBwFigtUuWonaGeWGsYgLQwmXeAkAO/n+maAPgB6S15/3Dtcg9hXtADyA9UAbr+3jV3oeK9jxF7X2Y7LqgiCTG+i4XARmB14HxIuLanaUF0BdIg3W263P782pARSAPkBpoBpx/hvxKqafTCqu25cT6/fsYQESqAAOApkBm4DAwKdSyLwEBQFF7vgd1s5M9rRhQAmgcwfYnArVEJKW9XXd7XRPs6WfsdaUE2gPfi4j/M+ynGzAGq25mB24CPwIYYz4CVgDd7drWPYzlfwBSAc8DlYA2dp4HSgF7sGrnQGCUWJIDQ4CaxpgUQFlgyzPkVyrOiUPHWA+UB/LaOT8Vkfz25x8BpbGOs4oCJbFrZaj99QBmAuOwjsf+ABo9IX5ToAbgCxQB2tnrqgG8DVQFcmHVHVejgC52XSkELI1gG6WAg1j1qTcwXUTSArMBX5f9BOs7GxfOesKtx5HI+xXW3xg/e3pW4FOX6c9h1diswCvAUBFJY4wZAYwHBtr/b+tEsJ8JljZQ458AIIMxpp8x5o59v9FIoLk9vSnwuTHmgjHmKNaBRlSZBeQWkdz2+5eBycaYO2HMOwPwE5Ec9vtWwHRjzG0AY8zvxpjzxpgQY8y3QBKsIvtUjDGbjDFr7fUcAn7m8SITntKAF/Cl/V0uBebg0rC2M683xoRgFRw/+/O7QAogHyDGmGBjzMmnza+Uemo/GmOOGmMuYJ0wevD72goYbYzZbNeZD4EyIuLjsuyXxphLxpgjwN/8//e5KTDIZb0Dwtu4MeYwsBl4cFWjCnDDGLPWnj7XGHPAWJZhnQALs4dIROz6OM0Yc8MYc9Xe10jVNrvR3Az40Bhz1a6N32LV7AcOG2NGGmPuYR0YZwYy2dPuA4VEJKkx5qQxZufT5lcqjoorx1gP9DXG3DTGbMVqVBe1P28F9DPGnDHGnMU60f5yGMuXBhJj1b+7xpipWBcQIjLEGHPCrpV/8mgdHWOM2WmMuWFv09VdoICIpDTGXDTGbI5gG2dcMk3GOplW267tk7Eb8iJSEPDBOnZ7zBPqcbh5RUSwTlz2sP9fXwW+4P//Dh7sTz874zzgGs9wHJtQaQM1/skBZBGrS+olEbkE9OL/BxZZgKMu8x+Oqg3bhWEK0No+y9iCcM5a2b/Mc/n/L3NzrAYe8LBLRrDdfeMS1lmo9E+bSUTyiNX17ZSIXMEqIJFdTxbgqDHmvstnh7HOhj1wyuX1DawGLXZj9kdgKHBaREY8uKKilIpWoevbg268WXCpd8aYa1i9Gp74+8zT103XHiIt+f/VU0SkpoisFaub8SWgFs9W25KJyM9idc+9AiwHUtuNzydJD3iE2o9wa5t9cAbgZYy5jtW47QqcFKvbYb6nza9UHBUnjrFcRFTTQv/+Z+FxWYDjxhgTat5n3abrd+P6Gqwrs7WAwyKyTETKRLCNsDI9yD8WaGk3Il8Gpjy4+BHaE+pxRHkzAMmATS7/DhbYnz9w3r548YDrd6GeQBuo8c9R4F9jTGqXnxTGmFr29JNANpf5s4da/gbWL90Dz0WwLRPGZ2Oxzsy9gHXVYE0Ey08EWthFKCnWFQvEut/0A6yzV2mMMamBy4CEsY7rrnntgzPXAjEM2A3kNsakxPpDEtZ6wnICyGb/IXggO3A8MgsbY4YYY4oDBbG6gbwXye0qpZ5d6Pp2wn59AuvgEgC7q2o6Ivf7/KS6GdofQKBY94Q2wG6ginWP1zTgGyCTXdvmEX5Niqgev4N1Nr6UXdse3LLwYF1h1ecHzmGd3c/h8tnT1LaFxpgXsa6q7sa6gqRUQhCXjrEi8kg95NFa6eokkNVu7LnO+yxOAt4u712/J4wxG4wx9bBuqZqJ1RgPT1iZTtjrWQvcwboS2pJwGvGRqMcR5T2HdVtFQZd/B6mMMZFtgEZUnxXaQI2P1gNXROQDsW7WdxeRQiISYE+fAnwo1gAb3lj3VbragnXmyd3ufx9Rl7HTWPcvPWQXy/tY3cWedGZvHlaB7IfVTeXBlcoUQAhwFkgkIp9i3R8Qlr2Ap4jUtu8Z/RirO/ADKYArwDX7LH+3J+2Di3VYDeD3RSSxiAQCdXj8vrXHiEiAiJSyM10HbmHdD6uUil6viYi3fT9SL6zuXmA1EtuLiJ99YPIFsM7u3vokU4A37PWmAXpGNLPdZS4I6x7Rf40xwfYkD6z6dBYIEWvgoWoRrCqiepwC6wDpkr2vvUMtG25ts7vtTgE+F5EU9q0WbwNPfL60iGQSkbp2A/82Vrc1rW0qoYhLx1gRmQh8LCIZRCQ91r2TYf3+r8E6HntDRBKJNZBlyWfc5hSsGpxfRJLhcr+miHiISCsRSWWMuYt13BZRXcloZ0osIk2A/Dx6L+5vWL3YQowx4T0z9Un1ONy89vHqSKx7VjPa+5BV/n8v8pNEdOyJvb7EYo294oZ1LOwZyR4y8YI2UOMZ+8CjDlaf/3+xzvL8gtVFFqw+9IftaYt4vMC9aS9/CessXZgjn9kGYBW4S/LoaGu/AYV5wsGO3eViOtYN6BNcJi0E5mM1Pg9jNe5CdwV5sI7LWIMe/YJ19v864Dqq77tYZ9CuYhWTyaFW0QcYa+9D01DrvgPUBWpifY8/AW2MMbsj2i9bSnt7F+19OI91lk4pFb0mYNW2g/bPZwDGmCXAJ1hnzE9iDWLSPJx1hDYSqy5txbq/dHokczxS2+xbG97AOvC5iFWbZkewjojq8SCsnifngLVY3ctcDQYaizWaaFj3wb2OVS8PAivtnKMjsV9uWFdvTwAXsA6wX43EckrFeXHpGOsJPgM2AtuA7Vh17bHnctrHQQ2xBjq6iNW9PzL17zHGGpF2CFZvuf1YjV+wTnSB1R33kH3LQldcBoQKwzogN9b3/znQ2BjjOhDlOKyBlsJtxD+pHkci7wf252vtzIuJ/D2mo7Dut70k4YwwjPV35yZWV+6P7Ndh3SccL8mjXbhVQmNfFfzdGOP9pHmfYp1tgM7GmPJRtU6llFJKqbhEj7HCJ9ZIuzuAJKHu1YyKdSfFGkjJ3xizL4rWGW151eP0CqqKUnY3iFeBEU5nUUoppZSKL+L6MZaINLC786bBekzLn9HU2OsGbPivjdMYzKtC0QaqijJ23/uzWH3rJzxhdqWUUkopFQnx5BirC9Y+HMC6xzT0uCD/mYgcwupK/U4UrC7a86qwaRdfpZRSSimllFKxgl5BVUoppZRSSikVK2gDVSmllFJKKaVUrJDI6QBhSZ8+vfHx8XE6hlIqFtm0adM5Y0wGp3NEJa11SqnQtNYppRKCiGpdrGyg+vj4sHHjRqdjKKViERE57HSGqKa1TikVmtY6pVRCEFGt0y6+SimllFIKERktImdEZEc400VEhojIfhHZJiL+MZ1RKRX/aQNVKaWUUkoB/ArUiGB6TSC3/dMZGBYDmZRSCYw2UJVSSimlFMaY5cCFCGapB/xmLGuB1CKSOWbSKaUSilh5D6pSscHdu3c5duwYt27dcjpKguLp6Ym3tzeJEyd2OopSCZrWwOgVR2tdVuCoy/tj9mcnQ88oIp2xrrKSPXv2GAmnlIoftIGqVDiOHTtGihQp8PHxQUScjpMgGGM4f/48x44dw9fX1+k4SiVoWgOjTxyudWH9QzBhzWiMGQGMAChRokSY8yilVFi0i69S4bh16xbp0qXTA7MYJCKkS5dOr9goFQtoDYw+cbjWHQOyubz3Bk44lEUpFU9pA1WpCOiBWczT71yp2EN/H6NPHP1uZwNt7NF8SwOXjTGPde9VSqn/QhuoSiVgly5d4qeffgp3eocOHciYMSOFChWKwVRKKRUztAY+SkQmAmuAvCJyTEReEZGuItLVnmUecBDYD4wEXnUoqlIqHotUA1VEaojIHvu5Vz3DmB7mc7FEJK+IbHH5uSIib0X1Tiilns2TDs7atWvHggULYjCRUkrFHK2BjzLGtDDGZDbGJDbGeBtjRhljhhtjhtvTjTHmNWNMTmNMYWPMRqczK6Xinyc2UEXEHRiK9eyrAkALESkQarYwn4tljNljjPEzxvgBxYEbwIyoi69U/Fa/fn2KFy9OwYIFGTFixMPPR40aRZ48eQgMDKRTp050794dgLNnz9KoUSMCAgIICAhg1apVAPTp04cOHToQGBjI888/z5AhQwDo2bMnBw4cwM/Pj/fee++x7VesWJG0adPGwJ4qpdTjtAYqpVTCE5lRfEsC+40xBwFEZBLWc7B2uczz8LlYwFoRSS0imUPdl/ACcMAYcziKsisVY95a8BZbTm2J0nX6PefHoBqDIpxn9OjRpE2blps3bxIQEECjRo24ffs2/fv3Z/PmzaRIkYIqVapQtGhRAN5880169OhB+fLlOXLkCNWrVyc4OBiA3bt38/fff3P16lXy5s1Lt27d+PLLL9mxYwdbtkTtviml4hetgUoppWJKZBqoYT3zqlQk5gn9XKzmwMRnyBiue/fg25FHebujN4kSxcnBBpSK0JAhQ5gxw+p0cPToUfbt28epU6eoVKnSw7P6TZo0Ye/evQAsXryYXbv+f+7oypUrXL16FYDatWuTJEkSkiRJQsaMGTl9+nQM7416VnfuwNJJZ/BJdIz0xbKRLm96xE1rnor/tAYmPH/+CRUrQqpUTidRSjklMg3UyDzzKsJ5RMQDqAt8GO5GnuGBzl/8vJrEr81m0oKktJ7ZO1LLKPUsnnSWPzoEBQWxePFi1qxZQ7JkyQgMDOTWrVtYHRXCdv/+fdasWUPSpEkfm5YkSZKHr93d3QkJCYmW3CrqHT4MU9vO5hc6AXATT04n9uZicm9+q/wryfLnoHCiYHJygJQFs5GxeDZS+6bRRqyKMloDVUw4cgQaNYJKlWDuXPDwcDqRUsoJkRkkKTLPvHrSPDWBzcaYcE9XGmNGGGNKGGNKZMiQIRKx4INOJSibdBE1Zg3h5B59DJeKXy5fvkyaNGlIliwZu3fvZu3atQCULFmSZcuWcfHiRUJCQpg2bdrDZapVq8aPP/748P2Tuq2lSJHi4dUFFXtlywbd/6zB2vemEdRgMOtKdOfEc8Vxu3eXpeuS89VXsKffJAL61SFvMz/S5ErHDXcv/vXIS73Kl2nfHsa8vJQVL49gY7957Ju+ncuHL0EEB/pKOU1rYMKTPTuMGAGLF0OnTlqilEqoInMFdQOQW0R8geNYXXVbhppnNtDdvj+1FI8/F6sFUdy9F8AjsQdnvu5Bue7tmFHzLRofnBLVm1DKMTVq1GD48OEUKVKEvHnzUrp0aQCyZs1Kr169KFWqFFmyZKFAgQKksvtCDRkyhNdee40iRYoQEhJCxYoVGT58eLjbSJcuHeXKlaNQoULUrFmTr7/++pHpLVq0ICgoiHPnzuHt7U3fvn155ZVXom+nVZg8PcHvJW94yfuxaVuxbnc4E/wGO9bV4squo9zZfxSOHSPR2ROcvpGSTX9BhePjqcDoR5Y9J+mplO8M3tmEZjd/5Xm3Q7j7ZsOrkC/e1QuSoWBGiJvPalTxgNbAhKldO+tKau/ekCMH9OvndCKlVEyTiLrKPJxJpBYwCHAHRhtjPn/wTCxjzHCxnjb9I1ADa6Te9g+GHheRZFj3pz5vjLkcmVAlSpQwGzdGfuTysTnq0vrIXNaPWUSZdi9EejmlIhIcHEz+/PmdjhGma9eu4eXlRUhICA0aNKBDhw40aNDA6VhRJqzvXkQ2GWNKOBQpWjxtrfsv7t4M4czWk5zfcpRrwUe5c/AYN85e55csn3LsGPTa3py6t6bg5nIHx7ZExXirwmYKFYIaLMA7nxc5ahUklU+aGMmsnKU1MPpprQubMdYV1FGjYORI6NgxGsMppRwRUa2LzBVUjDHzsB7O7PrZcJfXBngtnGVvAOkinfYZ+M/6jAvFVnPvtV6Ytuv0hL+K9/r06cPixYu5desW1apVo379+k5HUrFc4qSJyFo6G1lLZ3vk81oPX03izrXfOL3lJGdW7ePq2p2cPCXcvAljxsAb17qTiwMAnHTPyvE0hThSpA5XXn6NQoUgv+8tkqfzjNF9UgmX1sD4TQSGDYNjx6BrV8iaFWrWdDqVUiqmRKqBGtsV9itCn4avMmV6cxoN2U3/N/M5HUmpaPXNN984HUHFQx5eHmQrn4Ns5XMAVQHr/gxj4PiapaxftIPr63eQeM9O0p3cwYlle3l9KQj3uUJ6jiTKyKl0hbiRsxAexQqRtnYZfKv44jI2jVJRQmtg/Jc4MfzxhzVgUpMmsHw5+Ps7nUopFRPiRQMV4N0JPRmQZy9f9s7C223ukCaNDv2mlFJRQQS8y2bHu2x2XK+55rkH1Q7Ark232fBLT5Ls20GGMzsotno+iVeH0HtoHz53701Azgt8f70zt3MXIknxQmR6oRDZKucikWe8+ROklIoGKVJYo/mWLg21a8OaNeDj43QqpVR0izdHB15JktF3wFl8Wn3JogqeNNvxq9ORlFIqXnN3hzx5IE+epNDi44ef3756h72L91H8REp6noRLq0/x3MqtZD8+HbcgA9/CbTz40Gc8l19sTKDfJco8fxqfann00ThKqUdkzgzz50O5clCrFqxaBWn0Nnil4rV400AF+KBFVSa/PZAGO5exZear+NUv6XQkpZRKcJKk8CBPg4LkwXoANhQA9nHj3A0OLdzN+WU7CNmyk0uJCzD1D7g+ci4tac15SceBjGW4UbQsqWuVJU+b0iRLo/2DlUroChSAmTOhWjWoXx8WLUJvHVAqHotXDVQRIdukT7lZ+SUutX0bc3GFno1XSqlYIln6ZBRo5Q+trBvJKgM/34f9ywJZPnYUrF5NlsOrKbloDiwC33eOkL5YNl7OsZwSWU/g06IsWUpl00ffKJUAVaoEY8dCixbQti1MmABubk6nUkpFh3j3q10usAK/lWlE4JVV/PnWz07HUSpWu3TpEj/99FOY044ePUrlypXJnz8/BQsWZPDgwTGcTiUEbm6Qp3JWKv7agYp7fyHX7V2c33uedX0X0PKDbHh5QfqZIyk7pAVZyuTgZOJsrMnWlL8b/sD69XDnjtN7oOIyrYFxS/Pm8NVXMHky9OzpdBqlVHSJdw1UgOZzvmKne06y/TSUG9fvOx1HqVgrooOzRIkS8e233xIcHMzatWsZOnQou3btiuGEKiFKlzstpT6tzuefw99/Q5OrY9j1+yaWNf6Bg1kr4n1yPWlmjKJUKUiVCiZ7v0NQ6Z6s6zWLszvPOB1fxSFaA+Oe996Dbt3g669h6FCn0yilokO8bKBmSJuBBb3epvq9JbR5f7vTcZR6ZvXr16d48eIULFiQESNGPPx81KhR5MmTh8DAQDp16kT37t0BOHv2LI0aNSIgIICAgABWrVoFWM8M7NChA4GBgTz//PMMGTIEgJ49e3LgwAH8/Px47733Htl25syZ8bfH9E+RIgX58+fn+PHjMbHbSj0icdJEFGjlT6U/ulPu8ASyhRwi456V/PGHdaDqc3U7Zdd9R6kB9clQKBOHPHIzqfjX/PwzbN8O90KM07ugnpHWQBWaCAwZAnXqwBtvwKxZTidSSkW1eHUPqqsefbvy+bwlTB9RluBXTpDfP4vTkVQc9tZbsGVL1K7Tzw8GDYp4ntGjR5M2bVpu3rxJQEAAjRo14vbt2/Tv35/NmzeTIkUKqlSpQtGiRQF488036dGjB+XLl+fIkSNUr16d4OBgAHbv3s3ff//N1atXyZs3L926dePLL79kx44dbHnCzh06dIh//vmHUqVKRcm+K/VfZcnjReM80Lgx8N0ibl68xdaJm7g4dzWe/6wmeI8b/bpCcq5xhBwcyFCKm1Xrkufdujynfw+emtZArYGxSaJEMHEiVK5s3ZP699+g/2uUij/ibQPVTdwY/WNaUpatxZFqHuQ/95fTkZR6akOGDGHGjBmAdT/Uvn37OHXqFJUqVSJt2rQANGnShL179wKwePHiR7qgXblyhatXrwJQu3ZtkiRJQpIkSciYMSOnT5+OVIZr167RqFEjBg0aRMqUKaNy95SKMknTeFL01XLwajkAShlocxA2z7/O9mFN8dn7FzkmdoOJ3diRvBSbW39LwJvlyJdPx1yKzbQGqvAkTw5z5kCZMvDSS9YzUnPlcjqVUioqxNsGKkD90sUZWjgLr22bxMK+k6jeu7nTkVQc9aSz/NEhKCiIxYsXs2bNGpIlS0ZgYCC3bt3CmPC7K96/f581a9aQNGnSx6YlcRmT393dnZCQkCdmuHv3Lo0aNaJVq1Y0bNjw2XZEKQeIQM6ckLN7Jug+DHPfsG/WTo7/NIuMq2cy8OdU7PwZ2mRdQvssC0nbvh4FXymNu4e709FjJa2BWgNjo4wZrWekli0LNWvC6tWQIYPTqZRS/1W8vAfV1UtzB3DALTs5PvuEuzfuOh1HqUi7fPkyadKkIVmyZOzevZu1a9cCULJkSZYtW8bFixcJCQlh2rRpD5epVq0aP/7448P3T+q2liJFiodXF0IzxvDKK6+QP39+3n777SjYI6WcI25C7gaFCPzrIwpc38CCo4UYOhTKJ/+HshsGUeTV8lzwzMLyfJ1Y/+kcbt3QAfacpjVQRUaePDB7Nhw7BnXrwo0bTidSSv1X8b6BmsPbh7kvtyRfyH6m1/3Y6ThKRVqNGjUICQmhSJEifPLJJ5QuXRqArFmz0qtXL0qVKkXVqlUpUKAAqVKlAqzucBs3bqRIkSIUKFCA4cOHR7iNdOnSUa5cOQoVKvTYACGrVq1i3LhxLF26FD8/P/z8/Jg3b1707KxSMczbG159FTrteZcbh86yqvtE9nlXxm/PZDL27076DELjxjD/0zVcPHjR6bgJktZAFVlly8L48bBuHbRqBffuOZ1IKfVfSERdZZxSokQJs3Hjxihb3+27twlKW4n012+T4fBqsmd7vOuPUqEFBweTP39+p2OE6dq1a3h5eRESEkKDBg3o0KEDDRo0cDpWlAnruxeRTcaYEg5FihZRXevUf3f7ym3WTznEhE15+XPmPTafykxaLrA9dUWuVKlPzrfr4V0uh9MxY4TWwOintS5qDR5sDej1+uvWa72/XKnYK6JaF++voAIkSZyE86M/ohzLaNBln9NxlPrP+vTpg5+fH4UKFcLX15f69es7HUmpeCFJyiRU6JiXYcPgyDE3zo6Zy4qyH5Di5mkqTX8T7/I+/Jj5c/r2hS3/GMz92HeSNyHQGqjC8uab0KMH/PADfPed02mUUs8qXg+S5Kplkzr0+X06wbNrsPj3DVRtHeB0JKWe2TfffON0BKXiPTd3oWC7AAq2CwA+59Bf+zg0eBZbj1ZkVF9Y0Gctf7i34EDh+qR8uR6FX61AIs8E82fVUVoDVXi++QaOHoV334Vs2aBpU6cTKaWeVoK4gvrAtB/8WOxWkfSvdODeHb1BQSmlVOT5vJibwDnvMnJrSU6ehJ693DmRrjCltgyn2DtVuJIsEytztiFo4knu6xhLSjnCzQ3GjYNy5eDll2HFCqcTKaWeVoJqoBbO/jxr65TD784OZjQf4HQcpZRScVSmTFDv85KUPP0nISfPsfa9aezyfYnMh9ZQo2UacuWCsV3XcHrLSaejKpXgeHrCrFng6wv16kFwsNOJlFJPI0E1UAG6TP6ClZ5+BM74nvP7zzodRymlVBzn9ZwXpQc2pPyBsXhf38uvEz3x9TGU+bkt6YplY22WBmzoN1977igVg9Kls56Rmjix9YzUU6ecTqSUiqwE10BNniQ5+z/rTBousbzGG07HUUrFIiJSQ0T2iMh+EekZxvR6IpJPJPoAACAASURBVLJNRLaIyEYRKe8y7ZCIbH8wLWaTq9giiafQvDksWSp4LJrLypLvkPPUKgJ61+JksueZ3nQSx487nVKphMHXF+bOhbNnoXZtuHbN6URKqchIcA1UgLZvd2Wcd3VSHTjF8lXnnI6jVLQ7ceIEjRs3BqwH10fns/zKli0bbeuOTiLiDgwFagIFgBYiUiDUbEuAosYYP6AD8Euo6ZWNMX7x7RER6tn4vJibwHVfkerKMdb0mMKZVHn47Q9PsmeHdtVOsP7TOXpVNQKHDh2iUKFC0bJuHx8fzp179r//w4cP57fffovCRCq6lCgBkyfDli3QrBmEhDidSCn1JAmygSoi5Jk3gBeSTqF5l4vEwkfBKhWlsmTJwtSpU4Hoa6Des5+Mvnr16ihfdwwpCew3xhw0xtwBJgH1XGcwxlwz/394dHJAq4d6Ig8vD8p81wT/83/x7f76fPAB5F4zlpL963A6mQ9BgX04sfaI0zFVJIWEhNC1a1fatGnjdBQVSS+9BD/9BPPmwauvosd9SsVyCbKBClC2cFGqdFwCO5Mz7r2pTsdRKky///47JUuWxM/Pjy5dujxsBI4ZM4Y8efJQqVIlOnXqRPfu3QFo167dw4YogJeXF/D/KxF37tzh008/ZfLkyfj5+TF58mRy587N2bPW/dj3798nV65cj11Z6NOnDy+//DJVqlQhd+7cjBw5EoCgoCAqV65My5YtKVy48CPbBBg4cCCFCxemaNGi9Oxp9Zg9cOAANWrUoHjx4lSoUIHdu3dHx1f3LLICR13eH7M/e4SINBCR3cBcrKuoDxhgkYhsEpHO4W1ERDrb3YM3PvjeVcKRMyd88QW8f/pd1r43jROpC1JxWT8ylfFlzXP1mTXjvl7hcRESEkLbtm0pUqQIjRs35saNGwAsWbKEYsWKUbhwYTp06MDt27cB68po79698ff3p3Dhwg/ry/nz56lWrRrFihWjS5cumHBaKF5eXrzzzjv4+/vzwgsvPKyNgYGB9OrVi0qVKjF48GD69Onz8FE3+/fvp2rVqhQtWhR/f38OHDgAwNdff01AQABFihShd+/e0fo9qSfr0gU+/BBGjrR+B5VSsVeCbaACTP6iOhM96vLCd69z9eRVp+Oo2C4w8PGfn36ypt24Efb0X3+1pp879/i0JwgODmby5MmsWrWKLVu24O7uzvjx4zl58iS9e/dm1apV/PXXX+zatSvSu+Dh4UG/fv1o1qwZW7ZsoVmzZrRu3Zrx48cDsHjxYooWLUr69OkfW3bbtm3MnTuXNWvW0K9fP06cOAHA+vXr+fzzzx/LMX/+fGbOnMm6devYunUr77//PgCdO3fmhx9+YNOmTXzzzTe8+uqrkc4fzSSMzx47ijXGzDDG5APqA/1dJpUzxvhjdRF+TUQqhrURY8wIY0wJY0yJDBkyREVuFQclTpaY0gMbUuLcAk6sOMiK8r3YezUz9Ru6kSMHzKgzmqMrDzsd81ExXAMB9uzZQ+fOndm2bRspU6bkp59+4tatW7Rr147Jkyezfft2QkJCGDZs2MNl0qdPz+bNm+nWrdvDRmTfvn0pX748//zzD3Xr1uXIkbCvWF+/fh1/f382b95MpUqV6Nu378Nply5dYtmyZbzzzjuPLNOqVStee+01tm7dyurVq8mcOTOLFi1i3759rF+/ni1btrBp0yaWL18eqX1W0efzz6FVK/j4Y/j9d6fTKKXCk6AbqOm90rDr/SZkNadYWKOH03GUesSSJUvYtGkTAQEB+Pn5sWTJEg4ePMi6desIDAwkQ4YMeHh40KxZs/+0nQ4dOjy8l2r06NG0b98+zPnq1atH0qRJSZ8+PZUrV2b9+vUAlCxZEl9f38fmX7x4Me3btydZsmQApE2blmvXrrF69WqaNGny8KrwyZOx5jEcx4BsLu+9gRPhzWyMWQ7kFJH09vsT9n/PADOwugwr9UTe5X0IXNGfVpeHMXMmVM53kjpzOpO1gi8bMtRi7QczuHvjrtMxHZEtWzbKlSsHQOvWrVm5ciV79uzB19eXPHnyANC2bdtHGn8NGzYEoHjx4hw6dAiA5cuX07p1awBq165NmjRpwtyem5vbw5r6YHsPhFVrr169yvHjx2nQoAEAnp6eJEuWjEWLFrFo0SKKFSuGv78/u3fvZt++ff/lq1BRQARGj4bKlaFDB1i61OlESqmwJHI6gNM6932XiT8votG239g1pzsFXvJzOpKKrYKCwp+WLFnE09Onj3h6GIwxtG3blgEDHn1m78yZMxEJ62IfJEqUiPv37z9c/s6dO0/cTrZs2ciUKRNLly5l3bp1D6+mhhZ6mw/eJ0+ePNz8oZe5f/8+qVOnZsuWLU/M5YANQG4R8QWOA82Blq4ziEgu4IAxxoiIP+ABnBeR5ICbMeaq/boa0C9m46u4LlEi65mN9epl5viag+zrOYq8K0eReWBDTn/zHDNaTaVan3I8/7xDAWO4BkLYdSe87rkPJEmSBAB3d3dCXPpLh1c3I7v9sGpdeFmMMXz44Yd06dLlqbepopeHB0yfDuXLQ4MGsHYt5M/vdCqllKsEfQUVwN3NnfTj3uMWnpxt/Qbmvt45r2KHF154galTp3LmzBkALly4wOHDhylVqhRBQUGcP3+eu3fv8scffzxcxsfHh02bNgEwa9Ys7t59/KpLihQpuHr10S7tHTt2pHXr1jRt2hR3d/cw88yaNYtbt25x/vx5goKCCAgIiDB/tWrVGD169MN7xi5cuEDKlCnx9fV9mNkYw9atWyP5jUQvY0wI0B1YCAQDU4wxO0Wkq4h0tWdrBOwQkS1YI/42swdNygSsFJGtwHpgrjFmQczvhYovspbJTuCyvmS4foj1n8zm3wyl+OT3fOTMCT2L/8Wad6Zy59qTT0DFdUeOHGHNmjUATJw4kfLly5MvXz4OHTrE/v37ARg3bhyVKlWKcD0VK1Z8ePJt/vz5XLx4Mcz57t+///A+/gkTJlC+fPkw53sgZcqUeHt7M3PmTABu377NjRs3qF69OqNHj+aa/VyT48ePP6zlynmpU1sDJnl6Qp06cP6804mUUq4SfAMV4MXqNfgloB6HLvvyy2+HnI6jFAAFChTgs88+o1q1ahQpUoQXX3yRkydPkjlzZvr06UOZMmWoWrUq/v7+D5fp1KkTy5Yto2TJkqxbty7MM/6VK1dm165dDwdJAqhbty7Xrl0Lt3svWF15a9euTenSpfnkk0/IkiVLhPlr1KhB3bp1KVGiBH5+fg/vBRs/fjyjRo2iaNGiFCxYkFmzZj3L1xMtjDHzjDF5jDE5jTGf258NN8YMt19/ZYwpaD9KpowxZqX9+UFjTFH7p+CDZZX6rxJ5JqJkvzqUPjWTf46ko29fCAweRpnvmnAxVQ6Can/N1RPxdwyF/PnzM3bsWIoUKcKFCxfo1q0bnp6ejBkzhiZNmlC4cGHc3Nzo2rVrhOvp3bs3y5cvx9/fn0WLFpE9e/Yw50uePDk7d+6kePHiLF26lE8//fSJGceNG8eQIUMoUqQIZcuW5dSpU1SrVo2WLVtSpkwZChcuTOPGjR87MaiclT07zJgBR49C06YQxvlcpZRD5EldZZxQokQJs3FjzD7n/uiFk/jku4ynpOL84cx4esbo5lUsFBwcTP440O/n119/ZePGjfz444/PvI6NGzfSo0cPVqxYEeb0Pn364OXlxbvvvvvM23gaYX33IrIpvj1f1Ilap+K+e3fusXnAQtyGfE/xC4u5KGlYVesLyoztSrp0UbeduFIDo5KXl9fDq54xQWud8377Ddq2hW7d/j/ml1Iq+kVU6/QKqi1b2sx0/Gg7ec6c4tf6XzsdR6kY8+WXX9KoUaPH7nVVSsVO7h7uBPSuRfHzf7Fz9Dr2ZKrEtLlJyJEDer11g9NbYs3AY0rFem3awPvvw7BhMHSo02mUUqBXUB9x594d5qZ7geqXN3F6xVZ8y+eO8Qwq9kiIVw9iC72qoNTT2bEDvvwSMkwYxADTk3UFOvD88PfJVsHnmdepNTD6aa2LHe7dg/r1Yf58WLAAqlZ1OpFS8Z9eQY0kD3cPzIjXAdjb8HWH0yillFKRU6iQ9VzHtxbXYX2+tpTeNYrMFXOxMmdbDswJdjqeUrGauztMmGCN5tukCezd63QipRI2baCG0rBpU0YVqEX1swsJ+my603GUw2JjD4P4Tr9zpZ5djio5qRj8Mxc2HGSl/xsUOziVY3W60qgR2AN8PxX9fYw++t3GLilSwOzZ1uOe6tSBcAZ6VkrFAG2ghqHq7P4cdMtGpr49E+zD0ZX1wPXz58/rQUQMMsZw/vx5PHWUMqX+k8wlshK46Ttu7T7Mlq4/s2QJ1C5xirUZ67Llh7AHQwtNa2D00VoXO/n6wrRp8O+/0Lw5uDxGVykVgxI5HSA2yp8zP182b8qtCV5c+WI/332m9+AkRN7e3hw7doyzZ886HSVB8fT0xNvb2+kYSsUL6fKm581h6Wn/Fcx5J5ico9aS4Y2KbP24PHfe6UWJj2sgbhLmsloDo5fWutipYkVrwKSOHeGdd2DwYKcTKZXw6CBJ4bh+5wbpi6znzpHiHDuYjMzPuTuaR6mETgcOUeq/u3HuBhu6jiLXzK/Jeu8ou5IWZ/eoVdRrmgR3/TMXK2itix3efhu+/x5+/hk6d3Y6jVLxjw6S9AySeyRjwDc3qXXrLxZW6u50HKWUUuo/S5Y+GZWmvk6GS/tZ0X40qzyr0KhlEgoWhIUfLNHbWpSyDRwINWrAa69BUJDTaZRKWLSBGoE3a9egts8Y2u0dzrphS5yOo5RSSkUJDy8PKoxuT4ezA5k8GfKyh+oDq3I6ZS6WNR3KzQs3nY6olKMSJYJJkyBXLmjUCA4ccDqRUglHpBqoIlJDRPaIyH4R6RnGdBGRIfb0bSLi7zIttYhMFZHdIhIsImWicgeik4jgP+MTTkgmPHq8zf2Q+05HUkoppaKMuzs0bQozd+VhQ+85XEyalUp/dOdqBl+Cag3k6slrTkdUyjGpUsGff1qv69SBK1eczaNUQvHEBqqIuANDgZpAAaCFiBQINVtNILf90xkY5jJtMLDAGJMPKArEqQeylSxaknE161Hs9jb+bPWt03GUUkqpKCduQkCf2hS6vIp/vg/iSJqiBMzvS7F8N+ndWx+5oRKuXLlg6lTYtw9atIB795xOpFT8F5krqCWB/caYg8aYO8AkoF6oeeoBvxnLWiC1iGQWkZRARWAUgDHmjjHmUhTmjxGdpgxgZZKilJ3yFef2n3c6jlJKKRUtxE0o9lYlSpxbyN4/91K4Sgb69TOszVSPZY1/0HtUVYJUuTL88APMmwcffOB0GqXiv8g0ULMCR13eH7M/i8w8zwNngTEi8o+I/CIiycPaiIh0FpGNIrIxtg1pnzZ5Wrb3b8e7DKTRe7Erm1JKKRUdir2UlRkzYNvyy2T0uk6laW9wJE0R1veei7kf+54AoFR06toVuneHb7+FMWOcTqNU/BaZBmpYD0gL/ZcpvHkSAf7AMGNMMeA68Ng9rADGmBHGmBLGmBIZMmSIRKyY1eXdN1hcLSnLZ+ZjwdI4dxFYKaWUeiaFK6TG/9xfrP94Nm7mPiX7vcTmDNUIXnLC6WhKxajvv4eqVaFLF1i50uk0SsVfkWmgHgOyubz3BkL/VQpvnmPAMWPMOvvzqVgN1jjHTdyYPqwIL3t+T8pa1Qm5FeJ0JKWUUipGiJtQsn8dsl7YzrIGg0h8+RwlXkxDly5w+qQOIKgShkSJYMoU8PGBhg3h0CGnEykVP0WmgboByC0iviLiATQHZoeaZzbQxh7NtzRw2Rhz0hhzCjgqInnt+V4AdkVV+JhW6vmCFKzzL2Vvr2d23T5Ox1FKKaVilIeXB5Wmv4n36c10eiMp40fd4rS3P0E1vuTWpVtOx1Mq2qVJY43se/cu1K0LV686nUip+OeJDVRjTAjQHViINQLvFGPMThHpKiJd7dnmAQeB/cBI4FWXVbwOjBeRbYAf8EUU5o9xr/32BfOTl+LFvwZzZO2/TsdRSimlYlzadMKgQbBl+RVuZshB4MIPOZshP6t7TNH7U1W8lzevdSV11y5o3RruaycCpaJUpJ6DaoyZZ4zJY4zJaYz53P5suDFmuP3aGGNes6cXNsZsdFl2i31vaRFjTH1jTJwerN7L04tLw14jESHsrtvN6ThKKaWUY3KVzUipU7PYPHAxNxKlpOygZmxPXZ7Nf+mI9yp+e/FF657U2bPho4+cTqNU/BKpBqp6VIuXX+bnQnWodnYhs7/92+k4SimllKP833uBXJc3s6LNSI7fyUDxamlp3RqO7tNuvyr+6t7dGjDpyy/h99+dTqNU/KEN1Gf00rzPKZ9qAi0G5ufmTafTKKXiu0u3dPRwFbu5e7hTYWxHyp+dyYcfCsv+OEPiPL4EVfyUa6euOR1PRYKI1BCRPSKyX0Qee+qCiKQRkRkisk1E1otIISdyxhYi1vNRAwOhY0dYu9bpRErFD9pAfUa5suWmYD83bpx5jjdeW+N0HKVUPLb/wn58B/vSf1l/Qu7rCOIqdkuRAr74AlavuMeB7IEErujPtax5WNnxV+6H6M16sZWIuANDgZpAAaCFiBQINVsvYIsxpgjQBhgcsyljn8SJYepUyJoV6teHo0edTqRU3KcN1P/gx9ca8srz7zFoTFWC52x1Oo5SKp5Knyw9tXLX4tOgTwn8NZB/L+oAbSr2y1YyM+UOT2T7z6s5lzQ75Ue1Z0/KAFYsvOF0NBW2ksB+Y8xBY8wdYBJQL9Q8BYAlAMaY3YCPiGSK2ZixT7p01si+N29aI/tev+50IqXiNm2g/geJ3RPTeGhl7pKIcy1f1ZELlVLRIrVnasY3HM/vDX5n+5ntFB1elN+3/Y4xWnNU7Fe4cxkKXFrNqlfHs9K9EhVrJKNhQzi48YLT0dSjsgKu1/+O2Z+52go0BBCRkkAOwDuslYlIZxHZKCIbz549Gw1xY5cCBWDSJNi2Ddq21ZF9lfovtIH6H9WoUYtfyjWgwtXVzOn8k9NxlFLxWKsirdjadStFnyvKyzNepuX0lnpvqooT3BK5UW5oS1qf+Y7PPoOjC3byXIA3QSXe5fJh/TccS0gYn4U+C/YlkEZEtmA9RvAfIMz7DowxI+ynOJTIkCFD1CaNpWrWhK+/hmnToE8fp9MoFXdpAzUKtJkzkA2JC1BidD8uHo7TT9FRSsVyPql9CGobxGeVP+OPnX9QdHhRlh9e7nQspSIlaVLrkRxz1qRjU+4WVNz0HSG+uVjWdCght/T+aocdA7K5vPcGTrjOYIy5Yoxpb4zxw7oHNQOg9xy46NED2reH/v1h8mSn0ygVN2kDNQpkTJ2RjZ++Qipzla/bTHI6jlIqnnN3c+ejih+x+pXVeLh7EPhrIL2W9OLOvTtOR1MqUjIVfY4Ke0exd8ImjqQqTKU/urM3dUkWzL3ndLSEbAOQW0R8RcQDaA7Mdp1BRFLb0wA6AsuNMVdiOGesJgLDhkH58tCuHWzY4HQipeIebaBGkS4fvUVAhZ8YsKIzS1bpVVSlVPQrmbUk/3T5h1eKvcKAlQMoO6ose87tcTqWUpGWr0Ux/M4vZV3PGUxL0Y6aL7nTsiWc+/eq09ESHGNMCNAdWAgEA1OMMTtFpKuIdLVnyw/sFJHdWKP9vulM2tgtSRKrm2+mTFCvHhw/7nQipeIWbaBGETdxY+SokpD8LD80m8e9O3oWWCkV/bw8vBhZdyTTm07n30v/4j/CnxGbRugASirOEDeh1ID6fHD8Dfr1gxtT5iA5fVn16ngdfDCGGWPmGWPyGGNyGmM+tz8bbowZbr9eY4zJbYzJZ4xpaIzRM/LhyJjRGtn36lXr8TM3bzqdSKm4QxuoUahs7gL0rPMTM4+3Zkbjz5yOo5RKQBrkb8D2btspm60sXeZ0ocHkBpy9Hv9HzlTxh4cHfPIJfDP9eU4kz025Ya3Z+FxtTqw94nQ0pZ5J4cIwfjxs2gSdOoGeN1QqcrSBGsU+Gv0+S5MWp+qf33Ni6zGn4yilEpAsKbKwsPVCvqv2HfP3z6fI8CIs3L/Q6VhKPZVcdQtQ4PxKljUcTIGzy0hRpiBLXx6jj+1QcVLdutCvn9VQ/fFHp9MoFTdoAzWKeXl6cXrw6yTlJv/U7OZ0HKVUAuMmbvQo04P1HdeTLmk6aoyvwVsL3uJWyC2noykVae4e7lSa9gYXlu1gb9oyjPsdKlWCPXqLtYqDevWCOnXg7bdh5Uqn0ygV+2kDNRq06NSWUXlfovbJOSwdMN3pOEqpBKjoc0XZ0GkDr5d8ncHrBhMwMoDtp7c7HUupp5Ktoi/+ZxdSaXQ7duyAwYVGElRjAHdv3HU6mlKR5uYG48aBry80aQInTzqdSKnYTRuo0eTF+V+y1t2Pkd9c4I4++UEp5YCkiZMypOYQ5rWcx9nrZwkYGcDgtYO5b7SvpIo7xE1o114IDobG3msIXNiLA+lLEjx+s9PRlIq0VKlg+nS4csVqpOqxoVLh0wZqNMntm5uRAz5i0oWOvNJzl9NxlFIJWM3cNdnWbRvVclbjrYVvUXN8TU5e1VP4Km557jmo8u9o1r4/nTS3T5G7dUmCyvTk5gUdHlXFDYUKwejRsGoVvPuu02mUir20gRqNhr9dj9RFF5B68AL2LNnpdBylVAKWMXlGZjWfxbDaw1hxeAWFhxVm1u5ZTsdS6qmV/qoBSfbvYk2etgSu/YqORdazfLnTqZSKnGbNoEcP+OEH+P13p9MoFTtpAzUaJXZPzPj+9xlw/1OON35Nn+emlHKUiNC1RFc2d9lM9lTZqT+5Pl3+7ML1O9edjqbUU0ntm4YKe0ax5pedrPGoRKVKMLzmLK4cu+J0NKWe6KuvrEG/OneGrVudTqNU7KMN1GhWq04tRgU0oMqlZcx5a6TTcZRSinzp87G241reL/s+IzePxH+EPxtPbHQ6llJPrcwrBdi+HT7tdJIOC5pwzacgG/rMdTqWUhFKnBgmT4a0aaFBA7hwwelESsUu2kCNAc3mfc22RLkpOrQvV07q2V2llPM83D346sWvWNJmCTfu3qDMqDIMWDGAe/fvOR1NqaeSPDn0HZGZfb8s53qiVAT0fYlVPq04F3zW6WhKhStTJpg6FY4dg9at0ef8KuVCG6gx4Ln0z7Hm/c5kv3+ChS++6XQcpZR6qLJvZbZ13UbD/A3ptbQXVX6rwuFLh52OpdRTK/hKaXKc20xQYB8CDv/BnULFmDL2JkbvrlGxVOnSMHgwzJ8Pffs6nUap2EMbqDGk82fvMDB7K37a1ZIVGy46HUcppR5KkzQNkxpNYmz9sWw+uZliPxfj73//djqWUk/Nw8uDwL97c2TGZkb5fEazdkmpUweOb9c+lCp26toV2rWDfv1gzhyn0ygVO2gDNYaICGUXfEyQpz9N2p7VrhxKqVhFRGhTtA3/dPmHzCkyU+33aozYNMLpWEo9k1z1C9Frbzu+/x48//oTryK+LG85nPsh+sdXxS4i8NNP4O9vdfXdv9/pREo5TxuoMah8/nzU6fQX7wX/zNSWXzkdRymlHpMrbS5Wd1jNi8+/SJc5XXhrwVuE3A9xOpZST83dHd56C75bWJADaQKoOLEb29JX5t+Fe52OptQjkiaFadOsf7MNGsB1HVhdJXDaQI1hE758ibJJFlNl8kBO7T7pdByllAsRqSEie0Rkv4j0DGN6PRHZJiJbRGSjiJSP7LJxSSrPVPzZ4k96lO7B4HWDeWnCS1y+ddnpWEo9k+yBz1Ps3F+sbD8K38tbyVyjCIvqDyVEz7uoWMTHByZOhJ07oVMn9N5plaBpAzWGeSX14t+Bb5Kay6yt3t3pOEopm4i4A0OBmkABoIWIFAg12xKgqDHGD+gA/PIUy8Yp7m7ufFf9O0a8NIIl/y6hzKgyHLhwwOlYSj0TcRPKj+7ArX+C2ZKlFhNmJad8efj3X6eTKfV/1arBZ59ZDdUhQ5xOo5RztIHqgJZvdOBX35eof2Q6QYP+dDqOUspSEthvjDlojLkDTALquc5gjLlmzMPz2skBE9ll46pOxTvx18t/cfr6aUr+UpKgQ0FOR1LqmWXyy0zp49OpObEtu3fDVwXGsur1SU7HUuqhnj2hXj145x1YvtzpNEo5QxuoDqmw4CuOSma8PviEu3d00AalYoGswFGX98fszx4hIg1EZDcwF+sqaqSXtZfvbHcP3nj2bNx4TmOgTyDrOq4jY/KMvDjuRUZuGul0JKX+k2bNhS3/GF5JMo5yP7ZgRZ4OXDt1zelYSuHmBmPHQs6c0LQpnDjhdCKlYp42UB2SN09exr3SnZZ3ptDl051Ox1FKgYTx2WN3ARljZhhj8gH1gf5Ps6y9/AhjTAljTIkMGTI8c9iYlittLta+spYXfF+g85zO9FjQg3v37zkdS6ln5uMrFDu1gKDyH1Nu36+czV6c4An/OB1LKVKlgunT4do1aNwY7txxOpFSMUsbqA56d9h7nCp4il8H+bI3WJ/RppTDjgHZXN57A+GeuzbGLAdyikj6p102rkrlmYo5LefwZqk3GbRuEHUm1tHBk1SclsgzEYEr+rPt+6V43ruOb6syjPz0qA5QoxxXsCCMGQNr1sDbbzudRqmYpQ1UB3kkSsyoYckYd6cjBys2czqOUgndBiC3iPiKiAfQHJjtOoOI5BIRsV/7Ax7A+cgsG18kckvEoBr/Y+/O42wu//+PP66ZMbZkS/ZQqMiSJsoSWbKbzDAY+062UoTSQoVKpGRS2cfIMvaxZYmEkKW02SNC2WWf6/fHmb4/X19yysxc58w877fb3JpzzvuMx/zxmc+85v1+X9dIPq73Mcv2LNPiSZIilH62Cml/2sbYh6PoNDg/devC0QMXXWdJKte4sede1NGjYdIk1zUiyUcDqmONK4VwukQgtf74ggX9xrvOEUm1rLVXgO7AeEcq2wAAIABJREFUEuBHYLq1docxposxpkvCYeHA98aYrXhW7W1iPW743uT/LpJPp0c6sbTFUo6cO0K5T8vx5b4vXSeJ3JZsRbLTY3MbRo+Gc1+s43LBwmweusx1lqRyQ4dClSrQuTNs0RXokkoY64PXsYSEhNhNmza5zkg2h48c5lTeCgTbeHIe3UHG7BldJ4n4HGPMZmttiOuOxJQSftbtOr6L+jH12XV8F1F1o2hfpr3rJJHb9kvs9wRENqHwxR9YVbYv5ZcPJviO4GT5t/WzTq539CiUKQNp0sDmzZAtm+sikdv3Tz/rdAbVB+TOmZvVPTtzb/x+5td41nWOiIjXCmcrzLr266haqCod5neg95LeWjxJ/F7RsIfIc3Ajqx/sTJVv3mZnrorsX6FL2cWNu++GWbM8K/pGRsJV/YiVFE4Dqo/oOLwvs7I/SaUtcWxY/5vrHBERr2VJl4WFkQvpUbYHI9aPoMG0Bpy+eNp1lshtyXBXBp74IYr1L8wk7187GVd7BlOmuK6S1KpcORg1CpYsgddec10jkrQ0oPoIYwy5Zr9FybRraNjlpFYQFBG/EhQQxKjaoxhTdwxLdi3h8c8eZ8+JPa6zRG7bY++Ec27DDr4s24eWLWFg3W85c+iM6yxJhTp1gnbt4I03YF6KXIZPxEMDqg+pUOkxQjp9z5FtD/D+gPmuc0RE/rUuIV1Y2nIph88cptyn5Vizf43rJJHblvfRPHyxMpA3XjrPM3F1+bNgGX6YpHsqJXkZ41nR95FHoGVL2LnTdZFI0vBqQDXG1DLG/GyM2WWM6XeD140xZlTC69sTtl/4+7V9xpjvjDFbjTH6aX4LM9+uzkeZmtFyaGv2b9HZBxHxP1ULVWVDhw1kT5+dapOqMW7LONdJIrctKAheeiM9Rz+YTpr4ixRp/Tir6r1L/JV412mSiqRL57kfNU0aaNgQzp51XSSS+G45oBpjAvFsp1AbKAY0M8YUu+6w2kCRhI9OwJjrXn/SWls6pa1KlxQypctAzhGNuINz/FCzy63fICLig4pkL8L6DuupUrAK7ee154WlL2jxJEkRSnWvRMZftrI5TwOqLOzDt7lqc2TPOddZkooUKAAxMfDjj9ChA7otTFIcb86glgV2WWv3WGsvAdOA0OuOCQUmJewHuB7IYozJncitqcbT7SP4rHQEtY8tI7bbB65zRET+kyzpshDXPI7uj3Zn+LrhhE4L1eJJkiJkuTcb5Q7MZE3zKH4+kZOSj2Vg0SLXVZKa1KgBb74Jn38OI0e6rhFJXN4MqHmBA9c8PpjwnLfHWGCpMWazMabTfw1NbZqueJ+tQQ/w+Jg3OLLzkOscEZH/JCggiA/qfMCYumNYvGsx5T8rz94Te11nidw2E2CoNKUzpbdPImcuQ886O1lRth8XT190nSapxIsvei7z7dMHVq1yXSOSeLwZUM0Nnrv+YoJ/OqaCtbYMnsuAuxljnrjhP2JMJ2PMJmPMpmPHjnmRlbJly5qNn9/ux582B13aaZEREfFvXUK6sKTFEn478xtlPy2rxZMkxSheHDZsgKEVFlB14zD25CrP3iW/uM6SVMAYmDABCheGJk3g4EHXRSKJw5sB9SCQ/5rH+YDrT+nd9Bhr7d//PQrMxnPJ8P9hrR1rrQ2x1obkyJHDu/oUrslzrWkRNoQ5XzVh9DT9n52I+Ldq91ZjQ4cNZEufjWqTqjFh6wTXSSKJIn16CP/qOTb0n0POC/vIUasMX3WciI3XzYGStO68E2Jj4dw5aNwYLuoEvqQA3gyoG4EixphCxphgoClw/e5L84BWCav5PgacstYeNsZkNMZkAjDGZASeAr5PxP4Ub9Gnlbjzru2cavcRxw/84TpHROS2FM1elPXt11O5YGXazm3LqytfxWqFD0khyr0VysUN29iVOYSKn7ZhbPkJnNZt15LEihXznEldvx6efdZ1jcjtu+WAaq29AnQHlgA/AtOttTuMMV2MMX8vMxsH7AF2AZ8AzyQ8nxP4yhizDfgGWGitXZzI30OKljtrFj7ouYF+50exqrJu4RUR/5c1fVbiIuNoV7odg1YPoveS3hpSJcXI/Wg+ShxdzuJ6H/LCxiaULg17tGucJLFGjTz3okZFwWefua4RuT1B3hxkrY3DM4Re+1zUNZ9boNsN3rcHKHWbjaleq4EdGT9uMW33xrL4rWhqDWjuOklE5LakCUzDJw0+IVPaTIzcMJKzl84SVS+KwIBA12kity0wOJBa87ux5Gt47z3Il891kaQGb70FW7dC166es6qPP+66SOS/8eYSX/EB1VaOZFdAAYq88hJn/9D1QiLi/wJMACNqjmDgEwP5dMunNI9tzqWrl1xniSSa8uVh5kwIDnZdIqlBUBBMmwb580NYGBzSJhDipzSg+ol7Cubny+d6c9/V/Sx4osut3yAi4geMMQx6chBvV3+bz3d8TtjnYZy/fN51loiIX8qWDebOhTNnPEPqhQuui0T+PQ2ofqT9uz15rXB3Bv40kFnLtY+giKQcfSr0IapuFHE746gztQ5nLp5xnSQi4pceeggmTfJsf/TMM6Bb/MXfaED1M81WDGT3HVlp1eYSF/7SpXAiknJ0DunMlLAprNm/huqTq3P8/HHXSSIifiksDAYOhPHj4cMPXdeI/DsaUP3M/fnv5tlXdjD5YH/mVOzoOkdEJFFFlohkVsQstv6+lSoTqnDk7BHXSSIifum116B+fXjuOVi1ynWNiPc0oPqh4c9X5fJd52m0JZqvJ8Td+g0iIn4k9IFQFkYuZPeJ3VQaX4lfT/3qOklExO8EBMCUKVCkCDRuDPv3uy4S8Y4GVD9kjKHYouEc4y7u6Pw8l89fdJ0kIpKoqt9bnWUtl3H03FEqjqvIzj93uk4SEfE7d97pWTTp8mV4+mn46y/XRSK3pgHVT5UIKcbsZt0peeknZtTo4TpHRCTRlc9fnpWtV3L+ynkqja/E9iPbXSeJiPidokVh6lTYtg3at9eiSeL7NKD6sS5TXmJO5upUWhvHVxt2u84REUl0D+d+mDVt1xAUEESVCVXYcHCD6yQREb9Tpw689ZZnn9R33nFdI/LPNKD6sYAAQ975w3k4eA2h7U8TH68/iYlIyvPAXQ/wVbuvyJo+K9UnV2fVvlWuk0RE/M6LL0JEBPTrB4sXu64RuTkNqH7u0UolqfHcr5zaUYJBnce5zhERSRIFsxRkTds13JP5HmpH1yZupxaIExH5N4yBceOgZElo2hR26tZ+8VEaUFOAyW9WYnjWDvT9tAffLVvnOkdEJEnkyZSHL9t8SfEcxQmdFsr0HdNdJ4mI+JWMGWHOHAgKgtBQOHPGdZHI/6UBNQUICgzgkSlduUwaToX3IP7KVddJIiJJ4q4Md7G81XIey/cYzWY1Y9wWXTkiIvJvFCwI06fDL79Ay5YQH++6SOR/04CaQlSsU47JT3ai4pnNTI/o5zpHRCTJZE6XmSUtllDj3hq0n9eeketHuk4SEfErVavC8OGeLWgGDXJdI/K/aUBNQTouGsLKdI9RZ3YUP6/d4jpHRCTJZEiTgblN5xL+YDjPLXmOwV8OxmrvBBERr/XsCa1bw+uvey77FfEVGlBTkLRpg7g6YSi/UJRe3be6zhERSVJpg9IyrdE0WpdqzSurXqHvsr4aUkVEvGQMREXBo496LvXdscN1kYiHBtQUpnqTyvRrM4IlW9vS/6O1rnNERJJUUEAQ40LH0f3R7ry77l26LuzK1Xjdhy8i4o106SA21rN40tNPw4kTrotENKCmSPPGlOeu3FvJ9lw0v2770XWOiEiSCjABjKo9iv4V+/Px5o9pNacVl69edp0lIuIX8uXzDKn790OzZnBVf+MTxzSgpkAZ0gUxbtARelwaxw9PdXGdIyKS5IwxvFXtLYZUG8LU76bSaEYjLly54DpLRMQvlC8Po0fDkiUwYIDrGkntNKCmUPU71GRcybbUOrqaWd3fdJ0jIpIs+lXsx+g6o5n38zzqTa3H2UtnXSeJiPiFjh2hSxd4+22IiXFdI6mZBtQULHLVcDYHlaDiRyM5vHOP6xwRkWTxzKPPMPHpiazct5KnJj/FyQsnXSeJ+AVjTC1jzM/GmF3GmP+zZ50xJrMxZr4xZpsxZocxpq2LTkk6778PFStC+/awRRtCiCMaUFOwLFkzsHfYYLLZk6yv9ozrHBGRZNOqVCtmNJ7BpkObeHLikxw9d9R1kohPM8YEAqOB2kAxoJkxpth1h3UDfrDWlgKqAMONMcHJGipJKjgYZs6E7Nk9iyYdO+a6SFIjDagpXKPeoQwqPYA+B0YxauY3rnNERJJN2INhzG82n5//+JnKEyprSBX5Z2WBXdbaPdbaS8A0IPS6YyyQyRhjgDuA48CV5M2UpJYzp2df1KNHoXFjuKw15ySZaUBNBXos78/+rHfwQrcs/PHncdc5IiLJpmbhmixusZj9J/dTY3INjp/Xz0CRm8gLHLjm8cGE5671IfAgcAj4DuhlrY2/0RczxnQyxmwyxmw6ptNwfueRR+CTT+DLL6F3b9c1ktpoQE0F7s6WjmEjjjP16ADWlG3uOkdEJFk9UeAJ5jady09//ETt6NqcuXjGdZKILzI3eM5e97gmsBXIA5QGPjTG3HmjL2atHWutDbHWhuTIkSNxSyVZtGjhGU4//BDGjXNdI6mJBtRUonfrhzh9T3oa7lnMoiFjXOeIiCSrGvfVYEbjGWw+tJl6MfX46/JfrpNEfM1BIP81j/PhOVN6rbZArPXYBewFHkimPnFg2DCoXh26doX1613XSGqhATUVqbFyBL+Ye3lg4Juc/kOX24hI6tLg/gZMbjiZNfvXED49nItXLrpOEvElG4EixphCCQsfNQXmXXfMr0A1AGNMTuB+QNsEpGBBQTBtGuTNC2FhcOj6P1mIJAENqKlI/nvvYm2vVyh09TeWVO7gOkdEJNk1K9GMT+p/wuJdi2k2qxlX4rW+iwiAtfYK0B1YAvwITLfW7jDGdDHGdEk4bDBQ3hjzHbAceNFa+4ebYkku2bPD3Llw+jSEh8NF/W1PkpgG1FSm7YjWTMoVQcUfviF24RrXOSIiya59mfaMrDmS2T/Nps2cNsTfeI0XkVTHWhtnrS1qrb3PWvtmwnNR1tqohM8PWWufstaWsNY+ZK2d4rZYkkuJEjBxoucy32eeAXv93ckiiUgDaipUYfn7lEy/lha9MvDXpQuuc0R8hheb1Dc3xmxP+PjaGFPqmtf2GWO+M8ZsNcZsSt5y+bd6PdaLN6u+SfR30XRd0BWr37ZERP5ReDi8/LJnwaSPPnJdIymZBtRU6L5iuWj92jku7S7FwKYjXOeI+AQvN6nfC1S21pbEc6nb2Otef9JaW9paG5LkwXLbBlQaQP+K/Rn77VieX/q8hlQRkVt4/XWoVw+efdazBY1IUtCAmkq906cEb+V+jrdnv8zyMRNd54j4gltuUm+t/dpaeyLh4Xo8q1yKH3uz6pv0KNuDEetH8Nqq11zniIj4tIAAmDIFCheGRo3g119dF0lKpAE1lTIGnl7UjwMmLwV6DuTUsaOuk0Rc82aT+mu1BxZd89gCS40xm40xnZKgT5KAMYaRtUbSrnQ7Bq0exNtr33adJCLi0zJnhjlz4NIlePpp+Eu7dkki04CaihUtlZcV3Qdz75WDfFGxtescEde82aTec6AxT+IZUF+85ukK1toyeC4R7maMeeIm7+1kjNlkjNl07Ji2e/IFASaAsfXH0qR4E1784kU+2qibq0RE/sn998PUqbB1K3TooEWTJHFpQE3l2o1qzcR8zQn/ZTHzXhnuOkfEJW82qccYUxL4FAi11v759/PW2kMJ/z0KzMZzyfD/Ya0da60NsdaG5MiRIxHz5XYEBgQyueFk6hetT7e4bkzcqlsfRET+Sd268MYbEBMD777rukZSEg2oQs21HzAnqDZDRhfg0InjrnNEXLnlJvXGmHuAWKCltfaXa57PaIzJ9PfnwFPA98lWLokiTWAapjeeTvV7q9NuXjtm7JjhOklExKf17w+NG0O/frBkiesaSSk0oAp57snCb5NGsf54I55suc51jogTXm5S/wqQHfjouu1kcgJfGWO2Ad8AC621i5P5W5BEkC4oHXOazOHxfI8TGRvJwl8Wuk4SEfFZxsD48VC8ODRtCrt2uS6SlEADqgDQrVlhKtX/mp4L45je6SXXOSJOeLFJfQdrbdaErWT+ZzuZhJV/SyV8FP/7veKfMgZnZGHkQkrlLEX49HBW7F3hOklExGdlzAhz53pW+A0NhTNnXBeJv/NqQPVi83pjjBmV8Pp2Y0yZ614PNMZsMcYsSKxwSXzzJ5bhkTTrqfHJaH75ZqPrHBERZzKny8ySFksokr0IDWIasO6Ari4REbmZQoVg+nT4+Wdo1Qri410XiT+75YDq5eb1tYEiCR+dgDHXvd4LzyVz4sMyZ03HiY9HkoYrHK7ZhfirV1wniYg4kz1Ddpa1XEbuTLmpHV2bLYe3uE4SEfFZ1ap5FkuaM8ezeJLIf+XNGdRbbl6f8HiS9VgPZDHG5AYwxuQD6uJZ9VJ8XO22lRhfoSeVT35LTFgP1zkiIk7luiMXy1stJ3O6zDw15Sl+OPaD6yQREZ/Vq5fnDOqrr3ou+xX5L7wZUL3ZvP6fjhkJ9AX+8WS/9gb0HZ2Xv8GS9JV5at4Mvt643XWOiIhT92S+h+WtlhMUEET1SdXZfXy36yQREZ9kDERFQUgItGgBP+hvevIfeDOgerN5/Q2PMcbUA45aazff6h/R3oC+IzhtAJljP+TxwFXUaX+aS1cuu04SEXGqcLbCfNHyCy5dvUS1SdU4cOrArd8kIpIKpU8Ps2d7Fk8KDYWTJ10Xib/xZkD1ZvP6mx1TAWhgjNmH59LgqsaYKf+5VpLNY7UeolKfK5z6rgIvtLv+lmIRkdSn+N3FWdpyKScunKDapGr8fvZ310kiIj4pXz6YNQv274dmzeDqVddF4k+8GVBvuXl9wuNWCav5PgacstYettb2t9bms9YWTHjfCmtti8T8BiTpfPZmaV7KPYD3Jvdm1WcxrnNERJwrk7sMi5ov4rczv1Fjcg3+/OtP10kiIj6pQgX48ENYvBhe0g6G8i/cckD1cvP6OGAPsAv4BHgmiXolGQUEQOT8LhwmF7m79ufscf0iJiJSPn955jWdx84/d1IruhanL552nSQi4pM6dYLOnWHYMPj8c9c14i+82gfVi83rrbW2W8LrJay1m27wNVZZa+slbr4ktWKPFGBpl9e4//J+FlVo4zpHRMQnVLu3GjMjZrL1963UnVqXc5fOuU4SEfFJo0ZBxYrQti1s3eq6RvyBVwOqpG7tPurAxNzNaPzTAhYMHuU6R0TEJ9QrWo/osGi+PvA1DT9vyMUrF10niYj4nOBgmDkTsmeHp58GbdYht6IBVW7JGKj+1QesDnycMSMy8LuWYxMRASCieASf1v+UZXuW0WRmEy5f1arnIiLXy5nTs7Lv779DRARc1o9K+QcaUMUree/Nzpbx44k70YGqrde6zhER8RltH27LB7U/YO7Pc2k9pzVX47VcpYjI9UJC4JNPYNUqeOEF1zXiyzSgitd6tbyfsvU3EDpvG9O7veY6R0TEZ3Qv252h1YYS830M3eO6Y+3124WLiEjLlvDcc577UsePd10jvirIdYD4l6UTSvJLzs7cO2Y/u9s35L4ypVwniYj4hBcrvsjx88d5++u3yZ85PwMqDXCdJCLic95+G7Zvhy5doFgxKFfOdZH4Gp1BlX8lc7b0HBvzHuntRfZX74iNj3edJCLiM4ZUH0LzEs15acVLTNw60XWOiIjPCQrybDmTNy+EhcHhw66LxNdoQJV/rU6Hqowv142qJzYS0/hZ1zkiIj4jwAQwLnQc1QpVo8P8DizdvdR1koiIz8meHebMgZMnITwcLmoRdLmGBlT5T9qvHMKKdBWoGzuBjRu3uc4REfEZwYHBxDaJpXiO4oRPD+fbw9+6ThIR8TklS8LEibBuHXTvDrp1X/6mAVX+k3Tpg0g740NqBc6jZsfTXL56xXWSiIjPuDPtncQ1jyNb+mzUia7D3hN7XSeJiPicRo3gpZfg009hzBjXNeIrNKDKf1ahXmkK976TE9sq0a37ZNc5IiI+JU+mPCxuvphLVy9RK7oWf/z1h+skERGfM2gQ1K0LvXrB6tWua8QXaECV2zJxaBm65X2LD6M6s3riDNc5IiI+5cEcDzKv2Tz2n9xPg5gG/HX5L9dJIiI+JSAAoqPhvvs8Z1R//dV1kbimAVVuS0AAdI1txjHu4q6O/Th36qTrJBERn1LxnopEh0Wz/uB6ImdFcjX+quskERGfkjkzzJ3rWSypYUP4S3/LS9U0oMptK162EHHtX6HY5T0sqNjWdY6IiM8JLxbO+7XeZ+7Pc+mxqAdWq4GIiPwv998PU6fCli3QqZMWTUrNNKBKoujwSRcm52pM4+/nsnBolOscERGf06NcD/qW78uYTWMY+tVQ1zkiIj6nbl0YPNhzye9777muEVc0oEqiMAYqr/mQbQHFmT7sNEdPnXKdJCLic4ZUH0LzEs0ZsGIAk7ZNcp0jIuJzBgzw3Ivaty8s1VbSqZIGVEk09xS+m5WfTmPSyb5UbbPWdY6IiM8JMAGMCx1HtULVaD+vPUt367cvEZFrGQPjx0Px4tC0Keze7bpIkpsGVElUvdsW5+E63/DwnGN83nuI6xwREZ8THBjMrIhZFMtRjPDp4Xx7+FvXSSIiPuWOO2DOHM+wGhoKZ8+6LpLkpAFVEt3ySSV4Luhdqo58l73bvnedIyLiczKny8yi5ovIlj4bdafWZe+Jva6TRER8yr33wuefw48/Qvv2WjQpNdGAKokua/b0/DZqOJnsOXZV64iNj3edJCLic/JkysOi5ou4cOUCtaNr8+dff7pOEhHxKdWrw5AhMH06jBjhukaSiwZUSRL1uz7FuJCu1PhzPdHN+rjOERHxScVyFGNe03nsO7mP+jH1OX/5vOskERGf0qcPhId7Fk1atcp1jSQHDaiSZNqtfodVaR8jdPrHfLte91iJiNxIpQKViA6LZv3B9UTGRnI1/qrrJBERn/H3oklFikBEBBw86LpIkpoGVEky6dIHERgzilYB46jxzDmuXNUvXSIiNxJeLJz3a73PnJ/m0HNRT6xuthIR+R+ZMsHs2XD+vGcLmosXXRdJUtKAKkmqUsNHSffsvRzfUol23WNc54iI+Kwe5XrQp3wfPtr0EUO/Guo6R0TEpzzwAEycCBs2wLPPuq6RpKQBVZLclLcfoWmhMXwc1ZEFQ6Jc54iI+Kyh1YcSWSKSASsGMGnbJNc5IiI+JSwMXnwRoqI8l/1KyqQBVZJcYKBhyOKG7AvIxyMvvcLuLd+5ThIR8UkBJoDxoeOpWqgq7ee1Z+nupa6TRER8yhtvQLVq0LUrbN7sukaSggZUSRYFi+Zi5/ujyGzPcqhya65cuuQ6SUTEJwUHBhMbEUuxHMUInx7OlsNbXCeJiPiMoCCIiYGcOT2r+/7xh+siSWwaUCXZNOhemwk1+lDpzBamVWzjOkdExGdlTpeZRc0XkS19NupMrcO+k/tcJ4mI+IwcOWDWLPj9d2jWDLQOZ8qiAVWSVZfFrzPtrlB2bbyPUbM2uM4REfFZeTLlYVHzRVy4coFaU2rx519/uk4SEfEZISEwejR88QUMHOi6RhKTBlRJVgEBUOn7aN7K3pnnOuTh+32HXCeJiPisYjmKMa/pPPad3Ef9mPqcv3zedZKIiM9o3x46doQhQ2DOHNc1klg0oEqyy5szI9ExV3ji9I/sLt2CSxcuuE4SEfFZlQpUIjosmvUH1xMZG8nVeF3LJiLytw8+gLJloVUr+Pln1zWSGDSgihONaxSkSb1vCD21kpnlWrnOERHxaeHFwnm/1vvM+WkOPRf1xFrrOklExCekTQszZ0K6dNCwIZw547pIbpcGVHGm85yXmZozjMjtM5jxwjuuc0REfFqPcj3oU74PH236iGFrh7nOERHxGfnzw7RpnjOo7dqB/obn3zSgijPGQPVvP2NrUDGqDX+L7SvXuU4SEfFpQ6sPJbJEJP2X92fStkmuc0REfEbVqjB0qOds6vDhrmvkdmhAFafuzpOFPyeOIYirLG08lvPaH1VE5KYCTADjQ8dTtVBV2s9rz4q9K1wniYj4jBdegEaN4MUXYYV+PPotDajiXLXIJ3iv5zj6/DmOJ9vpp4m4Y4ypZYz52RizyxjT7wavNzfGbE/4+NoYU8rb94okluDAYGIjYrk/+/2EfR7GD8d+cJ0kIuITjIFx4+D++6FJEzhwwHWR/BcaUMUnvDqyEQ9W/4bfo4sy4YWRrnMkFTLGBAKjgdpAMaCZMabYdYftBSpba0sCg4Gx/+K9Iokmc7rMLIxcSPo06ak7tS5Hzh5xnSQi4hMyZYLZs+HiRc/Z1IsXXRfJv6UBVXyCMbB21sN8krY1Tw9/lc2LVrtOktSnLLDLWrvHWnsJmAaEXnuAtfZra+2JhIfrgXzevlcksRXIUoD5zeZz9NxR6sfU56/Lf7lOEhHxCfffDxMnwjffQM+ermvk3/JqQPXisjdjjBmV8Pp2Y0yZhOfTGWO+McZsM8bsMMa8ntjfgKQcWe8MJn3MO1gCCGjYmTMnTrpOktQlL3DtxUAHE567mfbAov/4XpFEEZInhKlhU9l0aBMtYltoj1QRkQQNG0L//jB2LHz2mesa+TduOaB6eelabaBIwkcnYEzC8xeBqtbaUkBpoJYx5rFEapcUqGLDx5jdZiAPX/yJRSEtXedI6mJu8NwNF6o3xjyJZ0B98T+8t5MxZpMxZtOxY8f+U6jItUIfCGVEzRHM/mk2fZf1dZ0jfsyLExJ9jDFbEz6+N8ZcNcZkc9Eq4o3Bg6FGDejWDTZtcl0j3vLmDKo3l66FApOsx3rOnUVVAAAgAElEQVQgizEmd8LjswnHpEn40M5E8o/aje/NxHsjidizgAmd3nKdI6nHQSD/NY/zAYeuP8gYUxL4FAi11v75b94LYK0da60NsdaG5MiRI1HCRXo91oseZXvw3vr3+GjjR65zxA95c0LCWvuOtba0tbY00B/40lp7PPlrRbwTGAhTp0LOnBAWBvq7sH/wZkD15tK1mx5jjAk0xmwFjgLLrLUbbvSP6KyCXCts8ycMytyLbpNbsmLLHtc5kjpsBIoYYwoZY4KBpsC8aw8wxtwDxAItrbW//Jv3iiS1ETVHUL9ofXos6sHCXxa6zhH/82/vpW8GxCRLmchtuOsuiI2Fo0ehWTO4csV1kdyKNwOqN5eu3fQYa+3VhL+05QPKGmMeutE/orMKcq1MWTJQddWLnLeZiQj9g5PH9AdaSVrW2itAd2AJ8CMw3Vq7wxjTxRjTJeGwV4DswEcJl7ht+qf3Jvs3IalaYEAgU8OnUjpXaZrMbMKWw1tcJ4l/8fpeemNMBqAWMOtmX0wnHsSXPPIIjBkDy5fDyy+7rpFb8WZA9ebStVseY609CazC8wNN5JYqls7Nq0N/YOWB9nzxSAvXOZIKWGvjrLVFrbX3WWvfTHguyloblfB5B2tt1r8vcbPWhvzTe0WS2x3Bd7Cg2QKypc9GvZh6HDilTQDFa17fSw/UB9b+0+W9OvEgvqZtW+jcGYYN85xRFd/lzYDqzaVr84BWCav5PgacstYeNsbkMMZkATDGpAeqAz8lYr+kcK8++xib7n+YRgcWMbHpS65zRER8Xu5MuVkYuZAzF89Qd2pdTl887TpJ/IPX99Lj+V1Ql/eK33n/fShXDlq3hp80kfisWw6oXl72FgfsAXYBnwDPJDyfG1hpjNmOZ9BdZq1dkMjfg6RwTTaNZU26EBp9PpLVMYtu/QYRkVSuRM4SzIyYyQ/HfiBiRgSXr152nSS+z6t76Y0xmYHKwNxk7hO5bWnTwsyZkD69ZxuaM2dcF8mNeLUPqheXvVlrbbeE10tYa/++L2u7tfZha21Ja+1D1tpBSfetSEqV4Y50ZFr8GWfJyF2tevDHoaOuk0REfN5T9z1FVL0oluxeQve47lirRfTl5rw8IQHQEFhqrT3nolPkduXLB9Onw86dnst+9aPR93g1oIq4VrpySZY/P5gzV7LzdJMv9YuWiIgXOpTpQL8K/Rj77Vje+fod1zni4251QiLh8QRrbVN3lSK3r0oVz72os2bBO/rR6HM0oIrfiHy3M32bv83arxrTYfBq1zkiIn7hzWpv0qR4E1784kVm7JjhOkdExCf07g0REdC/v2d1X/EdGlDFrywdV5F7iqyh+msfsvwz3f4iInIrASaACU9PoHz+8rSc3ZJ1B9a5ThIRcc4Y+OwzePBBaNoUfv3VdZH8TQOq+JW0wYEsmnIXT/AV93R+lsP7DrpOEhHxeemC0jG36VzyZ85Pg2kN2H18t+skERHn7rjDs+XMpUsQHg4XLrguEtCAKn6oWNkHWTtwCIWuHmDjo62JvxrvOklExOfdleEu4iLjiLfx1J1al+Pnb7qFpYhIqlG0KEyaBJs2QffurmsENKCKn4p4vQ0TH21Pgz9WMKFOb9c5IiJ+oUj2IsxtOpe9J/fS8POGXLxy0XWSiIhzoaHw0kueS34/+cR1jWhAFb/Veu1olmWqQPWls4iZv8V1joiIX6h4T0UmhE5g9f7VdJjfQauii4gAr78ONWt6zqJ+843rmtRNA6r4raA0QRRcPYEKmebRqm029h856TpJRMQvNCvRjDeefIMp26fw2qrXXOeIiDgXGAjR0ZAnj+d+1KNHXRelXhpQxa8VKV2YlyekIf54LoZVeF/3o4qIeGlApQG0K92OQasHMXHrRNc5IiLOZc/u2Rv1jz88K/teueK6KHXSgCp+r3PYQwx56i0+2v0a46v2dJ0jIuIXjDFE1YuiWqFqdJzfkZV7V7pOEhFxrkwZiIqClSthwADXNamTBlRJEV5Y+CqLszxBq9UfM/edaNc5IiJ+IU1gGmZGzKRI9iI0/LwhPx770XWSiIhzrVtD167wzjswc6brmtRHA6qkCAGBATy4diIHAnLzyIt92L5aiyaJiHgjS7osxEXGkS4oHXWm1uHI2SOuk0REnBs5Eh57DNq2hR9+cF2TumhAlRSjQLGC7BzzAZntGc7VaM/hP864ThIR8QsFshRgfrP5HDl7hAbTGvDX5b9cJ4mIOBUc7Dl7miEDNGwIp0+7Lko9NKBKilKzUyhzn32L3pffp1SNn7hwSXe3i4h449G8jxITHsPG3zbScnZL4q0WnROR1C1vXpg+HXbvhjZtQLtyJQ8NqJLitBjRg3v7WY5tfZT2VcZqZV8RES+FPhDKezXfI/bHWPou6+s6R0TEucqVPfeizp4Nw4a5rkkdNKBKihT91hN0r/QO0eu6Mb5yD9c5IiJ+o1e5XnR/tDvD1w1nzMYxrnNERJx79lnPtjMvvQTLlrmuSfk0oEqKNWL5cyzI9iRt145hUtu3XOeIiPgFYwwja42kXtF6dF/Unbidca6TREScMgY+/RSKFYNmzWD/ftdFKZsGVEmxgtIEUf6HmWxMW5LGEwYz750Y10kiIn4hMCCQmPAYSuUsRcSMCLb+vtV1koiIUxkzQmwsXL4M4eFw4YLropRLA6qkaNlyZiPr2mkcCribcn178tXq71wniYj4hTuC72BB5AKypc9G3al1OXj6oOskERGnihSBKVNg82Z45hktmpRUNKBKilf0kQf4LWYcfdIMplrjjOz+7YTrJBERv5AnUx4WRi7kzMUz1JtajzMXtX2XiKRu9evDwIEwfjyMHeu6JmXSgCqpwhMR1Xh0yuNc+jMvbSos5fRxbWYlIuKNEjlLMDNiJt8f/Z6ImRFcidf2XSKSur36KtSqBT16wIYNrmtSHg2okmr0iChF/z6LWLq/DcsfjND2MyIiXnrqvqcYU3cMi3ctpkdcD6yuaxORVCwwEKKjIV8+z/2oR464LkpZNKBKqvLWkKeJCWlOw6NLmFimrescERG/0fGRjrxY4UWiNkcxfN1w1zkiIk5ly+ZZNOnPPz1b0FzRxSWJRgOqpDpt1o9lRp66tN0+iXENB7jOERHxG29Ve4uI4hH0WdaHWT/Mcp0jIuJU6dKe+1BXrYJ+/VzXpBwaUCXVCQgMoO5P01mVsSwt57zDxMHRrpNERPxCgAlgQugEHs/3OC1mt2D9wfWuk0REnGrZErp1g+HDYfp01zUpgwZUSZUyZMrAfVtm8Gqm52j3Zm3mrdntOklExC+kT5OeuU3nkidTHhrENGDPiT2uk0REnHrvPShfHtq1gx07XNf4Pw2okmrlL3IP9b/uBcGX6VH/OD+s/951koiIX8iRMQdxkXFcib9C3al1OXFe23eJSOoVHAwzZsAdd0DDhnDqlOsi/6YBVVK1xx/Ky6SYoyw91ZzzlZty9OBR10kiIn7h/rvuZ07TOew5sYew6WFcunrJdZKIiDN58niG1L17oXVriNdmEf+ZBlRJ9ZrXLcHGLp0pfelHvn2oEZcu6JcsERFvPFHgCcY1GMeqfavoMK+Dtp8RkVStUiV4912YOxeGDnVd4780oIoALcY8z4SqPah1ag0zi0e6zhER8RvNSzZnUJVBTN4+mUFfDnKdIyLiVM+eEBkJL78MS5a4rvFPGlBFErRfPpIp9zUics8sPqjZ33WOiIjfePmJl2lTug2vffkaU7ZPcZ0jIuKMMZ6tZx56yDOo7tvnusj/aEAVuUbE99EMzduZl5f2ZcDoDa5zRET8gjGGj+t9TNVCVWk3tx1f7vvSdZKIiDMZM0JsLFy9CmFhcP686yL/ogFV5BrB6YLpsOM9rhY8xIhnCzP74wWuk0RE/EJwYDCzImZROFthGn7ekJ//+Nl1koiIM4ULw5QpsGULdO0KukXfexpQRa5zV+YMrF9+NxMC2vJ413ZsXLTOdZKIiF/Iki4LCyMXkiYwDXWm1uHYuWOuk0REnKlXD159FSZOhKgo1zX+QwOqyA08dG8Oco7rRlp7iYwNWvHrz/tdJ4mI+IVCWQsxr+k8Dp05RINpDTh/Wde2iUjq9corUKcO9OoF63TOwysaUEVuokrzmnwx4G0KX9nP3jKNOXvqrOskERG/UC5fOaLDotlwcAOt5rQi3mpDQBFJnQICPJf65s8PjRrBkSOui3yfBlSRf9D4zU5Eh/Wl8l8biX2oDfHxuoFARMQbYQ+G8U6Nd5j5w0z6f6GV0UUk9cqa1bNo0okTEBEBly+7LvJtXg2oxphaxpifjTG7jDH9bvC6McaMSnh9uzGmTMLz+Y0xK40xPxpjdhhjeiX2NyCS1NrOeoP3y/Vk8MEh1OiolSlFRLzV+/HedA3pyttfv83YzWNd54iIOFOqFHzyCaxeDS++6LrGt91yQDXGBAKjgdpAMaCZMabYdYfVBookfHQCxiQ8fwV43lr7IPAY0O0G7xXxeT2+Hkl8lSOsGFeZN3pOdJ0jIuIXjDGMqj2KOkXq8MzCZ1i8a7HrJBERZ5o3hx49YMQImDbNdY3v8uYMallgl7V2j7X2EjANCL3umFBgkvVYD2QxxuS21h621n4LYK09A/wI5E3EfpFkERBg2BZXlpfv7k3fDzoy85VPXSeJiPiFoIAgpoVPo0TOEkTMiGD7ke2uk0REnHn3XahQAdq3h++/d13jm7wZUPMCB655fJD/O2Te8hhjTEHgYWDDv40U8QV3pA+mw8pe7Am8h6qD+/BlzDLXSZLIvLid4QFjzDpjzEVjzAvXvbbPGPOdMWarMWZT8lWL+L5MaTOxoNkC7kx7J3Wn1uXQmUOuk0REnAgOhhkz4M47oWFDOHnSdZHv8WZANTd47vqVYv7xGGPMHcAs4Flr7ekb/iPGdDLGbDLGbDp2TPumiW8qUKwgp+dN4rIJIn+L9vz4zQ7XSZJIvLyd4TjQE3j3Jl/mSWttaWttSNKVivinvHfmZWHkQk5eOEm9qfU4e0kro4tI6pQ7N8ycCfv2QatWEK+Fzv8XbwbUg0D+ax7nA67/0+dNjzHGpMEznEZba2Nv9o9Ya8daa0OstSE5cuTwpl3EibJ1yrPx3Q/IFf8H5ys04budWi88hbjl7QzW2qPW2o2A1t8T+Q9K5SrF9EbT2X5kO01nNuVK/BXXSSIiTlSoAO+9B/Pnw1tvua7xLd4MqBuBIsaYQsaYYKApMO+6Y+YBrRJW830MOGWtPWyMMcBnwI/W2vcStVzEoXq9mxI3cBQv20GEVDrHll80pKYA3tzO8E8ssNQYs9kY0+lmB+lqEUntahepzYd1PmThzoU8u/hZrNX2XSKSOnXvDi1awCuvwGKtIfc/bjmgWmuvAN2BJXgWOZpurd1hjOlijOmScFgcsAfYBXwCPJPwfAWgJVA14b6srcaYOon9TYi40GhQB+rE3MelE3cz7NGZbPvyW9dJcnu8uZ3hn1Sw1pbBc4lwN2PMEzc6SFeLiECXkC688PgLjN44mpHrR7rOERFxwhj4+GMoWRIiI2HPHtdFviHIm4OstXF4htBrn4u65nMLdLvB+77ixr/0iaQI3RuXIuOFtTzd6iX+rJqFLUtm8HD1R11nyX/jze0MN2WtPZTw36PGmNl4LhlenaiFIinIsBrD2HtyL88vfZ6CWQrS8MGGrpNERJJdhgwwaxaEhEB4OKxd63kuNfPmEl8R+QdtW1ZgzTsfkSP+BJlrhrNp8XrXSfLfeHM7ww0ZYzIaYzL9/TnwFKDF40X+QYAJYHLDyZTNW5bmsc355rdvXCeJiDhx330QHQ3btkGXLpDa73zQgCqSCBq8EMma98aSNf40d9VtzDcLvnKdJP+SN7czGGNyGWMOAr2Bl40xB40xdwI5ga+MMduAb4CF1lrdTSJyC+nTpGdes3nkuiMX9WPqs+/kPtdJIiJO1KkDr70GkyfDRx+5rnFLA6pIIqn3XBPWf/Apd8af5fPGX7Bi837XSfIvWWvjrLVFrbX3WWvfTHgu6u9bGqy1v1tr81lr77TWZkn4/HTCyr+lEj6K//1eEbm1uzPezcLIhVy6eok60XU4fv646yQRESdefhnq1YNnn4Wvv3Zd444GVJFEVLt7I9ZMm8eIgB7UqBbM0nW6211E5FYezPEgs5vMZveJ3YROC+X85fOuk0REkl1AgOcMaoEC0KgR/P676yI3NKCKJLLQJpWYsfBPSlz8idwV67J62nLXSSIiPq9KwSpMbjiZtb+upXlsc67GX3WdJCKS7LJkgdhYOHUKIiLgcirceV0DqkgSCK9SlPeiLnC3/YOikc1YMXmR6yQREZ8XUTyCkbVGMvun2XSP6649UkUkVSpZEj79FNasgT59XNckPw2oIkmkauva/Dh5ChbDQ61a8cX4ha6TRER8Xs9yPelbvi9Rm6N4c41u5xaR1KlZM+jVC95/H2JiXNckLw2oIkmoSvOa7IyJ5rIJolS71iyauMR1koiIzxtSfQgtS7Zk4MqBjNsyznWOiIgT77wDlSpB+/awfbvrmuSjAVUkiT3RpDr7Z01jfnANGnYtSczSn1wniYj4tAATwGcNPqPmfTXpNL8TC3/RFSgikvqkSQPTp3vuSw0Lg5MnXRclDw2oIsmgfMPK3Lt+GFfSXaV7g7Qs+DDWdZKIiE9LE5iGmREzKZ2rNI1nNGbDwQ2uk0REkl2uXDBzJvz6K7RsCfHxrouSngZUkWRS5eF7WLUKxsZ3o2KPtsx/N5XdUCAi8i/dEXwHCyMXkidTHupOrcvPf/zsOilFM8bUMsb8bIzZZYzpd5NjqhhjthpjdhhjvkzuRpHUqHx5GDECFiyAN95wXZP0NKCKJKOKJfNRYMGr/BmQhcp9OjN36BTXSSIiPi3nHTlZ0mIJASaAWtG1OHzmsOukFMkYEwiMBmoDxYBmxphi1x2TBfgIaGCtLQ40TvZQkVTqmWc8Z1Bfew3i4lzXJC0NqCLJLOSpcpxeNosjgdmp2r8rsW9McJ0kIuLT7st2H3HN4zh27hi1o2tz6sIp10kpUVlgl7V2j7X2EjANCL3umEgg1lr7K4C19mgyN4qkWsZAVBSUKgXNm8Pu3a6Lko4GVBEHHq4awvkVsRwOzEHhV95lVMwW10kiIj4tJE8IsyJmsePYDsKmh3HxykXXSSlNXuDANY8PJjx3raJAVmPMKmPMZmNMq2SrExEyZIDYWM+wGh4Of/3luihpaEAVcaTkEw9z6cs5hN81ml6t72d4tIZUEZF/UrNwTcY1GMeKvStoM7cN8TYVrBaSfMwNnrPXPQ4CHgHqAjWBgcaYojf8YsZ0MsZsMsZsOnbsWOKWiqRihQrB1KmebWc6dQJ7/f9KUwANqCIOPVShJLPXFyNd9gOkbzmGaS+OcZ0kIuLTWpZqybDqw5j2/TReWPqC65yU5CCQ/5rH+YBDNzhmsbX2nLX2D2A1UOpGX8xaO9ZaG2KtDcmRI0eSBIukVrVqwaBBEB0NH37ouibxaUAVceyhe3OwZUkglQK/JPTt3sT0ToE/aUREElGf8n3oWbYnI9aPYPjXw13npBQbgSLGmELGmGCgKTDvumPmApWMMUHGmAxAOeDHZO4UEWDAAKhfH3r3hq++cl2TuDSgiviAB0oWJv3G+fycphBhI54nusdI10kiIj7LGMOIWiOIKB7BC8teIHp7tOskv2etvQJ0B5bgGTqnW2t3GGO6GGO6JBzzI7AY2A58A3xqrf3eVbNIahYQAJMmQcGC0LgxHE5BC5xrQBXxEYVLFyXztwvYEVyExh/2ZXJXnRUQEbmZABPApKcnUaVgFdrMbcOy3ctcJ/k9a22ctbaotfY+a+2bCc9FWWujrjnmHWttMWvtQ9Za/TVVxKEsWWD2bDh92jOkXrrkuihxaEAV8SGFHrqX7FsXsj5tKSZ8/BD9PtjgOklExGelDUrLnCZzKJajGGHTw/j28Leuk0REktVDD8Fnn8HatfBCCrktXwOqiI8p8GABCuxbyjeF8jDs2Ud4Y+Bs10kiIj4rc7rMLGq+iGzps1E7ujZ7TuxxnSQikqyaNoXnnoMPPoApU1zX3D4NqCI+qECurPy4vgAROUfT940mTIh83XWSiIjPypMpD4ubL+ZK/BVqTqnJ0XNHXSeJiCSrYcPgiSc8W89s2+a65vZoQBXxUfly3Mn76yL4Jn0J2sS8xviH23Ll8hXXWSIiPunBHA+yoNkCfjv9G/Wm1uPspbOuk0REkk2aNDB9OmTNCmFhcOKE66L/TgOqiA/LVSA3xfYuIzZnTdpuncAXOary256DrrNERHzS4/kfZ1qjaWw+vJmIGRFcvnrZdZKISLLJmRNmzYIDB6BFC4iPd13032hAFfFx2XJm4+nf4vi0Sneqn/qaPmVms2jdXtdZIiI+qcH9DYiqG8WiXYvoOL8j1lrXSSIiyeaxx+D99yEuDgYNcl3z32hAFfEDAYEBdFj5AVPem8W0K02p82R2hg1d5DpLRMQndXykI69Vfo2J2yby0oqXXOeIiCSrLl2gdWt4/XVYsMB1zb+nAVXEj7R5LpSv1l0kJOtKuvdvpPtSRURu4pXKr9CpTCeGfDWED7/50HWOiEiyMQbGjIGHH/Zc6rtrl+uif0cDqoifKV8iH0u2VmJJzkq6L1VE5CaMMYyuO5oG9zeg56KezPxhpuskEZFkkz49xMZCYKBn0aRz51wXeU8Dqogf+v/3pfag+qmvOVu0MqtjvnCdJSLiU4ICgogJj+Hx/I/TPLY5X+770nWSiEiyKVgQYmLg++8928/4yy35GlBF/JTnvtRRzB4YRdarp1nXcgEvj/nGdZaIiE/JkCYD85vN576s9xE6LZTvjnznOklEJNk89RQMHgxTp8KoUa5rvKMBVcTPNR7Ugf1fLOKtPG1585myRERM132pIiLXyJY+G4tbLCZjcEZqRdfi11O/uk4SEUk2/ftDaCi88AKsWeO65tY0oIqkAI9WC2Hv90UpWXERw2c8r/tSRUSuc0/me1jcfDHnLp2j1pRaHD9/3HWSiEiyCAiAiRPh3nuhcWM4dMh10T/TgCqSQmS7Mz1bVtVkSZWGui9VROQGSuQswZymc9h9Yje1o2tz+uJp10kiIskic2bPoklnz0KjRnDpkuuim9OAKpKCXH9faunIMKZ0fdd1loiIz6hSsArTG03n28PfUndqXc5d8qOlLUVEbkPx4jBuHKxbB717u665OQ2oIilQ40EdOLB0IbuC7yFH1DKqtF7JlavxrrNERHxC6AOhRIdF8/WBr2kwrQHnL593nSQikiwiIuD552H0aJg82XXNjWlAFUmhHqlRloK/rqZfhWf5ctKTlC6zhIO7DrjOEhHxCRHFI5gQOoGVe1cSPj2ci1cuuk4SEUkWQ4dClSqerWe2bHFd839pQBVJwbLlzMbm1bUIf24lH2wfxrkHqvBlzDLXWSIiPqFlqZZ8XO9jFu1aRNNZTbl89bLrJBGRJBcUBJ9/DtmzQ3g4HPexNeM0oIqkcAEBhpnvPckfA1uQ9eppHo4MZ3LXd1xniYj4hI6PdGRUrVHM+WkOrea04mr8VddJIiJJ7u67YdYs+O03aN4crvrQjz6vBlRjTC1jzM/GmF3GmH43eN0YY0YlvL7dGFPmmtfGGWOOGmO+T8xwEfl3Gg/qwMFlcewMvoeWUX2ZULqN9ksVEQF6lOvB29XfZtr302g/rz3xVvfsi0jKV64cjBoFixfD66+7rvn/bjmgGmMCgdFAbaAY0MwYU+y6w2oDRRI+OgFjrnltAlArMWJF5PaUqf4ohX5dzaxctai47SseLLuaA0e1zYKISJ8KfXi9yutM3DaRZxY+g7XWdZKISJLr1AnatoXBg2H+fNc1Ht6cQS0L7LLW7rHWXgKmAaHXHRMKTLIe64EsxpjcANba1YCPXdksknply5mNhgcX8kbX4eza/gTFHvqNVTNWuM4SEXFu4BMD6VehHx9v/pjnljynIVVEUjxjPCv6likDLVrAzp2ui7wbUPMC1y79eTDhuX97zD8yxnQyxmwyxmw69v/au/Mwqao7jePfHw2IbKIBRBFBAUUC44aoIbJHibgERxkUUBBRonkSTYJL4qNOBsmYaIyZOCoiCImKBoQgCLaALAOCgOy4IXFBnChKVHAZxd/8cU+bsuzqru6uqltV/X6epx7r1r3n3nPuqX7lnKpb9913q1JURKqoTkkdHvzvc7nzoU38avddnDD4B7ouVURqPTNjfL/xXH3y1dy16i5uWHiDBqkiUvT23x8efxzq1YPzzoO9Md8eOp0BqpXzWnJap7NNhdx9grt3c/duLVq0qEpREammq4ccT695l7KtfhtdlyoiQjRI/d0Zv2PMiWO4bflt/GrJr+KukohI1rVtC488Alu3wmWXQZxzc+kMUHcAbRKWDwN2VmMbEclDJ/TvTrs3ljGj1QBGbJjC6qYnUfqQbkUjIrWXmXH3wLsZcdwIbllyC79Z/pu4qyQiknXf+x6MGwfTpsHvfx9fPdIZoK4GOprZEWZWHxgCzE7aZjZwcfg131OAD9z97QzXVUSypOy61Enn3kDrz97liuFtOWXIM7yzO+bveIiIxKSO1WHi2RMZ0mUI1y24jj+s+kPcVRIRybrrr4dBg2DsWFiyJJ46VDpAdfcvgB8BTwEvAI+5+xYzG2NmY8JmTwLbgW3A/cCVZeXN7BHgWeBoM9thZqMy3AYRyYA6JXW4dNZ4PnllDfX6/p1Vj/ZmVqvLeejK2+OumohILErqlDD1B1MZ1GkQP5n/EyasnRB3lUREssoMHnwQOnSAwYOj+6TmWlr3QXX3J939KHdv7+63htfudfd7w3N396vC+q7uviah7IXufoi713P3w9z9gew0RUQy4ej2rXh5wWncP2kZPb5czdB7xjLvwF6sffq5uKuWdWnc87mTmT1rZp+Z2c+rUlZECmtKBpMAABIZSURBVFO9knpMO38aZ3Y8kzFzxjB1w9S4qyQiklVNm0Y/mrR3L5x/Pnz2WW6Pn9YAVURqn8tG9qTd++uYdPLl9PzHGjqd3odJPX7Ixx99HHfVsiLNez6/D/wYuL0aZUWkQNUvqc+MwTPod2Q/Rv51JI9ufjTuKomIZFXnzjB5MqxcCddck9tja4AqIik1atKIS1fex9Z5C1l2wImcuWImRx69hQmzNsZdtWyo9J7P7v6Ou68GPq9qWREpbA3qNmDWv82iR5seDH18KLNenBV3lUREsuqCC6JrUe+5B6ZMyd1xNUAVkUqdNOAUTn9/CZPGPcCuT1pz1aBjuLv9CLZv2hZ31TKpJvdzTrus7vksUrga1W/E3Ivm0u3Qbgz+y2DmvTIv7iqJiGTV+PHQpw+MGQPr1uXmmBqgikha6tQxfvHLgex4tSmX9rqbK7b/mSb/cgqTz/sFX+77Mu7qZUJN7uecdlnd81mksDXZrwnzh82n68FdOe+x81i4fWHcVRIRyZq6daPbzjRvDuedB++9l/1jaoAqIlXS6qDG3Lf4ahZNnMmrDdowcuavebbJSTzz54L/JKEm93PWvaBFapFmDZpROqyUDgd14Jxp57Ds9WVxV0lEJGtatoQZM2DnTrjoIti3L7vH0wBVRKrl9FFn0+3D1UwceC2dPvkbTYbfSI+LFrHrg4L9EaV07vmcjbIiUoC+1fBbLBi+gDZN2zDw4YE891bx/9K5iNRe3bvDH/8IpaVw883ZPZYGqCJSbXXr1eWyObexa/UKbux+DSse6UunI17loR/fGXfVqiydez6bWSsz2wH8FLgx3Nu5aaqy8bRERHLl4MYHs/DihbRo1IIz/nwG697O0QVaIiIxGD0aRo2CW2+Fv/41e8cx93Qvscqdbt26+Zo1ayrfUETyyu+nreeDyx7k5r13MffAXrSecTvH9emWkX2b2Vp3z8zO8oSyTqQ4vP6P1+n5YE/2/t9eFo9YTJeWXaq9L2WdiOSzTz+F006Dl1+G1avhqKOqt5+Ksk6foIpIxlw95Dh+9tY4HjhpNH12P0f7vn2Y1PNKPv3407irJiKSNW2btWXhxQupX1Kf/lP78/J7L8ddJRGRrGjQILoetX59GDQI9uzJ/DE0QBWRjGp8QGNGPTeBTU88zcomx3Lpsnt44ODLmTh7U9xVExHJmg4HdWDRJYtwnL5T+rJ99/a4qyQikhWHHx79su+LL0Zf+c30F3I1QBWRrDj5rB70272UqSN/zZ1cxehzv03vvtN5fav+0SYixalT804sGL6AT774hH5T+/HGB2/EXSURkazo1y+6R+pjj8GdGf7pEQ1QRSRr6pTU4eJJ17Nke2dOGLSMnz4zhf27nMzkC24slnunioh8TdeDu1I6rJTdn+ym39R+7PxId5wSkeJ07bXRvVGvvRYWL87cfjVAFZGsa92iCWsf78V+94zmb/VbM3L6rVxz2E28+tbuuKsmIpJxJx56IvOGzuPtj96m/9T+vLP3nbirJCKScWYweTJ07AiDB8OOHZnZrwaoIpIzZ4w5hxM+XMO9A29gZvMBtG11QNxVEhHJilPbnMrci+bSvGFzSqwk7uqIiGRF06Ywcya0bx/9wm8m1M3MbkRE0lOvfl3GzBnPFR7NvImIFKte7XqxZMQSTGEnIkWsUydYsSJz/67TJ6giEgv9e01EagMNTkWkNshk1GmAKiIiIiIiInlBA1QRERERERHJCxqgioiIiIiISF7QAFVERERERETyggaoIiIiIiIikhc0QBUREREREZG8oAGqiIiIiIiI5AUNUEVERERERCQvaIAqIiIiIiIieUEDVBEREREREckLGqCKiIiIiIhIXtAAVURERERERPKCuXvcdfgGM3sXeL0KRZoDu7JUnbioTYVBbcqdtu7eIu5KZJKyDlCbCoXalDvKuvztm5pQmwqD2pQ7KbMuLweoVWVma9y9W9z1yCS1qTCoTZJLxdg3alNhUJskl4qxb9SmwqA25Qd9xVdERERERETyggaoIiIiIiIikheKZYA6Ie4KZIHaVBjUJsmlYuwbtakwqE2SS8XYN2pTYVCb8kBRXIMqIiIiIiIiha9YPkEVERERERGRApfXA1QzG2BmL5nZNjO7vpz1vc3sAzNbHx43Jax7zcw2hdfX5LbmqVXWprBN71DvLWa2pCpl41DDNhVkP5nZ2IT33WYz22dmB6VTNi41bFNe9lOxUNYp6+KirFPW5ZKyTlkXF2VdgWWdu+flAygBXgWOBOoDG4DOSdv0BuakKP8a0DzudlSjTc2ArcDhYbllumULrU2F3E9J258NLCr0fkrVpnztp2J5KOuUdfncpqTtlXV6ZLVvlHWF8TekrCuMfkrVpnztp8RHPn+C2h3Y5u7b3f3/gGnAuTHXqabSadNFwOPu/gaAu79ThbJxqEmb8lVVz/WFwCPVLJsrNWmTZFe+vmdqQlmHsi4myrr8la/vmZpQ1qGsi0lRZ10+D1BbA28mLO8IryU71cw2mNk8M/t2wusOlJrZWjO7PJsVrYJ02nQUcKCZLQ51v7gKZeNQkzZB4fYTAGbWEBgAzKhq2RyrSZsgP/upWCjrlHVxUdYp63JJWaesi4uyrsCyrm7cFaiAlfNa8k8OPw+0dfc9ZnYmMAvoGNb1cPedZtYSeNrMXnT3pVmsbzrSaVNd4ESgH7A/8KyZrUyzbByq3SZ3f5nC7acyZwPL3f39apTNpZq0CfKzn4qFsk5ZFxdlnbIul5R1yrq4KOsKLOvy+RPUHUCbhOXDgJ2JG7j7h+6+Jzx/EqhnZs3D8s7w33eAmUQfhcet0jaFbea7+1533wUsBY5Ns2wcatKmQu6nMkP4+lcmCrmfyiS3KV/7qVgo65R1cVHWKetySVmnrIuLsq7Qss5jvgg21YNodmY7cAT/vPj320nbtOKf93LtDrxBNKPQCGgSXm8ErAAGFEibjgEWhm0bApuBLumULcA2FWw/he0OAN4HGlW1bIG1KS/7qVgeyjplXT63KWynrNMjJ32jrCuMvyFlXWH0UwVtyst+Snzk7Vd83f0LM/sR8BTRL1VNcvctZjYmrL8XOB/4oZl9AXwCDHF3N7ODgZlmBlEHPuzu82NpSIJ02uTuL5jZfGAj8CUw0d03A5RXNpaGJKhJm8zsSAq0n8Kmg4BSd99bWdnctuCbatImIC//noqFsk5ZFxdlnbIul5R1yrq4KOsKL+vKZqlEREREREREYpXP16CKiIiIiIhILaIBqoiIiIiIiOQFDVBFREREREQkL2iAKiIiIiIiInlBA1QRERERERHJCwU1QDWzH5jZC2a2zsyOztA+e5vZ6QnLh5rZM5nYd5rHT9kmMxtjZteksY9zzOy34Xk7M7s8af2TZtY+jf24mTWuahvSZWa3mNnt2dp/JplZMzO7toL1vc1sTTX2O8LMpld1n2a22MzOqurx4pLG+fuOma0ws63h8VszK6g8yjblXcp9KO8yTHlXM8q7mlHWpdyHsi7DlHU1k8usK7SAvAK4yd2Pd/eXEleYWXXv6dob+CrE3H2nu/epfhWrLGWbwr2m7qxsB+4+293HhsV2wOVJ689091czVeFaohmQ8o9QKlXZ+fsQuMTdOwPHA6cCQ3NRsQKivCuH8i4rlHc1o7yrGWVdOZR1WaGsq5mcZV3BDFDN7E7gNOC2slmwMCs01swWAzebWVczW2Zmz4eR+9UJ5Q8ws0lmtsnMNpjZH82sKzAGuNjM1pvZ9WGWaldCuQFhBmyjmS00sw7h9d6hzH1h3QYzOyZF3TuEshtD3QakalNSua9mpcLsTKmZPWpmW8xsuZm1SlhXNnNzN9A51G16WP+amXUJz39mZqtDm541s+PSPP/Xmtlzof5PJBz7FjN7JMzkvWhmc82sYcI5nx76Yj7QPmF/jc1sspltDo/rwutHm9mW8LyumX1gZmPD8mAzezg8X2xmd4T+ftPMfm5mF4aZm9fM7IKEY51sZs+Y2drwGBheb2dmu8zs1nA+XjKz7yacx2bhPK5IcVrqpup/M7vEzFaF4y2yFLPCZjbOzLaZ2RJgYCXd0D+0e5uZjQ/lTzKzzUn73GBm3ynnWCn73sz+NfTfOjP7hSXMuGbj/Ln7Znd/JTz/DFgHtK2k/bVGedlgyjvlnfJOeVdkyssFU9Yp65R1yjp3L5gHsBg4K2HZgesSlpsA+4XnjYGtwDFheTLwX0CdsNw8/PcW4PaEfbQDdoXnLYF3gc5heRSwKjzvDXwOHB+Wfwk8lKLeq4BR4XlnYBfQorw2JZX7qm7ACGA30CYs3w/cmrBuekK91iTt5zWgS3jeIuH1/sDKpPPZuJx6DAMmJJy7H5a1NdTxFaJZFQNKgdFh3R3ApLLzDbyR0J7bgCmhTFNgC/D9sO5N4BCimZcVwPzw+n0J53Ex8CjRJMuhwMcJ56M7sCM8b0b0B3JIWD4E2BFebxfafFZYNxRYnvw+SNE3Kfuf6H9Mc/nne/H7CftN7KuzgY1E79US4Inkvkt675cCdcP2mxLqvRLolXDsdSn2UW7fE73P3wM6huVryt4L2Tp/SfVqCewsO5d6KO9Q3oHyTnlXSx4o65R1yjplXdKjYD5BrcCUhOcNgQfMbBOwnOjNfWxYdxbwW3f/EsDdd1G5k4EN7r41LE8GjjOzJmH5JXdfF56vJGEWqUzY9rhQlrCv9cAp6TXva5a7+5sVHS8NJ5rZ0jAz87tQt8qcQ/Smf97M1gNXEb1Jyzzl7v/w6B25KqFefYAH4Kvz/XhCmf7A/R75EHgkvAbwDNAvLN8HtDGz+mF5UcI+/uLuX7r7TqI/wpnh9bVAazNrAHwHOAKYF+o+j+gPr0PYdo+7zwnPq3pOU/X/2UTvu1XhmP8JtCmnfB/gUXff4+77COeqAlPc/Qt33wNMA/qG1/8AXBmeX0U0w1WeVH1/CvC8h1kvYFJCmWyev7K/j9nAHQnnUlJT3lWN8k55p7wrTMq6qlHWKeuKKuuq+93+fLIn4fl44H+BEe7+hZmVAg1qsG8j6rBUPk14vo/yz6elKFvRfmtyvJRCEEwHerr782Z2KPBWOkWBce4+KcX65Hrtn1Cuon0mn4Oy5YVEIXYE0QxfT+BCAHf/WwXH/TRss8/MIDo/Bmx0957fqIBZO+CzpH1U5Zym6g8jml28qZLyFZ2fyiSev78Avzaz44mC8dJvbFxx31f0Ps/a+bPo60JzgFJ3vyPdcrWc8i5NyrukCijvlHeFRVmXJmVdUgWUdUWRdcXwCWqiZsCbIcC6EH0kXmYOMNbCu9vMmofXPwQOSLG/Z4lm1TqF5UuIPmL/KN0KhRmk9aEsYV/HEs1GZUNF7WlA9CYrm6m7MsV2yWYDV5rZgQBmtp+ZHVtJGYjCaGQo8y1gUMK6p4HLLNIEGAIsSCh3BnCgu+8Ir/87X59hS9cKoKOZffXjCOG7/ZUFyIdAQ6veDzQ8QXTty2HheCVmdmI52y0EBptZIzMrIZyrCgy36NqNRsAFRLORuPvnRDNjs4m+ivJxOWUr6vuVRDNwZTNnIxLWZeX8hRnQJ4i+ilJZ2Ev5lHfKu2TKu4jyrrgo65R1yZR1kaLNumIboI4DRpvZauBGYGnCumuIrmPYbGYbgLITNxPoZuFC+sSdufu7wHDgYTPbSDTjM6wa9RoKDAv7eBgYHvadDRuBlyy6OP1rP3kdAvUmYLWZLQX2prNDd/8T8BCwJLRhLdAjjaL/ARxoZluBPxF9zz5xnRF93/5Z4E/uPj8cbwfwEfA/YdtFwOFUI8TcfTfR11hutugC8xeIrq2o8I/Q3d8navMmS30hfaqyS4muW5gd3mubgXPL2W4O0f9c1xO1rbKvQTxPFOjrgbkJX78AmAi0Bu5JUaeUfe/ufyf6QYm5ZracaJb0c+DjLJ6/UUTXepwR/vbWm9kvK2m/fJ3yTnmXXHflHcq7IqSsU9Yl111ZR3FnnUVfLReRQmZmw4AL3b2yX4tLVb5J2eyxmY0k+sGC71ZSTEQk55R3IlIb1OasK4ZrUEVqNTN7iugC9nNqsJsfW/Tz7XWB94HRmaibiEgmKe9EpDao7VmnT1BFREREREQkLxTbNagiIiIiIiJSoDRAFRERERERkbygAaqIiIiIiIjkBQ1QRUREREREJC9ogCoiIiIiIiJ5QQNUERERERERyQv/D4IBUdZULaUwAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/BCG_incomplete_mkts_27_0.png" }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Comparing the prices\n", "fig, ax = plt.subplots(1,3,figsize=(16,6))\n", "\n", "ax[0].plot(wlist,q1list,label='agent 1',color='green')\n", "ax[0].plot(wlist,q2list,label='agent 2',color='blue')\n", "ax[0].plot(wlist,qlist,label='equity price',color='red',linestyle='--')\n", "ax[0].legend()\n", "ax[0].set_title('equity valuations')\n", "ax[0].set_xlabel('fraction of initial endowment held by agent 2',fontsize=11)\n", "\n", "ax[1].plot(wlist,p1list,label='agent 1',color='green')\n", "ax[1].plot(wlist,p2list,label='agent 2',color='blue')\n", "ax[1].plot(wlist,plist,label='bond price',color='red',linestyle='--')\n", "ax[1].legend()\n", "ax[1].set_title('bond valuations')\n", "ax[1].set_xlabel('fraction of initial endowment held by agent 2',fontsize=11)\n", "\n", "ax[2].plot(wlist,tlist,color='blue')\n", "ax[2].set_title('equity holdings by agent 1')\n", "ax[2].set_xlabel('fraction of initial endowment held by agent 2',fontsize=11)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is rewarding to stare at the above plots too.\n", "\n", "In equilibrium, equity valuations are the same across the two types of\n", "agents but bond valuations are not.\n", "\n", "Agents of type 2 value bonds more highly (they want more hedging).\n", "\n", "Taken together with our earlier plot of equity holdings, these graphs confirm our earlier conjecture that while both type\n", "of agents hold equities, only agents of type 2 holds bonds." ] } ], "metadata": { "jupytext": { "text_representation": { "extension": ".md", "format_name": "myst" } }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" }, "source_map": [ 10, 29, 36, 707, 718, 1202, 1213, 1218, 1222, 1234, 1239, 1251, 1283, 1372, 1587, 1608, 1647, 1660, 1698, 1713, 1715, 1731, 1761, 1789, 1820, 1867, 1897, 1912, 1935 ] }, "nbformat": 4, "nbformat_minor": 4 }