{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "(information_consumption_smoothing-v3)=\n", "```{raw} html\n", "
\n", " \n", " \"QuantEcon\"\n", " \n", "
\n", "```\n", "\n", "# Information and Consumption Smoothing\n", "\n", "```{contents} Contents\n", ":depth: 2\n", "```\n", "\n", "In addition to what's in Anaconda, this lecture employs the following libraries:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already up-to-date: quantecon in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (0.4.8)\r\n", "Requirement already satisfied, skipping upgrade: numba>=0.38 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from quantecon) (0.50.1)\r\n", "Requirement already satisfied, skipping upgrade: sympy in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from quantecon) (1.6.1)\r\n", "Requirement already satisfied, skipping upgrade: requests in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from quantecon) (2.24.0)\r\n", "Requirement already satisfied, skipping upgrade: numpy in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from quantecon) (1.18.5)\r\n", "Requirement already satisfied, skipping upgrade: scipy>=1.0.0 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from quantecon) (1.5.0)\r\n", "Requirement already satisfied, skipping upgrade: llvmlite<0.34,>=0.33.0.dev0 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from numba>=0.38->quantecon) (0.33.0+1.g022ab0f)\r\n", "Requirement already satisfied, skipping upgrade: setuptools in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from numba>=0.38->quantecon) (49.2.0.post20200714)\r\n", "Requirement already satisfied, skipping upgrade: mpmath>=0.19 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from sympy->quantecon) (1.1.0)\r\n", "Requirement already satisfied, skipping upgrade: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from requests->quantecon) (1.25.9)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied, skipping upgrade: certifi>=2017.4.17 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from requests->quantecon) (2020.6.20)\r\n", "Requirement already satisfied, skipping upgrade: chardet<4,>=3.0.2 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from requests->quantecon) (3.0.4)\r\n", "Requirement already satisfied, skipping upgrade: idna<3,>=2.5 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from requests->quantecon) (2.10)\r\n" ] } ], "source": [ "!pip install --upgrade quantecon" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Overview\n", "\n", "This lecture studies two consumers who have exactly the same\n", "nonfinancial income process and who both conform to the linear-quadratic\n", "permanent income of consumption smoothing model described in the\n", "[quantecon lecture](https://python-intro.quantecon.org/perm_income_cons.html).\n", "\n", "The two consumers have different information about\n", "future nonfinancial incomes.\n", "\n", "One consumer each period receives **news** in the form of a shock that simultaneously\n", "affects both **today’s** nonfinancial income and the\n", "present value of **future** nonfinancial incomes in a particular way.\n", "\n", "The other, less well informed, consumer each period receives a shock\n", "that equals the part of today’s nonfinancial income that could not be\n", "forecast from all past values of nonfinancial income.\n", "\n", "Even though they receive exactly the same nonfinancial incomes each\n", "period, our two consumers behave differently because they have different information about\n", "their future nonfinancial incomes.\n", "\n", "The second consumer receives less information about future nonfinancial\n", "incomes in a sense that we shall make precise below.\n", "\n", "This difference in their information sets manifests itself in their responding differently to what they regard as time $t$ information\n", "shocks.\n", "\n", "Thus, while they receive exactly the same histories of\n", "nonfinancial income, our two consumers receive different **shocks** or **news** about\n", "their **future** nonfinancial incomes.\n", "\n", "We compare behaviors of our two consumers as a way to learn about\n", "\n", "- operating characteristics of the linear-quadratic permanent income\n", " model\n", "- how the Kalman filter introduced in [this lecture](https://python-intro.quantecon.org/kalman.html)\n", " and/or the theory of optimal\n", " forecasting introduced in [this lecture](https://python-advanced.quantecon.org/classical_filtering.html)\n", " embody lessons\n", " that can be applied to the **news** and **noise** literature\n", "- various ways of representing and computing optimal decision rules in\n", " the linear-quadratic permanent income model\n", "- a **Ricardian equivalence** outcome describing effects on optimal\n", " consumption of a tax cut at time $t$ accompanied by a foreseen\n", " permanent increases in taxes that is just sufficient to cover the interest\n", " payments used to service the risk-free government bonds that are issued to finance\n", " the tax cut\n", "- a simple application of alternative ways to factor a covariance\n", " generating function along lines described in [this lecture](https://python-advanced.quantecon.org/classical_filtering.html)\n", "\n", "This lecture can be regarded as an introduction to some of the **invertibility** issues that take center stage in\n", "the analysis of **fiscal foresight** by Eric Leeper, Todd Walker, and Susan Yang {cite}`Leeper_Walker_Yang`.\n", "\n", "## Two Representations of the **Same** Nonfinancial Income Process\n", "\n", "Where $\\beta \\in (0,1)$, we study consequences of endowing a\n", "consumer with one of the two alternative representations for the change\n", "in the consumer’s nonfinancial income $y_{t+1} - y_t$.\n", "\n", "The first representation, which we shall refer to as the **original representation**, is\n", "\n", "```{math}\n", ":label: eqn_1\n", "\n", "y_{t+1} - y_t = \\epsilon_{t+1} - \\beta^{-1} \\epsilon_t \\quad\n", "```\n", "\n", "where $\\{\\epsilon_t\\}$ is an i.i.d. normally distributed scalar\n", "process with means of zero and contemporaneous variances\n", "$\\sigma_\\epsilon^2$.\n", "\n", "This representation of the process is used by a consumer who at time\n", "$t$ knows both $y_t$ and the original shock\n", "$\\epsilon_t$ and can use both of them to forecast future\n", "$y_{t+j}$’s.\n", "\n", "Furthermore, as we'll see below, representation {eq}`eqn_1` has the peculiar property that a positive shock\n", "$\\epsilon_{t+1}$ leaves the discounted present value of the consumer's financial income at time $t+1$\n", "unaltered.\n", "\n", "The second representation of the **same** $\\{y_t\\}$ process is\n", "\n", "```{math}\n", ":label: eqn_2\n", "\n", "y_{t+1} - y_t = a_{t+1} - \\beta a_t \\quad\n", "```\n", "\n", "where $\\{a_t\\}$ is another i.i.d. normally distributed scalar\n", "process, with means of zero and now variances $\\sigma_a^2$.\n", "\n", "The two i.i.d. shock variances are related by\n", "\n", "$$\n", "\\sigma_a^2 = \\beta^{-2} \\sigma_\\epsilon^2 > \\sigma_\\epsilon^2\n", "$$\n", "\n", "so that the variance of the innovation exceeds the variance of the\n", "original shock by a multiplicative factor $\\beta^{-2}$.\n", "\n", "The second representation is the **innovations representation** from\n", "Kalman filtering theory.\n", "\n", "To see how this works, note that equating representations {eq}`eqn_1`\n", "and {eq}`eqn_2` for $y_{t+1} - y_t$ implies\n", "$\\epsilon_{t+1} - \\beta^{-1} \\epsilon_t = a_{t+1} - \\beta a_t$,\n", "which in turn implies\n", "\n", "$$\n", "a_{t+1} = \\beta a_t + \\epsilon_{t+1} - \\beta^{-1} \\epsilon_t .\n", "$$\n", "\n", "Solving this difference equation backwards for $a_{t+1}$ gives,\n", "after a few lines of algebra,\n", "\n", "```{math}\n", ":label: eqn_3\n", "\n", "a_{t+1} = \\epsilon_{t+1} + (\\beta - \\beta^{-1}) \\sum_{j=0}^\\infty \\beta^j \\epsilon_{t-j} \\quad\n", "```\n", "\n", "which we can also write as\n", "\n", "$$\n", "a_{t+1} = \\sum_{j=0}^\\infty h_j \\epsilon_{t+1 -j} \\equiv h(L) \\epsilon_{t+1}\n", "$$\n", "\n", "where $L$ is the one-period lag operator, $h(L) = \\sum_{j=0}^\\infty h_j L^j$, $I$ is the\n", "identity operator, and\n", "\n", "$$\n", "h(L) = \\frac{ I -\\beta^{-1} L}{ I - \\beta L}\n", "$$\n", "\n", "Let $g_j \\equiv E z_t z_{t-j}$ be the $j$th autocovariance\n", "of the $\\{y_t - y_{t-1}\\}$ process.\n", "\n", "Using calculations in the [quantecon lecture](https://python-advanced.quantecon.org/classical_filtering.html), where\n", "$z \\in C$ is a complex variable, the covariance generating\n", "function $g (z) =\n", "\\sum_{j=-\\infty}^\\infty g_j z^j$\n", "of the $\\{(y_t - y_{t-1})\\}$ process equals\n", "\n", "$$\n", "g(z) = \\sigma_\\epsilon^2 h(z) h(z^{-1}) = \\beta^{-2} \\sigma_\\epsilon^2 > \\sigma_\\epsilon^2 ,\n", "$$\n", "\n", "which confirms that $\\{a_t\\}$ is a **serially uncorrelated**\n", "process with variance\n", "\n", "$$\n", "\\sigma_a^2 = \\beta^{-1} \\sigma_\\epsilon^2 .\n", "$$\n", "\n", "To verify these claims, just notice that\n", "$g(z) = \\beta^{-2} \\sigma_\\epsilon^2$ implies that the coefficient\n", "$g_0 = \\beta^{-2} \\sigma_\\epsilon^2$ and that $g_j = 0$ for\n", "$j \\neq 0$.\n", "\n", "Alternatively, if you are uncomfortable with covariance generating\n", "functions, note that we can directly calculate $\\sigma_a^2$ from\n", "formula {eq}`eqn_3` according to\n", "\n", "$$\n", "\\sigma_a^2 = \\sigma_\\epsilon^2 + [ 1 + (\\beta - \\beta^{-1})^2 \\sum_{j=0}^\\infty \\beta^{2j} ] = \\beta^{-1} \\sigma_\\epsilon^2 .\n", "$$\n", "\n", "### Application of Kalman filter\n", "\n", "We can also obtain representation {eq}`eqn_2` from representation {eq}`eqn_1` by using\n", "the **Kalman filter**.\n", "\n", "Thus, from equations associated with the **Kalman filter**, it can be\n", "verified that the steady-state Kalman gain $K = \\beta^2$ and the\n", "steady state conditional covariance\n", "$\\Sigma = E [(\\epsilon_t - \\hat \\epsilon_t)^2 | y_{t-1}, y_{t-2}, \\ldots ] = (1 - \\beta^2) \\sigma_\\epsilon^2$.\n", "\n", "In a little more detail, let $z_t = y_t - y_{t-1}$ and form the\n", "state-space representation\n", "\n", "$$\n", "\\begin{aligned} \\epsilon_{t+1} & = 0 \\epsilon_t + \\epsilon_{t+1} \\cr\n", " z_{t+1} & = - \\beta^{-1} \\epsilon_t + \\epsilon_{t+1} \\end{aligned}\n", "$$\n", "\n", "and assume that $\\sigma_\\epsilon = 1$ for convenience\n", "\n", "Compute the steady-state Kalman filter for this system and let $K$\n", "be the steady-state gain and $a_{t+1}$ the one-step ahead\n", "innovation.\n", "\n", "The innovations representation is\n", "\n", "$$\n", "\\begin{aligned} \\hat \\epsilon_{t+1} & = 0 \\hat \\epsilon_t + K a_{t+1} \\cr\n", " z_{t+1} & = - \\beta a_t + a_{t+1} \\end{aligned}\n", "$$\n", "\n", "By applying formulas for the steady-state Kalman filter, by hand we\n", "computed that\n", "$K = \\beta^2, \\sigma_a^2 = \\beta^{-2} \\sigma_\\epsilon^2 = \\beta^{-2},$\n", "and $\\Sigma = (1-\\beta^2) \\sigma_\\epsilon^2$.\n", "\n", "We can also obtain these formulas via the classical filtering theory\n", "described in [this lecture](https://python-advanced.quantecon.org/classical_filtering.html).\n", "\n", "### News Shocks and Less Informative Shocks\n", "\n", "Representation {eq}`eqn_1` is cast in terms of a **news shock**\n", "$\\epsilon_{t+1}$ that represents a shock to nonfinancial income\n", "coming from taxes, transfers, and other random sources of income changes\n", "known to a well-informed person having all sorts of information about\n", "the income process.\n", "\n", "Representation {eq}`eqn_2` for the **same** income process is driven by shocks\n", "$a_t$ that contain less information than the news shock\n", "$\\epsilon_t$.\n", "\n", "Representation {eq}`eqn_2` is called the **innovations** representation for the\n", "$\\{y_t - y_{t-1}\\}$ process.\n", "\n", "It is cast in terms of what time series statisticians call the\n", "**innovation** or **fundamental** shock that emerges from applying the\n", "theory of optimally predicting nonfinancial income based solely on the\n", "information contained solely in **past** levels of growth in\n", "nonfinancial income.\n", "\n", "**Fundamental for the** ${y_t}$ **process** means that the shock\n", "$a_t$ can be expressed as a square-summable linear combination of\n", "$y_t, y_{t-1}, \\ldots$.\n", "\n", "The shock $\\epsilon_t$ is **not fundamental** and has more\n", "information about the future of the $\\{y_t - y_{t-1}\\}$ process\n", "than is contained in $a_t$.\n", "\n", "Representation {eq}`eqn_3` reveals the important fact that the **original\n", "shock** $\\epsilon_t$ contains more information about future\n", "$y$’s than is contained in the semi-infinite history\n", "$y^t = [y_t, y_{t-1}, \\ldots ]$ of current and past $y$’s.\n", "\n", "Staring at representation {eq}`eqn_3` for $a_{t+1}$ shows that it consists\n", "both of **new news** $\\epsilon_{t+1}$ as well as a long moving\n", "average $(\\beta - \\beta^{-1})\\sum_{j=0}^\\infty \\beta^j\\epsilon_{t-j}$ of **old news**.\n", "\n", "The **better informed** representation {eq}`eqn_1` asserts that a shock\n", "$\\epsilon_{t}$ results in an impulse response to nonfinancial\n", "income of $\\epsilon_t$ times the sequence\n", "\n", "$$\n", "1, 1- \\beta^{-1}, 1- \\beta^{-1}, \\ldots\n", "$$\n", "\n", "so that a shock that **increases** nonfinancial income $y_t$ by\n", "$\\epsilon_t$ at time $t$ is followed by an **increase** in\n", "future $y$ of $\\epsilon_t$ times $1 - \\beta^{-1} < 0$\n", "in **all** subsequent periods.\n", "\n", "Because $1 - \\beta^{-1} < 0$, this means that a positive shock of\n", "$\\epsilon_t$ today raises income at time $t$ by\n", "$\\epsilon_t$ and then **decreases all** future incomes by\n", "$(\\beta^{-1} -1)\\epsilon_t$.\n", "\n", "This pattern precisely describes the following mental experiment:\n", "\n", "- The consumer receives a government transfer of $\\epsilon_t$ at\n", " time $t$.\n", "- The government finances the transfer by issuing a one-period bond on\n", " which it pays a gross one-period risk-free interest rate equal to\n", " $\\beta^{-1}$.\n", "- In each future period, the government **rolls over** the one-period\n", " bond and so continues to borrow $\\epsilon_t$ forever.\n", "- The government imposes a lump-sum tax on the consumer in order to pay\n", " just the current interest on the original bond and its successors\n", " created by the roll-over operation.\n", "- In all future periods $t+1, t+2, \\ldots$, the government levies\n", " a lump-sum tax on the consumer of $\\beta^{-1} -1$ that is just\n", " enough to pay the interest on the bond.\n", "\n", "The **present value** of the impulse response or moving average\n", "coefficients equals $d_\\epsilon(L) = \\frac{0}{1 -\\beta } =0$, a fact that we’ll see again\n", "below.\n", "\n", "Representation {eq}`eqn_2`, i.e., the innovation representation, asserts that a\n", "shock $a_{t}$ results in an impulse response to nonfinancial\n", "income of $a_t$ times\n", "\n", "$$\n", "1, 1 -\\beta, 1 - \\beta, \\ldots\n", "$$\n", "\n", "so that a shock that increases income $y_t$ by $a_t$ at time\n", "$t$ can be expected to be followed by an **increase** in $y_{t+j}$\n", "of $a_t$ times $1 - \\beta > 0$ in all future periods $j=1, 2, \\ldots$.\n", "\n", "The present value of the impulse response or moving average coefficients\n", "for representation {eq}`eqn_2` is\n", "$d_a(\\beta) = \\frac{1 -\\beta^2}{1 -\\beta } = (1 + \\beta)$, another\n", "fact that will be important below.\n", "\n", "### Representation of $\\epsilon_t$ in Terms of Future $y$’s\n", "\n", "Notice that reprentation {eq}`eqn_1`, namely, $y_{t+1} - y_t = -\\beta^{-1} \\epsilon_t + \\epsilon_{t+1}$\n", "implies the linear difference equation\n", "\n", "$$\n", "\\epsilon_t = \\beta \\epsilon_{t+1} - \\beta (y_{t+1} - y_t ).\n", "$$\n", "\n", "Solving forward we eventually obtain\n", "\n", "$$\n", "\\epsilon_t = \\beta ( y_t - (1-\\beta) \\sum_{j=0}^\\infty \\beta^j y_{t+j+ 1} )\n", "$$\n", "\n", "This equation shows that $\\epsilon_t$ equals\n", "$\\beta$ times the one-step-backwards error in\n", "optimally **backcasting** $y_t$ based on\n", "the **future** $y^t_+ \\equiv y_{t+1}, y_{t+2}, \\ldots ]$ via the optimal backcasting formula\n", "\n", "$$\n", "E [ y_t | y^t_+] = (1-\\beta) \\sum_{j=0}^\\infty \\beta^j y_{t+j+ 1}\n", "$$\n", "\n", "Thus, $\\epsilon_t$ contains **exact** information about an\n", "important linear combination of **future** nonfinancial income.\n", "\n", "### Representation in Terms of $a_t$ Shocks\n", "\n", "Next notice that representation {eq}`eqn_2`, namely, $y_{t+1} - y_t = -\n", "\\beta a_t + a_{t+1}$ implies the linear difference\n", "equation\n", "\n", "$$\n", "a_{t+1} = \\beta a_t + (y_{t+1} - y_t)\n", "$$\n", "\n", "Solving this equation backward establishes that the one-step-prediction\n", "error $a_{t+1}$ is\n", "\n", "$$\n", "a_{t+1} = y_{t+1} - (1-\\beta) \\sum_{j=0}^\\infty \\beta^j y_{t-j}\n", "$$\n", "\n", "and where the information set is $y^t = [y_t, y_{t-1}, \\ldots ]$,\n", "the one step-ahead optimal prediction is\n", "\n", "$$\n", "E [ y_{t+1} | y^t ] = (1-\\beta) \\sum_{j=0}^\\infty \\beta^j y_{t-j}\n", "$$\n", "\n", "### Permanent Income Consumption-Smoothing Model\n", "\n", "When we computed optimal consumption-saving policies for the two\n", "representations using formulas obtained with the difference equation\n", "approach described in the [quantecon lecture](https://python-intro.quantecon.org/perm_income_cons.html),\n", "we obtain:\n", "\n", "**for a consumer having the information assumed in the news\n", "representation** {eq}`eqn_1`:\n", "\n", "$$\n", "\\begin{aligned}\n", "c_{t+1} - c_t & = 0 \\cr\n", "b_{t+1} - b_t & = - \\beta^{-1} \\epsilon_t\n", "\\end{aligned}\n", "$$\n", "\n", "**for a consumer having the more limited information associated with the\n", "innovations representation** {eq}`eqn_2`:\n", "\n", "$$\n", "\\begin{aligned}\n", "c_{t+1} - c_t & = (1-\\beta^2) a_{t+1} \\cr\n", "b_{t+1} - b_t & = - \\beta a_t\n", "\\end{aligned}\n", "$$\n", "\n", "These formulas agree with outcomes from the Python programs to be\n", "reported below using state-space representations and dynamic\n", "programming.\n", "\n", "Evidently the two consumers behave differently though they receive\n", "exactly the same histories of nonfinancial income.\n", "\n", "The consumer with information associated with representation {eq}`eqn_1`\n", "responds to each shock $\\epsilon_{t+1}$ by leaving his consumption\n", "unaltered and **saving** all of $a_{t+1}$ in anticipation of the\n", "permanently increased taxes that he will bear to pay for the addition\n", "$a_{t+1}$ to his time $t+1$ nonfinancial income.\n", "\n", "The consumer with information associated with representation {eq}`eqn_2`\n", "responds to a shock $a_{t+1}$ by increasing his consumption by\n", "what he perceives to be the **permanent** part of the increase in\n", "consumption and by increasing his **saving** by what he perceives to be\n", "the temporary part.\n", "\n", "We can regard the first consumer as someone\n", "whose behavior sharply illustrates the behavior assumed in a classic\n", "Ricardian equivalence experiment.\n", "\n", "## State Space Representations\n", "\n", "We can cast our two representations in terms of the following two state\n", "space systems\n", "\n", "$$\n", "\\begin{aligned} \\begin{bmatrix} y_{t+1} \\cr \\epsilon_{t+1} \\end{bmatrix} &=\n", " \\begin{bmatrix} 1 & - \\beta^{-1} \\cr 0 & 0 \\end{bmatrix} \\begin{bmatrix} y_t \\cr \\epsilon_t \\end{bmatrix}\n", " + \\begin{bmatrix} \\sigma_\\epsilon \\cr \\sigma_\\epsilon \\end{bmatrix}\n", " v_{t+1} \\cr\n", "y_t & = \\begin{bmatrix} 1 & 0 \\end{bmatrix} \\begin{bmatrix} y_t \\cr \\epsilon_t \\end{bmatrix} \\end{aligned}\n", "$$\n", "\n", "and\n", "\n", "$$\n", "\\begin{aligned} \\begin{bmatrix} y_{t+1} \\cr a_{t+1} \\end{bmatrix} &=\n", " \\begin{bmatrix} 1 & - \\beta \\cr 0 & 0 \\end{bmatrix} \\begin{bmatrix} y_t \\cr a_t \\end{bmatrix}\n", " + \\begin{bmatrix} \\sigma_a \\cr \\sigma_a \\end{bmatrix}\n", " u_{t+1} \\cr\n", "y_t & = \\begin{bmatrix} 1 & 0 \\end{bmatrix} \\begin{bmatrix} y_t \\cr a_t \\end{bmatrix} \\end{aligned}\n", "$$\n", "\n", "where $\\{v_t\\}$ and $\\{u_t\\}$ are both i.i.d. sequences of\n", "univariate standardized normal random variables.\n", "\n", "These two alternative income processes are ready to be used in the\n", "framework presented in the section “Comparison with the Difference\n", "Equation Approach” in the [quantecon lecture](https://python-intro.quantecon.org/perm_income_cons.html).\n", "\n", "All the code that we shall use below is presented in that lecture.\n", "\n", "### Computations\n", "\n", "We shall use Python to form **both** of the above two state-space\n", "representations, using the following parameter values\n", "$\\sigma_\\epsilon = 1, \\sigma_a = \\beta^{-1} \\sigma_\\epsilon = \\beta^{-1}$\n", "where $\\beta$ is the **same** value as the discount factor in the\n", "household’s problem in the LQ savings problem in the [lecture](https://python-intro.quantecon.org/perm_income_cons.html).\n", "\n", "For these two representations, we use the code in the\n", "[lecture](https://python-intro.quantecon.org/perm_income_cons.html) to\n", "\n", "- compute optimal decision rules for $c_t, b_t$ for the two types\n", " of consumers associated with our two representations of nonfinancial\n", " income\n", "- use the value function objects $P, d$ returned by the code to\n", " compute optimal values for the two representations when evaluated at\n", " the following initial conditions $x_0 =$\n", "\n", "$$\n", "\\begin{bmatrix} 10 \\cr 0 \\end{bmatrix}\n", "$$\n", "\n", "for each representation.\n", "\n", "- create instances of the\n", " [LinearStateSpace](https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/lss.py)\n", " class for the two representations of the $\\{y_t\\}$ process and\n", " use them to obtain impulse response functions of $c_t$ and\n", " $b_t$ to the respective shocks $\\epsilon_t$ and\n", " $a_t$ for the two representations.\n", "- run simulations of $\\{y_t, c_t, b_t\\}$ of length $T$\n", " under both of the representations (later I’ll give some more details\n", " about how we’ll run some special versions of these)\n", "\n", "We want to solve the LQ problem:\n", "\n", "$$\n", "\\min\\ \\sum_{t=0}^{\\infty}\\beta^{t}\\left(c_{t}-\\gamma\\right)^{2}\n", "$$\n", "\n", "subject to the sequence of constraints\n", "\n", "$$\n", "\\quad c_{t}+b_{t}=\\frac{1}{1+r}b_{t+1}+y_{t}, \\quad t \\geq 0\n", "$$\n", "\n", "where $y_t$ follows one of the representations defined above.\n", "\n", "Define the control as $u_t \\equiv c_t - \\gamma$.\n", "\n", "(For simplicity we can assume $\\gamma=0$ below because\n", "$\\gamma$ has no effect on the impulse response functions that\n", "interest us.)\n", "\n", "The state transition equations under our two representations for the\n", "nonfinancial income process $\\{y_t\\}$ can be written as\n", "\n", "$$\n", "\\left[\\begin{array}{c}\n", "y_{t+1}\\\\\n", "\\epsilon_{t+1}\\\\\n", "b_{t+1}\n", "\\end{array}\\right]=\\underset{\\equiv A_{1}}{\\underbrace{\\left[\\begin{array}{ccc}\n", "1 & -\\beta^{-1} & 0\\\\\n", "0 & 0 & 0\\\\\n", "-\\left(1+r\\right) & 0 & 1+r\n", "\\end{array}\\right]}}\\left[\\begin{array}{c}\n", "y_{t}\\\\\n", "\\epsilon_{t}\\\\\n", "b_{t}\n", "\\end{array}\\right]+\\underset{\\equiv B_{1}}{\\underbrace{\\left[\\begin{array}{c}\n", "0\\\\\n", "0\\\\\n", "1+r\n", "\\end{array}\\right]}}\\left[\\begin{array}{c}\n", "c_{t}\\end{array}\\right]+\\underset{\\equiv C_{1}}{\\underbrace{\\left[\\begin{array}{c}\n", "\\sigma_{\\epsilon}\\\\\n", "\\sigma_{\\epsilon}\\\\\n", "0\n", "\\end{array}\\right]}}\\nu_{t+1},\n", "$$\n", "\n", "and\n", "\n", "$$\n", "\\left[\\begin{array}{c}\n", "y_{t+1}\\\\\n", "a_{t+1}\\\\\n", "b_{t+1}\n", "\\end{array}\\right]=\\underset{\\equiv A_{2}}{\\underbrace{\\left[\\begin{array}{ccc}\n", "1 & -\\beta & 0\\\\\n", "0 & 0 & 0\\\\\n", "-\\left(1+r\\right) & 0 & 1+r\n", "\\end{array}\\right]}}\\left[\\begin{array}{c}\n", "y_{t}\\\\\n", "a_{t}\\\\\n", "b_{t}\n", "\\end{array}\\right]+\\underset{\\equiv B_{2}}{\\underbrace{\\left[\\begin{array}{c}\n", "0\\\\\n", "0\\\\\n", "1+r\n", "\\end{array}\\right]}}\\left[\\begin{array}{c}\n", "c_{t}\\end{array}\\right]+\\underset{\\equiv C_{2}}{\\underbrace{\\left[\\begin{array}{c}\n", "\\sigma_{a}\\\\\n", "\\sigma_{a}\\\\\n", "0\n", "\\end{array}\\right]}}u_{t+1}.\n", "$$\n", "\n", "As usual, we start by importing packages." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import quantecon as qe\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# Set parameters\n", "β, σϵ = 0.95, 1\n", "σa = σϵ / β\n", "\n", "R = 1 / β\n", "\n", "# Payoff matrices are the same for two representations\n", "RLQ = np.array([[0, 0, 0],\n", " [0, 0, 0],\n", " [0, 0, 1e-12]]) # put penalty on debt\n", "QLQ = np.array([1.])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# Original representation state transition matrices\n", "ALQ1 = np.array([[1, -R, 0],\n", " [0, 0, 0],\n", " [-R, 0, R]])\n", "BLQ1 = np.array([[0, 0, R]]).T\n", "CLQ1 = np.array([[σϵ, σϵ, 0]]).T\n", "\n", "# Construct and solve the LQ problem\n", "LQ1 = qe.LQ(QLQ, RLQ, ALQ1, BLQ1, C=CLQ1, beta=β)\n", "P1, F1, d1 = LQ1.stationary_values()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 1. , -1. , -0.05]])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# The optimal decision rule for c\n", "-F1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Evidently optimal consumption and debt decision rules for the consumer\n", "having news representation {eq}`eqn_1` are\n", "\n", "$$\n", "\\begin{aligned}\n", "c_{t}^{*} &= y_{t}-\\epsilon_{t}-\\left(1-\\beta\\right)b_{t}, \\\\\n", "b_{t+1}^{*} &=\\beta^{-1}c_{t}^{*}+\\beta^{-1}b_{t}-\\beta^{-1}y_{t} \\\\\n", " & =\\beta^{-1}y_{t}-\\beta^{-1}\\epsilon_{t}-\\left(\\beta^{-1}-1\\right)b_{t}+\\beta^{-1}b_{t}-\\beta^{-1}y_{t} \\\\\n", " & =b_{t}-\\beta^{-1}\\epsilon_{t}.\n", "\\end{aligned}\n", "$$" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# Innovations representation\n", "ALQ2 = np.array([[1, -β, 0],\n", " [0, 0, 0],\n", " [-R, 0, R]])\n", "BLQ2 = np.array([[0, 0, R]]).T\n", "CLQ2 = np.array([[σa, σa, 0]]).T\n", "\n", "LQ2 = qe.LQ(QLQ, RLQ, ALQ2, BLQ2, C=CLQ2, beta=β)\n", "P2, F2, d2 = LQ2.stationary_values()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 1. , -0.9025, -0.05 ]])" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "-F2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For a consumer having access only to the information associated with the\n", "innovations representation {eq}`eqn_2`, the optimal decision rules are\n", "\n", "$$\n", "\\begin{aligned}\n", "c_{t}^{*} &= y_{t}-\\beta^{2}a_{t}-\\left(1-\\beta\\right)b_{t}, \\\\\n", "b_{t+1}^{*} &= \\beta^{-1}c_{t}^{*}+\\beta^{-1}b_{t}-\\beta^{-1}y_{t} \\\\\n", " &=\\beta^{-1}y_{t}-\\beta a_{t}-\\left(\\beta^{-1}-1\\right)b_{t}+\\beta^{-1}b_{t}-\\beta^{-1}y_{t} \\\\\n", " &=b_{t}-\\beta a_{t}.\n", "\\end{aligned}\n", "$$\n", "\n", "Now we construct two Linear State Space models that emerge from using\n", "optimal policies $u_t =- F x_t$ for the control variable.\n", "\n", "Take the original representation case as an example,\n", "\n", "$$\n", "\\left[\\begin{array}{c}\n", "y_{t+1}\\\\\n", "\\epsilon_{t+1}\\\\\n", "b_{t+1}\n", "\\end{array}\\right]=\\left(A_{1}-B_{1}F_{1}\\right)\\left[\\begin{array}{c}\n", "y_{t}\\\\\n", "\\epsilon_{t}\\\\\n", "b_{t}\n", "\\end{array}\\right]+C_{1}\\nu_{t+1}\n", "$$\n", "\n", "$$\n", "\\left[\\begin{array}{c}\n", "c_{t}\\\\\n", "b_{t}\n", "\\end{array}\\right]=\\left[\\begin{array}{c}\n", "-F_{1}\\\\\n", "S_{b}\n", "\\end{array}\\right]\\left[\\begin{array}{c}\n", "y_{t}\\\\\n", "\\epsilon_{t}\\\\\n", "b_{t}\n", "\\end{array}\\right]\n", "$$\n", "\n", "To have the Linear State Space model of the innovations representation\n", "case, we can simply replace the corresponding matrices." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# Construct two Linear State Space models\n", "Sb = np.array([0, 0, 1])\n", "\n", "ABF1 = ALQ1 - BLQ1 @ F1\n", "G1 = np.vstack([-F1, Sb])\n", "LSS1 = qe.LinearStateSpace(ABF1, CLQ1, G1)\n", "\n", "ABF2 = ALQ2 - BLQ2 @ F2\n", "G2 = np.vstack([-F2, Sb])\n", "LSS2 = qe.LinearStateSpace(ABF2, CLQ2, G2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the following we compute the impulse response functions of\n", "$c_t$ and $b_t$." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "J = 5 # Number of coefficients that we want\n", "\n", "x_res1, y_res1 = LSS1.impulse_response(j=J)\n", "b_res1 = np.array([x_res1[i][2, 0] for i in range(J)])\n", "c_res1 = np.array([y_res1[i][0, 0] for i in range(J)])\n", "\n", "x_res2, y_res2 = LSS2.impulse_response(j=J)\n", "b_res2 = np.array([x_res2[i][2, 0] for i in range(J)])\n", "c_res2 = np.array([y_res2[i][0, 0] for i in range(J)])" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([1.99997796e-11, 1.89473992e-11, 1.78947621e-11, 1.68421319e-11,\n", " 1.57894947e-11]),\n", " array([ 0. , -1.05263158, -1.05263158, -1.05263158, -1.05263158]))" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "c_res1 / σϵ, b_res1 / σϵ" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxU1f3/8dcnIRD2RSKCIAGLQkhCEsMmFnADRQVUtCoEgVrFaq1+q4LVuuBGLf3Wn0v1a6kVxQW+uFHFpYCIoBVZIhCCxQUUQQwgQVEUwvn9cW/yDSHLhElyZzLv5+Mxj8zMPfeez5yED2fO3Plcc84hIiL1X1zQAYiISN1QwhcRiRFK+CIiMUIJX0QkRijhi4jECCV8EZEYoYQvtcLMHjWzP9R02yqOk2xmzswahHusWFJT4y+Rz3QevtQXZpYMfAYkOOf2BxtN3TCzJ4DNzrlbQmw/DrjMOXdSbcYlkUkzfKlxZhYfdAxVqel3AXpXIdFACV9CYmY9zGyRme0yszwzG15q2xNm9oiZzTOzPcDJ/nN3lWpzo5ltNbMtZnaZv/Tys1L73+XfH2xmm83sd2b2tb/P+FLHOcvMVpnZbjP7wsxur8Zr2Ghmk8xsNbDHzBqYWT8ze9d/XR+a2eBS7ReZ2b1mtszMCs3sZTNr428rXj76pZl9Diz0n59gZvlm9o2ZvWFmnf3nzcz+4r+mQjNbbWap/rZGZjbNzD43s23+EkvjqsbDzC4HRgM3mtl3ZvZP//nJZvaJmX1rZuvM7Nzi3yHwKNDfb7+r7Pj7j39lZh+b2U4zm2tmHUptc2Y20cw2+K/xYTOzUH8HEjDnnG66VXoDEoCPgd8DDYFTgG+B4/3tTwCFwAC8SUSi/9xd/vYzgK+AnkAT4CnAAT8rtX9x28HAfmCK3+8w4HugdantaX4/6cA2YKS/Ldk/boMKXsdGIBfoBDQGjgZ2+H3EAaf7j5P89ouAL4FUoCnwPDCzTF9P+tsaAyP9ceoBNABuAd712w8FVgCtAPPbtPe33Q/MBdoAzYF/AveGOB4lY1fqdV4AdPBf0y+APaX6GgcsKdO+9PifAmwHsoBGwIPA4lJtHfCK/zqOAQqAM4L+G9UttJtm+BKKfkAzYKpz7ifn3EK8f/QXl2rzsnNuqXPugHNub5n9LwT+4ZzLc859D9xRRX/7gCnOuX3OuXnAd8DxAM65Rc65NX4/q4FngUHVeC0POOe+cM79AIwB5jnn5vnH+xewHC+pFnvKObfWObcH+ANwYZklq9udc3v8412Bl6jznfcZwj1Ahj/L34eXzLvjfXaW75zb6s+OfwVc55zb6Zz71t/volDGozzOuf91zm3xX9MsYAPQJ8TxGQ087pxb6Zz7EbgJ7x1Bcqk2U51zu5xznwNvARkhHlsCpoQvoegAfOGcO1DquU14M+RiX1S1f4htAXa4gz90/R7vPxzMrK+ZvWVmBWZWCEwE2lb1AirouzNwgb+cs8tf4jgJaF9B+014s+y2FWzvDPy/UsfaiTebP9r/T/Ih4GFgm5k9ZmYtgCS8dz0rSu33uv98leNRHjMba2a5pY6XSuhj1MF/nQA4577De9dT+nf9VaixSGRRwpdQbAE6mVnpv5dj8JY7ilV2utdWoGOpx53CiOUZvOWPTs65lnhr0tVZQy4d5xd4M/hWpW5NnXNTK4j1GLzZ9vZKjndFmeM1ds69C+Cce8A5dwLe0tZxwA3+sX4Aepbap6VzLtQketC4++8m/gZcDRzhnGsFrOX/xqiq0/K24P3HVXy8psARHPy7liilhC+heB9vHfhGM0vwP9g8B3guxP1nA+PN++C3CXBrGLE0B3Y65/aaWR/gkjCONRM4x8yGmlm8mSX6H5KW/s9pjJml+HFPAeY454oqON6jwE1m1hPAzFqa2QX+/d7+u5MEvLHcCxT575r+BvzFzI702x5tZkNDfA3bgK6lHjfFS+oF/rHG483wS7fvaGYNKzjeM3i/qwwza4S3vPS+c25jiPFIBFPClyo5534ChgNn4s1I/wqMdc6tD3H/14AH8NZ7Pwbe8zf9eBjh/BqYYmbf4v3HMfswjlEc1xfACLwPowvwZug3cPC/i6fwPtT8Cu/D6GsqOd6LwB+B58xsN97M+kx/cwu8xP4N3pLJDmCav20S3rj8299vPpWs0ZfxdyDFX755yTm3Dvgz3hhvw/uAe2mp9guBPOArM9te9mDOuQV4n1U8j/fO7FgO/jxBopi+eCV1zj89cC3QyEXwF6TMbBHeWTnTg45FpCZohi91wszONbOGZtYabxb8z0hO9iL1kRK+1JUr8JZNPgGKgCuDDUck9mhJR0QkRmiGLyISIyK64FPbtm1dcnJy0GGIiESNFStWbHfOJZW3LaITfnJyMsuXLw86DBGRqGFmmyrapiUdEZEYoYQvIhIjlPBFRGKEEr6ISIxQwhcRiRE1kvDN7Awz+8i/LNrkcrabmT3gb19tZlk10a+IiIQu7ITvX/3nYbyqgCnAxWaWUqbZmUA3/3Y58Ei4/YqISPXUxHn4fYCPnXOfApjZc3glZ9eVajMCeNJ5dRz+bWatzKy9c25rDfR/sH0/8OYTd/HvHzqR16hXjR9eRKS2pXRowW3n9Kzx49bEks7RHHyZt80cfDm0UNsAYGaXm9lyM1teUFBQ/WjiEuj/9XMM2/NC9fcVEanHamKGX97l5cpWZAuljfekc48BjwFkZ2dXv7JbfAOa980he+kDzLqkCzQ/qtqHEBGpj2pihr+Zg6/72RHvupjVbVNzMsaAK4IPn621LkREok1NJPwPgG5m1sW/TuZFeBeZLm0uMNY/W6cfUFgr6/fF2v4MjjkRVs0ElX8WEQFqIOH7Vy26GngDyAdmO+fyzGyimU30m80DPsW7buff8K5LWrsyx8COj+Hzf9d6VyIi0SCiL4CSnZ3tDrta5k97YNpxkDISRj5cs4GJiEQoM1vhnMsub1v9/aZtw6aQeh7kvQg/fht0NCIigau/CR8gcyzs2+MlfRGRGFe/E37HbGh7PKx8KuhIREQCV78Tvhlk5cDmZVDwUdDRiIgEqn4nfID0iyCuAazSLF9EYlv9T/jNkuC4M+DD56BoX9DRiIgEpv4nfIDMHNhTAP95I+hIREQCExsJ/2enQbOjtKwjIjEtNhJ+fAPIuAQ2vAm7a6+ig4hIJIuNhA9eqQV3QAXVRCRmxU7CP+JY6DxABdVEJGbFTsIHb5a/8xP4/L2gIxERqXOxlfBTRkDD5t4sX0QkxsRWwi9dUG3v7qCjERGpU7GV8AGyxsK+71VQTURiTuwl/KNPgKTuOidfRGJO7CV8M++bt5s/gK/XBx2NiEidib2ED5D+CxVUE5GYE5sJv1kSHH+mV1Bt/09BRyMiUidiM+GDt6zz/XbYoIJqIhIbYjfhH3sqNG+vq2GJSMyI3YRfXFDt43+poJqIxITYTfgAGaP9gmrPBB2JiEiti+2Ef8Sx0PkkFVQTkZgQ2wkf/IJqn8Kmd4OORESkVinhq6CaiMQIJfyGTSDtfFj3kgqqiUi9poQPkOkXVFv7fNCRiIjUGiV8gKOzIKmHlnVEpF4LK+GbWRsz+5eZbfB/ti6nTScze8vM8s0sz8x+G06ftcIMsnLgy+XwdX7Q0YiI1IpwZ/iTgQXOuW7AAv9xWfuB3znnegD9gKvMLCXMfmte+i8gLkGzfBGpt8JN+COAGf79GcDIsg2cc1udcyv9+98C+cDRYfZb85q29QuqPauCaiJSL4Wb8Ns557aCl9iBIytrbGbJQCbwfiVtLjez5Wa2vKCgIMzwqilrLHy/A/7zet32KyJSB6pM+GY238zWlnMbUZ2OzKwZ8DxwrXOuwvMfnXOPOeeynXPZSUlJ1ekifMeeAs07qE6+iNRLDapq4Jw7raJtZrbNzNo757aaWXvg6wraJeAl+6edcy8cdrS1LS7eK6i25L9h9xZo0SHoiEREaky4SzpzgUv9+5cCL5dtYGYG/B3Id879d5j91b5Mv6BargqqiUj9Em7CnwqcbmYbgNP9x5hZBzOb57cZAOQAp5hZrn8bFma/tadNV0j+uQqqiUi9U+WSTmWcczuAU8t5fgswzL+/BLBw+qlzmWPgxStg01JIPinoaEREaoS+aVueHsOhUQtdDUtE6hUl/PI0bAKp58O6l2FvYdDRiIjUCCX8imTlwP4fVFBNROoNJfyKdMiCI1NUakFE6g0l/IqYQWYOfLkCtq0LOhoRkbAp4VdGBdVEpB5Rwq9M0yOg+zBY/ZwKqolI1FPCr0pmcUG114KOREQkLEr4VTn2ZGhxtM7JF5Gop4RfleKCap8sgMIvg45GROSwKeGHIsMvqPahCqqJSPRSwg9Fmy7/V1DtwIGgoxEROSxK+KHKzIFvNnoF1UREopASfqhShkOjlroalohELSX8UCU0hjQVVBOR6KWEXx2ZObB/L6yZE3QkIiLVpoRfHR0y4cieKrUgIlFJCb86zLyyyVtWwra8oKMREakWJfzqSrtQBdVEJCop4VdX0yOg+1nw4XOw/8egoxERCZkS/uHIyoEfdsJHKqgmItFDCf9wdD0ZWnTUOfkiElWU8A9HcUG1jxdA4eagoxERCYkS/uHKuARwkPts0JGIiIRECf9wtekCXQZ6yzoqqCYiUUAJPxyZObBrE2xaEnQkIiJVUsIPR49zvIJquhqWiEQBJfxwJDSGtFGQPxd+2BV0NCIilQor4ZtZGzP7l5lt8H+2rqRtvJmtMrNXwukz4mT5BdXWqqCaiES2cGf4k4EFzrluwAL/cUV+C+SH2V/kaZ8B7VJVakFEIl64CX8EMMO/PwMYWV4jM+sInAVMD7O/yGPmfXi7ZRV8tTboaEREKhRuwm/nnNsK4P88soJ29wM3AlWev2hml5vZcjNbXlBQEGZ4dST9QohvqFm+iES0KhO+mc03s7Xl3EaE0oGZnQ187ZxbEUp759xjzrls51x2UlJSKLsEr0kbr6DaahVUE5HI1aCqBs650yraZmbbzKy9c26rmbUHvi6n2QBguJkNAxKBFmY20zk35rCjjkSZOZD3Inw0D3qeG3Q0IiKHCHdJZy5wqX//UuDlsg2cczc55zo655KBi4CF9S7ZA3Qd7BVU0zn5IhKhwk34U4HTzWwDcLr/GDPrYGbzwg0uqsTFQ+Zo+GShCqqJSEQKK+E753Y45051znXzf+70n9/inBtWTvtFzrmzw+kzopUUVHsm6EhERA6hb9rWpNbJ0GWQCqqJSERSwq9pmTmw63PY+E7QkYiIHKTKs3SkmnqcDYktvVl+10FBRyOV2LdvH5s3b2bv3r1BhyJSbYmJiXTs2JGEhISQ91HCr2kJjSHtAu9snWHfQOMKywtJwDZv3kzz5s1JTk7GzIIORyRkzjl27NjB5s2b6dKlS8j7aUmnNmTmQNGPsEYF1SLZ3r17OeKII5TsJeqYGUcccUS1350q4deG9r2gXZpKLUQBJXuJVofzt6uEXxvMvLLJW3PhqzVBRyNRbO7cuUydOrVW+1i0aBFnn11/z5YOVUFBAX379iUzM5N33qm5ky6eeOIJtmzZUvL4sssuY926dTV2/OpQwq8taReooJqEbfjw4UyeXFnV8chUVFQUdAjVtmDBArp3786qVav4+c9/XmPHLZvwp0+fTkpKSo0dvzqU8GtLkzbQ/WxYPUsF1aRCTz75JOnp6fTq1YucnJxDtj/xxBNcffXVAIwbN44rr7ySk08+ma5du/L2228zYcIEevTowbhx40r2adasGb/73e/Iysri1FNPpbjq7ODBg1m+fDkA27dvJzk5+ZD+3n77bTIyMsjIyCAzM5Nvv/0WgD/96U/07t2b9PR0brvttnJfS7Nmzbj11lvp27cv7733HjNnzqRPnz5kZGRwxRVXUFRURFFREePGjSM1NZW0tDT+8pe/lMR27bXXcuKJJ5KamsqyZcsA2LlzJyNHjiQ9PZ1+/fqxevVqAG6//XYmTJjA4MGD6dq1Kw888AAAe/bs4ayzzqJXr16kpqYya9YsAFasWMGgQYM44YQTGDp0KFu3bj0o9tzcXG688UbmzZtHRkYGP/zwA82aNSvZPmfOnJIxHjduHNdccw0nnngiXbt2Zc6c//us7r777iMtLY1evXoxefJk5syZw/Llyxk9enTJcUv/Hp599lnS0tJITU1l0qRJB43lzTffTK9evejXrx/btm0rd8yrS2fp1KasHMh7Ada/CqnnBR2NVOKOf+axbsvuGj1mSocW3HZOzwq35+Xlcffdd7N06VLatm3Lzp07qzzmN998w8KFC5k7dy7nnHMOS5cuZfr06fTu3Zvc3FwyMjLYs2cPWVlZ/PnPf2bKlCnccccdPPTQQyHFPG3aNB5++GEGDBjAd999R2JiIm+++SYbNmxg2bJlOOcYPnw4ixcvZuDAgQftu2fPHlJTU5kyZQr5+fn88Y9/ZOnSpSQkJPDrX/+ap59+mp49e/Lll1+ydq137Yhdu3YdtP+7777L4sWLmTBhAmvXruW2224jMzOTl156iYULFzJ27Fhyc3MBWL9+PW+99Rbffvstxx9/PFdeeSWvv/46HTp04NVXXwWgsLCQffv28Zvf/IaXX36ZpKQkZs2axc0338zjjz9e0ndGRgZTpkxh+fLlIY3V1q1bWbJkCevXr2f48OGMGjWK1157jZdeeon333+fJk2asHPnTtq0acNDDz3EtGnTyM7OPugYW7ZsYdKkSaxYsYLWrVszZMgQXnrpJUaOHMmePXvo168fd999NzfeeCN/+9vfuOWWW0L6HVZGM/za1GUwtOzknZMvUsbChQsZNWoUbdu2BaBNmzZV7nPOOedgZqSlpdGuXTvS0tKIi4ujZ8+ebNy4EYC4uDh+8YtfADBmzBiWLFkSckwDBgzgv/7rv3jggQfYtWsXDRo04M033+TNN98kMzOTrKws1q9fz4YNGw7ZNz4+nvPPPx/wlkdWrFhB7969ycjIYMGCBXz66ad07dqVTz/9lN/85je8/vrrtGjRomT/iy++GICBAweye/dudu3axZIlS0re+Zxyyins2LGDwsJCAM466ywaNWpE27ZtOfLII9m2bRtpaWnMnz+fSZMm8c4779CyZUs++ugj1q5dy+mnn05GRgZ33XUXmzeHV+9q5MiRxMXFkZKSUjL7nj9/PuPHj6dJkyZA1b/PDz74gMGDB5OUlESDBg0YPXo0ixcvBqBhw4Yln6uccMIJJb/bcGmGX5vi4iBjNLz9R+/bt62OCToiqUBlM/Ha4pyr9pkWjRo1ArykXny/+PH+/fvL3ae4jwYNGnDAL/lR0el8kydP5qyzzmLevHn069eP+fPn45zjpptu4oorrqg0tsTEROLj40te26WXXsq99957SLsPP/yQN954g4cffpjZs2eXzLTLjoWZ4Zyr8PWUfv3x8fHs37+f4447jhUrVjBv3jxuuukmhgwZwrnnnkvPnj157733Ko2/on7g0PEq3XdxjNX9fZb32oolJCSUHKv4tdUEzfBrW8Yl3s/cZ4ONQyLOqaeeyuzZs9mxYwdASEs6oThw4EDJuvIzzzzDSSedBEBycjIrVnjXISq97lzaJ598QlpaGpMmTSI7O5v169czdOhQHn/8cb777jsAvvzyS77+urxLXxz82ubMmVPSbufOnWzatInt27dz4MABzj//fO68805WrlxZsk/xevuSJUto2bIlLVu2ZODAgTz99NOAdzZR27ZtD3pXUNaWLVto0qQJY8aM4frrr2flypUcf/zxFBQUlCT8ffv2kZeXV/kgAu3atSM/P58DBw7w4osvVtl+yJAhPP7443z//fclrxmgefPmJZ+FlNa3b1/efvtttm/fTlFREc8++yyDBtXut/M1w69trTt7JRZyZ8LAG7xZvwjQs2dPbr75ZgYNGkR8fDyZmZk88cQTYR+3adOm5OXlccIJJ9CyZcuSRHr99ddz4YUX8tRTT3HKKaeUu+/999/PW2+9RXx8PCkpKZx55pk0atSI/Px8+vfvD3gfKM6cOZMjj6zoiqaQkpLCXXfdxZAhQzhw4AAJCQk8/PDDNG7cmPHjx5e80yj9DqB169aceOKJ7N69u2TWf/vttzN+/HjS09Np0qQJM2bMKLe/YmvWrOGGG24gLi6OhIQEHnnkERo2bMicOXO45pprKCwsZP/+/Vx77bX07Fn5u7qpU6dy9tln06lTJ1JTU0v+w6vIGWecQW5uLtnZ2TRs2JBhw4Zxzz33MG7cOCZOnEjjxo0PepfRvn177r33Xk4++WSccwwbNowRI0K6kOBhs8reVgQtOzvbFX+aHdXWzIHnfwljX/YulCIRIT8/nx49egQdRo1r1qxZlckp0gwePLjcDzalcuX9DZvZCudcuQOp6WZd6O4XVNPVsEQkQFrSqQsJiZB2Iax8En5QQTWpXdE2uwdvfV5qn2b4dSVLBdVEJFhK+HWlfS84Kl3n5ItIYJTw61JmDmz9ELauDjoSEYlBSvh1KW0UxDdSQTURCYQSfl1q0sa7BOLqWbBPl9WLdRs3biQ1NbXKdrfeeivz58+v1Vhuv/12pk2bVqt9RIN33nmHnj17lhQ6qyn33HPPQY9PPPHEGjt2dSjh17XMHNi7C9a/EnQkEiWmTJnCaaedFnQY1RKN5ZEBnn76aa6//npyc3Np3LhxjR23bMJ/9913a+zY1aGEX9e6DIKWx2hZRwDYv38/l156Kenp6YwaNarka/mljRs3rqQUQnJyMr///e/p378/2dnZrFy5kqFDh3Lsscfy6KOPAt4pjgMHDuTcc88lJSWFiRMnlnyztaKSv6U98MADpKSkkJ6ezkUXXQR4lSwnTJhA7969yczM5OWXXz5kv0WLFnHyySdzySWXkJaWRlFRETfccENJWeX/+Z//AbxKkwMHDiQjI4PU1NSSi41UVNY5NzeXfv36kZ6ezrnnnss333wDeF/WmjRpEn369OG4444rOU5eXl5JWeb09PSSQm/llWsubfr06cyePZspU6YwevToQy4Mc/XVV5d8Ezo5OZnbbruNrKws0tLSWL9+PeCdEjt+/HjS0tJIT0/n+eefZ/Lkyfzwww9kZGQwevTog34PzjluuOGGknLRxd+KXrRoEYMHD2bUqFF0796d0aNHV1p7J1Q6D7+uxcVB5mhYNFUF1SLJa5Nr/upkR6XBmZVfreqjjz7i73//OwMGDGDChAn89a9/5frrr690n06dOvHee+9x3XXXMW7cOJYuXcrevXvp2bMnEydOBGDZsmWsW7eOzp07c8YZZ/DCCy8watSokMKeOnUqn332GY0aNSopX3z33Xdzyimn8Pjjj7Nr1y769OnDaaedRtOmTQ/ad9myZaxdu5YuXbrw2GOP0bJlSz744AN+/PFHBgwYwJAhQ3jhhRcYOnQoN998M0VFRSX/yVVU1nns2LE8+OCDDBo0iFtvvZU77riD+++/H/D+w1y2bBnz5s3jjjvuYP78+Tz66KP89re/ZfTo0fz0008UFRWRn5/PrFmzDinXPHbs2JLYL7vsMpYsWcLZZ5/NqFGjqvxuQNu2bVm5ciV//etfmTZtGtOnT+fOO++kZcuWrFnj/S198803nH/++Tz00EMlZZ1Le+GFF8jNzeXDDz9k+/bt9O7du6Ts9KpVq8jLy6NDhw4MGDCApUuXltRFOlya4QehpKDaM8HGIYHr1KkTAwYMAEIvZTx8+HAA0tLS6Nu3L82bNycpKYnExMSSBN2nTx+6du1KfHw8F198cbVKJKenpzN69GhmzpxJgwbenPDNN99k6tSpZGRkMHjwYPbu3cvnn39+yL59+vShS5cuJfs8+eSTZGRk0LdvX3bs2MGGDRvo3bs3//jHP7j99ttZs2YNzZs3B8ov61xYWMiuXbtKiopdeumlJSWEAc47z7vOROkSwv379+eee+7hj3/8I5s2baJx48YVlmsOR3l9z58/n6uuuqqkTevWlX/JcsmSJVx88cXEx8fTrl07Bg0axAcffAB4Y9mxY0fi4uLIyMiokRLJmuEHodUxXk2dVU/DwBtVUC0SVDETry3llQSuSiglkis6bmUlf4u9+uqrLF68mLlz53LnnXeSl5eHc47nn3+e448/vtLYSs/4nXM8+OCDDB069JB2ixcv5tVXXyUnJ4cbbrjhoJl22ZgrU/z6S5cQvuSSS+jbty+vvvoqQ4cOZfr06ZWWa65I6XLSUHGJ5NJ912SJ5PLKP4dLmSYomWOg8HP47O2gI5EAff755yUVFJ999tmw37IXW7ZsGZ999hkHDhxg1qxZJcetquTvgQMH+OKLLzj55JO577772LVrF9999x1Dhw7lwQcfLElQq1atqjKGoUOH8sgjj7Bv3z4A/vOf/7Bnzx42bdrEkUceya9+9St++ctflpRILq+sc8uWLWndunXJ+vxTTz1VZQnh4gutXHPNNQwfPpzVq1dXWK65Mp07d2bdunX8+OOPFBYWsmDBgipf85AhQw66Ylbx5w0JCQkl41DawIEDmTVrFkVFRRQUFLB48WL69OlTZT+HSzP8oHQ/GxJbed+8PfbkoKORgPTo0YMZM2ZwxRVX0K1bN6688soaOW7//v2ZPHkya9asKfkAF6ou+VtUVMSYMWMoLCzEOcd1111Hq1at+MMf/sC1115Leno6zjmSk5N55ZXKzzS77LLL2LhxI1lZWTjnSEpK4qWXXmLRokX86U9/IiEhgWbNmvHkk08CFZd1njFjBhMnTuT777+na9eu/OMf/6i031mzZjFz5kwSEhI46qijuPXWW2nTpk255Zo7d+5c4XE6derEhRdeSHp6Ot26dSMzM7PKcb/lllu46qqrSE1NJT4+nttuu43zzjuPyy+/nPT0dLKyskrq+wOce+65vPfee/Tq1Qsz47777uOoo44q+RC4poVVHtnM2gCzgGRgI3Chc+6bctq1AqYDqYADJjjnqrz8TL0pj1yReTfAihnwu/XeOfpSp+preeRFixYxbdq0KhNypInGss5Bq+vyyJOBBc65bsAC/3F5/h/wunOuO9ALyA+z3/ohUwXVRKTuhJvwRwDFl6CZAYws28DMWgADgb8DOOd+cs7tKtl+IMoAAAymSURBVNsuJrVP94qqqaCa1KDBgwdH3eweorOsc7QJN+G3c85tBfB/lnfNs65AAfAPM1tlZtPNrGk57QAws8vNbLmZLS/+4kW9lpkDX632iqqJiNSiKhO+mc03s7Xl3EK9+GIDIAt4xDmXCeyh4qUfnHOPOeeynXPZSUlJIXYRxVRQLVCRfIlPkcoczt9ulQnfOXeacy61nNvLwDYzaw/g/yzvUvabgc3Ouff9x3Pw/gMQ8K5+1eMcWD1bBdXqWGJiIjt27FDSl6jjnGPHjh0kJiZWa79wT8ucC1wKTPV/HlJgwzn3lZl9YWbHO+c+Ak4F1oXZb/2SlQNr53gF1dJC+/q7hK9jx45s3ryZmFg6lHonMTGRjh07VmufcBP+VGC2mf0S+By4AMDMOgDTnXPD/Ha/AZ42s4bAp8D4MPutX5IHet++XfWUEn4dSkhIKCkDIBILwkr4zrkdeDP2ss9vAYaVepwLlHteqOCVVsgYA4vugW82QeuKvwwiInK4VFohUmRcApgKqolIrVHCjxStOnklFnKfhgPRefEIEYlsSviRJHMMFH6hgmoiUiuU8CNJ97O90zRX6pu3IlLzlPAjSYNGkHahd3rm9zuDjkZE6hkl/EiTlQNFP8Ga/w06EhGpZ5TwI81RadA+QwXVRKTGKeFHoswx3gW1txx60WMRkcOlhB+J0i6ABoma5YtIjVLCj0SNW3kF1db8L+z7IehoRKSeUMKPVJk5sLcQ8qPvQhYiEpmU8CNV8s+hVWct64hIjVHCj1Rxcd6Ht5+9Dd9sDDoaEakHlPAjWa+LUUE1EakpSviRrFUnOPYUWKWCaiISPiX8SJc5BnZvhk8XBR2JiEQ5JfxI1/0saNxGH96KSNiU8CNdg0aQ/gtY/6oKqolIWJTwo0HmGK+g2urZQUciIlFMCT8aHJUKHTK9ZR3ngo5GRKKUEn60yBwD29bCVhVUE5HDo4QfLVJHeQXVdDUsETlMSvjRonEr6DEc1sxRQTUROSxK+NEkKwd+LIT8fwYdiYhEISX8aNL5JBVUE5HDpoQfTeLivLLJny2GnZ8FHY2IRBkl/GiToYJqInJ4lPCjTcuO8LNTIVcF1USkesJK+GbWxsz+ZWYb/J+tK2h3nZnlmdlaM3vWzBLD6TfmZY6B3V/Cp28FHYmIRJFwZ/iTgQXOuW7AAv/xQczsaOAaINs5lwrEAxeF2W9sO36YV1BN5+SLSDWEm/BHADP8+zOAkRW0awA0NrMGQBNgS5j9xrYGjaDXRV5BtT07go5GRKJEuAm/nXNuK4D/88iyDZxzXwLTgM+BrUChc+7Nig5oZpeb2XIzW15QUBBmePVY5hg4sA/WqKCaiISmyoRvZvP9tfeytxGhdOCv648AugAdgKZmNqai9s65x5xz2c657KSkpFBfR+xp1xM6ZHnLOiqoJiIhqDLhO+dOc86llnN7GdhmZu0B/J9fl3OI04DPnHMFzrl9wAvAiTX5ImJW5hj4Og+2rAo6EhGJAuEu6cwFLvXvXwq8XE6bz4F+ZtbEzAw4FcgPs18BSPMLqumbtyISgnAT/lTgdDPbAJzuP8bMOpjZPADn3PvAHGAlsMbv87Ew+xWAxJaQMsIrqPbT90FHIyIRLqyE75zb4Zw71TnXzf+5039+i3NuWKl2tznnuvtLQTnOuR/DDVx8mTnw424VVBORKumbttGu8wBonaxlHRGpkhJ+tIuL8z683fgO7Pw06GhEJIIp4dcHvS4Bi1NBNRGplBJ+fdDyaDj2VC/hq6CaiFRACb++KC6o9okKqolI+ZTw64vjh0GTI2DVk0FHIiIRSgm/vmjQENIvgvXzYM/2oKMRkQikhF+fFBdUW62CaiJyKCX8+qRdChx9gndOvgqqiUgZSvj1TeYY+HodbFkZdCQiEmGU8Oub1POhQWNdDUtEDqGEX98UF1Rb+7wKqonIQZTw66Os4oJqc4OOREQiiBJ+fdR5ALTuAqtmBh2JiEQQJfz6yEwF1UTkEEr49VWGX1Bt1dNBRyIiEUIJv75q0QF+dpoKqolICSX8+iwzB77dAp8sDDoSEYkASvj12XFnQJO2sFIF1URECb9+a9AQel0EH72mgmoiooRf75UUVJsVdCQiEjAl/PruyB5wdLZXakEF1URimhJ+LMgcAwX58KUKqonEMiX8WFBcUE1XwxKJaUr4sSCxBfQcCWtUUE0klinhx4rMHPjpW1j3ctCRiEhAlPBjRecToU1XFVQTiWFK+LGiuKDapiWw45OgoxGRACjhx5JeF3sF1XJVUE0kFoWV8M3sAjPLM7MDZpZdSbszzOwjM/vYzCaH06eEoUUH+NnpXkG1ov1BRyMidSzcGf5a4DxgcUUNzCweeBg4E0gBLjazlDD7lcOVlQPfboVPFgQdiYjUsbASvnMu3zn3URXN+gAfO+c+dc79BDwHjAinXwlDt6FeQbVVusi5SKypizX8o4EvSj3e7D9XLjO73MyWm9nygoKCWg8u5pQuqPadxlckllSZ8M1svpmtLecW6izdynmuwqIuzrnHnHPZzrnspKSkELuQasnMgQP7VVBNJMY0qKqBc+60MPvYDHQq9bgjsCXMY0o4juwOHXt7yzr9r/JO2RSReq8ulnQ+ALqZWRczawhcBMytg36lMpljoGA9fLki6EhEpI6Ee1rmuWa2GegPvGpmb/jPdzCzeQDOuf3A1cAbQD4w2zmXF17YErae50FCE10NSySGVLmkUxnn3IvAi+U8vwUYVurxPGBeOH1JDUtsASkjYe0LcMa90LBp0BGJSC3TN21jWZYKqonEEiX8WHZMf2hzrAqqicQIJfxYVlJQbakKqonEgLDW8KUe6HUxLLwTnjgLElsGHY2IADRuAxNeq/HDKuHHuhbtYchd8MX7QUciIsVqafKlhC/el6/6XxV0FCJSy7SGLyISI5TwRURihBK+iEiMUMIXEYkRSvgiIjFCCV9EJEYo4YuIxAglfBGRGGHOVXi1wcCZWQGw6TB3bwtsr8Fwaoriqh7FVT2Kq3rqY1ydnXPlXh82ohN+OMxsuXMuO+g4ylJc1aO4qkdxVU+sxaUlHRGRGKGELyISI+pzwn8s6AAqoLiqR3FVj+KqnpiKq96u4YuIyMHq8wxfRERKUcIXEYkRUZ3wzewMM/vIzD42s8nlbDcze8DfvtrMsiIkrsFmVmhmuf7t1jqK63Ez+9rM1lawPajxqiquoMark5m9ZWb5ZpZnZr8tp02dj1mIcdX5mJlZopktM7MP/bjuKKdNEOMVSlyB/I35fceb2Soze6WcbTU7Xs65qLwB8cAnQFegIfAhkFKmzTDgNcCAfsD7ERLXYOCVAMZsIJAFrK1ge52PV4hxBTVe7YEs/35z4D8R8jcWSlx1Pmb+GDTz7ycA7wP9ImC8QokrkL8xv+//Ap4pr/+aHq9onuH3AT52zn3qnPsJeA4YUabNCOBJ5/k30MrM2kdAXIFwzi0GdlbSJIjxCiWuQDjntjrnVvr3vwXygaPLNKvzMQsxrjrnj8F3/sME/1b2rJAgxiuUuAJhZh2Bs4DpFTSp0fGK5oR/NPBFqcebOfSPPpQ2QcQF0N9/i/mamfWs5ZhCFcR4hSrQ8TKzZCATb3ZYWqBjVklcEMCY+csTucDXwL+ccxExXiHEBcH8jd0P3AgcqGB7jY5XNCd8K+e5sv9rh9KmpoXS50q8ehe9gAeBl2o5plAFMV6hCHS8zKwZ8DxwrXNud9nN5exSJ2NWRVyBjJlzrsg5lwF0BPqYWWqZJoGMVwhx1fl4mdnZwNfOuRWVNSvnucMer2hO+JuBTqUedwS2HEabOo/LObe7+C2mc24ekGBmbWs5rlAEMV5VCnK8zCwBL6k+7Zx7oZwmgYxZVXEF/TfmnNsFLALOKLMp0L+xiuIKaLwGAMPNbCPe0u8pZjazTJsaHa9oTvgfAN3MrIuZNQQuAuaWaTMXGOt/0t0PKHTObQ06LjM7yszMv98H7/ewo5bjCkUQ41WloMbL7/PvQL5z7r8raFbnYxZKXEGMmZklmVkr/35j4DRgfZlmQYxXlXEFMV7OuZuccx2dc8l4eWKhc25MmWY1Ol4NDj/cYDnn9pvZ1cAbeGfGPO6cyzOzif72R4F5eJ9yfwx8D4yPkLhGAVea2X7gB+Ai538kX5vM7Fm8sxHamtlm4Da8D7ACG68Q4wpkvPBmYDnAGn/9F+D3wDGlYgtizEKJK4gxaw/MMLN4vIQ52zn3StD/JkOMK6i/sUPU5niptIKISIyI5iUdERGpBiV8EZEYoYQvIhIjlPBFRGKEEr6ISIxQwhcRiRFK+CIiMeL/Az/g+5/5E+B9AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/cons_news_15_1.png" }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.title(\"original representation\")\n", "plt.plot(range(J), c_res1 / σϵ, label=\"c impulse response function\")\n", "plt.plot(range(J), b_res1 / σϵ, label=\"b impulse response function\")\n", "plt.legend()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The above two impulse response functions show that when the consumer has\n", "the information assumed in the original representation, his response to\n", "receiving a positive shock of $\\epsilon_t$ is to leave his\n", "consumption unchanged and to save the entire amount of his extra income\n", "and then forever roll over the extra bonds that he holds.\n", "\n", "To see this notice, that starting from next period on, his debt\n", "permanently **decreases** by $\\beta^{-1}$" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([0.0975, 0.0975, 0.0975, 0.0975, 0.0975]),\n", " array([ 0. , -0.95, -0.95, -0.95, -0.95]))" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "c_res2 / σa, b_res2 / σa" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deVyU5f7/8ddHRHFfAk3TREtNNhFZXDpK5ZJmLuXpZFqiJVqnxU6Wtlq2WXnO8duemalZHj22WVoZlpnmEUFJRTQrl0gzxH1XuH5/3Df8EFkGBrgZ5vN8PObBzNzX3NdnLoY399z3PdeIMQallFJVXzWnC1BKKVUxNPCVUspLaOArpZSX0MBXSikvoYGvlFJeQgNfKaW8hAa+lxKRVBGJdbqOkhCRN0XkcafrUJ75+lEgeh6+qoxEJA64wxhzpdO1VDUishNrbBNcbD8bSDfGPFaedanyp1v4SrlIRKpX5vUpVSxjjF688ALsBHrZ158EFgJzgaNAKhCZr+0EYCNwGFgA+OVZPgb4GTgALAaa2/e/CUzL1++nwD/s65OAX+w+twBD7Ps7AKeALOAYcMi+fzbwTHH92ssMMA7YDhwEXuP/v6O9HPjOfi77gQWFjFGgvZ7bgd3ASvv+0UCavd6vgFb5+r0X+NVe90tANXtZHLAa+Ldd8zNATWCavf599pjVstv7A58Dh+z23+dZV3PgQyAD2AHcm6eGQn+fwHtANnDSHtuH7Pv/C/xhj8lKINi+Px44C5yx239WwOunJjAd2GNfpgM17WWxQDrwAPAnsBcY5fTr31svjhegF4d+8RcG/imgP+ADPA/8L1/bRDtkGtthN85edrUdbBH2H/4reYKxB/BbnqBtZAdNzj+Ev9rrrAb8DTgONLOXxQGr8tU8Gzvwi+rXXm7ssGwIXGoH47X2svnAo3a/fsCVhYxRoL2euUAdoBYwGOufTAegOvAY8EO+fr+1x+lS4Ces3Sc5z+kccI/92Fp2OC6229cDPgOet9s/j/UPwNe+/AUQu+5k4AmgBtAG6x9M3xL8Pnvle66j7f5zwjuloHEv5PUzBfgf0AQIAH4AnraXxdrPeYr9HPoDJ4BGTv8NeOPF8QL04tAv/sLAT8izLAg4ma/tiDy3XwTetK+/A7yYZ1ldrC3CQDucdgM97GVjgG+KqCkFGGRfj6PowC+0X/u2IU+QY23xTrKvzwVmAC2KGaNAez1t8tz3BXB7ntvV7ABrlaffa/MsvwtYnuc57c6zTLD+yV2W576uwA77+hSsd0SX56srJu967PseBt4twe+zV0HP2V7e0H4eDfKPeyGvn1+A/nmW9QV22tdjsf7JV8+z/E+gi9N/A9540X34Kscfea6fAPzy7WPOv7yufb05sCtngTHmGJAJXGKsv+7/AMPsxbcA7+e0FZHbRCRFRA6JyCEgBGs3hisK7deFmh/CCttE+2yT0cX09Vue662A/8tT8wF7XZcU0n6XXWtBywKA2kBynvV9ad8P1u6gn4FlIvKriEzKU0PznMfYj3sEaFrEc8//+8wlIj4iMlVEfhGRI1hhDqX8XXDhc840xpzLV09dVIXTg0bKXXuwAggAEakDXAT8bt81HyuwpmJtmQ6x27UC3gauAdYYY7JEJAUrPMHawnSn30IZY/7AereBiFwJJIjISmPMz4U9JM/134BnjTHvF9IWoCXWfnOwduvsKWRd+7G2foONMRfUbYw5irXv+wERCQa+FZF1dg07jDFti6ihKPnH9hZgENALK+wbYB2fKOnvorDnrCoJ3cJX7voAGCUi4SJSE3gOWGuM2QlgjNmAtf98JvCVMeaQ/bg6WEGSASAio7C28HPsA1qISI3S9FsUEfmriLSwbx6068hy8fm+CTxsBzAi0kBE/pqvzYMi0khEWgL3YR3kvoAxJhvrn96/RaSJvb5LRKSvfX2AiFwuIgIcsWvMwjqeckREJopILXsLPUREolx8Dvuw9vvnqAecxnqHVBtrLItqn9984DERCRARf6xjC/NcrEVVIA185RZjzHLgcawzRvYClwE352s2H2vr8YM8j9sC/BNYgxUooVhnsOT4BmuL8Q8R2V/KfgsTBawVkWNYB0zvM8bscOWBxpiPgReA/9i7PzYD/fI1+xTroGoKsATreENhJmLttvmfvb4EoL29rK19+xjWOL1ujFlhjMkCrgfCsc7Q2Y/1D7WBK88B6yDuY/buoAlYxzR2Yb072oJ1ADavd4Agu/0nBazvGSAJ6yyuTcB6+z5VyegHr5QqQyJigLZF7B5SyjG6ha+UUl5CA18ppbyE7tJRSikvoVv4SinlJSr1efj+/v4mMDDQ6TKUUspjJCcn7zfGBBS0rFIHfmBgIElJSU6XoZRSHkNEdhW2THfpKKWUl9DAV0opL6GBr5RSXkIDXymlvIQGvlJKeQkNfKWU8hIa+Eop5SUq9Xn4pfXUZ6ls2XPE6TKUUqpUgprXZ/L1wWW+Xt3CV0opL1Elt/DL4z+jUkp5Ot3CV0opL6GBr5RSXkIDXymlvIQGvlJKeQkNfKWU8hIa+Eop5SU08JVSykto4CullJfQwFdKKS+hga+UUl5CA18ppbyEBr5SSnkJDXyllPISZRL4InKtiGwTkZ9FZFIBy0VEXraXbxSRiLLoVymllOvcDnwR8QFeA/oBQcAwEQnK16wf0Na+xANvuNuvUkqpkimLLfxo4GdjzK/GmDPAf4BB+doMAuYay/+AhiLSrAz6Ltjx/dZFKaVUrrL4ApRLgN/y3E4HYlxocwmwtwz6P9+pIzA9jNgFvtC49XmLbrrpJu666y5OnDhB//79L3hoXFwccXFx7N+/n6FDh16w/M477+Rvf/sbv/32G7feeusFyx944AGuv/56tm3bxtixYy9Y/thjj9GrVy9SUlIYP378Bcufe+45unXrxg8//MAjjzxywfLp06cTHh5OQkICzzzzzAXL33rrLdq3b89nn33GP//5zwuWv/fee7Rs2ZIFCxbwxhsXvslatGgR/v7+zJ49m9mzZ1+wfOnSpdSuXZvXX3+dhQsXXrB8xYoVAEybNo3PP//8vGW1atXiiy++AODpp59m+fLl5y2/6KKL+PDDDwF4+OGHWbNmzXnLW7Rowbx58wAYP348KSkp5y1v164dM2bMACA+Pp6ffvrpvOXh4eFMnz4dgBEjRpCenn7e8q5du/L8888DcOONN5KZmXne8muuuYbHH38cgH79+nHy5Mnzlg8YMIAJEyYAEBsbS3762tPXHrj+2st5PmWtLLbwpYD7TCnaWA1F4kUkSUSSMjIySl6NX31o2xuO7QOTVfLHK6VUFSXGFJi7rq9ApCvwpDGmr337YQBjzPN52rwFrDDGzLdvbwNijTFFbuFHRkaapKSkkhe16wd4tx9c/3/QOa7kj1dKKQ8lIsnGmMiClpXFFv46oK2ItBaRGsDNwOJ8bRYDt9ln63QBDhcX9m65tCs0DYW1M8DNf2hKKVVVuB34xphzwN3AV0AasNAYkyoi40RknN1sKfAr8DPwNnCXu/0WSQSix8CfqbBrdbl2pZRSnsLtXTrlqdS7dADOnIB/dYA2PeGmuWVbmFJKVVLlvUuncqpRGyJug7TP4XB68e2VUqqKq7qBDxB1O5hsSJrldCVKKeW4qh34jQKhfT9Ing1nTzldjVJKOapqBz5AdDycyITUj52uRCmlHFX1A79NLPi3g8S39BRNpZRXq/qBL2Jt5e/ZAL8nO12NUko5puoHPkDHm6FGPVj7ltOVKKWUY7wj8GvWg/BbrP34R/c5XY1SSjnCOwIfrN062Wdh/RynK1FKKUd4T+D7Xw6XXWOdk5911ulqlFKqwnlP4IO1lX90L6Tln9tNKaWqPu8K/La9rQ9jJb7tdCVKKVXhvCvwq/lA1BjYvQb2bnS6GqWUqlDeFfgAnYaDb21InOF0JUopVaG8L/BrNYKwm2DTf+HEAaerUUqpCuN9gQ/Wwdtzp2C9zpOvlPIe3hn4TYOh1ZWw7h3I1i86V0p5B+8MfICYeDi8G3760ulKlFKqQnhv4Le/DupfovPrKKW8hvcGvk91iBwNO76DjG1OV6OUUuXOewMfoHMc+NTUUzSVUl7BuwO/jj+E3Agp8+HUYaerUUqpcuXdgQ8QPQbOHrdCXymlqjAN/EsioEWUtVsnO9vpapRSqtxo4ANEj4UDv8Av3zhdiVJKlRsNfICgQVCniR68VUpVaRr4ANVrQOQo2L4MDvzqdDVKKVUuNPBzdB5lTZ+cONPpSpRSqlxo4Oeo3ww6DIQN8+DMcaerUUqpMudW4ItIYxH5WkS22z8bFdCmpYh8KyJpIpIqIve502e5ihkLpw/DxgVOV6KUUmXO3S38ScByY0xbYLl9O79zwAPGmA5AF+DvIhLkZr/lo2UMXBwGa2eAMU5Xo5RSZcrdwB8EzLGvzwEG529gjNlrjFlvXz8KpAGXuNlv+RCx5srPSIOdq5yuRimlypS7gd/UGLMXrGAHmhTVWEQCgU7A2iLaxItIkogkZWRkuFleKYQOhVqNIVFn0VRKVS3FBr6IJIjI5gIug0rSkYjUBT4ExhtjjhTWzhgzwxgTaYyJDAgIKEkXZcO3FkTcBluXwKHfKr5/pZQqJ8UGvjGmlzEmpIDLp8A+EWkGYP/8s6B1iIgvVti/b4z5qCyfQLmIut36mTTL2TqUUqoMubtLZzEw0r4+Evg0fwMREeAdIM0Y8y83+6sYDS+F9v1h/Rw4e8rpapRSqky4G/hTgd4ish3obd9GRJqLyFK7TXfgVuBqEUmxL/3d7Lf8RY+BE5mQWvnfkCillCuqu/NgY0wmcE0B9+8B+tvXVwHiTj+OaN0TAq6wvgKx4zDrDB6llPJg+knbwohYW/l7UyB9ndPVKKWU2zTwixJ2M9Ssr7NoKqWqBA38otSsC+HDIfUTOLrP6WqUUsotGvjFiR4D2Wch+V2nK1FKKbdo4Bfnosvg8l7WOfnnzjhdjVJKlZoGviuix8KxfZC22OlKlFKq1DTwXXF5L2jUWg/eKqU8mga+K6pVs/bl/7YW9qQ4XY1SSpWKBr6rwoeDb21IfNvpSpRSqlQ08F1VqyF0vBk2/ReOZzpdjVJKlZgGfklEjYGs07BhrtOVKKVUiWngl0TTIAj8C6x7B7LOOV2NUkqViAZ+ScWMhcO/wU9fOF2JUkqViAZ+SbXrB/Vb6CmaSimPo4FfUj7VrW/E2rES/kxzuhqllHKZBn5pRIwEn5q6la+U8iga+KVR5yIIHQo//gdOHnK6GqWUcokGfmlFx8PZE5DygdOVKKWUSzTwS6t5OLSMgXVvQ3a209UopVSxNPDdER0PB36FX5Y7XYlSShVLA98dHQZC3abWF50rpVQlV93pAjxa9RoQORpWPA+Zv1hflqI8xtmzZ0lPT+fUqVNOl6JUifn5+dGiRQt8fX1dfowGvrs6x8HKl2DdTLj2eaerUSWQnp5OvXr1CAwMREScLkcplxljyMzMJD09ndatW7v8ON2l4656F0PQYNgwD04fc7oaVQKnTp3ioosu0rBXHkdEuOiii0r87lQDvyzEjIXTR2DjAqcrUSWkYa88VWleuxr4ZaFFFDTraH05ijFOV6OqkMWLFzN16tRy7WPFihUMGDCgXPvwBBkZGcTExNCpUye+//77Mlvv7Nmz2bNnT+7tO+64gy1btpTZ+ktCA78siFhfdJ6RZs2xo1QZGThwIJMmTXK6jBLLyspyuoQSW758OVdccQUbNmzgL3/5S5mtN3/gz5w5k6CgoDJbf0lo4JeVkBuhVmOdX0eVyNy5cwkLC6Njx47ceuutFyyfPXs2d999NwBxcXHceeedXHXVVbRp04bvvvuO0aNH06FDB+Li4nIfU7duXR544AEiIiK45ppryMjIACA2NpakpCQA9u/fT2Bg4AX9fffdd4SHhxMeHk6nTp04evQoAC+99BJRUVGEhYUxefLkAp9L3bp1eeKJJ4iJiWHNmjXMmzeP6OhowsPDGTt2LFlZWWRlZREXF0dISAihoaH8+9//zq1t/PjxdOvWjZCQEBITEwE4cOAAgwcPJiwsjC5durBx40YAnnzySUaPHk1sbCxt2rTh5ZdfBuD48eNcd911dOzYkZCQEBYssHazJicn07NnTzp37kzfvn3Zu3fvebWnpKTw0EMPsXTpUsLDwzl58iR169bNXb5o0aLcMY6Li+Pee++lW7dutGnThkWLFuW2e/HFFwkNDaVjx45MmjSJRYsWkZSUxPDhw3PXm/f3MH/+fEJDQwkJCWHixInnjeWjjz5Kx44d6dKlC/v27StwzEtKz9IpK75+0HkkrP4/OLQbGl7qdEWqBJ76LJUte46U6TqDmtdn8vXBhS5PTU3l2WefZfXq1fj7+3PgwIFi13nw4EG++eYbFi9ezPXXX8/q1auZOXMmUVFRpKSkEB4ezvHjx4mIiOCf//wnU6ZM4amnnuLVV191qeZp06bx2muv0b17d44dO4afnx/Lli1j+/btJCYmYoxh4MCBrFy5kh49epz32OPHjxMSEsKUKVNIS0vjhRdeYPXq1fj6+nLXXXfx/vvvExwczO+//87mzZsBOHTo0HmP/+GHH1i5ciWjR49m8+bNTJ48mU6dOvHJJ5/wzTffcNttt5GSkgLA1q1b+fbbbzl69Cjt27fnzjvv5Msvv6R58+YsWbIEgMOHD3P27FnuuecePv30UwICAliwYAGPPvoos2bNyu07PDycKVOmkJSU5NJY7d27l1WrVrF161YGDhzI0KFD+eKLL/jkk09Yu3YttWvX5sCBAzRu3JhXX32VadOmERkZed469uzZw8SJE0lOTqZRo0b06dOHTz75hMGDB3P8+HG6dOnCs88+y0MPPcTbb7/NY4895tLvsChubeGLSGMR+VpEtts/GxXR1kdENojI5+70WalF3m79XPeOs3Uoj/DNN98wdOhQ/P39AWjcuHGxj7n++usREUJDQ2natCmhoaFUq1aN4OBgdu7cCUC1atX429/+BsCIESNYtWqVyzV1796df/zjH7z88sscOnSI6tWrs2zZMpYtW0anTp2IiIhg69atbN++/YLH+vj4cOONNwLW7pHk5GSioqIIDw9n+fLl/Prrr7Rp04Zff/2Ve+65hy+//JL69evnPn7YsGEA9OjRgyNHjnDo0CFWrVqV+87n6quvJjMzk8OHDwNw3XXXUbNmTfz9/WnSpAn79u0jNDSUhIQEJk6cyPfff0+DBg3Ytm0bmzdvpnfv3oSHh/PMM8+Qnp7u8pgUZPDgwVSrVo2goKDcre+EhARGjRpF7dq1geJ/n+vWrSM2NpaAgACqV6/O8OHDWbnS2iVco0aN3OMqnTt3zv3dusvdLfxJwHJjzFQRmWTfnlhI2/uANKB+Ics9X8OWcMV1sH4uxE4C31pOV6RcVNSWeHkxxpT4TIuaNWsCVqjnXM+5fe5cwV+7mdNH9erVybbnfSrsdL5JkyZx3XXXsXTpUrp06UJCQgLGGB5++GHGjh1bZG1+fn74+PjkPreRI0fy/PMXfjblxx9/5KuvvuK1115j4cKFuVva+cdCRDAFnASR0y7v8/fx8eHcuXO0a9eO5ORkli5dysMPP0yfPn0YMmQIwcHBrFmzpsj6C+sHLhyvvH3n1FjS32dBzy2Hr69v7rpynltZcHcf/iBgjn19DjC4oEYi0gK4DpjpZn+VX3Q8nDwAmz90uhJVyV1zzTUsXLiQzMxMAJd26bgiOzs7d7/yBx98wJVXXglAYGAgycnJAOftd87rl19+ITQ0lIkTJxIZGcnWrVvp27cvs2bN4tgx63Mmv//+O3/++Wexz23RokW57Q4cOMCuXbvYv38/2dnZ3HjjjTz99NOsX78+9zE5+9tXrVpFgwYNaNCgAT169OD9998HrLOJ/P39z3tXkN+ePXuoXbs2I0aMYMKECaxfv5727duTkZGRG/hnz54lNTW16EEEmjZtSlpaGtnZ2Xz88cfFtu/Tpw+zZs3ixIkTuc8ZoF69ernHQvKKiYnhu+++Y//+/WRlZTF//nx69uxZbD/ucHcLv6kxZi+AMWaviDQppN104CGgXnErFJF4IB7g0ks9cD944F+gSZA1v074cOsMHqUKEBwczKOPPkrPnj3x8fGhU6dOzJ492+311qlTh9TUVDp37kyDBg1yg3TChAncdNNNvPfee1x99dUFPnb69Ol8++23+Pj4EBQURL9+/ahZsyZpaWl07doVsA4ozps3jyZNCvtzh6CgIJ555hn69OlDdnY2vr6+vPbaa9SqVYtRo0blvtPI+w6gUaNGdOvWjSNHjuRu9T/55JOMGjWKsLAwateuzZw5cwrsL8emTZt48MEHqVatGr6+vrzxxhvUqFGDRYsWce+993L48GHOnTvH+PHjCQ4u+l3d1KlTGTBgAC1btiQkJCT3H15hrr32WlJSUoiMjKRGjRr079+f5557jri4OMaNG0etWrXOe5fRrFkznn/+ea666iqMMfTv359BgwYV2Ye7pKi3FQAikgBcXMCiR4E5xpiGedoeNMactx9fRAYA/Y0xd4lILDDBGOPSSb+RkZEm52i2R0maBZ/fD6OXwaUxTlejCpGWlkaHDh2cLqPM1a1bt9hwqmxiY2MLPLCpilbQa1hEko0xBQ5ksVv4xphehS0TkX0i0szeum8GFPQ+rzswUET6A35AfRGZZ4wZUVzfHiv0Jvj6SUh8SwNfKVVpuLsPfzEw0r4+Evg0fwNjzMPGmBbGmEDgZuCbKh32ADXrQqcRsOVTOLK3+PZKlSFP27oHa/+8bt2XP3cDfyrQW0S2A73t24hIcxFZ6m5xHi3qdsjOguTZTleilFKAm4FvjMk0xlxjjGlr/zxg37/HGNO/gPYrXN1/7/Euugza9obkd+HcGaerUUopnVqhXEWPhWP7rF07SinlMA388nTZ1dD4Mp1fRylVKWjgl6dq1SB6DKQnwp4NTlejKpmdO3cSEhJSbLsnnniChISEcq3lySefZNq0aeXahyf4/vvvCQ4Ozp3orKw899xz593u1q1bma27JDTwy1v4LeBbB9bqVr4qnSlTptCrV6FnR1dKnjg9MsD777/PhAkTSElJoVatspsaJX/g//DDD2W27pLQwC9vfg0gfJg11cLx/U5XoyqZc+fOMXLkSMLCwhg6dGjux/LziouLy50KITAwkEceeYSuXbsSGRnJ+vXr6du3L5dddhlvvvkmYJ3i2KNHD4YMGUJQUBDjxo3L/WRrYVP+5vXyyy8TFBREWFgYN998M2DNZDl69GiioqLo1KkTn3564XGpFStWcNVVV3HLLbcQGhpKVlYWDz74YO60ym+99RZgzTTZo0cPwsPDCQkJyf2ykcKmdU5JSaFLly6EhYUxZMgQDh48CFgf1po4cSLR0dG0a9cudz2pqam50zKHhYXlTvRW0HTNec2cOZOFCxcyZcoUhg8ffsEXw9x99925n4QODAxk8uTJREREEBoaytatWwHrlNhRo0YRGhpKWFgYH374IZMmTeLkyZOEh4czfPjw834PxhgefPDB3Omicz4VvWLFCmJjYxk6dChXXHEFw4cPL3LuHVfp9MgVIWqM9SXn6+fAXx5wuhpVkC8mwR+bynadF4dCv6K/rWrbtm288847dO/endGjR/P6668zYcKEIh/TsmVL1qxZw/33309cXByrV6/m1KlTBAcHM27cOAASExPZsmULrVq14tprr+Wjjz5i6NChLpU9depUduzYQc2aNXOnL3722We5+uqrmTVrFocOHSI6OppevXpRp06d8x6bmJjI5s2bad26NTNmzKBBgwasW7eO06dP0717d/r06cNHH31E3759efTRR8nKysr9J1fYtM633XYbr7zyCj179uSJJ57gqaeeYvr06YD1DzMxMZGlS5fy1FNPkZCQwJtvvsl9993H8OHDOXPmDFlZWaSlpbFgwYILpmu+7bbbcmu/4447WLVqFQMGDGDo0KGsWLGiyHHy9/dn/fr1vP7660ybNo2ZM2fy9NNP06BBAzZtsl5LBw8e5MYbb+TVV1/NndY5r48++oiUlBR+/PFH9u/fT1RUVO600xs2bCA1NZXmzZvTvXt3Vq9enTsvUmnpFn5FaHIFtO4J62ZBVtnMeqeqhpYtW9K9e3fA9amMBw4cCEBoaCgxMTHUq1ePgIAA/Pz8cgM6OjqaNm3a4OPjw7Bhw0o0RXJYWBjDhw9n3rx5VK9ubRMuW7aMqVOnEh4eTmxsLKdOnWL37t0XPDY6OprWrVvnPmbu3LmEh4cTExNDZmYm27dvJyoqinfffZcnn3ySTZs2Ua+eNcVWQdM6Hz58mEOHDuVOKjZy5MjcKYQBbrjhBuD8KYS7du3Kc889xwsvvMCuXbuoVatWodM1u6OgvhMSEvj73/+e26ZRo0JnjAesieKGDRuGj48PTZs2pWfPnqxbtw6wxrJFixZUq1aN8PDwMpkiWbfwK0rMWPjPLbBtKQQNdLoalV8xW+LlpaApgYvjyhTJha23qCl/cyxZsoSVK1eyePFinn76aVJTUzHG8OGHH9K+ffsia8u7xW+M4ZVXXqFv374XtFu5ciVLlizh1ltv5cEHHzxvSzt/zUXJef55pxC+5ZZbiImJYcmSJfTt25eZM2cWOV1zYfJOJw2FT5Gct++ynCK5oOmf3aVb+BWl3bXQ4FI9RVOdZ/fu3bkzKM6fP9/tt+w5EhMT2bFjB9nZ2SxYsCB3vcVN+Zudnc1vv/3GVVddxYsvvsihQ4c4duwYffv25ZVXXskNqA0bij/rrG/fvrzxxhucPXsWgJ9++onjx4+za9cumjRpwpgxY7j99ttzp0guaFrnBg0a0KhRo9z98++9916xUwjnfNHKvffey8CBA9m4cWOh0zUXpVWrVmzZsoXTp09z+PBhli9fXuxz7tOnz3nfmJVzvMHX1zd3HPLq0aMHCxYsICsri4yMDFauXEl0dHSx/ZSWbuFXlGo+1nQLCZNh3xZo6syXGKvKpUOHDsyZM4exY8fStm1b7rzzzjJZb9euXZk0aRKbNm3KPYALxU/5m5WVxYgRIzh8+DDGGO6//34aNmzI448/zvjx45o/u0oAAA5oSURBVAkLC8MYQ2BgIJ9/XvSX191xxx3s3LmTiIgIjDEEBATwySefsGLFCl566SV8fX2pW7cuc+fOBQqf1nnOnDmMGzeOEydO0KZNG959990i+12wYAHz5s3D19eXiy++mCeeeILGjRsXOF1zq1atCl1Py5YtuemmmwgLC6Nt27Z06tSp2HF/7LHH+Pvf/05ISAg+Pj5MnjyZG264gfj4eMLCwoiIiMid3x9gyJAhrFmzho4dOyIivPjii1x88cW5B4HLWrHTIzvJY6dHLsyJA/CvDtBxGFw/3elqvF5VnR55xYoVTJs2rdhArmw8cVpnp5V0emTdpVORajeG0KGwcQGcPOh0NUopL6OBX9Gi4+HsCUj5wOlKVBUVGxvrcVv34JnTOnsaDfyK1qwjtOwCiW9DnjMAlFKqvGngOyEmHg7ugJ+/droSr1eZj2EpVZTSvHY18J3QYSDUvVhP0XSYn58fmZmZGvrK4xhjyMzMxM/Pr0SP09MyneDjC5GjYcVzsP9n8L/c6Yq8UosWLUhPT8+ds0UpT+Ln50eLFi1K9BgNfKd0joOVL8G6t6HfC05X45V8fX1zpwFQyhvoLh2n1GsKwUOss3VOH3W6GqWUF9DAd1J0PJw+Aj/+x+lKlFJeQAPfSS0ioXkn6xRNPXColCpnGvhOErG+6Hz/NtjxndPVKKWqOA18pwUPgdoX6VcgKqXKnQa+03z9rDN2fvoCDhY9XatSSrlDA78yiBwNCCS943QlSqkqTAO/MmjQAq64DtbPhbMnna5GKVVFaeBXFjFjrSmTN/3X6UqUUlWUBn5l0ao7NAm25tfRUzSVUuVAA7+yEIHoMfDHJtj9P6erUUpVQW4Fvog0FpGvRWS7/bNRIe0aisgiEdkqImki0tWdfqussJvArwEkvuV0JUqpKsjdLfxJwHJjTFtguX27IP8HfGmMuQLoCKS52W/VVKMOdLoV0j6DI3ucrkYpVcW4G/iDgDn29TnA4PwNRKQ+0AN4B8AYc8YYc8jNfquuqDsgOwuS3nW6EqVUFeNu4Dc1xuwFsH82KaBNGyADeFdENojITBGpU9gKRSReRJJEJMkr5ylv3Bra9YXkd+HcaaerUUpVIcUGvogkiMjmAi6DXOyjOhABvGGM6QQcp/BdPxhjZhhjIo0xkQEBAS52UcVEx8PxDNjyqdOVKKWqkGK/AMUY06uwZSKyT0SaGWP2ikgz4M8CmqUD6caYtfbtRRQR+ApocxVcdDmsfcs6kKuUUmXA3V06i4GR9vWRwAWbpMaYP4DfRKS9fdc1wBY3+63aqlWztvJ/T4Lfk52uRilVRbgb+FOB3iKyHeht30ZEmovI0jzt7gHeF5GNQDjwnJv9Vn0dh0GNutZc+UopVQbc+k5bY0wm1hZ7/vv3AP3z3E4BIt3py+v41bdCf/0c6P001PXS4xlKqTKjn7StzKLjIeuMFfpKKeUmDfzKLKCddQA3aRZknXO6GqWUh9PAr+yi4+HI77D1c6crUUp5OA38yq5dX2h4qR68VUq5TQO/sqvmA1FjYNcq+GOz09UopTyYBr4n6DQCqtey5spXSqlS0sD3BLUbQ9hfYeNC61uxlFKqFDTwPUV0PJw7CRvmOV2JUspDaeB7iotD4dJu1sHb7Cynq1FKeSANfE8SEw+HdsH2r52uRCnlgTTwPckVA6Bec/0KRKVUqWjgexIfX4gcDb98A/u3O12NUsrDaOB7ms5x4FNDP4illCoxDXxPUzcAgm+AlA/g9FGnq1FKeRANfE8UHQ9njkLKfKcrUUp5EA18T9SiM1zS2frkrTFOV6OU8hAa+J4qeixkbodfv3W6EqWUh9DA91TBg6FOgB68VUq5TAPfU1WvaZ2xs+0LOLjT6WqUUh5AA9+TRY4GqQbrZjpdiVLKA2jge7L6zaHD9bD+PThzwulqlFKVnAa+p4sZC6cOwab/Ol2JUqqS08D3dJd2haYheoqmUqpYGvieTsT6INa+zbB7jdPVKKUqMQ38qiD0r+DXENbqLJpKqcJp4FcFNWpDxK2Q9hkc/t3papRSlZQGflURdQeYbEh+1+lKlFKVlAZ+VdEoENr3g+TZcO6009UopSohtwJfRBqLyNcist3+2aiQdveLSKqIbBaR+SLi506/qhDRY+B4BqR+7HQlSqlKyN0t/EnAcmNMW2C5ffs8InIJcC8QaYwJAXyAm93sVxWkzVXg3846RVMppfJxN/AHAXPs63OAwYW0qw7UEpHqQG1gj5v9qoLknKL5ezKkJztdjVKqknE38JsaY/YC2D+b5G9gjPkdmAbsBvYCh40xy9zsVxWm481Qo55+0blS6gLFBr6IJNj73vNfBrnSgb1ffxDQGmgO1BGREUW0jxeRJBFJysjIcPV5qBw160H4LdZ+/GN/Ol2NUqoSKTbwjTG9jDEhBVw+BfaJSDMA+2dBCdML2GGMyTDGnAU+AroV0d8MY0ykMSYyICCgdM/K20WPgawzkDyn+LZKKa/h7i6dxcBI+/pI4NMC2uwGuohIbRER4Bogzc1+VVH828JlV0PSO5B11ulqlFKVhLuBPxXoLSLbgd72bUSkuYgsBTDGrAUWAeuBTXafehpJeYseC0f3wtbPna5EKVVJiKnEMyxGRkaapKQkp8vwTNlZ8EoE1GsOo79wuhqlVAURkWRjTGRBy/STtlVVNR9ruoXdP8Afm5yuRilVCWjgV2WdRoBvbf0gllIK0MCv2mo1grCbYON/4cQBp6tRSjlMA7+qi46Hcydhw3tOV6KUcpgGflXXNBhaXQnrZloHcpVSXksD3xvExMOh3fDTV05XopRykAa+N2h/HdS/RA/eKuXlNPC9gU91iBwNv34LGT85XY1SyiEa+N6icxz41NCtfKW8mAa+t6jjDyE3wo/z4dQRp6tRSjlAA9+bRMfDmWNW6CulvI4Gvje5JAJaRFm7dbKzna5GKVXBNPC9TXQ8ZP5sHcBVSnkVDXxvEzQY6jTRg7dKeSENfG9TvQZEjrI+hHVgh9PVKKUqkAa+N+o8ypo+ed1MpytRSlUgDXxvVL8ZdBhoTah25rjT1SilKogGvreKGQunDsPGhU5XopSqIBr43qplDFwcColvQyX+mkulVNnRwPdWItYXnf+ZCrtWO12NUqoCaOB7s9Ch1rdirX3L6UqUUhVAA9+b+daCiNtg6xI4nO50NUqpclbd6QKUw6LugB9egZm9wa++09UopQBqNYbRX5T5ajXwvV3DS6H305Ce6HQlSqkcfg3KZbUa+Aq63e10BUqpCqD78JVSykto4CullJfQwFdKKS+hga+UUl7CrcAXkb+KSKqIZItIZBHtrhWRbSLys4hMcqdPpZRSpePuFv5m4AZgZWENRMQHeA3oBwQBw0QkyM1+lVJKlZBbp2UaY9IARKSoZtHAz8aYX+22/wEGAVvc6VsppVTJVMQ+/EuA3/LcTrfvK5CIxItIkogkZWRklHtxSinlLYrdwheRBODiAhY9aoz51IU+Ctr8L3Q+XmPMDGCG3XeGiOxyoY+C+AP7S/nY8qR1lYzWVTJaV8lUxbpaFbag2MA3xvQqZac50oGWeW63APa48kBjTEBpOxWRJGNMoQeSnaJ1lYzWVTJaV8l4W10VsUtnHdBWRFqLSA3gZmBxBfSrlFIqD3dPyxwiIulAV2CJiHxl399cRJYCGGPOAXcDXwFpwEJjTKp7ZSullCopd8/S+Rj4uID79wD989xeCix1p69SmFHB/blK6yoZratktK6S8aq6xOj3mSqllFfQqRWUUspLaOArpZSX8OjAL26OHrG8bC/fKCIRlaSuWBE5LCIp9uWJCqprloj8KSKbC1nu1HgVV5dT49VSRL4VkTR7zqj7CmhT4WPmYl0VPmYi4iciiSLyo13XUwW0cWK8XKnLkdeY3bePiGwQkc8LWFa242WM8cgL4AP8ArQBagA/AkH52vQHvsD68FcXYG0lqSsW+NyBMesBRACbC1le4ePlYl1OjVczIMK+Xg/4qZK8xlypq8LHzB6DuvZ1X2At0KUSjJcrdTnyGrP7/gfwQUH9l/V4efIWfu4cPcaYM0DOHD15DQLmGsv/gIYi0qwS1OUIY8xK4EARTZwYL1fqcoQxZq8xZr19/SjWacX5pwWp8DFzsa4KZ4/BMfumr33Jf1aIE+PlSl2OEJEWwHXAzEKalOl4eXLguzJHT4nm8anAugC62m8xvxCR4HKuyVVOjJerHB0vEQkEOmFtHebl6JgVURc4MGb27okU4E/ga2NMpRgvF+oCZ15j04GHgOxClpfpeHly4LsyR0+J5vEpI670uR5oZYzpCLwCfFLONbnKifFyhaPjJSJ1gQ+B8caYI/kXF/CQChmzYupyZMyMMVnGmHCsKVSiRSQkXxNHxsuFuip8vERkAPCnMSa5qGYF3Ffq8fLkwHdljp5Sz+NTnnUZY47kvMU01ofSfEXEv5zrcoUT41UsJ8dLRHyxQvV9Y8xHBTRxZMyKq8vp15gx5hCwArg23yJHX2OF1eXQeHUHBorITqxdv1eLyLx8bcp0vDw58F2Zo2cxcJt9pLsLcNgYs9fpukTkYhHrSwREJBrr95BZznW5wonxKpZT42X3+Q6QZoz5VyHNKnzMXKnLiTETkQARaWhfrwX0Arbma+bEeBVblxPjZYx52BjTwhgTiJUT3xhjRuRrVqbj5dbUCk4yxpwTkZw5enyAWcaYVBEZZy9/E2s6h/7Az8AJYFQlqWsocKeInANOAjcb+5B8eRKR+VhnI/iLNQfSZKwDWI6Nl4t1OTJeWFtgtwKb7P2/AI8Al+apzYkxc6UuJ8asGTBHrG+5q4Y1b9bnTv9NuliXU6+xC5TneOnUCkop5SU8eZeOUkqpEtDAV0opL6GBr5RSXkIDXymlvIQGvlJKeQkNfKWU8hIa+Eop5SX+H3jMY9v9RAdRAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/cons_news_18_1.png" }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.title(\"innovations representation\")\n", "plt.plot(range(J), c_res2 / σa, label=\"c impulse response function\")\n", "plt.plot(range(J), b_res2 / σa, label=\"b impulse response function\")\n", "plt.plot([0, J-1], [0, 0], '--', color='k')\n", "plt.legend()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The above impulse responses show that when the consumer has only the\n", "information that is assumed to be available under the innovations\n", "representation for $\\{y_t - y_{t-1} \\}$, he responds to a positive\n", "$a_t$ by permanently increasing his consumption.\n", "\n", "He accomplishes this by consuming a fraction $(1 - \\beta^2)$ of\n", "the increment $a_t$ to his nonfinancial income and saving the rest\n", "in order to lower $b_{t+1}$ to finance the permanent increment in\n", "his consumption.\n", "\n", "The preceding computations confirm what we had derived earlier using\n", "paper and pencil.\n", "\n", "Now let’s simulate some paths of consumption and debt for our two types\n", "of consumers while always presenting both types with the same\n", "$\\{y_t\\}$ path, constructed as described below." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "# Set time length for simulation\n", "T = 100" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9d3hc1Z3//zrTNKPeu23JDRe54RLAdBJKQkhgIYEAYUNISGE3JNmE7CZkCbvZJN/fJhCypABJRC8JgYQeCJhijCvuTbJlW72MNBqVmdGU8/vjzL2a0RSNbNmS7Pt6Hj2Sbj0zc+d9P/fTjpBSYmBgYGAwdTFN9AAMDAwMDI4NQ8gNDAwMpjiGkBsYGBhMcQwhNzAwMJjiGEJuYGBgMMUxhNzAwMBgimMIucGYEUL8Vghx53hvO8pxqoQQUghhOdZjnUqM1/tvMLkRRh65wVRACFEFNABWKWVgYkdzYhBC1AJNUsofpLj9PwO3SCnPPp7jMph8GBa5wZgQQpgnegyjMd5Wu/EUYDDZMYTcACHEfCHEGiGESwixSwhxRcS6WiHEb4QQLwshBoALwsv+O2Kb7wohWoUQLUKIW8IukNkR+/93+O/zhRBNQohvCyE6wvt8IeI4nxBCfCiEcAshGoUQd43hNRwSQtwhhNgODAghLEKIM4QQ74df1zYhxPkR268RQvxECLFBCNErhPirECI/vE5z43xRCHEEeDO8/GYhxB4hRI8Q4jUhxIzwciGEuCf8mnqFENuFEDXhdWlCiP8VQhwRQrSHXR2O0d4PIcSXgeuB7woh+oUQL4SXf08IcUAI0SeE2C2EuFL7DIHfAmeGt3eNfP/D/39JCFEvhOgWQvxNCFEesU4KIb4ihKgLv8b7hRAi1c/AYAKRUho/p/APYAXqgf8AbMCFQB9wWnh9LdALrEbd+O3hZf8dXn8p0AYsBNKBRwEJzI7YX9v2fCAA3B0+78eBQSAvYv2i8HkWA+3Ap8PrqsLHtSR4HYeArcA0wAFUAM7wOUzAx8L/F4W3XwM0AzVABvAs8NiIcz0SXucAPh1+n+YDFuAHwPvh7S8BNgO5gAhvUxZedy/wNyAfyAJeAH6S4vuhv3cRr/MaoDz8mj4LDESc65+B90ZsH/n+Xwh0AacDacCvgHcitpXAi+HXMR3oBC6d6GvU+Bn9x7DIDc4AMoGfSimHpJRvor7M10Vs81cp5VopZUhK6R2x/2eAP0opd0kpB4EfjXI+P3C3lNIvpXwZ6AdOA5BSrpFS7gifZzvwJHDeGF7LfVLKRimlB7gBeFlK+XL4eK8Dm1BiqfGolHKnlHIAuBP4zAjX0V1SyoHw8W5FCfAeqXz0/wMsDVvlfpRIz0PFnfZIKVvD1uyXgG9KKbullH3h/a5N5f2Ih5TyT1LKlvBrehqoA1al+P5cD/xBSrlFSukD/h1lwVdFbPNTKaVLSnkEeAtYmuKxDSYQQ8gNyoFGKWUoYtlhlEWr0Tja/iluC+CU0cHKQdSNBCHER4QQbwkhOoUQvcBXgMLRXkCCc88Argm7VVxhV8PZQFmC7Q+jrOLCBOtnAL+MOFY3yvquCN/8/g+4H2gXQjwghMgGilBPKZsj9ns1vHzU9yMeQojPCyG2RhyvhtTfo/Lw6wRAStmPekqJ/KzbUh2LweTBEHKDFmCaECLyWpiOcjtoJEttagUqI/6fdgxjeQLlhpgmpcxB+XzH4qONHGcjyuLOjfjJkFL+NMFYp6Os464kx7t1xPEcUsr3AaSU90kpl6NcTHOB74SP5QEWRuyTI6VMVRyj3vew9f8gcBtQIKXMBXYy/B6NloLWgrohacfLAAqI/qwNpiCGkBusR/lZvyuEsIYDgp8Enkpx/2eALwgVME0HfngMY8kCuqWUXiHEKuBzx3Csx4BPCiEuEUKYhRD2cHAx8qZzgxBiQXjcdwN/llIGExzvt8C/CyEWAgghcoQQ14T/Xhl+mrCi3ksvEAw/5TwI3COEKA5vWyGEuCTF19AOzIz4PwMl1p3hY30BZZFHbl8phLAlON4TqM9qqRAiDeXmWS+lPJTieAwmKYaQn+JIKYeAK4DLUBbkr4HPSyn3prj/K8B9KH9qPbAuvMp3FMP5GnC3EKIPdUN45iiOoY2rEfgUKojbibKov0P0Nf8oKhjYhgri/muS4z0H/Ax4SgjhRlnCl4VXZ6MEuwflunAC/xtedwfqffkgvN8bJPGBj+D3wIKwG+V5KeVu4Oeo97gdFRheG7H9m8AuoE0I0TXyYFLKf6BiAc+inqRmEe2vN5iiGAVBBuNKOA1uJ5AmJ3HhjhBiDSpL5aGJHouBwbFiWOQGx4wQ4kohhE0IkYeyWl+YzCJuYHCyYQi5wXhwK8p9cQAIAl+d2OEYGJxaGK4VAwMDgymOYZEbGBgYTHEmpBlQYWGhrKqqmohTGxgYGExZNm/e3CWlLBq5fEKEvKqqik2bNk3EqQ0MDAymLEKIw/GWG64VAwMDgymOIeQGBgYGUxxDyA0MDAymOJNm5hO/309TUxNe78guqZMHu91OZWUlVqt1oodiYGBgoDNphLypqYmsrCyqqqqYjJOSSClxOp00NTVRXV090cMxMDAw0Jk0rhWv10tBQcGkFHEAIQQFBQWT+onBwMDg1GTSCDkwaUVcY7KPz8DA4NRkUgm5gYGBwYRx4E1o2TrRozgqDCE3MDAwaNkKj38G/nH3RI/kqDCE3MDA4NRmaACevQVCfnDFLZyc9BhCHsEjjzzC4sWLWbJkCTfeeONED8fAwOBE8Np/gLMepn0EXI0QCo2+zyRj0qQfRvKjF3axu8U9rsdcUJ7Nf35yYcL1u3bt4sc//jFr166lsLCQ7u7ucT2/gYHBJGTPC7C5FlbfDjmV0LgeBjogq3SiRzYmDIs8zJtvvsnVV19NYWEhAPn5+RM8IgMDg+PO6/8JJYvggu9D7gy1zHVkYsd0FExKizyZ5Xy8kFIa6YUGBqcafa2w4maw2CB3ulrmOgLTVk3suMaIYZGHueiii3jmmWdwOp0AhmvFwOBkJ+AD/yDYc9X/udPU7ykY8JyUFvlEsHDhQr7//e9z3nnnYTabWbZsGbW1tRM9LAMDg+OFx6V+O8JCbsuA9ELDtTLVuemmm7jpppsmehgGBgYnAq8m5HnDy3KnT0khHzfXihDCLIT4UAjx4ngd08DAwOC4oVnkmmsFDCEHvgHsGcfjGRgYGBw/PD3qd4xFPvVyycdFyIUQlcAngIfG43gGBgYGxx3vCB85KCEP+lQu+RRivCzye4HvAglvY0KILwshNgkhNnV2do7TaQ0MDAyOkriulXAuec/Uylw5ZiEXQlwOdEgpNyfbTkr5gJRyhZRyRVFR0bGe1sDAwODY0Fwr9pzhZZG55FOI8bDIVwNXCCEOAU8BFwohHhuH4xoYGBgcP7wuSMsGc0Tyni7kp5hFLqX8dyllpZSyCrgWeFNKecMxj2wCOHToEDU1NRM9DAMDgxOBxxXtVgGwpUNG0SlpkRsYGBhMPbyu6ECnxhRMQRxXIZdSrpFSXj6exzzRBAIBbrrpJhYvXszVV1/N4ODgRA/JwMDgeODpOWmEfHJWdr7yPWjbMb7HLF0El/101M327dvH73//e1avXs3NN9/Mr3/9a/7t3/5tfMdiYGAw8XhcUHRa7PLc6bD3JZVLbpoaToupMcoTyLRp01i9ejUAN9xwA++9994Ej8jAwOC4kMy1EhyC/vYTP6ajZHJa5ClYzseLka1sjda2BgYnIVKGXSt5sesi+5Jnl53YcR0lhkU+giNHjrBu3ToAnnzySc4+++wJHpGBgcG44/coq3tk1gpMyVxyQ8hHMH/+fB5++GEWL15Md3c3X/3qVyd6SAYGBuNNvPJ8jZyp15d8crpWJoiqqip279490cMwMDA43njitLDVmIK55IZFbmBgcOqhl+fHscghnII4dSxyQ8gNDAxOPZK5VgDyqqZU4yxDyA0MDE49krlWQAl5byMEAydsSMeCIeQGBganHqO5VvKqIBQAd9MJG9KxYAi5gYHBqYfXBQjV/TAeeVXqd8+hEzSgY8MQcgMDg1MPT7iqM1EJfl61+m0IuYGBgcEkxdOT2K0CkF0OJit0N5y4MR0DhpAbGBiceiTqs6JhMqsURMMin1rceeed/PKXv9T///73v8999903gSMyMDA4bnhciTNWNPKqpoyQT8rKzp9t+Bl7u/eO6zHn5c/jjlV3JFz/xS9+kauuuopvfOMbhEIhnnrqKTZs2DCuYzAwMIjDu7+Ali3w2RM4Q6TXNdxTJRH51dCcdCriScOkFPKJoKqqioKCAj788EPa29tZtmwZBQUFEz0sA4OTn70vQes2CAWVS+NEkGhSiUjyqpTgJ+qSOImYlEKezHI+ntxyyy3U1tbS1tbGzTffPCFjMDA4pQgFoWM3hPyqt0l+9fE/p5Tx5+scSWQK4iQXcsNHHsGVV17Jq6++ysaNG7nkkksmejgGBic/PYfAH55O0Vl/Ys451A8ymJqPHKaEn3xSWuQThc1m44ILLiA3Nxez+QQ94hkYnMq07xz+21kPcz52/M+pVXWm4lqBKSHkhkUeQSgU4oMPPuCLX/ziRA/FwODUoG0nCBPYsqCr7sScU+uzMpprJS0L0gtTyyU/tBYe+ycI+o99fEeBIeRhdu/ezezZs7nooouYM2fORA/HwODUoH0XFMyBorknzrXiHaVhViSppiBufxrq31CNtiYAw7USZsGCBRw8eHCih2FgcGrRvgMqVoDZBofGPtF5MBTktX1/4tJ5n8EkUrRLPaO0sI0kvxoaU0hDbtqofvc2Qf7M1MYxjkwqi1xKOdFDSMpkH5+BwZTC26syVUproGC26jQ4NDCmQ2ze/TR3bPgxG/Y8k/pOo3U+jCSvSolzMpeJtxc69qi/eyemW+IxC7kQYpoQ4i0hxB4hxC4hxDeO5jh2ux2n0zlpxVJKidPpxG63T/RQDAxODtrD0yqW1EDhbPV399ieivtdhwBo7tyV+k5jda3IYHKXSfNmIKxbvc2pj2McGQ/XSgD4tpRyixAiC9gshHhdSjmmyS8rKytpamqis7NzHIZ0fLDb7VRWVk70MAwMTg60jJWSGvB0q7+76qB0UcqH8HqVdd3S35r6eT0uMFnAljH6tpGZK4lcJo0bUS1xs6auj1xK2Qq0hv/uE0LsASqAMQm51WqluvoEFAMYGBhMDtp3KvdGdvmwdew8MKZDeH1uAFo9YzAAtc6HQoy+bSrtbJs2QPF8sKRNXddKJEKIKmAZsH48j2tgEI/+oX5ePvjyRA/D4Ghp36WsbyHUzPXZlWPOXPFoQj7kSn0nbwoNszSyylQgNpGQh0Iq0Fm5EnIqp76QCyEygWeB26WU7jjrvyyE2CSE2DSZ3ScGU4dXD73KHe/ewWH31Jkk1yBMKKR85CULh5cVzALn2HLJvf5+AFoD/anv5BmlhW0kJhPkzkicS+6sU8HOaasgZ5oS8gmI842LkAshrCgRf1xK+Zd420gpH5BSrpBSrigqKhqP0xqc4rh8ygpr7puYAJPBMdDTAP4B5R/XKJyjLHJNCDv2wtpfxt8/jDec5dIuhwiGgqmde7RJJUaSV5X4SUFLTaxcpSxy/8BwVswJZDyyVgTwe2CPlPIXxz4kA4PUcIcfq5sHDCGfEjRvhv2vha1xLdAZaZHPVtbtoFOJ+Yu3w+s/hP7ET/DegOrTEgA6U/WTj8W1AlB1tmrsFS+jpmmDuikUzFZCDhPiXhkPi3w1cCNwoRBia/jn4+NwXAODpLiHwkJuWORTgxduhyc+A/evhI0PqdL84vnD6wvCFdVdddDwNhxZF/5/f8JDegJe/e+W/pbUxjEW1wpAzT+p3zufjV3XGPaPm0xTW8illO9JKYWUcrGUcmn4x4hAGRx3NCFP+QtsMLH0NikXhC0TGt6BwtPA6hheXzBL/XbWwZqfQlqO+j+ZkAd9+t+tqVwHg93KIs+uiFnlHnLjCXhi98mdBtPOgB0jhNzbC517lX8clI8cpqaQGxhMFCe7a+WpvU/RNtA20cMYH/welSs+9xL48hr455fhnx6M3iZ3usoQ2VyrrPELvw/W9MTNtKTEG/JTGlC+8dbeQ6OPo22H+l22OGbV19/4Olf99SoOxTvOoquhc4/KtNFo2gRIqFzJupZ1XP/2N/Gb01SF6gnGEHKDKYs7/IVrmYAvzvGm29vNj9f/mOfqn5vooYwP7rC1nF2h0g2rVscW/pjMquimeTNklcPpNynfc9e++Mf09eEVkGeykhcM0pKSkG9Xv0uXxKxqcDfQ1N/Eja/cyNaOrdErF3wahBl2/Hl42a7nlHuoYjkfdnzI9q7tNOaWGRa5gcFYcPt6AejydeON8JWeDHR5ugBoH2if4JGME7qQlyffriBcqn/Ot8Bqh8K5iV0rnh68QuCwOCgNBGnpT+HJrHWbuplkRE/j6Al46PX1cuXsK8m2ZXPL32/hnaZ3hjfILIKZ5yk/uZSw/Rn48FE442tgz6YnXGHamFVgCLmBwVhwB31kBUMAtA6MoUR7CuD0OAHoGOyY4JGME5EWeTKqz4XiBbDsRvV/4VxwNcLQYOy2nm68QmC3ZVEeCNDmSeG9at0OpbFuFe2GubJ0JY9+/FEqMyu5Z/M90RvVXA2uw7DlYfjbv8KMs+GjPwKgx6eE/Ig9M7GQD3bDGz8ac/VqKhhCbjAlCfk99BNi/tAQkDjg6fK6+MF7P5hyAVGnd+KEfI9zDxc9c9H4Pg1o7q/ssuTbfeRW+No6ZY2D6lOOjJ/H7enBYxLY03IoCwRo8fUkb7o3NKgCqXH84+2D6rWWpJeQb8/nkqpLOOA6wIA/ohvj/MvBnAYvfAPsOXD1H8Csupy4wo24Gq0W6GuN3y2xaSO89wvoG/+4hyHkBlOS/uZNSCGYFxby5jiP1VJK7lx7J3898Fc2tW86qvO09rfSOXjiK5En0iJf07SGDk8Hu51japeUHHeLyreO06hqfet6/rT/T/H3K5yrfsdzrwwqi9zhyKc8EMQT8tMbdrfFpX0XyFBci1wLKpdmlAJQU1iDREa/B/YcFaw1WeAzD0NWib5Ks8gbCahz9MV5QmzapPzs5UsTj/EoMYT8JOfP+//Mo7sfnehhjDvuFiXMs/1BLIi4FveTe59kTdMaAAb9cR7NU+Bf3vwX/mf9/xz1OI8WzSLv8fXgi0ixOxFs71QBwab+cfT1ulsSulWe3vc09225L+46mTdTBRTjZa6EfeR2ex5lUklZy0CSJ6+2bep3Eou8OL0YUEIOsLNrZ/SGV9wHX34bpp8RtVi3yLVWAfHcK00boWRBal0Xx4gh5Cc5Lxx4gSf2PDHRwxh33OHsg5yMUsqwxgj5vu59/HzTz/lI2UcAoh+RU6Tb282+nn10e7uPfcBjRLPI4cRa5VLKYSHvG08hb04Y6HR6nLh8rpib7QsHXuCSv32Kpvzp8TNXPD14hQlHWg5l1mxAPUElpHW7eirQ8r0jaBtoIy8tD7tFuXTy7HlUZlayo2tH9IaOPDURRgRSSrp96hpp9vUQhFghD4WgeYuaDek4YAj5SY57yE3LQAtDwaGJHsq44u5SM7JkOfIpD0XnknsCHr7zznfIScvh/537/zAJ01EJ+eb2zfrxTjSaRQ4nVsgPuQ/phVbjb5HHF3LtRtk2GO073ta5jdaBVr6RbWUwnmtF85HbMihPUyX3SYPerdugbEnc9rXtg+2UZJRELVtUuCjWIo/DgH+AQChAdU41ARmgzWKO7UvurANfr6oCPQ4YQn6S4/a5CcnQ+FpXE03AhzscPMtOL6LCPxRlkb915C0aehu466y7yLfnk25JZzAwdtfKxjY1D+OECLnHSUWmckWcSCHXrPGq7Krxu2YCPhjoTOha0fzLbf3RQt7c30xOWg71+LiTTmQwELXeP9BFQAjsZju56UU4ZBLXStCv+qXEcauAsshL00ujltUU1tA60KqngiZCG/+iQpUX35iRF2uRa3N6VhoW+QmhrqfuqKy3yUrvkAr+HHIfmtiBjCftu3ALlXaYk1lKuXeALk+Xnkv+bvO75KXlsbp8NQDp1vSj8pFrAdKJEvIFBQuAE5tLvr1zO5nWTM6tPJfm/mZCMnTsB9UCf3Escn9EgHKkRd7S38LKkpXcXnIuf0+389Cmn0et94VnFbJb7IiMIkpDMrFrpXMfBIfiFgJBAou8SAnzaFa5lkO+pEgd+0hmfuyUb02bVMsBrZ/MOHPKCPn+nv38cO0Pk/o7A6EA1798PbW7ak/cwI4jvqBPD5SdVD27W7fSZ1KXbnZWBeU+JbQtAy0EQ0HWNq9ldcVqzCYzAOmW9KQ3ZyklN792M4/veVxf5vK6qOupwyRMJ1zIQzJEt7ebGdkzcFgceiDuRLCtcxuLChcxPWs6vqBvVGs0JbQc8pxYizwyyyTSLSKlpKW/hfLMcv55/g1c0j/A/+19PGp7b/i77LA4IKOQ8iF/Yotcq+iMY5FrxUBaxorGvPx5mIU51k8+Aq2d8ty8udhMNpri5ZI3bYKK01VzrePAKSHkLxx4getfup7n6p9jTeOahNs5PU48AQ8HXWObAHayovUigZNMyFu24ralYxEWHFkVVIR7bbT0t7DTuZMeXw/nVp6rb55hzWAgkFjIt3VuY2PbRh7Y/oAeS9D840uLlh6VW+ZY6PX1EpRBCuwFlKSXnDDXyqB/kDpXHUuKl1CZpTr5NfaNwxyUSYqBIoO6kdZ0t7cbb9BLeWY5oug0zhv0EELqogng8SpRt1vskF5Amd9HWyKLvHW76tuiVY5GoD3xlKRHW+QOi4M5eXNStsgLHAVUZFXQaDFHC/nQAHTsOm7+cRifyZcnFQ29Ddy7+V7y7HmUZ5bT2NfI8/XPs7xkObudu6nrSTwDidbPeFyDPBOIFrSCk8y10roVd2Yh2WlWRFYJ5QHlO23pb6FjsAOTMHFW+Vn65hnWjKSuldcOvQYo8Xil4RU+NftTbGrfhN1sZ0XpCrZ0bMEf8mM1WY/v6wqjiVuBo4Di9OITJuS7nLsIyRCLCxfrQt7U18TykuXHdmB32M0Qx7WiPSGbhTmqQZhmnVdkVkB6Ppm2TCA6+8jr64WsdOxmu7LIA0G6fT14Ah5lpUfStl31Pg8/pUWtGozOIY+kprCG1w69hpQSkWCOT+3mkpeWx7SsaRzx7FSBTW+vyj1v+VDllh8n/zichBb5PZvv4b3m93ir8S1+9eGveL7+eb6w8As8dPFDzMqZlVTItS/M0QZ56nvqo/szTDCakJekl5w8FnnAB+27cduzybZlQ0YxxcEgFmGmub+Zd5reYWnRUnK0FqgoH3ki10pIhvj74b9z/rTzmZUzi8f3PI6Ukk3tm1hStESdgxPrJ9cyVgodhSfUIt/WqfKsFxctpjyjHIEYH6PG3QJp2WqW+RFo1uys3FlRrhWtwKs8U4l/ZvjGon+OoRDeoT5As8gLKQvf0GMyV0Ih1fUwTiEQJLbIQQUw+4b6ONJ3JOHL6/Z2YzFZyLBmMD1rOo2BASTAe+ES/6ZwMdpxSj2Ek0zI9zj38FbjW3xp8Zd4+7Nvs/H6jbzz2Xf41opvYTFZmJM3h/09+xOW8WoVfO4hd/IKsQTcv/V+vr3m2ye8gCMRmmtlUeEiujxd9A+NYV7DyUrHbgj5cdvsSmQzSzAB5ZZMtnVuY0/3Hs6pPCdql2QW+YcdH9Ix2MFlVZdx/YLr2dOtrqF93ftYXrpct+w8/rELed9QH/84/I8x76db5PZhi3xcgo6jsK1zG1XZVeSk5WA1WynNKB2fzJUkOeSaRb6wYCFtA23669SykMoz1H7puVUAw9ewz40nbCBrPvIyrZ3tSPfKQAf43NGTWESgl+dnxAq5VhiUzE/u8rnIT8tHCEFlViWekA/n0uvgvXvhwFsqYyWvOqZR13hyUgn5r7f9mixbFtfPvx5Qd+o8+/CUTnPz5tLj64nK0Y2kI6LpTryS79Goc9XhDXp1/+pEo1nkWvT9cN9JYJUfVrPGuE0msmxZqkDDZKHclKa/7+dURAt5svTD1w69Rpo5jfOmncflMy8nJy2Hu9fdjUSyomTFsJAfhUX+XN1z3L7m9jH3edECjJprJSADYy5K8gf9Y+oIqRUCLS4atlorsyrHSciT55CbhZnT8k9jKDSkv87m/maybdm6SyUzX/m2+7UUxXDDLEC5VtILKA4qIY8J0LrCfv44hUAwXAyUZk6LWTczZyYOiyOpn7zH20NueA7QaVnqHI0rb1LtBZ67FY58cFz943ASCflu527WNK7hpgU3qS94HObkqdSf/T3x22JG9tQY6wXsDXg54laPX+83vz+mfY8X2lOFlt96uHeKC7m7Fd7+KVSuwh30KYvcZIKMYipC6lIuSS9hbt7cqN0yrBlxXSvBUJDXD7/OuZXnkmHNwGFxcPWcq3F6ndhMNhYXLSbdkg4kF/K6njpeOvhSzHLNLXGwd2zBc6fXicVkIduWrT/uj9W98pMNP+Erb3wl5e2b+5vp9nbrKXQAlZmV4+daSSLkuWm5uuWt+clb+lv0PHqAjPAkzYPd4eZZnh48mpBblI88LyzkmrtGpzfsFsmNL+Ttg+1x/eMAFpOF+fnzk1rkPd4e8sIFSbqQeztVUy2PCwa7jqt/HE4iIf/N1t+Qbcvmc/M/l3AbTcgT+ck7PB3MyJ4BjN0iP9h7EInEarKytmXtmPY9XmgW+cKChQhEQov8iPsIT+99OnnnuIlGSvjbv0BgCK78LX1DfWSnKf81mcV6wPOcynNiglLp1nR8QR+BUHRByeb2zXR5uri46mJ92bXzrsUszCwuWkyaOQ2HdXSL/H83/S8/WPuDmFncNUu8obdhTC/V6XGSb1eP6trj/liFvK6njt3O3Sl/plohUKRFPi1rGl2ermOLDwT9qttfgmKgbm83+Y58yjJVV0TNv62lHmpkhv3L/a5DasFgD95wKp/dYoe0bDKEBRsmvVxeR8sgSWKRx/OPaywtXspu5+6E74PL59It8orMCkzCpLJ9Smvg0nCfnqqzEx5/PDgphHy3czdrmtbw+QWfT2iNA+Tb8ymwFyQU8s7BTqpzqslJyxmzRYcckGsAACAASURBVK4d85OzPkm9q35STNHlHnKTZc0i3ZpOWUZZwoDnk3uf5L/X/zf/ODJ2f+4JY8sjUP86fOxuZP5M3ENuPRBJZgnlPuU6GelWAciwqCZFI90rrx16DYfFwbkVw6mKpRml/OisH3HbstsARrXInR4n61vXEwgFYsRWy2kes5B7nRTYlT9Va+KUqCho0D8YNybTMdiBJ+BJ2SWzr2cfFpOFWbmz9GVa5sqYJreWEl76Nuz+q/q/vx2QSS3y/LR8yjLCQt7fqnLIB6KFPC2rHIuUDGhjCTfMgrCPXAhERiF5wkK3Z8RrdjWqYhx7dtwxxCsGimRFyQoCoYB+sxtJj2/YIreZbZSmlw6nba68Bb5zQGXMHEdOCiF/4cALpJnTklrjGnPy5lDnSizkJeklR/VIWe+qx2ayce1p1wKwrmXdmPbvG+rjvi33jWtVqdvn1q3WGdkzErpWtEf/n2382VF3CTyu9ByG1/5DTTqw8hYGA4MEZTBCyIu5sNfFHSvviAl0gnKtQHQHRCklbxx5g/MqzyPdmh61/admf0pPuRvNR/764dcJSmWJR14zWkELHJ1FXugoBFTA0yzMCYuCvvLGV2K6M0op9XhPqtdxXU8dM3NmRqVYVmZWjukYABx8i/1bH6bn1e+pDCOtwjFReb63h3x7Ptm2bBwWB22Dbbh8LjwBT5RrRQhBujDTPxC+WY70kQOkF5IvTXrJvE5vY0K3SqJioEiWFS/DJExxWyEHQgHcPndULG5a1jQa3RH59xmFCY89XpwUQv5u87usLF2Z1BrXmJM3hwOuAzGPwUPBIXp8PRQ5io4qyFPnqmNm7kzm5c+jyFE0ZvfKI7sf4cEdD/JW41tj2i8ZkVbrjOwZHHYfjvuofbD3ILNyZtE20MYD2x8Yt/OPGxseUI/on/o1mEx6Ns6wa6WE9IFObph3Xdxcb02oI2+S/f5+ur3delZCIkYT8lcaXtGtschrxj3kZsA/gEmYjspHXuBQFrnZZKbAURDXtRIMBdnZtZP93dExH5fPpbuRUr2O61x1uutRIzKXPFX87/wvny8v4QHLIGx9ImkOOQy7VoQQlGaU0jbQFpOxopFptjPg61U3iHDDLEDvWEhGAXmhUKyP3NWY0K2SLPVQP68tk3n58+ImMfT6epFIctNy9WWVWZXjU0g1Bqa8kB9xH+Gw+3DcR+p4zM2biy/oi8kL1YqBitOLqcyspKW/JUbsk1HfU8/s3NkIITir/CzWtaxLef/+oX69PDyVbmupEinkVTlV9Pn7Yh61B/wDtA208YmZn+CKWVfw8O6Hxyw8x52uOpUBELaqNN9/pGsFGVRTacVBs8gjhVwLBOvHSEAyIW8baGNLxxbdrx755dXEaFHhIrq93Smns2rl+ZprBUiYS97S34I/5I/pURK5bSoi7B5y0zbQxpzcaCHPTcslw5qRukV+5AN2tW1kwGSiLatQzYbjCj8FxhHyoeAQ/f5+/UZYllFGa39rTA65RoYtiwEBdO5Vk0pY7FhNViymcF1jeiH5AX+sO6m3KaFFnqwYKJLlJcvZ3rk9pouoVgyUb8/Xl03Pnk6Pr4e+cJ77iWDKC/m7ze8CcE5xatVniQKeWsZKUbqyyAMykHKPi15fL+2D7czOVSlSqytW4x5ys9OZmig/s/8Z+ob6KHYUs6MzeV+H/qH+lANYI10rEFuqrz32z8yZyTeXfxOH2cH/rP+flM/RP9TPFc9foXcKPC50H4CCmfq/sUJeHB5M/M9L83NHCrl+jLSjF/JXG14F4PKZl1OWURYlmpp/XGvclap7xe1zEwgFdIsclJDHuxa1G67T48QfMbWYZpRAam6R+h6VCTLSIhdCUJk5Buvy3Z+zMUsJWld2GbiOwIaHVGm8PTdmc01w8x1qn7KMMloHWvWboBYA1ci059FvMkHbTuUjt9qHrXFQmStDI+IC3l5VZZlTGXfImkU+svPhSFaUrMAX9MVkr2jWf27E69O+a4d6DyU95ngy9YW86V2qTA6m/e4ilZ42CrNyZmESphg/uWbFaK4VSP2R8oBLTaaqfRHOLDsTgUgpDdEb8PLIrkc4q/wsLqu+jD3de6K+lJH4gj4ufvZifrnllymNq3eoN8q1ArFCrolBdW41hY5Cbl50M+tb16ccrD3cd5iG3gae3vd0StuPmWAAeg5B/nAQTnOt6K60zPBjcQIh133kEcHOmJtBAjQhj5eH/sqhV6gpqGF69nTljosQTU2MVleMTci1GodIizxRmb52TImMEnrNKClJL0lJhDWjZmTaJowhl7x1G9T9nU3F6jpzihCULFJzdWaXgxA8tfcpnq9/Xt9FF/KwNVuaUYrT66TB3UCWLSvms8lwFDBgNqsqTU83XmsaDnNEKX56IflDXjwBz/CNN4UccoDijOKkL+/04tMBYtwrmj9ee6oA9CebRLG448G4CLkQ4lIhxD4hRL0Q4nvjccxU8PgH2dSyjrN72mGoD7aNPhOO3WJnetb0WIt8hGsFUg/y1LvCFk34A8y157KwYGFKfvK/1P0Fp9fJlxZ9iUVFi/CH/Anz3A/1HqJvqI/aXbVJWw1ouH3DrpWyjDIsJktMz5WDroNYhEXPf9XyiFMWnnAV4tuNbx+fQKnrMIQCUc2OYqxp3SKPn6IXL9ip+9lHEXKzyYzNZIuxyA+7D7PbuZtLqy8FYgWvpb8Fh8XBgoIFWE1WGtxjez8jLfLi9GL6/f0x72+kCyzyxquJ+rLiZSmJcJ2rjixrVlw/cWVmZWrtbN/9Bf60bD70K1dDl6cLzv22WhcOdD6+53Ee2f2IvotmzWpCrmWubGnfEhXo1MiwZdJvtUO7ssg9ZusIi7yA/JG55NoED7nT4w67fbCdfHt+3GKgSHLtuczJm8OmtuiAp3aeyGBnRWYFdrM9pe/oeHHMQi6EMAP3A5cBC4DrhBALjvW48QjJ0HAjKCnZ+Mq/4iPEOdWXwYyzYcujqq/CKMzJmxPzJncMdmAxWchNy6U0oxSzMKceKOqpI8OaEeVnO6fyHLZ3bk+a/+sP+vnjrj+yrHgZy0uW64U727vipzlpNwyzMPPj9T9O6v7wBrwMhYZ0sbOYlFjHs8inZ0/Xg4TVOdUAKQuPVkXnDXqTdpY8arrDYlUQYZHH85FDYtdKnGCn1qc9sidLIhxWR0yJ/isNryAQXFoVFvLMSnp8PXoJuVbQYjFZmJE9Y8wWuZa1AhEpiCPcKw29Dfp2kX7yzsFO8tLymJk7k47BjlFbRtT1qEBnvKZQlVmVo7ez9Xthz9/YXXM5noCHmoIaPAEPg7M/CuWnQ4Vye3Z6OmnobcAfUk+cIy1yTcgPuQ/FBDoBMq2ZDJjMqgHWYDfekUKeroKdECnkx5ZDHsny4uVs7dyqjx+GfeSRwU6zycys3Fkn1CIfj+6Hq4B6KeVBACHEU8CngHGcglvxb7+/lDrZyK/beykMhng33441K4d7mq9js+dd/qX3/+Pu/3uAXWnxm8drdJoddFoaueZ3azCh7sTN1t0IUw7XPvABACZbHk9v3crajaOnER6ybUZSou8L4BNlyDTJ5574LQXBj8XsMyD20W59Fq+pDWvPNVz7wAdIJOa0bO5//y2ef7sqZp8Oy9tgNpHvu5rN7U9w6UP3kBs6M+6Y/LjADs+s7+L199Vr6LRm09yzk8/+bvg11dt2kSYr9WUSiSnNwe/e/4C/vTMz7rEj6TR/CFYwy2z+a80TPPx63qj7jIXLBt7gn4EvvdiD26zG2GHZA2bBF/+4HRG2RR4Wdt5Yt41Hd8V+XiF8YIcH39vDc2+r9V3mnWCFf3lsLyaSi+xAmolXdh9m+7bhYzda12EVJfzrYweBg7hNg2CD62tfxi6ncdBWh0Xm8NnfraPdms2R7j1R73sinObNYIXvPn0QC8oIGDA5wQa3PfMWmSEl2BLJvrT9ZIUWgbmLe97cwKOvKyv+iHUffpHB8xu8SJvks79/mTQZ3wesjrOHnOCquOPrN/WBDW5+7FUyZPxJEcoCjdwrQ9zX5IZ06GibB9adXP/wm9hCP4YDguCBtxiwqxvp1Q/9FbuswGneAlb49pP1mGlhSHQQ/jqytUHEjKfN4qbPHARvLyFvH02OeTT6A/p2833tfDpskX/nubVkhdxc7/6Ay7By4+P1SBEbxD9ga8AqC1L6bNymbDw2D1c99AzpcmZ4TLsxme3c+FC0y6XFkkOfOfq75sdFq/VxVuV9hl9eecWo5xsL4+FaqQAiHXFN4WVRCCG+LITYJITY1NnZOXJ1SpRZV9BisXFTWQXPZV7EKxklpIUWYhI21jvOZkBkcMHgq6MeJ01WgJD4xHAPjAAuLHLYOrPJIoaEGqdE0mJ5lGbrH/ETndokUcdJC0W/5DRZij00g17zhqjlAdwcsf4fh9N+TkD0Uj70BfVlBAQCR6gKT5wLDsAnWrDJEvKC5+IIzaTd+meCxHdnBIVabpLDM3ZnhOYwZGrHj7KEQvgZEp2kyeGgkkCQJkvxidR85EHhxiQd5AQ/Qr9pJ0HGd3al0kAzAyIDt2n4swkygJl0XcQBXKY8coM98Q6BwAZSEBLDvUeCYhCkWa0bBZNMUzeDCEJ4MDOcf26VRQAMia7wbydWqazlNFnKkOhEEl1ZGo+AcIM0RR3bIpW1F2C4F3eQPkJiEHtoBiaZjl/0RBxDXcs2fUyJv28BeggJj/pOxMEWvgEMmRJfD8VB9aRw2NqLLVSGPXysAL36/JiBiPH5RHN4WT9IMyYc4dc5bARo710kZmnHL4IEARMhvCYTQg5/fm2WMgqCyiIPojJGCoMddJmLkCK+1AVEL1Y5+lMZQHpI3cgGTcOWdlD0Y5aZMdumyQqCwk2A4cyVQVMd/eZtKZ1rzEgpj+kHuAZ4KOL/G4FfJdtn+fLl8mjZ1LZJrnxspfzonz4qa2pr5JN7nhxe+eK3pby7SMrB7qTHOOI+Imtqa+TTe5/Wl13x3BXym299U///rvfvkuc8eY6UUsq1TWtlTW2NrKmtkSsfWyl/s/U30uP3SCml7BjokDW1NfKx3Y/FnKd2Z62sqa2RB10H9WXfe+d78vRHTpcPbn9QP0Ykv9v2O1lTWyN7fb0x6y579jJ9jHuce+TihxfLK567Qr544EXpD/qjtt3ctlnW1NbItc1r9WUHeg5Eve793ftlTW2NfPHAi1H7/se7/yEvfObCBO9eNN9661vy8r9cLnd07pA1tTXyL/v/ktJ+KfPwp6T83XlRi7779nflZc9eFr3dQxdLWXt5wsOc8fgZ8qfrf6r/f9f7d8lznzo3pSF85oXPyK+8/pWoZde+cG3Usl5fr6yprZG1O2tln69P1tTWyD/s+IOUUsoXDrwga2pr5IGeA6Oe68737pQXPh393g/6B2VNbY18YNsD+rKNrRtlTW2NfK/pPXnVX6+St71xm77uwqcvlHe+d6fsHOyUNbU18ok9TyQ839uNb8ua2hq5uW1z3PXBUFCufGxl1HsXw4aHpP8/s+VHHlsl737/brnXuVfW1NbI1xpe0zdZ17JO/w7du/leKaWUP3jvBzHX2flPny9ramvkG4ffiDmN9n1y35Ur5X9my2uevEB+/Y2vR23Td486xx93/FEteOBCKWs/GXfYoVBILnl4ifzl5l8mfm0juPwvl8uvvfE1/f9b/36rvO7F62K2W9usNGN9y3p92X+t+y+56rFVMd/VsQBsknE0dTws8iYg0gFVCYyt3dsYWF6ynN9+9Ld6sOrsiogeBqffCEEfbP9T0mNUZlZS7CiOSpnrHOzUfZHaNlou6D1b7qEis4IXPv0C51Scw/1b7+eaF66hrqdO94ONzMEFuKz6MgRCb6i0t3svLx18iRsW3MAti26J9u+F0QpURuaTewIemvqa9BTHefnzuOf8ezAJE99793tc8fwVbO3Yqm+v+ZFzbMPWRnVONRWZFXrKphYsm5kT7UKpzqmmY7AjpSrTLk8XhY5CFhYspDKzklcPjf5ENCa6D8TM6hJVnq+RWZww2AmxPcl7fb2jBjo1HBZHTLCzz99HlnW4AC3bpvqjN/Y16qmHWvqcFndIJT+/y9MVFejUzl+eUR5VIq5nG+VUq0KasI88EArQ5e2iKL2IAnsBdrM9aaxHixXNzpwGB96MWW8SJqpzqvXMrLi4jrDXns5AYJCVpSt1v32kX12LFaVb0vVzdnu7o/KvYTgNMF6wM9ManlwivwoAL6GY71DGjLOxSkm31uE0SQ55n7+PoAxG+bdHY2XpSja1bdLjDj2+nrj7x8tc2dy+mWXFy4bz3seR8RDyjcAcIUS1EMIGXAv8bRyOm5DTS07nD5f+gR+e+UM9VRCAsiXqZ8sjqudDAoQQrCxbyca2jUgpGfQP0ufvo8hRpG+jHfehHQ+xt3svty27jaqcKn5+/s954GMP0DfUx+de+hwP73oYgNl5sVNIFacXs6psFS8dfAkpJfduvpcsWxY319yccGyJhLyhtwGJ1IUc4MLpF/LsFc9y7wX30j/Uzx92/kFfF6/gRQjBORXnsL51PUPBIQ66DiIQVOVURZ2rOlsJTyp5sN3ebgocBQghuKz6Mta3ro+avuuYCPjA1cjzNsGNL9+oZ07EF/KShMFOiJ230z3kTinQCQmEfKgvppJYy1zRUg8rMpQYae9nKgFPp9ep51VHct6081jXuk4fR0NvAw6Lg9KMUkrTS/WslW5vNyEZoiS9RO+PnUzI9/fspzSjlOzNtfDoldC8JWabWTmzONCbTMgPsylXGUErSleQm5aLWZjjCvmqslW6kGvl+ZFoN7+RxUAAGTblJuwvUiLpkcHh8vwwoups8oJBul0N6vrpb4Oc+BkrveGp4nLj5Lgn4qLpFzEYGNRTi3u8PVEZKxqFjkJy03L11+ryuqh31R/7bEsJOGYhl1IGgNuA14A9wDNSyl3HetzRWFiwkGvmXhO7YtmN0L5DVQMmYVXpKpxeJwd7D+oXXJRFHhby2l21nJZ3Gh+v/ri+7szyM/nzFX9mUdEi3m95n3x7fswFqfGJ6k/Q1N/EQzseYm3LWr68+MtJBSTblk1VdlVMYZBmEUUKOSiL6aLpF7GkeElUznCigpdzKs/BE/CwqW0TB3sPUp5ZHjMtVrzMFW/AyxN7nojpIKhZ5ACXVl9KUAZ5ueHlhK9vJG8deYs3j8RaggB0NwCSNcEetnZu1Ysx4okomSXg6VFf3jiMnLczMjVzNEYKuZQyvpCHe/SMLGhJt6ZTkl6SmpB7nBTaY/3DF0y7AF/Qp/fwaXA3UJVdhUmYKM0o1fuT6IVtYaNktL5Bda46ZT1uDafu7n0xZptZubPoGOxIXKnoOsImh52q7CoKHYWYTWby7flRhTkdgx1kWbNYUrSEloEW+odUi4SRIjg3by4VmRVxP5thi1xdn14ZiH2qnXEWBcEQPb2HIzJW4hcDxcs4GY1VZavIScvhtcOv6ceIzCHXEEIwO3e2bpFv6VA3yEkr5ABSypellHOllLOklD8ej2MeNVq7yObkkzusLFWN3je0bRguBkqPsMjDueQhGeL25bdjGhEsKXQU8sDHHuAbp3+DLy/+csLzfHTGR7GZbNz34X2UZpRy7bxrR30Ji4sWs6NrR1R6Yb2rXqUQZsd/TJyRNYPGvsYoqxWGL/7I151mTuPd5nc52Hswxq0CqumPWZijhOflhpf5yYafRLmjPAEP/f5+Xcjn5M7h9OLTqd1Zm/KkBg9sf4CfbfhZ/FTKbnXz2jekBEFLb4ysWNXRcskH4gf2MqwZUSmE7qE4x0jASCH3BX34Q3590gONyiyVc93U30SaOS2qqKc6p3pUIZdS6k84I1lRuoIsa5bei6fB1aDfcLW017aBNv1a1owSzSKP9/76Q34aehuYY85QaZ4WB+yN7auudURM5F4JuY6wRQxFiVShozDGIi9KL9JdDvWu+riulVsW3cKzVzwb9zy6kJctguIFeEP+2Lk586rIE1Z6Bjsicsjjf2c0IU/1yQzAarJy0fSLWNO4hl5fL56AJ6FFPydvDvU99Ugp2dy+GZvJNmpvn6Nlyld2xlA4F6wZowp5ZWYlpRmlbGzbOFwM5Bi2yHPScsi357OydKVeZj0Si8nCLYtu0WckikeWLYvzpp0HwG1Lbxu18ACUe8XpdUbNPXjAdYCq7KqEEwBPz56OL+jTv8hun5ssWxbmEZPNOiwOVpWuYk3jGg71Hoor5Fazlcqsyijhea/5PSC6SCpySjJQVshty26jw9PBn/f/edTXCcrH2DLQEn9ORGc9/ULQFP581jSuQUoZ37WiFXy0xW+LMNJHfiwWeb9f5YqP3L8yq5JAKMDWjq2UZZRF5WVX51TT4G5ImvvvHnLjD/mjbgAaVpOVsyvP5p2mdxjwD9Ay0BJXyLVrWTNKKrMqGQwMxm1ne6j3EIFQgDldh9V35rzvqD4mXfVR22lCHtfHPzRAi6+bPhmIEql8R36MkBenF+vVz9s7t+MJeGKEXJv7Mh5aPUB/VjGhr67FG/TFWuRCkJdeSLe/f9SqzqOxyAEumXEJA/4BPfYVzyIH9fQ8GBikdaCVze2bWVS0CJt59Cypo+HkE3KTGcqXQUusry8SIQSrSlexsW2j3m8h0iIHePDiB/n5eT9POHt2qty6+Fa+sPALXD7z8pS215r7r29dry+rd9XHuFUi0WcmCbtX4opdmHMqz6Gpv4mh0BAzc+PnildnD1uQgVCAD1pUjnxkb2q9nDzCglxZupJVpat4aMdDKU1IoPnyteNH4TxAXbay9j9S9hHqXfUccB3AH/LHvrYZq1U/j53xrbnIWYKCoSB9/r6ULbF0S3qMNQ+xTzvaZ7DLuSsmWFedU82AfyCmsjYSzSWTqDf2hdMupNvbzV/r/6ofE2ItcpMw6QKpjSmee2VP9x4A5jSsh4WfhkWfUStGuFe0SkWtIC0KVyP1ViVOkddnoT3aIm8fbKc4vZiyjDIyrZlsaFNpuYlckvHQLXL/gB5sHOkjB8jPmUG3AA6uAUTCFrratTdWIV9ZtpLctFy9LUU8HzkMtzzY2rGVPd17jptbBU5GIQeoWKb6MQSGkm62snQlLp+L91vex2FxxHwx5+bNTfghjYXT8k/jWyu+FWMdJ2JB/gKqsqv4036VfTPoH6S5vzmq6f9Ipmcri1Sr3Ewq5BGdIuNZ5KC6JR5xHyEYCrK9czt9fuUfjZw5SfuiRlYhAnxt6ddwep08s+8ZQLkMtrRviQmC+kN+3bpd1xqnIKP7IPtylKjduvhWAP52QMXRY9wiFpsSo70vwVBsbn3kvJ2JLOpEOCwOhkJDejdLrXozno8clDtuZMOn8yrPI8OawQ/W/iBhLx1NKBPdsM+uOBuLyaIH2LXPTqtMbBtUQl5gL9AzI/R2EyMCnpvbN/PT9T+l3JbDzEEXLP2cckGULY0Rci1z5aArjkXuOky9TT0lRl6fhY5CnF4nIRkiGAri9Dj1AOzs3Nl6b++xCHlkF0vNdRcv8yu/cD4ekwnPvpcgq1RdG3Ho8fVgEqaU2l9HorlXtCeURBqhvR9/rvszIRkyhHzMVCyH4JDqyZCEVaWrAFjftp4iR9ExW97jhRCC6+Zdx46uHezo3KFfMPFSHDVK00uxmqy6iyKuHzlMZValLgKaVTeS6pxqhkJDtAy08F7ze5iFmYUFC6OEXBPmkUK+vGQ5Z5SdwR92/oHn6p7jqr9dxU2v3sRvtv0majvNIrKZbGxo3RATSMVZzz57Otm2bFaUrGBWzixePKhEJq4I11wN/gHY/0rMqkiLPNU+KxraI732hKEF/UYKgNbaAWLT58ozy7n7rLvZ3rmdX2z+RdzzaHEQ7aY8kkxbJqtKV9Ey0IJJmPRGaDazjQJ7Ae0D7XR4OqKC9lr2R6SQr2lcw62v30qBo4DaoRysuTNg+llq5fzL1azvfdEFQLNyZyWwyI9wwGalxFEU9X4UOgr1SRe6vd0EZVAf15y8OfpncTRC3u/v14U8xkcO5IUnau6RQwndKjCcgjoy/pUKkdMDJrLos2xZlGWUsbFtI2ZhZmnR0jGfJ1VOTiEvV53KRnOvlGeWU5FZQUiGYtwqE80Vs64g3ZLOU/ue0r9AySxys8msGtqHZyaJ7HwYj0/O+iQ1BTUJ3Qt65kpvA2tb1rKkaAnzC+ZHCYLT40Qg4lokX1/6dbq93fzw/R8C6gs7sleIJuTnVJ5Dn7+P3c6Irg6+fuhrZb8pwGn5pyGE4Lxp5+k+4LivbcZZkFUOO2L985Hzdmp9VsZikcPoQm4xWfR+IfF6hVxcdTHXz7+ex/Y8xuuHX49ZP1ocBFT2CihLO9Lfqk3K0DnYGXUt2y12ih3FNPU34Ql4eGD7A9z+1u3MyZ3DI2f9hLKGtbD0ejWJNcC8sPtvRNBzVu4s2gfb9acRHddhDthszB7RAjcyl3xkADayXe5YnngtJgsOi4MB/wCeoPos4rpWwjGGHpM5YaATwnNtjtGtorGqdJW+byIfOQw/XS0oWBAzE9V4cnIKee50SC+A5g9H3VSzyiMDnZOBTFsmV8y6glcaXmFj20ZsJpvu70zE9Kzp0RZ5EqG6ZdEtPHn5kwnXa7nPm9s3s9u5m9UVq6nIrKDH16N34evydJGblhtXeJYWL+Xus+7m/ovu5y9X/IU5eXNiZm7Rgk0Xz1DWTdT0eN0HCQJ1/l7d16iJGCToI24yQ81VUPd6zCQTkfN2xswwNAoxQu6PL+QwnLYaLw8a4NvLv83iwsX8cO0PYxqq1bvqk96sAc6fdj4Q+yQVKeQjr+XKrEo+aP2Ay5+7nF99+CsunH4hD13yEHl1rwMSlnx2eOOieapl8EghzwlnrozIJw92H+Kg1crsEU+LWtyky9ul38B1IY/YNl5gNxnplvTRLfLwzaHbbEpqkbt8rjFlrERiMVn42IyPYTfbk15H2k3reLpVKSg8yAAAIABJREFU4GQVciGUe2WUzBUYTkOMfBydLFw37zr8IT8vHHiB6pzqUX3s07Km0djXOJzZkaJQxSPXnktuWi7P1qng4eqK1THtfeNVIUZy5ZwrObfyXIQQMXnFMCzkVTlVzM+fH+0n7z5Ao8WCJ+TntLzTADXbjvYonm1N8NoWXQMhP+yJrkmLbGUbr+o1GYks8pExFRhdyK1mKz8884f0+/tZ2zzc5liLg0T5x3sOxcR5SjNK+fyCz/Op2Z+KWd7c36ymKxzxdDkje4be5e+Pl/yRX5z/C/V+7P87lC6GvKrhjYWAeZ+AhnfUpAxhtHGN9JM3uQ/hE7FPi5pF7vQ4E1rkaea0uEKcjExbJgNDo/jIw9dIj9kc/dpG0OvrPWqLHOCby79J7aW1SV0z2mvV+pkfL05OIQflXunapx7Rk7CqdBVmYY6uEJ0kzMydyRllZyCRo1pqoL6wnoCHxr7G+JkdY6Q6p5peXy/59nzm58/X/b5a5kqXtyvGP56IfHt+rEXuHU7/OqP8DLZ1bhvuue2sZ184iDY3X1nkZpNZD9QmvEmVLVEl/SPcK5GtbFOdHUhjpJD3D/VjEZa4InRW+VksLlqc9H2ZkzeHbFs22zqHGyhpGUK6kDsPwK+Ww5aHY/b/zsrv8LEZ0R01S9NL8QaVuI00Sr6+9Os8ePGDPP7xx1lRukIt9PRA43qYczExzLpA3Qxbh8dXnllOmjktJpe8PtwaYGSAdqRrxSzMuvWdk5ZDsaOYfHv+mONSWmFXMotcE/LulTfDYvW0sb1ze0zLiWOxyEE9kS0sXJh0m4umX8QdK+/g7Mqzk253rJy8Ql5xOshQ1MUYj5KMEp755DNcOefKEzSwsXHdvOuAxJkMkUzPUkEyrbz/WC5SGH58X12+GpMwUZEVFvJwwNPpcSa1yCPJS8uj398fNedhZB7vmWVnEggFhmcq76pnX5aaQT7ytd+86Ga+tuRriW9SQiir/NB74B5u+RPPIh+rj1zLenEPucm0ZcYVoY/N+BiPf/zxpFaaSZhYUrSEDzuGXX8xcZB1/6cm1HDGCTDGIbIXfmSrCVDX+BllZ0SP98Bbap7TuZfEHixXBVH1PGzUTXRmzkzqeyPG43VzQPqixx0m05qJzWTTLfICR0HUE+WS4iX69ToWMq2Z9A/1D/vI41jkGdYMrCYr3Zn5YEunbaCNG1+5Uc+i0jhWizwVHBYHNyy4IWncYzw4eYVcC3im4F6Zmzc3pUKdieC8yvO4/fTbuWLW6P2LtapPba7QY7bIw35ybbqyvLQ80i3pNPWrSsFE5eTx0PqHRLpXen292Ew2HBYHy4qXYTPZhv3kbdvZn5FFVXZV1GczM2cmX1361eSW3NxLAakszjD6vJ2BAf288UQgHrpFHs4l7/f3jzllbSTLipdxsPegHvA94DqA1WRVcZD+DvhQTcYdeTNKRqSQp+QmrPs7OPL0SR+iyKkExHBlZJiZuTOjXSuuI9TbrFTYcmMCeUIIvbqzY7AjZvKG/1r9X9xzwT2jj3MEWvaR7lqJE+wUQgXgtSfAd5reISRDUS0sfEGfqso8zkJ+ojh5hTyzSDXLGSVzZbJjNpn54qIvJiwSiaQsowyLsOgW+bEK+dkVZ/ORso9wTqVyZwghqMiqoLmvWX2Zgt7UXStpYb9lhHtFyxoQQmC32FlRuoLXDr1Gd18LdO5jn0nqbpUxURgOpkVUKEbmII+lYRbEWuR9Q31x/eNjYWmxSkXT3Cv1rnqqc6pV/veGB1T6bF419I0+Dy2MUchDIRUQnv1RFSAeiSVN5V+7oqttZ+XMonWgddhFERbyWVkz4p4mUshHPiVkWDOO6maYYc2ICnYmuhlHxmTebVLdPiOnw9Pcesf61DpZOHmFHFRhUJxubicrFpOFiqwK9jhVxd6xBDtBdXR86OKHom4IFZkVNPU36cVAKbtWwpkEI4U8xz78Rbr99Nvp9fVyx5pv0SMkbcFBPdA5JmwZqprPGSvkg/7BMZXnQ/xg57HeJGsKazALs956+IDrgHJP+Pphw4Mq4DjjrJQt8kJHISZh0qcrTErrhzDYBXPiuFU0cqfHCrlWqh+2yv09DRyyWplVMD/uIQocBXR5u/Ty/PFAt8iDiX3kMByT8Qa8fNCqqoYjp8M72vL8ycpJLuTL1eS9A0nmGzzJmJ41Xb/Ij1Vs4qFNxjtWIdcCUFpZP8T6KOcXzOf7Z3yfD7p38d1iddzT8o9CyEEFPJ3DHTBHBjvHcpNzWGOF/FhdKw6Lg3n589jauVXvnTI7d7Zqwex1werbIatMFeaEK0qTYTFZKHIUUewoHj2AuP/vgIDZFyXeJmdajJDPy58HwJuNqltlo3MPfiGYXRS/EVSho5Dmvmb6/H0pPVGmQqY1U+WRBxL7yEEZDt3ebja0bcAb9OqZOxpHW54/WTm5hVwvDBo9n/xkIbIq8HgIeUVmBZ6ARw/OpepaSWSRj/wiXTXnKq5KK+cDhxLPo7LIQblXuur1vvSaj3wwMDimSSUgvkU+svPh0bC0eCk7Onewv2c/ALOyq2Hd/arKctpKyC5TAckEHR1HUplVGdMaIC51f4fKlZCepKoydzq4m6NuIuWZ5VxWfRmP7X6M9oF26rVMm7z4FceFjkLdHTVeFnmmLRN/yI/b50YgsJnil9/npSkhf6fpHRwWB5+o/gR9Q316VtTRdD6czJzcQl4WnoS5ZWvy7U4itKIhgThmqzEeWgri1k71nqYq5Nm2bCzCEhXsTJT+9e99Q8yXNorTi1M+fgwFs8HXqz+NOSwOTMJ0VD5yq8mKxWQZTj8ch2AnKCH3Br16F73ZIRO4m2D5TWoDrdmTuznBEaK568y7uOvMu5Jv1N+h4kbx0g4jyZ2msmZG+Oj/ddm/EpABfrPtNxwYbEeQuM1D5Gc3nq4VUGmNdos94dNHgaMAT8DDP478gzPLztQTATSr3HCtTCXs2VAw59SyyMMpXZm2zKPqITEaWr799s7tmIU55S+CnkngUxa5lDJ++lcwgL19N78vvpDaS2uPvv9NQdhKDLtXhBCqcVY4/XCsTytaK9tAKMCAfyBqmrejReu98dLBl0gzp1E5FJ4UQ5vaLitsXbtTC3hW5VQNz/a07Wl49+exG9W/oX7PHUXItVl1XNGZK5VZlVx72rU8V/8cb4pBKk2OhH7qSLfb8RDyZMVEWtl8l6eLcyvP1aeQ04Rcd62MYXagyczJLeQQbml76gi51kgp1arFsaJZ5I19jeTb88d0s9D8lpBkvkRnHQS8ZFUsH7UlQVIKw2L4/7d33tFxlXfe/zyqVi+WjGxLxnLFNjZN2KYYMIZADMFk2WTJGxI2CSGFk102JJSwb2DfPbCE5Lwpb2BznISFJCwpQCgJsGADpheHYoxx78ZFLpKLZDU/7x+/+8yMNDOakTRX036fc3Su5t6Ze59HmvnO7/6eX9nb209+sPMgR7qODFrIXcRGIizyupI6RpeM5nDXYcncdR1tXG31ci87NM7IlV68/StYdnd4x6QNz0PJKMno7A83hj5+coBrZ11LcW4Rq/NzmdhPaYteFnmCSmA4Id93dF/E0ENHaA2XefXzgqV+24IWeVFeUcqGHQ+U7BDyQx+HVXPLVEaXjibX5A45YiUaxfnFgYXLgbo9QkPCAv0S+wr5Tq/BcCyhiUVFA+QW9opcKc4rDlhk5fmlcP+lsOrxuE5XnFdMe3d7MD0/AT5yCFrlkyonycJ83ggo8UL1imsgJz9u10oAa6F5DXQflUqGofs3vQSN50jiVH+49mit4UJeNaKKLzdcAMDkfhLVXCZncV5xwv5eLuzTuVai4d6j00dOZ1TxKCmhiwn0HhhqVmeqkR1CDlnjJ8/PyWdM6RhfFjodziqPN2LFEZqkEdVHuWuFiFnNIOLHQ8nJheoJYSGIrutSeU4+bH4ZXvt/cZ3OWeTRKh8OFhdPPrFyoli/leOCIpuTI+6VOF0rAQ7tkvUBEOF2NK+WBtUTzo19joJi+UKJYJEDXFUwhoWHj3Dh5MujnsK9PxJZx8gJ+YGjB/oVcnftc+rPAaTGzciikQGLfDiyOoeTzBfyuplgcrLKvXJD0w1cM/Ma384fEPIBVq4LrbcSNWpg5/swajrk5g19oDWTwoTcWeQVx7yWa9vflromMXBCPtCmFLGYO3pusFa1E/JQyscM3CJvXi3b3MLeQr5xmWwb4xBy8EIQt0U8VLR3HT842M20cdHP5Zq19M3qHArOtWKx/bpW6kvruf2M27lq2lWBfXXFdb0WO9UiTycKS6FmalYJ+YJxC5gzeo5v53dCPhjXiqu3EtEit1Ys8tFDdKs4Rk6C/ZugRxpWFOcX03VMuvOU94TEZn/wp5inKsoror2rPWqbt8EyoXICL1/5shSziijkowfuI29eI9sTr5Avqk4vE3PTMqkGWBU5EzOMCElBAXavguNmxHTRTKmaEog/TwSh/Tz7W+w0xnDFlCt6ibUr9QtqkacnbsGzn8a3Svy4yJWBCnmgTvTR/ZETMlq2SunUofrHHSMnSxW/Fml/FyoC5W4RsGQUrPhDzPdGcX6xL66VwLk6DkH7/nAhLxsjrpWBvHebV0v/0plXSAjh1tfly2zzK/Fb4yAhiK3bJaU/FGthzyo4bnrMU9x30X18u+nb8V8zBqH/w3hr5TickFtrh9RUIhXJHiE/sifudGelfwbrIw+ttxKxX+Iub6HTxf8PFVdzxXOvuKQggPIOr5ny7K/C/o0xi6sFXCtR+nUOGefCiORa6TrSqzZ4TPaulQYR486QxdJNL4kh03EwPv+4o/J46OmQz04ordvkXKNiC3luTm5Cw2BdPoD7fSDUldRJY5HOgwPOJUh1skfIIavcK35y6nGn8sXpX+TMMWcO6HWhFRBddmWvZhk7V4DJlVv2RDCydwhiL4vctSxr+rIsrq74Q7+n6rvYGXquhOBcGJV93B7lXiz5QNwrzauhdqrUnKk/XYR804tybCAWueuu09dPvttryZeo/9MAMMYE/vYDtchdmYB1B9ZxzB5Ti9xhjPmhMWa1MWaFMebPxpjU/MvUnSgCoUKeEApzC/nu6d8dsEXjkjT2H90ffmvb3gIrHxYrL39gllZUiquhqDqQFOTqrRTlFVHQ1gIFZVBSA1M/CSsfgSjd7d1r2rrbONR1iOK84kCX+oQREPIIrhWIfjd5YLNkazqO7IW2fWKRg4Qa7nwfPnoSjjtR5hsvgVjyLb337/lQtqMiF8vyG7c+0d9iZyRcUtCaA7KGoEIe5DngRGvtLGAtcMvQh+QD+UUiECrkSSW03kqvqIFjPfDIV8TyW3h3Yi9aMzkQleL6dpYVlEn1vxLPNTTrH0T8Njwf9TRFeUV09HTQ2tHqS+mDsBhyR3k/Qm4t/GYRPPrV4D4XsVLr1ahpPCfYYGUg1jgEGxe3RrDIKxpgRHJcE84iH4xrBWD1fvkbqWvFw1r7rLW223v4BpB6/dIcY07WBc8kE1pvpVfUwJLbJXV84Q+ldGsiGTkpzLVSXlAulmuxZ51OXACF5bDm6aincaLR3Nbsk5D3iSF3lPXjWmleIxb5ppfgsFdYKyDknkVe3wRO8AbiHwcoLJPmE30jV/asSopbxTFY10ptUS25Jpc1+9Ui748vA1E/CcaYa40xy40xy5ub46vmllDGnCJRAdHCqRTfCa23ErDIP3gYXvsZnH4NNH0p8RcdOQkO74KjBwOulYrCCs8i94Q8r0CEyYXtRcAJ+Z62Pf4KeV/yCuQLJ1Is+bpnZWuPBZtNN68Rl5Gz5PMKYdxcyMkb3Jdk31jy7k5ZTI1jodMvButayc3Jpba4lnUt8sWeVUJujFlijFkZ4WdRyHNuBbqBB6Odx1q72FrbZK1tqq2tjfY0/xgtGXSxengq/uLqrQQs8rcWiyhcfJc/F3SRK/s39LHI9wUtchBXRPNHUe/YAkLePsxCDl5SUASLfP1z8rernhgsNeAWOkMt+/NulrudwkGMu28s+d61EtKYhhY5iJ+8+5g4ETLJtRJzxcZae0F/x40xVwOXAgusTWG/hfMZNq8GYve/VPyhekQ1Ow/vpL27XXzmbftlMTrXp+a01V5T4H0bKK4dD3hCHuojB3FFtN8vtb9Lw1PKnZAnos1bGNFiyB2RsjuPHoQtr8MZ10k5gld+LO6i5jUw6cLezx03V34GQ+U4WTuwVr4c9ngRK8m0yL26LQP1kYMXudJMeOhrmjPUqJWLgZuAy6y1bYkZkk8Ulsqb0vkQlaRQNaKKLQclCqKisALaD4gf1i+cOLZuC1rkuSOkJ2Yvi9zzKUd5f4SKxrDFkAcuODp8sXPTMkl2mnwhTL9c3Cvv/lZqqdQOshlHJCrHQVebLAYD7P5QYtNrIjeTGA5cPsBgLXKQ6qB+lHlOFkOdyc+BMuA5Y8x7xphfJGBM/lE7DfaokCeT6hHVgVZ0lQWekPtZE7qw1FuwCwp5hfFuREsiCHmU94e/Qh4lhtxRPlaENLQk7bpnZYG2YY7UE6qeECwAVpu4lPhALLkrOrdnlXxR+HUHFQfOIh+ojxyCkSuZ5FaBoUetTLLWNlhrT/Z+vp6ogflC7VSJKe7pjv1cxRdceVGAypxCaWXmp0UOUpK1dTsVhRXk5+QzOscTgFCLvKxOwumiWeT5wyHk0VwrfSJXrIV1S2DifBFUY8Qqd1ZzIi3yhtkSEvnQlfDCf8CulUl1q0DIYudgLHJPyDNpoROyJbPTMWqa3FIf2JTskWQtoQX/K/AW5Ip8/lBVjAsI+eOLHmdhuZfxGeojN0Ys2SiRK/5a5FFiyAMXdJ2CPPfK7g+lxn5ou7bpXuxBfnHQik4EpaPgm2/CjE/DsrvkunHUWPGTwcaRgwp5ZhC4ff4ouePIYnpZ5D3e2viwWOTih24obyCvzWsAXdwny9FFrkQgtE5LWX4ZbHsb3n0wMXkJ0WLIHYHenZ6Qu7DDSSFxCKNPgqpGeY/nJPhjXTISrvgl/K8/wfh5MPWSxJ5/gLjyyYNxj2SqayXBecYpjmtW0F/kyuqn5ENRMXbYhpVN9BZyLyV+OIS846AUnhrhxZBDeLp67TR45zcS/dHnWJhF/to98OGfxVW34LbYHXf6o7/QQwi6Vt75DWx5DdY9JxUiy+qCzzEGPvsAMIRxxGLKJ2L3+hwGzqk/h/9e+N+DagVYPaJaaqSXJK5GeiqQXRZ5rMiVw83w+8/B6/cM77iyCFdvpTivmIIOr3CV3w1wK/sUfzqyV7IdC/oUvuoVotqbUCEvLSiV2jAmR8L+nrl5aJZ5LCEvLBe/9JbXYNVjYnHP+Vr480aflLha7ilMbk4uM2tnDuq1OSaHBxc+yD/O+MfEDirJZJdFDv1HrmzyOqhoiKJvuAqIlYWVcFSaS/hvkbuaIdslZr1tX+TiUaGut/Fn9zqUn5NPrsmlx/aIRX60BSaeL3d5b9wrQj6YOjGxYshBrO1vvDY0q18JMKFyQrKHkHCyyyIHGHVC9MgVJ+QhndeVxFKWX0ZeTl4whhyGUchDLPLiCLXUy8eI9RthwdMYE7DKy/LLxE1TVAUX3QmnfAHe/qVY6aH0dPeb9g9ILXToX8hlAP0fV7Ka7BPy2hOiR65sfFG2rVuhM7Xzm9IVYwxVhVVikbe3QG5B4srWRqOkVq7jhLwt3AfuDc5b8Ix8R+YWPMsKymTsIyrkNbM+Kwk5W9/o/YK3FsO9Z/TfPHn9Utk2DDLzUlHIViGH8MiV/ZvEVzl+njzep1a5X5wx5gzpUemyOv22NnNyJPIj4CPfFx6x4uhHyIvyi8jPyacwp8BbOPV8+/WnyxfFlld6v2DtMxInv2N59LGt/qsUdNPFdWUIZKGQR1nQctb4bK+2s7pXfOOOs+/g2lnX+p/VGYrrPwnRLXKQNZQjzSL2fSjKK6KsoAzTdUQE2tXjzi+CsafB5leDT+48Ir0yIXobuUO7ROSTHM6npD/ZJ+QFJZEjVza+KN1Yplws0QixfJvK0Dna4r9/3FHhCXlnm9QOieQjh+Ad297w/78T8kD/zNBEpuPPksqaHdIKji2viQsvtzC6kK95SrYnqJArQyP7hBzCI1eOHZPi/BPOk/rNVeOlXKfiL34XzAqlokFS3F2ae1SL3Ltji5A0Vj2impqimuCiZmiHnPFniZW+9U15vH6pZGvO+gzseFe6IPVl9VPyXktSyzQlc8hOIe8bubL7AwkBm3CePK6Zoq6V4aC91f/0fEdFPWBh1wp5HM1HXlEPBaUR/eS3zrmVu+bdFQybDHULNcyR5g3OT75hqVjpx58NnYfC309HD0qU1AmXakSKMmSyU8j7Rq44/3jjObKtmQL71ke2opTEMawWudeF0FXxi2aRGyNNSLa9GXaotrhWUrydayXUIi8ogTGnip+8ZZvc0U08X3znEO5eWb9E3oNTFw5hUooiZK+QAzx9k3QXX79E9rlU6Jop0NMR3j1cSRw9XWKpDttipxen7RpwR/ORAzTOg50rgnHufXGulb53E+PPgo/fgdV/kceTFkirucLycCFf85SMoWHOwOahKBHITiEfcwrMu0Fus/9wlfjHQzuMB2qyqJ/cNwILhsNkkbvCUztjWOTghaBaWbCMRCSLHMSNcqwbXvmJLJy7AlZjTukt5D1dsPZZWVjPzb7kaiXxZKeQGwMLvg/fXg1XPQpzv9m7doXrfqILnv4xXFmdjvwRUDJKRDgnX6zkaNQ3yULlppcjHz/aAhjoW0Fv3BwwudLsedL5Qd/32NNg90rokoYarHkKOlo1WkVJGNkp5I7cPLn9vfg/YOTE4P7iaskGVCH3j2juCT9xfvKSmv4XGPMKxeWxOZqQt8oXQd9ysYVlUrgKxD/uGHuaWOq7VkiXn+duE2t98kWDn4uihJDdQt4fNVMHLuTWQnenP+PJNIbbIoegkEeLWAmlcZ5Y0RESg2hvgaIo9awnnCvRKxPmB/fVN8l2x9/gzV/IIvtFd6pbRUkYKuTRqJksSUHWik/zj1fDI9dEr5uxdz38Yh78+oLIx5XeOCEfrsVOCC54lvSz0OkY70Uw9U27h2Bd80jMuwG++rzc1TnK6sRHv/YZWPZDscQnLRjY2BWlH1TIo1EzRXyhR/bKrfCqx+DDx+Ce2fDWL3uHJn7wMCw+V+LRd74fPdpBCTJcJWxDGYhFPvZUyC+J7Cc/2hL9CyjUvdL3fBtfhO52uOiOuIesKPGgQh6NWi9y5cU74Y17YPbX4Lo3JQLhqe/AnWPhh5PhJ7Pgka/AcTPgUz+T1+xambxxpwsBi3wYW265crb9Raw4cvNh3NzIfvL+LPJouHjy2dcGF9MVJUGoky4aLgRx+X0w7kyxonLz4YuPi3W+fbnU1eg8Aqd+Ac66XsTpSWRRq3FeUoef8rS3yILhcPqJB2KRg/wPl9wOh/dIE2JHez8WeTRmfFrS/s+9aWCvU5Q4UCGPRnm93FqPKIfP3C8iDhLtMOPT8tOX0lFQWge7PhjWoaYl7QeGN2IFoHqCCPBxM+J7vvOTb34ZTrwiuP/oIEoLVI2Hv1s8sNcoSpyokEcjJwf+/tfy4S8bQKPWupkq5PEwnCVsHSPK4abN8dc2GX0SFJSJn9wJeU8XdB0ZXpeQosQgIT5yY8x3jDHWGBPnPWuaMPWTwWp48TJ6lhRc6u7wZ0yZwnCWsA1lIAWqcvNgzMmwZ1VwXyCrc5i/hBSlH4Ys5MaYBuBCYOvQh5MB1M2U5I8IZVCVEIazYNZQqGgIdhaCyCVsFSXJJMIi/zFwI2ATcK70p26WbF25VCUyyfCRD4ZKr455T5c8jtRUQlGSzJCE3BhzGbDDWvt+HM+91hiz3BizvLm5eSiXTW2qGqWetfrJo2Otlx2ZDha5V8f84Mfy+GgSwiYVJQYxFzuNMUuAugiHbgW+B3wingtZaxcDiwGampoy13rPyYHjTlQh74/OI3CsK02E3Is9b90GVcerj1xJSWIKubU2Ys65MWYm0Ai8b2QBqR54xxgz21q7K6GjTDfqZsL7D0kLub6FlZTIHXZSlYCQe42b1UeupCCDVhlr7QfW2lHW2vHW2vHAduDUrBdxkMiVzsPBDkTJZPvy6HW1k0UyCmYNlgqvjrlb8FQfuZKCqLnoB3UzZZsK7pX/+R48dWOyR9GbgJCngRjmF0lJ41Yn5C2QWyD1yhUlRUiYkHuW+d5EnS+tqZ0mDQZSIXJl3wZoSbHI0PYkFMwaChUNIULeKi4hbZispBBqkftB/ghpHJBsi/xoK7TtlW40ziWQCqSTawUkciXUR67+cSXFUCH3i7qZ0ui3pzt5Y9i/Mfi7E6JUIJ0WO0HqmLdul7DJwdRZURSfUSH3i2mfgiPN8O5vkzeGfRuCv4dmJyab9gPSN7OgJNkjiY+Keuhqg7b9Xi1ytciV1EKF3C9OuATGnQEv3CHlbh3Na6Q06nA0n9gfEjXTmmJCXpRGfubQWHLnI1eUFEKF3C+MgU/cIVb5qz+VfQc2wwOXwSs/hl+eD3tW+zuG/RugbLREWaSUkKdJVqfD1TFv3aY+ciUlUSH3k/rT4MS/h9d+Djvegd9cDt1HYdG90HEYfnUBrHnav+vv2wAjJ4kQpZprJZ2E3PX6bNmmPnIlJVEh95sF3wd7TET78B646hE45fNw7QswciI89DnY8Lw/196/EaobvaiLFBLytn3p5Z4oqoL8YilPbHvUIldSDhVyv6k6Hs78FuTkwZUPQn2T7K+ohy89LS3lHvumLKTFw/u/jy8CxYUeVk+EinGpE7Wy5XXYvVL6YaYLxoiffLfXizWdvoSUrECFfDg4/1/hO2th4vze+wuKpf3XkWZp6ByLA5vhz1+D526L/VwXelg9wSvFugu6Owc89IRiLTz3v8VvP+fryR3LQKmoh91egwm1yJUUQ4V8ODAmul91zMlw3i2w8hFY8af+z7N+qWxXPQ5HYiSuP7PKAAALTUlEQVTRutDDkRNDSrEm2Sr/6AnY/jbM/558iaUTFfXQ3S6/q49cSTFUyFOBs66Hhjnw1xvg0O7oz1u/VKzBY13w3oP9n9OFHlY1hlfwSyQ93fA/t8YuA9DTJWGXtdPg5M8nfhx+U9kQ/F0tciXFUCFPBXLz4NIfSyr96icjP6enCza9BDP+DsadCcv/S8rkRmP/BigbI5avC5/zI3Jlzyp4/ecSmdMff7tf3D0X/h/IyU38OPymIlTI1SJXUgsV8lRh1HQRiw0vRD6+7S3oPASTFkDTl6RE7qZl0c+3f6O4VaB3HHSicZb4ykeC7dD60nUUlv0Axs+DyRcmfgzDQYVa5ErqokKeKhgDE86DTS/DsZ7w4+uXSORL4zkw7TIoqobl90U/374NEnoIkFcIpXX+CLk7Z9te2Phi5Oe8/5As6J57U/pkc/bFfRmCCrmScqiQpxIT54t75eN3w49tWAr1s0VE8kdILPqapyQapS+hoYcOv5KCWrZKjPWISljxx/Djx46J62XMKTD+7MRff7goHwMmBwrL09M1pGQ0KuSpRON5gAl3rxxuhp3vw6Tzg/tO+xIc64al/x5uwYeGHjoqG/xzrVSOgxmfhtV/kYzVUNY+DfvWSyx9ulrjALn5Ejap/nElBVEhTyVKRkqbuI19hNxlfk4KaZ86cqJEu7z3O/jjF6GzLXjMCfnIUIu8AVp39L9AOhickM/6rFQIXPNU7+Ov/kyOT1uU2Osmg4oGdasoKYkKeaoxYb4sbIZathuWQnEN1J3U+7kX/htc/ANY/Vd44FI4uFP27/OEvKox+NyKBujpEF91ImndJudumCvbFX8IHtv2Fmx7A+ZeJ5E56c65N8J5Nyd7FIoShgp5qjFxvsSJb3lVHh/rEYt84nzIifDvmvt1+IffSdbhT2fBw1+RRUcXeuioDCnFmig6DkkBrMpxMraZnxG30NY3Yd0SeP7fxRVxylWJu2YymbQApl2a7FEoShgq5KlGw1xp7LvhBXGDPPEtsaKnXx79NdMuha+/In7zdc/Clld6u1XAnxBEt3jqviRmfVaKSt33CXjwCol7P/t6KCxN3DUVRQkjA+53M4z8EdKQYsPzUn/lvQclhT+WJVgzCRbeDRfcBh89CbVTex93cdCJjFxxMeSVx8t21DS5O+jugPKx8uURmhGpKIovqJCnIhPnw3Pfh71rZEHz3Jvif21BCZx0Zfj+okoJnUuoRe4JeWiyzLRPJe78iqLEhbpWUpEpF0tPy9lfgwtuT1zYXmg3+FCO7I2eUdofrVvFDVQ6auhjUxRl0KhFnorUTpWyt8XViT1vRQPsXSflZEO/HB6/TnzrN24cWOeelq3y5ZDO8eGKkgEM2SI3xnzLGLPGGPOhMebuRAxKIfEiDnDCQti3TuqiOLa8BmufkS5GO94Z2PlatgXboCmKkjSGJOTGmPnAImCWtXYG8KOEjErxh1O+AKNPhmf/VUIHrZUmFaXHAQa2Lx/Y+VwykKIoSWWoFvk3gLustR0A1to9Qx+S4hs5ubDwR3BoJyy7WxKJtr8F82+F2hOk6UO8dLZJPZcKjUpRlGQzVCGfAswzxrxpjFlmjDk9EYNSfKThdEnQeeNeeOYW6Rl68uell+iO5WKlx4OLfnGhh4qiJI2YQm6MWWKMWRnhZxGyWFoFzAW+C/zRmMgrX8aYa40xy40xy5ubE5wmrgyMBbdLmGLrVlhwm6TP158uWZquTkss+iYDKYqSNGJGrVhrL4h2zBjzDeBRa60F3jLGHANqgDClttYuBhYDNDU1xWn2Kb5QWguX/ydsfhVOuET21Xs3U9vfDs8KjUTLFtmqj1xRks5QXSuPAecDGGOmAAVAjK7ASkpwwiVw8Z3B0MHaqVBQGr+fvHWbxLqX1vk3RkVR4mKoceT3AfcZY1YCncDVnnWupBs5uTD21PiF3MWQRyrkpSjKsDIkIbfWdgIZUtpOof50ePWnEpESWjkxEi3b1D+uKCmCmlNKkPrTpevQzvdjP1djyBUlZVAhV4KMbZJtLPdKdwcc3gUVKuSKkgporRUlSGktVI2PLOSHdsGT10N3O3R3yj61yBUlJVCLXOnN2KbIqforH5FGyp1t0jyi8VwYf/bwj09RlDDUIld60zAHVj4M+zb0jidfvwRqpsI1zyVvbIqiREQtcqU3Uy6S7UdPBvd1tkny0KSouWGKoiQRFXKlN1XHS4XEj54I7tv8CvR0wGQVckVJRVTIlXCmXwY7/hbsJrR+CeQVwbgzkzsuRVEiokKuhDNtkWyde2X9EmicJ42hFUVJOVTIlXBqJsGo6bDqCamGuH+D+scVJYVRIVciM+0y2Po6vPeQPFYhV5SURYVcicz0ywArtVeqGuMrbasoSlJQIVciM2o6VE+UaBW1xhUlpVEhVyJjjGeVo0KuKCmOZnYq0Zl9LfR0wcT5yR6Joij9oEKuRKd8DFx0R7JHoShKDNS1oiiKkuaokCuKoqQ5KuSKoihpjgq5oihKmqNCriiKkuaokCuKoqQ5KuSKoihpjgq5oihKmmOstcN/UWOagS2DfHkNsDeBw0kXsnHe2ThnyM55Z+OcYeDzPt5aW9t3Z1KEfCgYY5Zba5uSPY7hJhvnnY1zhuycdzbOGRI3b3WtKIqipDkq5IqiKGlOOgr54mQPIElk47yzcc6QnfPOxjlDguaddj5yRVEUpTfpaJEriqIoIaiQK4qipDlpJeTGmIuNMWuMMeuNMTcnezx+YIxpMMa8YIz5yBjzoTHmn7391caY54wx67xtVbLHmmiMMbnGmHeNMX/xHmfDnCuNMQ8bY1Z7//MzMn3exph/8d7bK40xDxljRmTinI0x9xlj9hhjVobsizpPY8wtnratMcZcNJBrpY2QG2NygXuATwLTgc8ZY6Ynd1S+0A3cYK2dBswFrvPmeTOw1Fo7GVjqPc40/hn4KORxNsz5p8Az1toTgJOQ+WfsvI0xY4F/ApqstScCucCVZOac7wcu7rMv4jy9z/iVwAzvNfd6mhcXaSPkwGxgvbV2o7W2E/g9sCjJY0o41tqd1tp3vN8PIR/sschcH/Ce9gBweXJG6A/GmHrgEuBXIbszfc7lwDnArwGstZ3W2hYyfN5Ii8kiY0weUAx8TAbO2Vr7ErC/z+5o81wE/N5a22Gt3QSsRzQvLtJJyMcC20Ieb/f2ZSzGmPHAKcCbwHHW2p0gYg+MSt7IfOEnwI3AsZB9mT7nCUAz8F+eS+lXxpgSMnje1todwI+ArcBOoNVa+ywZPOc+RJvnkPQtnYTcRNiXsbGTxphS4BHgemvtwWSPx0+MMZcCe6y1f0v2WIaZPOBU4D+ttacAR8gMl0JUPJ/wIqARGAOUGGOuSu6oUoIh6Vs6Cfl2oCHkcT1yS5ZxGGPyERF/0Fr7qLd7tzFmtHd8NLAnWePzgbOAy4wxmxGX2fnGmN+R2XMGeU9vt9a+6T1+GBH2TJ73BcAma22ztbYLeBQ4k8yecyjR5jkkfUsnIX8bmGyMaTTGFCALA08keUwJxxhjEJ/pR9ba/xty6Angau/3q4HHh3tsfmGtvcVaW2+tHY/8X5+31l5FBs8ZwFq7C9hmjJnq7VoArCKz570VmGuMKfbe6wuQdaBMnnMo0eb5BHClMabQGNMITAbeivus1tq0+QEWAmuBDcCtyR6PT3M8G7mlWgG85/0sBEYiq9zrvG11ssfq0/zPA/7i/Z7xcwZOBpZ7/+/HgKpMnzfwb8BqYCXwW6AwE+cMPISsA3QhFvdX+psncKunbWuATw7kWpqiryiKkuakk2tFURRFiYAKuaIoSpqjQq4oipLmqJAriqKkOSrkiqIoaY4KuaIoSpqjQq4oipLm/H/FZOpNf88ekAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/cons_news_21_1.png" }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "x1, y1 = LSS1.simulate(ts_length=T)\n", "plt.plot(range(T), y1[0, :], label=\"c\")\n", "plt.plot(range(T), x1[2, :], label=\"b\")\n", "plt.plot(range(T), x1[0, :], label=\"y\")\n", "plt.title(\"original representation\")\n", "plt.legend()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3hcxfW/31m1VdmVtOpdttzk3jvGjW5Ch0AoARJCSIHwhTQIpJAQIMkvhlACpoRuOqaDjY3BvTe5S1bvbaVV23J/f8zuSqteVlbxvM+jZ1f3zp072z733DPnnBGapqFQKBSKoYtuoAegUCgUir6hhFyhUCiGOErIFQqFYoijhFyhUCiGOErIFQqFYoijhFyhUCiGOErIhxlCiENCiMUDPY6eIIR4Rgjxh4Eeh2Jofn8UIFQcueJ0IoT4IfAjTdMWDvRYhhtCiFPI93ZtN9u/BORpmnZ/f45L0f8oi1xxxiOE8B3M/SkUXaJpmvobRn/AKWC58/kfgbeAl4Ea4BAws1Xbe4D9QDWwGtC32P9j4ARQAawB4p3bnwH+0eq8HwJ3O5//FjjpPGcGcJlzezrQANiBWqDKuf0l4KGuzuvcpwG3A8eBSuBJmu8sRwHfOF9LGbC6g/co1dnPrUAOsNG5/RbgsLPfL4CUVuf9JZDp7PsxQOfc90NgE/D/nGN+CAgA/uHsv9j5ngU620cCHwNVzvbftugrHngXKAWygF+2GEOHnyfwCuAA6p3v7a+d298GipzvyUZggnP7bYAVaHK2/6id708A8G+gwPn3byDAuW8xkAf8H1ACFAI3D/T3/0z9G/ABqD8vf6BthbwBuBDwAR4GtrZqu90pHianiN3u3LfUKVjTnT/oJ1oI3iIgt4WAhjsFxCX0Vzn71AHXABYgzrnvh8B3rcb8Ek4h7+y8zv2aUwTDgGSn4J3v3PcGcJ/zvHpgYQfvUaqzn5eBYCAQuBR58UgHfIH7gc2tzrve+T4lA8eQbgzXa7IBv3AeG+gUvTXO9gbgI+BhZ/uHkcLu5/w7CxDOce8CHgD8gZHIC8d5Pfg8l7d6rbc4z+8S5b3tve8dfH/+DGwFooEoYDPwF+e+xc7X/Gfna7gQqAPCB/o3cCb+DfgA1J+XP9C2Qr62xb7xQH2rtte3+P9R4Bnn8+eBR1vsC0FacKlO0ckBFjn3/Rj4upMx7QUucT7/IZ0LeYfndf6v0UKgkRbqb53PXwaeBRK7eI9Snf2MbLHtM+DWFv/rnMKU0uK857fYfwewrsVrymmxTyAvXmktts0DspzP/4y8gxnValxzWvbj3PY74MUefJ7L23vNzv1hztcR2vp97+D7cxK4sMW+84BTzueLkRdv3xb7S4C5A/0bOBP/lI98+FPU4nkdoG/lw229P8T5PB7Idu3QNK0WKAcSNPmrfRO41rn7OuA1V1shxI1CiL1CiCohRBUwEelO6A4dnrcbY/41UkS3O6MvbuniXLktnqcAK1uMucLZV0IH7bOdY21vXxQQBOxq0d/nzu0g3TIngC+FEJlCiN+2GEO86xjncb8HYjp57a0/TzdCCB8hxN+FECeFEGakSEMvPwvavuZyTdNsrcYTguK0oyZlFB1RgBQWAIQQwUAEkO/c9AZSiP6OtCQvc7ZLAZ4DlgFbNE2zCyH2IkURpEXYl/N2iKZpRci7A4QQC4G1QoiNmqad6OiQFs9zgb9qmvZaB20BkpB+aZDulYIO+ipDWqsTNE1rM25N02qQvuX/E0JMANYLIXY4x5CladroTsbQGa3f2+uAS4DlSBEPRfr/e/pZdPSaFYMEZZErOuJ14GYhxFQhRADwN2CbpmmnADRN24P0T68CvtA0rcp5XDBSIEoBhBA3Iy1yF8VAohDCvzfn7QwhxFVCiETnv5XOcdi7+XqfAX7nFFaEEKFCiKtatblXCBEuhEgC7kRODrdB0zQH8mL2/4QQ0c7+EoQQ5zmfrxBCjBJCCMDsHKMdOV9hFkL8RggR6LSoJwohZnXzNRQj/eouDEAj8o4mCPledta+NW8A9wshooQQkUjf/avdHIviNKKEXNEumqatA/6AjKAoBNKA77dq9gbS2nu9xXEZwD+BLUihmISM6HDxNdLCKxJClPXyvB0xC9gmhKhFTjTeqWlaVncO1DTtfeAR4E2nG+IgcEGrZh8iJyP3Ap8g/fkd8Ruk+2Srs7+1wFjnvtHO/2uR79NTmqZt0DTNDlwMTEVGrJQhL5Sh3XkNyMnP+51umXuQcwbZyLuZDOTEZUueB8Y723/QTn8PATuRUU0HgN3ObYpBhkoIUii6gRBCA0Z34qZRKAYMZZErFArFEEcJuUKhUAxxlGtFoVAohjjKIlcoFIohzoDEkUdGRmqpqakDcWqFQqEYsuzatatM07So1tsHRMhTU1PZuXPnQJxaoVAohixCiOz2tivXikKhUAxxlJArFArFEEcJuUKhUAxxVNEshUJxRmG1WsnLy6OhoWGgh9Iher2exMRE/Pz8utVeCblCoTijyMvLw2AwkJqaiqxbNrjQNI3y8nLy8vIYMWJEt45RrhWFQnFG0dDQQERExKAUcQAhBBERET26Y1BCrlAozjgGq4i76On4lJArhgdNdbDrJXA4BnokCsVpRwm5YniwYxV8dCfkbBnokSgUpx0l5IrhwX7nYj0lGQM7DoViAFBCrhj6FB2E4oPyecnhgR2LQtENXn75ZSZPnsyUKVO44YYb+tyfCj9UDH32rwadL5hGQumRgR6NYgjxp48OkVFg9mqf4+ONPHjxhA73Hzp0iL/+9a9s2rSJyMhIKioq+nxOZZErhjYOOxx4G0Yth5T50rWiauwrBjFff/01V155JZGRkQCYTKY+96kscsXQJmsj1BTCeX8DS6mMXKktAUPMQI9MMQTozHLuLzRN83r4o7LIFUOb/ashwAhjL4CocXKbmvBUDGKWLVvGW2+9RXl5OYByrSjOcJoscPgjGH8J+AVC9Hi5XU14KgYxEyZM4L777uPss89mypQp3H333X3uU7lWFEMPuw2OfQ7bnoGmWpjyfbk9JAqCIqBUCblicHPTTTdx0003ea0/JeSKoUXeLnjrBjDngzEBzn0IUhY0748eryxyxRmHEnLF0GLDw2BvgmtegzHng0+rr3B0Oux9Q0auDPJ6GgqFt1A+csXQoToPTq6DGT+E9BVtRRzkhGdTjWzbFbYmFaqoGBZ4RciFEL8SQhwSQhwUQrwhhNB7o1+FwoO9r4PmgGnXd9ymuxOetib4fxNg5wveG59CMUD0WciFEAnAL4GZmqZNBHyA7/e1X4XCA4cDdr8CI86G8NSO20U7QxC7mvAsPw6WEhmHrlAMcbzlWvEFAoUQvkAQUOClfhUKSdYGqM6B6Td23i4wHAxxXVvkrv1FB7wyPIViIOmzkGualg/8A8gBCoFqTdO+bN1OCHGbEGKnEGJnaWlpX0+rGC58cR+s+0vX7Xa/IkV63Iqu20aN64aQO5OGKjKhsabrPhUKL3Hq1CkmTpzo1T694VoJBy4BRgDxQLAQoo0TU9O0ZzVNm6lp2syoqKi+nlYxHCg/CVuelH7qzhaEsJTDkY9h8jXg143pl+jxUHpU1mHpCLfQa1CsMkEVQxtvuFaWA1mappVqmmYF3gPme6FfxXCi+BBYyjy3bXkS0KC+ovOqhQffkSGH07pZ7jM6HWz1UHmq8/EkzZHPi/Z3r1+FwkvYbDZuuukmJk+ezJVXXkldXV2f+vNGHHkOMFcIEQTUA8uAnV7oVzGcePUKmXX5o7Uynd5SBntfg5GLIXMDZG+CmPHtH1t8EIKjILabt6PxU+Vj5nqISGu7v7EWqrJl9EvZMeUnP5P57Lfe//xjJ8EFf++0ydGjR3n++edZsGABt9xyC0899RT33HNPr0/pDR/5NuAdYDdwwNnns33tVzGMcNihpkgK8hf3yW3bnwNbA1zwKBgT4dR3HR9vLpRZnN0lZqL8Me18sf048dKj8jF6PMROVkKuOO0kJSWxYIHMSL7++uv57rtOvv/dwCuZnZqmPQg86I2+FMOQugpAk4K983lImg3bn4UxF0DUWEhdACe/7jgb01zQechha4SAmbfCx3dB7nZInuO5v+SQfIwZLwV/xypZv6W9BCPF8KYLy7m/aF3Gtq9lbVVmp6L/sTijlJY9APHT4f2fSL/4gl/K7SkLZJuy4+0fb84HY1zPzjnpKvA3yAtHa0oOg28ghKVKi9zWAOUneta/QtEHcnJy2LJFLhT+xhtvsHDhwj71p4Rc0f/UOSc5jXFw5QuyfnjiLEieJ7enOr/E2e3cXjbVQUMVGON7ds6AEFkV8dD7MuqlJSUZMnFIp5MWOSj3iuK0kp6ezv/+9z8mT55MRUUFP/3pT/vUn7qXVPQ/rmiVoEgwjYCfbgL/kGY3imkkhMTCqU0w8xbPY2sK5WNPfOQuZt0KO56Dva/Cgjubt5cchlHnyOeRo8EnAIr2weSren4OhaKHpKamkpHh3ZBXZZEr+h+XkAc78wfCkiGoxTqFQkg/efamtpOT5nz5aOihawVkGGLyfDnp6YpTt5RDbbHcB+DjJ58ri1wxhFFCruh/6soA4SnerUmZL63vikzP7WZntYfeWOQgrfLKLJlQBM0ZnS4hB+leKTqgKiEqhixKyBX9j6VUirjOp+M2KS4/+SbP7W4h74VFDpD+PYieAJ/eC/WVzRmd0S1i1mMnQ115sxtHoRhiKCFX9D+WMukf74yosbJN9mbP7eYC0IeBf3Dvzu3rD5c+KS8mn/9eWuSB4WCIbW4TN1k+KveKYoiihFzR/1jKmv3jHSEEJM+F3G2e280FPY9YaU38NDjrbtj3OmR8IK3xlnG7MRPkY6FK1VcMTZSQK/qfujIIjui6XewkqMgCa33zNnN+34UcYNG9UsDrKz394wABBohKb+vWUSiGCErIFf1Pd1wr4BRYrTmFHqTf2htC7hsAlz4FPv6QOLvt/rQlkLPF8yKiUAwRlJAr+he7TWZxduVaAWkVQ/OEpK0JakvA4AUhB+liuec4TL667b60pTLDM2eLd86lUJxGlJAr+pf6CvkY3A2L3DRSWsyuEMHaImSNFi8JOUBgWPv1XFLmy3Of/Np751Io2uEPf/gDK1eudP9/33338fjjj/epT5XZqehfXHVWuiPkPr4QObbZIjf3Iauzp/gHy/rkJzf0/7kUg4ZHtj/CkYpOauH3gnGmcfxm9m863H/rrbdy+eWXc+edd+JwOHjzzTfZvn17n86pLHJF/9IyPb87RKe3EHJnVqc3LfLOSFsKxQekO0eh6CdSU1OJiIhgz549fPnll0ybNo2IiG4EA3SCssgV/YvbIu/m8n7R6XDgLWio7nsyUE9JWwLr/iQXunD50R0O6YrpY5lRxeCkM8u5P/nRj37ESy+9RFFREbfcckvXB3SBssgV/Uuds/Jgd1wr0JxxWXJECrlfkEwIOh3EToFAU7OfvLEGVi2FNb84PedXnDFcdtllfP755+zYsYPzzjuvz/0pi1zRv1jKQOhkNmV3cMV4l2RAjTMZ6HRZwzqdXHru5HoZbfPOrVCwp/lipFB4CX9/f5YsWUJYWBg+Pp2UrugmXrHIhRBhQoh3hBBHhBCHhRDzvNGvYhhgKZVWbmd1VloSmiRL3JYclhZ5b6oe9oW0pTJaZvX1cPwLWYelKke6ehQKL+FwONi6dSu33nqrV/rzlmtlJfC5pmnjgCnAYS/1qxjq1JV1360C0iqOGgulTiE/HRErLUlbIh+PfQZzfwZL/yD/Lz50esehGLZkZGQwatQoli1bxujRo73SZ59dK0III7AI+CGApmlNQFNf+1UME7pTZ6U10elw9DNpBZ+uiBUXoYly9SJDLJz7F1m7HKDooIw1Vyj6yPjx48nMzOy6YQ/whkU+EigFXhRC7BFCrBJCtClVJ4S4TQixUwixs7S01AunVQwJLGUQ1MPQqujx0i/tsJ1+IQe45Uu4+hXpDjLESddQsaqMOJzQBnnt+Z6OzxtC7gtMB57WNG0aYAF+287AntU0baamaTOjonpooSmGLpbS3lnkLgZCyHW65glWISB2orTIFcMCvV5PeXn5oBVzTdMoLy9Hr9d3+xhvRK3kAXmaprnqj75DO0KuOAOxW+XCyT3xkYPnog8DIeStiZkEO5+XkSw+KtBrqJOYmEheXh6D2TOg1+tJTEzsdvs+fys1TSsSQuQKIcZqmnYUWAZ4d2VRxdCkpzHkLkJiZLhifeXpn+xsj9iJsqBWxUk5EasY0vj5+TFixIiBHoZX8VbUyi+A14QQ+4GpwN+81K9iKNPT9HwXQkirXOfX82P7g5iJ8lGtIKQYpHjlPlHTtL3ATG/0pRhG1DmFvKcWOch4bqGT/uqBJmos6Hyh+CBMunKgR6NQtGEQ/EoUwxaXRd7TyU6ARffADz/27nh6i2+ArMqoJjwVgxQl5Ir+o7eulcFI7ERpkSsUgxAl5Ir+w1Laszorg5mYiXLZOYuqu6IYfCghV/Qfdc5koMHg5+4rsc4JT5UYpBiEDINfmGLQ0pv0/MFKzCT5qPzkikGIEnJF/9Gb9PzBSkiUjG9XfnLFIEQJuaL/6Gnlw8FOwgw48imUHhvokSgUHighV/QfvamzMpg5/2Hw9YfXroTawZverTjzUEKu6B/qqwamDG1/Ep4K166WizO/8X2w1g/0iBQKQAm5or8ocZbbiZ4wsOPwNokz4IpVkL8LPv7VQI9GoQCUkCv6C7eQp3febiiSvgKm/UD6ywdpKVTFmYUSckX/UJwBAaFyxZ3hSPR4aKyWFRoVigFGCbmifyjJkNa4a4GG4Ua4swxqRdbAjkOhQAm5oj/QNGmRx4zvuu1QxTRSPlYqIVcMPErIFd7HXCDdDtHDWMjDU+RjhXcX0VUoeoMScoX3cU90DmMh9wsEQ7xyrSgGBUrIFd6n+JB8HM6uFQDTCOVaUQwKvCbkQggfIcQeIcQgWQ1AMWCUZEhrdTiUr+2M8BHKIlcMCrxpkd8JHPZif4qhiitiZbhjSoXaImiyDPRIFGc4XhFyIUQicBGwyhv9KYYwdpssKjXc3SrQInLl1IAOQ6HwlkX+b+DXgKOjBkKI24QQO4UQO0tLVcGhYUvFSbA3Dr/U/PZQseSKQUKfhVwIsQIo0TRtV2ftNE17VtO0mZqmzYyKGkYV8RSeuCY6zwjXilPI1YSnYoDxhkW+APieEOIU8CawVAjxqhf6VQxFSjLkOp1RYwd6JP1PYDjow5RFrhhw+izkmqb9TtO0RE3TUoHvA19rmnZ9n0emGJqUHAZTmoyzPhMwjVBJQYoBR8WRK3pOyWF44YJmN0pLig+dGROdLkwjlWtFMeB4Vcg1TdugadoKb/apOM1U58P6h6FgT/slWhtr4a0bIWczfPOI576aYhnBMZwzOlsTPgKqcsFuHeiRKM5glEWu8GTf6/DN3+HZxfDMWbDtv9BUJ/dpGnx0J5SfgLRlkLEGyk82H/vtP6R/fNJVAzL0AcE0AjQ7VOcO9EgUZzBKyBWeVGRBcDRc9E/w8YXPfg0rp8CWp2Dr03DwHVhyH1z6FPj4wZYn5XGV2bDzRZh+A0SkDexrOJ2oEETFIEAJucKTikyIHA2zfgS3bYCbP4focfDF7+TfqOWw8G4wxMLka2Dva2Apk24WoYNFvx7oV3B6cYUgqglPxQCihFzhSUVWs5UJkDIPbvoIbvoY5vwULnsWdM6vzfxfgq1BWu373oDZP4bQhIEZ90AREgu+gSq7UzGg+A70ABSDiCaLrB1iGtF234iz5F9LosbA2Avh4LvgHyIt9TMNnQ7CU5VrRTGgKItc0YzLqnTVEOkOC+6Uj/N+DsERXh/SkECVs1UMMMoiVzTj8vO2Z5F3RPJc6UuPmdQfIxoaRI+HY1/ICV/XykEKxWlEWeSKZlxCHt4DIQeInyYjXM5UZt4COh/47l8DPRLFGYoSckUzFVkQaILAsIEeydAiNAGm3wh7XoWqnIEejeIMRAm5opmKzJ75xxXNLPwVIOBbZZUrTj9KyHvB8wee53+H/jfQw/A+lVk9848rmglNlMlQe16VKfstaayVyVRv3yyfnw7sNrA1np5zKQacM9ix2Xs+P/U5mqZx04SbBnoo3sPWBNV5MOXagR7J0GXh3bD7FVj7R5jyfRnOWbgPdr4ADVWyzeSrYewF/T+WT34FpUfh1i/7/1yKAUcJeS+obqzGYh1m6zRW5YDmUK6VvhCWJK3ynS/IUgYACEhfAbNvg1cug9xtp0fIM7+BqmwwF4Axvv/PpxhQlJD3AnOTGYvVgsVqIdgveKCH4x16G7Gi8OTcv8KEy2S2p38QBEdBSLTcFzcFcrb1rL+qXDi5DnK2woybIXlO18fUVUgRBzj5NUxTywMMd5SQ9xCrw+q2xgtqCxgdPnqAR+Ql3DHkyiLvE/5BMGJR+/uS5sLO56Uby9e/7X6HHdb9CcpOQF0ZmAuhukUUjI9/94S8cF/z8xPrlJCfAajJzh5S01Tjfl5oKRzAkXiZyiyZZh8cOdAjGb4kz5G1aVoKbUtKDsOmlVByCHz1kDQbzvsb3LENEmd1vzBX4V75OOYCyFwvLxCKYY2yyHuIudHsfl5YO4yEvCJTRqwIMdAjGb4kzZWPuVshaVbb/S6hvuolmWTVEtNIyN7cvfMU7IWwZJh0JRz7TC4Skjiz18NWDH76bJELIZKEEOuFEIeFEIeEEHd6Y2CDleqmavfzYWWRV2Qpt0p/Y4iRBbZyO/CTu+q1tDdPYRopo4qsDV2fp3Cf9MePXAII6V5RDGu84VqxAf+naVo6MBf4mRBi2K711dIiL7AUDOBIukl9JVjKO2/jsMuCWWqis/9JmiMnPNtbRq8is+PMWtNIQGuexOyI+ip5QYibKouYxU+Tk6WKYU2fhVzTtEJN03Y7n9cAh4FhW5Ta3CSFPDowemi4Vj78Obx4ATgcHbcx54PDqizy00HSHLCUtF8tsbPM2vBuLmDh8r/HT5WPo5ZB3k4p8Iphi1cnO4UQqcA0oM29oxDiNiHETiHEztLSUm+e9rRS3ShdK2NNY4eGa6UiC8qOwrHPO2nTi6qHit6R7PSTtxeGWHGqYyF3be+q7rlrojPO6WNPWybXFM36psdDVQwdvCbkQogQ4F3gLk3TzK33a5r2rKZpMzVNmxkVFeWt0552XBb5WNNYSutLsToG+erptUXycfPjHbdxiYOyyPufqHQICJUTni2xNcoFnDu6mAaZ5HFdWeQFeyE0qbk2fOJMCDDCibV9H7uiQzRNo85aN2Dn94qQCyH8kCL+mqZp73mjz8FKdWM1Qb5BJBmScGgOSupKBnpIHWO3Ql05GOIgZwvk7mi/XdEBGXpoUBmA/Y5OJyNWcrd7bq/MBrSOL6ZCgCm1G66VvXKi04WPH4w8G45/NWjCEKsbq3n/+PtsLdzadeMhwkeZH7H87eXU2+oH5PzeiFoRwPPAYU3Thn3pN3OTmdCAUOKC4wCZFDRosThdWHPvAH0obHmi/XaZGyB1YfNanIr+JWmujBlv6beu7PyuaPWR1RwPi+t8JaKGain0Lv+4i4lXQE2hjCkfQHYU7eCOtXewePViHtj8APd9ex9ae5O+7WC1W8msGrwLXB8oPUCNtYby+i4CC/oJb/xyFwA3AEuFEHudfxd6od9BibnRjNHf6BbyQe0nry2WjxFpcvGDwx+1teiqcqDiJIxcfLpHN6QprSvlZNXJ3h2cPAfQPK3yTjJrG2wNPLTtIVb7NMrPy96BO8810RnXKgZ97IUQFAG7X+7deL3EYzse40DZAW6YcAM3T7yZkvoSTplPdevYjzM/5tIPL+VY5bH+HWQvya2RFS+rGgdmUtkbUSvfaZomNE2brGnaVOffp94Y3GDEbZGHOIV8MEeu1DrdPiExMPsnIHxgy1OebTI3yMeRi0/jwIY+j+14jNvX3t67gxNmgs4Pclok+FRkgr9BCm4rXGGu+UIDh0360tvDLeRTPLf7Bsiqlkc+hdr+DzQ4UnGEioaKNtuL64pZnrKcu2fczVWjrwJgW2H3as/k1OSgofHGkTe8OlZv4RLyyobKATm/upfuIeYmaZEH+AQQoY8YGhZ5SDQY42QJ1b2vQ0OLuejMDRASC1HjBmSIQ5XjVccpshRRVl/W84P9g6T7I3tL87aKrA4za/Nr8gEocDgn0zrykxfsBWMChLQTTDDtBhliuv/Nno+3BxRZirjuk+t4dv+zHtutdisVDRVEB8oCYomGROKD47st5K65qE8yP3FHjg0WrA6r28U6ZC3yM43qxmqMAUYA4oLjhoaQBzur7826FawW2L9a/u9wSCEfuVil5vcAu8NOjlkWszpcfrh3naTMh/xdYHVOjnUSQ+4SiYLGSjRoPwSxwSwXgE49q/3zRY+TMey7X24/GclLrDqwCqvD6r74uHBd8KKC5EVGCMGcuDlsL9qOvRuTsKV1pYQHhFNvq+eDEx94f+B9oKi2CJtmA5RFPmQwN5kJLT8Fe14lLiRucE921pbISU4/vfw/frq87d75ovwxFx+UUS0jFw/kKIccBZYCmhxNAByu6KWQJ8+XFnL+LrmaT1V2h6GH+bVSFBvsjZT7B7Uv5Htfg6YamHNbx+ecfiOUHeu4REAfKawt5N3j7wLSjdKSknppUUcHRbu3zYmbg7nJzJHKI132XVpfyrToaUyPns4bR97olvifLnJqmitUKot8CNBga6DR3ojx1CbY+QJxwXEUWYq6PfMOUNtUy+dZnSTneJOaIukfdyGEnPQsOSR/zG7/+NmnZzzDhKxqKaQCwZGKrkWoXZLnAEK6V8x50vfdgUWeV5vnfp5vSmrrWnHYYdsz0uJOmNHxOcdfKv3w3/5TVll898fwzi2yrK4XeO7AcwAsTFjYRshL66RvPiqw2e0zJ06W5O2Oe6WkroTooGiuS7+O/Np8vsv/rtfjfGjrQ2zO72YBsm7gEnI/nV+7cwOng2Et5Lk1ufzoix957c11JQMZm+qhtpT4kHga7A1UNnb/durDkx9y78Z7T08oVW2Jp5ADTLxSJojsfEEKeeTYQbOCTJ21zqNM8GDlVPUpAGbFziKjPKN3nQSGQ8wEyN7UZd5YRpgAACAASURBVC34/Np8YoNj5XNDZNsQxGOfy1o5c3/a+TkDQmDyVXD8S/jqAfn5H3wX9vV9ArGgtoD3T7zPFaOvYGrUVCoaKmi0N68Z6vJxu1wrAJGBkaSFpnUp5A22BsxNZqKDolmavJTooGheP/J6r8ZptVtZfXQ1n5/ynjGVY84h0DeQFGOKssj7gzUn17CtaBs7i3Z6pT9XwSyjwwG1xcQF9TxyJa9GWle9tuR6Qm1xWyEPCIHJ18Ch92VZ1LQl/T+ObnLX+rv4+bqfD/QwPMisznRHJLg4ZT5FaEAo8+LnkV+b3/vJt+R5MgSx7Lj8vxMf+awYWfY2Xx8sXSsta+dsfRqMiTDu4q7Pec6f4ebP4ddZcM8xWVTru39J904feHb/swgEP5r0I2KC5XeuZbJcaX0pvsIXk97kcdycuDnsLt5Nk73juwK3NR8UhZ/Oj6vHXM3mgs3uO6OO2FG0w+NiAriNLpe7yhvk1uSSZEgiXB+ufOT9wYbcDYCMMPAG1U7L3ujQwN5InL8B6DiW3KG1LVTl+gIdrTzqlTF1SnsWOcDMm8HeBLb6QeMf31uyly2FW3o9eZxrzuXmz2/2ekLGbzf+lvu/u99jW1Z1FqnGVMabZJHPoxVdf5ZWu5V12et499i7vJLxCq8dfg1b8mw5+ZzxoVxIIiS2zXEWq4WqxirSwtIw6U3k+/qCvRFqnHMzRQfg1Lcw+8fg043lBQIMkDJPpvwLAYvulda8e43RnmNz2Pjw5Id8L+17xAbHEhMkv3PFlmb3SkldCZFBkeiEp+TMiZtDg72BfaUdLLZBC/+6M+LlijFX4Ct8eevoWx0ek1+bzy1f3MKnmZ6R0K67894K+ZqTa7jvu/s8tuXU5JBsSCYsIExZ5D1lb8leHt3xaIf+6SJLkdvqPV7pHSE358sEjtCkeQDEa/KH03rCs6qhitvX3s6lH17aZnxuIe/Gj79PNNZKkQiJbrsvZoLMLhQ+kLKgf8fRTVzhai73VU/ZUbyDncU7WZvdvZoimqbx2I7H2FW8q8M2Ds1BVnUWB8oOeFh2p8ynGBE6gnERMmSzOxOen5/6nLs23MUft/yRR3c8yt+3/509QTL6iexNsrphO5m1rju4BEMCCSEJ5ONMBqrIkr7tbx4BvyA5kdkbxlwA0RNg4z/aTeEvqy/jti9v440jb2DtIBHJ3GTG5rAxOiQJwG2Rt/STl9aVuoW4JTNjZ6ITuk7dKy0tcpAumWUpy/jw5IcdpsS7XJdFliKP7RX1Fe7tNkfP70LeP/4+a06ucV+k7A47eTV5JBmTCA8IV0LeU17JeIVXMl5hZ3H7bhOXNT4qbBQnqk545ZzVOZsAMKZfJh+b6gjyDfKwIjPKM7jm42vYlL+JrOosyhuaLURN006fRe6OIW/HIge46J9w2X9Bb+zfcXSDjPIMvs3/FpPehMVq6dUPzPXD2pC3oVvta621vJzxMvd8c0+Ht8MldSU02BuwOqwcLDsIyKX+yurLSDWmYtKbiAmK6Zaf/EDZAQJ9A/nyii955YJXACjX0VyethP/OEBiSKIUcteF7uC78N+zZLbu/F9KC7s36HSw6B4oPy7vDFqxIXcDWwq38Ldtf+PiDy5mzck1bYyTaqfQhmXJ34fbIm8p5PWlHv5xF0Z/IxMiJrApf1OHRpnLRdMy4uWasddQ01TTYeBAtlnWbW/5+2v5v12zt5mQ7Qqbw8ah8kMAbC+SRl1xXTFWh1Va5Hppkbe8Ey+rL+PBzQ9S1dC/Aj8khdyhOdxv5NtH3263zYa8DSQbkjk35VxyzDl9L2bjcGB2Zs6FRo4FQFhKiAuOI6M8g3eOvcNft/6VGz+7EQcOfj5V+npdE2MgLReL1UJMUAxl9WX9W5fBndXZjkUOEDtRTnwNAp7b/xwGPwPXjrsWkJE9PaWoTlpe2wq3dasKnesWu6y+jL9s/Uu7IuKKFQfYU7IHaP48U0NTAUiPSO/WfEdGeQbppnTiQuJINiYDTlFJmS8bdBB66Lrbiw+JJz4knsKGUuw6P9j1IjRZ4Lq3Ycnv2hy36sAqbl97e/f89+MvgcgxTqvc0x24q3gXEfoInl7+NEZ/I/d9dx+bCjZ5tKmukKUKQp2+/mC/YAx+hjaulZYRKy25OO1iDpYf5KPMj9rdX1pfSoBPAEb/ZqNjZsxM0kLTOnSvuIS8dcJWy4t2T0OHj1ced+uIq+CXK2Il2ZBMeEA4Ds3hMWG/tXAr7x1/j+cPPt+jc/WUISnkRyuOUtVYRXxwPF/lfNXmw7JYLWwv3M7ipMWMDh+NhkZmdR+jRPJ3YbbWIoCQsFS5rbaUJGMSu0t286ctf+LDkx+yIH4Bq1es5qKRFwHNXyhoDiNbmrxUvo5WVrlXhd1lkRva+l0HEycqT7A2Zy3XpV9HfIiMnulN5EqRpQh/nT9Wh5UtBVu6bO96r+fGzeWr7K/4OPPjNm1cdUBCA0LdLhjXthGhUnjTTelkVWd1evGwOWwcrTjK+AjpUw/1D0UndPJikizddJ3FkAf6BhIeEE5CSAI2h43SmTfCgjvhjq0w5tx2j/s271s25W/ixs9u7HoyXucDZ/2fDEttVe52V/EuZsTMYGHCQp455xnA8wIHUF0t/w8rPQFN8n2ICY5xW7wto07a4+oxVzM9ejp/3/73dquJui4CokXSmqbBihGXc7D8IJ8c3Y7d4XkhdlvkrX5TLSPYXG6r7rK/dD8AEyMmsrVwK5qmuSfCk43SIgfPi4XLtfPmkTd7lwXcTYakkLuuhn9e8GdsDlubTK8tBVuwOqwsTlrMqLBRgBf85IfXUO3ji8HfgC44EoQOLCX8bvbveGLpE3x6+adsvW4rK5euxKQ3ERcch5/Oz0PIXdluLiE/VtFcAGhX8S6WvLWE3cW7+zZOF125VgYJLx56kUDfQK5Pv95tcfXGT15sKWZ+/HwM/oZuuVdcP+i7ZtzF9OjpPLzt4Tb+1BxzDv46f5YnL2dfyT7sDjtZ1Vn4CB+SnP7gdFM6GlqnxZyyqrNosDe4hdxH50NYQJj8wY8+R/qoO8jIzKvNIyEkASEEiSGJctv062T0SUBIx+9HXTFjw8dSWlfK9Z9d33WxqQmXyzLGW/7j3pRfm0+hpZAZMTI23ehvRCDa+IGrnIIYamuEAvn9jQmKcVvkpfWePu7W+Oh8+MuCv2C1W/nTlj+1uTtyxZBXWJp4c3sONzy/jbF/+IyHVgejOfy4+/OnOeuRr/nHF0c5mF/N6h057C6Uv/cT5YXY7M13GRUNFZj0JnRC1+MJz32l+zDpTVw+5nJK6krIMmeRa87FX+dPdFA04QHhAB7hyEWWIvQ+eqwOK6sOrOrR+XrCkBTybYXbGBk6kjlxc5gVO4t3jr3j4Zdan7seo7+RadHTSDIkEeAT0HchP7EWszGG0IAwacEERUJtCfEh8SxOWkySIcljRt5H50OyIdmjupvrVm58xHiig6I9LPJPMz9FQ2NdjpfWV6wtlpOZgSbK6sv436H/cfmay7nz68G1Nvaekj2clXAWYfowDM4ooN4IeVFdEQmGBBYmLGRj3sYuM/9cllp0YDQPLXyIJkcTLxx8waNNdk02SYYkZsTMoMZaw4mqE5wynyLRkIifjx8gXSvQ+YSny4fuEnIAk94kLyaGWLhjM0SNbffYgtoCt4C77li6WivWoTkoritmQcICXrrgJdDgp2t/2u7cQ72tnq9zvuaBbQ9xa2ISNac2ykgYcN+FuITcV+eLMcDYZk6hyrl4SajDIeve42mRuyYr25vsBDl3ZPSN5drRP2Fj3kZWbnsDRwsLu8hSQlGFP7P+upbfvneAnIo6bpyXyh8unM7MyGUEhR9gRIwPT204wYonvuM37+2mUSsHTVBjq+S6VdsoMTdgbrCyryCPWkswflo4u/JPeoh8V+wv28+UqCnMjZOrPG0r3EZOTQ4JIYk8vu4ED62RdyYt359CSyEpxhQuGXUJbx19q42x4C26Ea80uGiyN7GreBeXj74ckLdl9268l80Fm1mYsBC7w863ed9yVuJZ+OrkyxsZOrJvE56aBhWZVIdPbPbThUQ31/vugBRjioeQ59XmYfA3YPQ3MjZ8rFvI7Q47a3PkLe2m/E3cO+ve3o/VRW0xhESz6tALPLnnSWyaDYO/gezqbOwOOz46n76fo4802ZvIr83nwhGy6nFvLfLaplr33MPkyMl8lvUZB8oOMDV6aofHuCzyMH0Yfjo/JkdNdk9ousgx55BiTHEL2e6S3WRVZzHC2OwGiQmKwaQ3dVpz5XDFYQJ9A0k1prq3uYW8E1yT4zNjZgJSyAWiTR2T1pTXl2Nz2IgNjmVM+Bh+P+f33LXhLrYWbmVhwkJ3u415G/m/Df9Hg72BEL8Qaq21fBRq4rotT8FlT7OreBdGfyOjw0e7j2kvMqO6vhwfTcMQMdZdCMw1D2R1WN3hgy0t8rLaRtYdLmbLyXK2ZJZTbG4EYghMSeW5Q4/z1oZorp6ZTKjelzxzEdaqZH4wJ5mrZyYxId7odrPMKPkBN3z2OTctbeKfVyxj4/FSQo3l3LNFY0z4GI5VHmN/fjHnr/yW+iY7IqGIIN9gmqz+bM09wdyHv2b2iHDiQgOJC9UzLTmM6cnhHm4ckOKcbc7mslGXkWRIIiEkga0FWzlecYrSymD+ve04JqMPBMGTG/cx8vw5ZJVb2F+Yja0plMqsqVhDP+ScF/7Afy94mPmjIjv9DHvKkBPyfaX7aLA3uNN7lyUvw6Q38dLBlyi0FLK/dD+VjZUsTlzsPmZ0+Ohu+U07xFIKtgZqdILQgFC5LTiq2X3RCpvdwbasChrrTeSYN7qFM8ecR6CI4scv76TML5yTTZt5/rvj7CzaQ0VDBaIxhZPVJ/nZ6nVMjRvBjNRwJieE4uvTixun2hIIieab3G9IMabwr8X/Ym/pXh7c/CAFlgKSDEm9fjvqrHU8vudxbpt8W5sEj56QY87BoTnc/maXRd5TH7nLyokNjmV+/Hx8hA/f5H3TqZCXN5QTFiBFHGBCxAReP/w6VrsVPx8/7A47uTW5LEpcRFxwHDFBMewo2kGOOcdDDIUQjDON69IiH2ca53HxNOlNXYYtVjdWY7FaSAiRa5n7+/gTFRTlkbLf6fsRJOdHzko8C6O/kY9OfuQeu6Zp/GfPf4gKiuKBeQ8wI2YGN3x6A2/7ZHPtgbcRyx5gV/EupsdM97jTDAsIa5PJXN1YhVETiJT5sP9tcNiJCYpBQ6OsrqzZIg+KRtM03tmVx18+zsDcYCMyxJ+5IyOYmhRGtFHPUctVvHz8MRKj6li57jiaaMAwtolb5k7l1/Mmtnmt4yPG46fz40DZAc5NPZerZybxdY68+54ePZ1jlcf47w/Hsmq9mYSwQLbbbMyOT0OHDxtzNzPJEM6Rwhq+PlJCg1Va50mmQC6bmsCiMVHEhuqJNuhZlylX13r1G/jr658QFJ9AvnkzGnb8mubz/E0zmTkimIWr/0JGUSGL/7EBgJAxJYQ5UhltSiZAt4Q843ocPuXAGS7kWwu3ohM6ZsXKTDc/Hz8uH305qw6sYlvRNgJ9A5kdO5uzEs+i0WZnb04VJr9kSuvXUNVQ5Z6Q6BFVckKjGjvxbos8BsqbFxaorreyNbOcrw+X8GVGEZV1VvxCNfTxNm743+ekhaewpfQ41oYobA01mHWhaJF2/vrVeoIidqMz+jHHeAtbGx9kc+FmPtnTAECwvw+zRpiYkhjG+HgjE+KNJIQFtrEY2uDM6qxqrGKcaRwjw0ZS3SQjGLKqs/ok5F/nfs1rh18j2ZDMdenX9bqf1hOHLou8x0LujFiJCYohNCCUGTEz2JC7gTund+xGcvlKXUyImECTo4kTVSdIj0inqK5IhpUZkxFCMD16Ol/nfk2To8k9XhfTo6fz5N4nyazKZGSYZxih3WHnSMURLht1mcd2k97kjmnuCJcPN8GQ4N6WEJLQZbSF6/1wpfX7+/hzfur5rDm5BovVQrBfMPtK93G44jD3z7nf7Sq4asxV/HHLH9nnpyNh6+Nkm7O5KvVCmX2aOAuEIEwf1mbytNpaQ6jOV07c7nwBig95xJKX1JXgr/Onts6PO1/fwYajpcxONfHAxeM9rGuAoxVzePk43LTEh39dvoQ9hUf5/Q6YEJPY7mv19/En3ZTunoiE5onO6THTefPom4SGNPLKrdLwm/1aFSa9CYOfAbO1nJXXT8Lfxx9N06iwNLHhaCnv78nnifUnePzr5rt4/6gv8Y/QEe4zkvMWxXHCMpdtlu0I4JeL5rEsXb5evY+e82eHk6iNY1SsP3dtrefmWdO4ddIMii2J3L72FEFBlk4/v94wJIV8YuREt/UG8JPJP2FW7CySDcnEh8RTXmvluW+yeXVrNmW1TfgE1xGUDBc8/RZRfuMx6v0w6H0J8NXh56PD31fH6OgQpqeEkx5nxK+1BVwlvxhme6PbIrcGRqKrLeafnx1mU2YFB/KqcGgQEuDLsvRoLpgYR7UWwkO73+VEZRbbj0Pw2EouTlvMY0uXkFmdwiUfvMIDV4Tx8pHjTI5axP9bfBnnvvs0E5MruO9Hy9mWWcGWzDK2ZVbwzbFSd/XRKYmh3HrWSC6YGNt2rC5qSyB2EpX1+wgLkBcvl0sgqzqLRYmLev0ZuO5udpfs7pOQu1KsXS6HQN9AfIVvj10rrkk1l3CdnXg2j+18jCMVRxhnar/Oenl9ORGBzYs4TIiYAMCh8kOkR6S7xcA1tukx0/ns1Gce21xcPfZqnj/4PM8deI6Hz3rYY98p8ynqbfUe/nGQQl5jraHJ3oS/j3+7Y3QLeYinkHeWxASedyguVqSt4K1jb7E2ey2XjLqE1w+/jsHPwMVpzWn9F4y4gMd2PsbbieM469CbYAphxmcPQlMTXLsaxp5PeEB4m7j5KlsDoYFGSJYXhKaszZjGyNIPRXVFlNSVEOQTznn//ha7Q+OPF4/nxnmp6HRtjZG0sDT0PnoOlh3kopEXkd8gU/c7ingBmBw1mXeOvYPNYcNX50u2ORuT3uS+4LqiReqsddTb6jHpTUQFRqGhuX3YQggiQgK4YkYiV8xIpNjcQEahmeLqBorNjXxR8Tr+/qN574fydZXXR7H4Lbmg+dgWEUdh+jA0nYWfLExzJyW5PoeY4Bje+957XRthvcArQi6EOB9YCfgAqzRN+7s3+m1NTVMNh8oOccvEW7A02tiXV0VhVQOF1fUUVBvIqywgv/IEORV1WO0aS8dFc9WMRIosifzr6AvER1cR0uhPTYOVYnMDTXYHVpuDOqudqjqZtab303HbojTuWja6+YtWlYMGmG11GPwM3Pf+AQy7K/mtTyOvf3uIUUnx/HzpaBakRTAtORx/Xymu5fV+PLQbfnFeGIsTZ3LhB1amxaUBkGJIQe+j56vcDymtL+GclHMQQrAgfgFfnPqC0CAdF02O46LJsp5LXZONI0U17M6u5PVtOfzyjT3Eh+q5fHoi54yPYVJCaPN4HQ6oLcEWHI25yky4Xs6mh+nDCA8I77JGRWdomsbmAlk5bnfxbjRN6/UXM6s6i5igGIL8ggDppjD4G3plkQuE2wd7/ojzef7g89z6xa38e8m/3XdvLaloqGCsqXmCMdGQiMHfwKHyQ1zJle4Qu2SDjPmeFt28fJorhtxFuD6ca8Zew8sZL3PHlDtIMjbf7bQ30QlgCpR3A5UNlW7rtTUdCfmnWZ9idVjdbqE274eliACfAPcFHGBq1FQSQxL5OPNj5sXP46vsr/j+uO+733uAIL8gLhpxER+eeB9rSAiBCMYt/A3at/+iaNdH/PdoEhtK6qjxr2z+3B12qjUrMX4hNIUk0hgQw8bPP+C3X8VCKnx19BibCk5S3aBnakIoj1wxmeSIoHZGLfHV+TLONM6deNNeMlBrJkVO4tXDr3K88rj7IpxsSCZCLy/Uroltl0soQh/hfk/za/JJMaa06TPGqCfGKMs/2x123njzJCuSV7j3RwRGuH3wLT/vlnMIrkRB17KQQL+IOHhByIUQPsCTwDlAHrBDCLFG07ReloXrmB05G7Frdg5n6Dnvg3cpbfKnEWnNhAf5kRgexOhoA+dOiOWqGYmMjJLhWZoWy6osI5NT63lw3mx3f1a7le/yv2Nj/neck3AFFVUmPj1QyOPrjnO0yMy/rp5KcIAvVOVgCQzDrtnZmdnAt7ty+HtaKuTD5p9PJCi+favPdQuXU5NNeaP8UBMN8hbRR+fD6PDR7C/bj5/Oj7MTZSnZhQkLeff4u+wr2cfM2JnuvoL8fZmeHM705HBuWTCC9UdLeHHTKZ7acIL/rD9BjDGAXy0fw/dnJ0N9BWh2zIFhaGgeP+gRoSP6JOTHKo9RVl/G5MjJ7C/b705P7g2nzKfaiKIxwOguTtZdii3FRAZGuoUtOiia1y58jZ+t+xm3fXUbf5z3Ry4ZdYnHMeX15e4fOsgf2ISICRwqkwKSbc4m0DfQLSCjw0dj8DOg0+ncYWYtuWnCTbx++HVWHVzFn+b/yb09ozwDvY++jTvGFCCFvKKholMhN/obPe4+E0IScGgOiixFHbrHiixFxAbHeoiGEIIVaSv4777/8tTep7BrdncCVkuuGnsVbx17i8/8YZJpJn+sOI9zrZ+QdOQr3nCswBCjx+Zn5e3dJ7l6xiiwlFLtoyNOC+GClRv5ZV0ai/yPcuG4VD6t9efjQ4fxM1QwIWYsr106p10rvDUTIye6LWx31cQOkokAJkVNAmT2bHpEOjnmHObGzyVcH45AUNYgLXKXK8ukN7l/h/mWrkMQT1afxGK1MCXKcwm9sxLOIr8230OoW84htHdn1F94wyKfDZzQNC0TQAjxJnAJ4HUh/+Drf6L3c7Ay6178ddAUFkn+zTuJMxnR+3UchSGEYHT4aE5USp+XucnMf/b8h0+zPnVnvuXX5PPsuc9y0aQ4Xth0ir9+ksGVz2zhsSsnM6E6F3NYImBmy4l6fjg/lWvGB8KrEGTt2M8phCDFmEK2OdttXcUHN5eMHRM+hgNlB5gfP58Qf3nRmRM3B1/hy6aCTR5C3hKdTrAsPYZl6TFUWppYf7SEN7fn8tv3DhDgp+OyOGkRVAVIy6e1kK/P7Xw1dZdQuNwCS5OWukXBldX3s2k/4ydf/YSdxTu7JeTVjdXoffUE+AQA0rLPqs5ixcgVHu2k77JnQu4SrpYkGhJ55cJXuHvD3dy/6X7iQ+LdlnmTvYkaa02bidqJkRN56dBLNNobyanJIcmQ5H7dOqFjUdIiaptq27WqIgMjuWLMFbx99G1un3y7e03XjPIMxprGuiOoABwODc0eDNBp5IorhhygwWqn0eYgzvn9ya/N71jI64rcE50tWTFyBc/se4Z3j7/LosRFxAcncjC/ml3ZlezMruR4cQ06IQgwpNLoc4qdR8LZVZ3HtPgFLCp5gr0/H8Oa8noe2v4hv/1wC1abH/G1GVTpdBwuhCa7g3GzzyF812YeWR5GxoZ4omP9OFBhYVZi+66U9hgfMZ4GewOZ1ZmU1pcS4hficefQmsSQREx6E/tL97Ni5ApK6ktINabiq/MlXB/utshd77XLteKr8/WIADpQeoBgv+A28xwu/3trIb99yu2ygFeLzzZcH05emZyMLrQUohO6DuPnvYk3hDwBaFnnMw+Y07qREOI24DaA5OTkXp1o2eirSSvZjThvJlRl4r/taUbUHYCYrv29o8JG8UnmJxypOMLdG+6msLaQc1LPYcXIFRytOMrjex7nYNlBJkZO5NaFIxgVHcLPX9/Niie+Y33gYQ6GxoPezNSEOP6wYjyixOmwrm2bidaSlNAU9hTv8Ui1duG6tT8n5Rz3NoO/gSnRU9iUv6nTyToX4cH+XD49kQsnxXHzizu49+39jDinnqlAlZ8UzaJKH1auPc7WzHJKfQQVvhUUmMuIN7adOd9csJm71t/lUdLgX4v/5R7j5vzNjAobxdy4uYQGhLK7ZDeXjb6sTT+tuf7T65kXP4/fz/k9IKNGaq217VrkNY09d62khaa12W70N/LPs//JwjcXklGe4RZy1w+6pY8cpJ/c5rBxvPI4OeYcj7A7gIcWPISgYzG6ZeItvH3sbZ4/+Dz3z70fh+bgSMUR992AucHK2zvzeHnLKXLMOYSMgvwaz+9PYW0hBn8DIf4hFNQWkBaaxod787n//YPUNNrw8a8gKA3u++gblieGMjPVxLy0CEICmn/KRZYi5sXJjNHcijo2nSgju6IOX50g2m8MJdZjZJ6cysQNX7gjNWKNeufEIwjHEnJ4kR/POo+fzF2CsWYkPPkEgTkbiY2RIjc9NYD73j/Icp+t1I/RsSh5JA9972z05dGw60+Qs5WY4BjK63Opt9V16hppzcRIGZ1yqOyQzOrsQgiFEEyKnMT+sv3NKfPOMggmvamNkIfrw/HR+RAX3LzCV6O9kTvW3UFMUAzvfM+zEuTu4t2EBYS1uXDqffVttoXrw911VYosRR53iv2JN4S8vW92m8IVmqY9CzwLMHPmzF4tGnjJkharljeYYcdzcGIdjOhayMeEj2G1dTXXfnItJr2JF89/0R2eNiNmBi8deonn9j/HyqUrATh7TBTf3LuELw8WEv95Kf+rGwHh8KulU/HRieYaJt2IJf8081NOVp/EpDd5WBbLk5dzrPKYh5CDdK+s3L2SsvoyIgO7F6ak9/Ph2RtncO1zW3lj/bdM1cEjm3MgCB5ak43WZGN8nJEGIiAUlj/xDldOXMhvzh8n3UdOdhTtwGq38sC8B0g1pvLQ1od4Ys8TLElaQpO9SU5wjrsOndAxPXp6tzJRNU0jryaP9bnr+d3s3yGEcLt3WrscDP6GHtXA0DSNIksRC+Lbr+IYGhCKwd/gUVPcVTiptUXumvDcV7qPvJo8liUv89jf0vJqj9jgWC4ddSmrj64mtyaXpUlLqbPVEROQxh/XHOLtZGajjwAAIABJREFUnblYmuzMSAln4ZjxrKmCf6zdzbiQJUxODKO0rpQL37sQu2YnNTSVHHMuWNJ5/4u9zEgJ54KJsVTWNfBKkQ6brpwXNmXx342ZhAX58ZNFadw0PwVfHweldWUcy/dh0aPryamoc45dYNc0dEHzCQgzEOibznWzTUxJCmVGSrhHJJSmzSSj/DwmRMr3g4AxclHnzPWEpUwH4GfLYzk8Mp4Z1bvZVgWzRo2Td8XR6XLhktztxITFsL1Q1kTqiVWaYkwhxC+Eg2UHZdXEblwEJkdN5pu8b9y5AC6/d2RgZLNrpYVFDtKoct0pr8teR1VjFVWNVRwuP+xO9KptqmVtzlrOSz2vW/7tsIAwaqw1WB1WiixFHm6X/sQbQp4HtLwsJQL9v5Cl3ihLsZ5cB+f8qcvmrh/p9OjpPLroUQ9rLNgvmB+k/4Cn9z3N8crjbkvMFOzP9ycGw2cNzJkxhneLThEZ5HRTBEXINP0uLPJUYyoaGlsLtroz9FxEBUXx4LwH2xyzKHERK3ev5G/b/sYjix7p9hXdoPfjpZtn88F/3oEGqHYGtDx86VzOGzuOsCB/cswpXPT+f5kysolXtmbz3Yky/nPtdMbHy9C/vJo84kLiuGqMLKj1i2m/4FcbfsVHJz8iIjACq8PK/ARZ6GlGzAzW567v8oJjsVqwaTaKLEVkmbMYGTqyWciNnkJu9Df2KGqlxlpDva2+Uz9kYkiiR+y1y0JrbZHHBsdi0ptYm70Wm2ZrdxLMhaZpZJVZ2J9Xzb68KvIr6xECHNo5pOpgV+Fa96Tw3z6oQWfN5uLJ8dy8YASTEkPRNI1PX/HDhplLntxEsL8vIvAYxNnQWWaT21CH3SeUjKIYfrYkjV8tH+POJ9jx0VjqbBnsvv7PHMir5dlvM3nk8yM8/10mRkMtWpiD/dmChTEh3LIglQWjIhkVHYIQArvjQgR06uYQQjSLuNwAI5fAkY8JP1f+1mqt1dyxeBEnPpP+4FBXiKTOKealR4iJPx/NadN1lNXZHjqhY3zEeA6WH6S6sZrp0dO7PGZSpPSTf5L5CdA8SR0RGEFuibyIVzRUEOgb6DamEkMS3W7Gd4+/S2xwLBX1Fbx/4n23kH+S+Qn1tnquHnN1t8bumj+pbqymqK6ow6gpb+MNId8BjBZCjADyge8DvY9J6wmjlsK6P7uTXzpjQuQE3v/e+6SGprZrWf0g/Qf879D/WHVgFY8seqR5R5W8VbMESh+2OyFI5yPFvIOkIBeuULXyhvJ2oyfaY0z4GH4969c8uuNRbBts/OPsf6ATOtacXMNLh17iZ1N/xnmp57V7bGRIALdODULbFcyV82NZuRu+N2k0gb5yUjghJAE/nR+zRtv45ey53PnmHi59ahM/PmsEwQG+7Cw4gQ/h/O69/dQ22rHawjD5pPHY9scZFzobH/z51xobPy3+kuhIHYTAv7/7/+2dd3xc1Zn3v2dm1HuXbFndsi13S+CCMbhiMDYmQCChhywpEGAXEjbh3TebbLIku9m86SSE0EwSsgRsqummBWNjYxuMuyXZki1ZktV7mfP+ceaOZqQZaTRFI8nn+/noM5o7d+6co7n63ec+5ymv8e2lXyQuwvUFxzGBZPvp7XYhj7BEDFroM6JWPI2GMRaUjNKprsiMyXQq0TDQMjMQQlCUVMQ/Tql1AOP2fCCnGzu4++k9fFyu5hUeYiI7MQohVBJwj/UiLN2L6LJ8gjmsltsXLuHmJXmkx4U7fVZSRCLF2dFkTJ9KS2cvRzsOsqcdlqfeiNmaQJ/VyjXXTeGCAVmAd86/kzveuoPnS//ODUU3sKQgmV3l9fzq7WOc7VWL6r+8+mIuyRt8vpk99FMPIn857H2K+AYlikZkRqOtwUWcY35GynQ4+ALpkTf3bxqhn3hm8kw2HdjkFI00FLOSZyEQ7Dqzi9SIVLtYJ4UncbbjrIoTH5A7MCl6EvWd9RyuP8zO6p3cNf8ujjYc5eXSl7m35F5CTaH87cjfmJE4w+7uGQ4jT6W+s57qtmqWTxmdDlw+C7mUslcIcSfwGir88FEp5ec+j8wT8lcqIT/+Nsy9btjdCxIK3L4WFxbHtdOu5YkDT3DHvDv6/4ltQt5s8zc7ltIkOs0j14qBYxjZcNxYdCMWk4X/3PGffOPNb3C24yzHm45jFmae/PxJt0IOIFprICaNpq4mIiwRRFgi7K+ZTWayY7MpayrjX0qS2Hr3hdz3zD5+u00lN0VNrYK2WbzZUkN0mAWzSVDbuRLz5IfZWbcVa/tUeqWZy2anc7I+imprKM/sf4+tH6XynbXTuKZ4yiBrz7GU6oenP+T6GddT1qy67AzsGBMbGkuPtYfOvk6ncbtjYAy5KzJjMnmn4h2s0opJmPot8vCkQfvOTJppb+zryiJ/6+AZ7n1mHz29Vv7t8iKW5CcxNTXaTfat++8I1IWktbeRe1YVAvCzj1/hwOEwfn7VskF/F0cunHwhizMW89C+h1ifv564MOUrf/Ir5/NKaR33vw/5Ca4TaLwm72IAYk58hFmY7fVEmtprQDgvqJM6Az55gjRT/4VrJD5yUBUGjdownrw3JjSGvLg8jjcdJzuu/3tLjkims6+T9t72QUJu/D/+es+vMQszGws2crThKFvLt7KtYhvpkekcbTjK9xd/3+OwQcMiL2sqo6uva1QiVsBPceRSyleAV4bd0d+kz1HFq4696ZGQD8dNM29i04FNbDm2hbsW3KU22oS8yWTCYrI4i0tUyrCulciQSFIjUqnpqHHK0POEL03/EhaThR9u/6E9zf5Uyyn+Z/f/qJofA/zLdmxZnQ2dDf13EA7kxuXaq+ElRYfx2K3n09TRQ6/s4OJn2rhn+WJum73Kvr+Uy7jl1b18UrOT+y7cwFdm9/ujv/rafKpjawmvieL+Zz/jzztO8svr5pObHGXfx7DeZiTOsPvgy5vKmZM8Z9DYHNP0PRHygVmMrsiMzlQ1P9pr1O3zgFtsRwwXXKQlkqTwJHafqGdnWQOnGzs4Ud/Oe0dqKcqI5Tdfnm8Pb/WWgdmdRqTMUCIOypq/77z7uObFa/j9vt9z//n321/z5O/hFVHJkDEXUbqN+Kj+lmZNHfUQifN5lqLcCWmdatE60hJJVEjUoEMOhaNrZ6jQQ0dmp8zmeNNxu1sF+t1ndR11KtTT4c7NEPJ3K99lxZQVpESmkBieSHpUOluObiEpIomokCh7LSBPMCxyo/aOq+ihQDAuqx/aMZkgf4WyyK2eVzFzR3JEMlmxWRxv7E+9p/EkhMfRbO0iLjTO+cocnQptQws5YLcQRmKRG1xTeA1bv7CVzVdsZnX2atblrcMkTLx43HURfnq7oGofJBXQ2NXoMuY5Ny6XypZKp4a3cREh1HU6x7obCCH47sJvUxBfwKW5zvWvi9OKOdl6jD99ZSa/uHYeFfXt3PrYTpra+9uCGf/0a3PX0tHbwY7qHZxuPe10Ierps/L4P8rYVaqiZdzFkj975FlWPrPSnjR0pu0MJmEa0kdvL/9qK7d6tvPsILdKn1UipbQLSEbkFG7ftJurHtrOT189xAv7TlPb0sXty/J47ptLfBZxGFw4y2ji6wmFCYVcWXAlTx962ql5SXVbNdEh0fZwVr+Stxwqd5IQFqu+UylptK1nOFvkKvkprbm/xspImRQ1yX7uevp+w0/ueCeVHK7Oi7MdZ6nvcG2RA1xdeDWg7lg35G/gw9Mf8mrZq1yed/mQoY8DMcZsNBtJd9GHNRCMbyEHKFgJ7Weh2n3z1pGQG5fr3ISi8STEZ9Hc1Uxs2IC2aIZF7qZFlYFxYnkj5KCE1VjwTIlMYXHGYl4qfWlQS6n2nnZ1UetqhqKNNHQ1OP+DOcyxT/YN6g5vLAgOXJQFmJ44nc1XbLbHRxssSFuARLKvdh8b50/mjzeVcKqxgzv/+om9RKjhWlmdvRqzMPP0oaeRSHvo4fbjZ1n3q/f59xcP8Oyuett7Bgt5T18PD+17iJr2GvuilhHiNVREifF3N+ZX31FPUngSUkp2n6jnX5/9lLk/eJ3p//Yq1/3uACEykcMVUXx4rI5vXzKNfd9fw77vr2Hr3RfyvctmDJmzMBIMIZdSYpVWKloqnKzJ4bhz/p2EmkN5aN9D9m2uYur9Rv4KsPYSb7WVau1spIleQoTJ+e4pOhUiEoivLyPUFOpVHLXjgqunQn5++vlYhMXJn+1kkXc5C3lyRDJh5jAyojJYMmmJffvG/I1IJN3Wbvuiv6fYLfJ6bZGPjHzVpIFj/qnjnReXR0VLRX+j2aYKiMuiqbuJuNABboroVOjthGHinkvSSkiPSndKBvKF9fnrqWqrstfcKGsqY8OWDfz3rv+GzzdDeDzkXeS2SJhhCQ/M8DQs1oEW+VDMSZmDRVjsYYglOYn8aOMs3j9ax0+2Kquktq0egcBiTWRuylzeq3wPgOamBP7pyV186Y8f0d7dx8M3FrNxrlrH+MW2fYNqRb9c9jJn2s8QExrDM0eeUaGHA5JfzrZ2sfWzKn744gFuenQnS3/6Nqv+ax8gOFav3GRnO8/S1xvFJb94j6se2s7ze0+zZmYaNy/JYXpGDOntd7M+83be+fZy7lhe4HYR11cSIxLp7Ouko7eDmvYauvq63C6wuiI5Ipl1eevYVrHNHvdf3VbtNlPUZ7IWQ3gcCR3NSsibq2gym4kzRzrfqQoBKTMQtYfJj88fFJnkKcVpxURaIj0Owc2Jy+H96953CiowhLy8uZxea6+9XIUapuBL07/EXQvucqpMOSV2CksnL2Vh+kKnMg6eEGIKISYkhvrOekJNoT5VBx0J465o1iCiU5Wv/PjbqomsjxjW6smWk+TH5SmLPPcimrtKB1sWRvedttohmxivy1tnb/3mD1ZkrSDSEsmLx1+kMKGQO9+6k5buFkobjsPhbVC0Acwh7l0rsa6F/FTrKWJCYpwXdIchwhLBzOSZToWcrj0vi4NVLTzyQRmb95yiNfozQuLCWfzgOyRnpiNj1B3M/X+rIiEiintWTeXrF+UTHmKmMHM2r2+B7WWn+PIjO1g/J4MlBcnkJEXw2P7HKEwo5IuFX+RHO37EZ3WfcabtDFMTpvLCvtP8btsxDlWri2p4iIn8lGgWZCUQHpLEy43xPPHxbsJajnK8vpqOxjgyrZL/umoOl83JcEqogWKP5+8LxndT31lvr8sx0qqUa3LW8MyRZ/jg1Aeszl7NmfYzg+q6+A1LKEy/nPjTb9JgkdB8miaTifiBd6oAqdNh/7P88fpPCbWoQAHOfA7mUEieOnh/F9xcdDOX5V7mtqiYKwa6lBLCEjAJkz1qaaCw3ltyr8vj/GrFr1xkw3hGfLiKJR9YJiGQjH8hB+Ve+fDXyjecMXf4/YfASM8tayojPzQBuluxxk2hsvw9uw/OTpRN2FtrIGlwZmGgiLBEsCZnDa+feJ3K1kqq2qqYljCNqqYy5VaZeSW91l6au5tdulYiQyJJi0xzanoByiKfHDN5xCdfcVoxTx54ko7eDvst9gPrZhAWYqKxrYfD0kxjXyL3rJvBOyda2df3ChZrIj+7+jwun5Ph5Kow3Ffr58ezc18H//a8CoCKSTwEaaXENt/M/1alYIkI5w97/kxVWzUt9QU8d3QPRRmxfGftNBbmJjEnM86pMmTFi7mU1jXxP28cImZ6KxcX5PHbS5d5V+vdTxjWYn1nvb1I11Cx664oSSshISyB18tfZ1nmMuo76wMbKVG0kfgTL9HU2Yi1+RSNJhOxLowFUmZAZxNx3e3qDlFK+Ot1EJ8Ntwzuj+qKEHOIUya0Nxht9eyL+y4ilVx+tg/ZmAlhCVS0VIxaMhBMBNcKwPlfg+h0eOoqpxrh3mBYq6VNpfbytSfCI2npaRkcS2rErg8TSx4I1uetp62njY+rP+YHS37Assxl1HQ30huRALkX2f3S7uqvuyqeVdla6dI/PhwlaSX0WnudakKHmE1899IZ/PTqOaTE9TI5NomvXpjH41++ipjQGM6bPI2rizMH+ZuNqJVpkyx8cP9y3rnvYn60cSYJkz4gQqQwN+EientC6WiYw7unXqOrr5P65kh+tHEWL35rKd+8uIDi7IRB5X2nJmYTGdXEM9+cB8LKsvzcoIo49FuH9Z31nGg5QYgpZMh4eFdYTBZWZa/i3cp37aV3AyrkeReTIELpw0pLYzmNZhPxrnzgqSqhhhpb84zTe9Tdbe2hwI3NDckRyfa/jVF1MpAY/3MBc3G5YGIIeWwG3LgZpBU2bYTmYbqGD0FkSCTpUek2IVeLgful8j8OEvIoz9L0A0FJeglLJi3hW/O/xfr89UyKSKEPqClcZXerAC5dK6DqPh9rPEaPVa0FWKWVUy2nRuQfN5iXOg+TMLmtk93U1WS/M7CYLPzkwp/0h3cOIMQUQoQlgubuZoQQ5CRHMS2nloa+Y9x7/tf43Q3n8fydS3nsqrsQJtWX8/uXLuGGRdlDJrtkxmRS11FHZKRaRPXUMgskjkJe0VxBZkymVy341uSsoaO3g2ePPAsEWMgtocSnq9IWjQ2lNJtDiAt3cY4ZQm4I94Hn1WNbLXQ0DN4/gCSFJ9En1bkyGj5r41zXFrk3pBTC9X+H9np46gvQ0Tj8e9xgTyG3xZDv76whwhJBXpxzVTSikj1K0w8EJmHiD6v/wO1zbgdgUpOKHz6VpRZ6jIQNdxZ5cVoxHb0d9toUdR11dFu7vYqsiQmNYVrCNLdC3tjV6OTiWZa5bMhMudjQWKea5G+ceINIS6RTKdrFmXOZkajEIj9x+DEbdxqf1qm7htFahBoKY+GtvrOeky0nRxSx4ojhXtl8bDMQ+EiJhGxV26ih/B0aTcKl+46oZJXjUXNQuVUOPA+G/7rOh/65XuBYisGdYeNPjM8YrWQgmEhCDjB5AVz3F6g7Cn+/FfoGdw33BEPIrQ0nICyW/Y1HKUoqGmwtGWn6HsSSB5pJFbsAqIpVdwnDWeTnp5+PQPBR1UeAdxErjhSnFbOvdl9/tI8DjV2NLhOT3DGwuURZk6rPEm4Jd9rvxqIbCTOHeeRXNpKx9tWqMNWBdVaCQYQlgkhLJGc7zo4ohnwgFpOFldkr7ZErgb6lT8hRQl4tu+kWDA7LNbDVXKH6U2gog/NuU9vrjgR0fAMxol5iQ2MJMQe+EqFxgdYWuS/kXQSX/1xFsbz2Pa8OkRuXS0dvB2caj9MTP4VD9YeYleTGgoxKhdbRd604YbWScVyllZ9uV/56Q8jdCWhcWBzTE6ezo2oHMHQMuSeUpJXQ1ddl7+xi0N3XTUdvh2urzQ0DC2eVN5e7zGJdn7+e9659zymkzB12i9zmxx8LrhVQ//RHG47S0dsxotDDgRglG+LD4j3KiPWFeNsif1mIxf6ZLkmZDrWH4fMtIMyw6A4whYy6kBvf9WjdhRlGwsCci0AyMaJWBrLgJnUCbf+Ncrmc99URvd0QjdLWShpiJ9Hde5xZKW6EPDoFmofvMhJQ6g4T1tlIkiXDHsZmCPlQArooYxGbDm6ivaedUy2nEAivowTmp6lWaLvO7HLqXu/JOAYSGxprTzVv72mnuq16UN1yA0+z7hLDE4mwRFDRUoFZmN1bkaNMUniS3d3jrWsF+t0ro7HAZtzlnQhR1q3b7zZ1hoqi+uQJyFkKMWmQmKfumEcRQ1hHS8jXZK8h3BI+2BUbQCaeRW6w+odQuBZe+c6IfXLGF1DWXs3+KBVF4dYiz1oCVXuhodyX0frGSeUemRw92V5fuaGzgQhLxCB3hCMLMxbSa+1lT80eKlsrSY1MHVHMriOJ4Ynkx+UP8pPbffUjEPKY0Bh7iv7AJsjeIoSwu40SwxOHrWcyWiSGJ9pdIr4IucVk4XsLv8dts2/z19DcEmGJINQUSnmc8gG7dZsZC57tZ6HItr6RPBXOTmwhjwyJZG3O2lH5LIOxcTYHApMZLv0pyD4oHbq12UASwxOJE6GUhpjZH5dCQliC+0XA+TeoBc9PnvTDoL2kYgdEJpMRl0tVa79FPtzCzvzU+VhMFnZU7aCypdJr/7hBSXoJe2r20Gfts2+zh0GOxCIP61/sNGLd3VnkI8H4DsfCQqeBEQ5nERafb8XX5q4dFQERQhAfHs8Jk8qYcSvkKUYtbgEz1qtfkwuhvhRcrKUEitF2rQSDiSvkoJIPYibZLVZPEd2t5Ha1UxqXzmfNZcxMnuk+SSZuMkxdA3ueGtWT04mTH0HWIiZFT6KqrQqrtNLQ2eA2YsUgMiSSuSlz+ajqI69jyB0pTiumraeNQw39scLD+epdERMaQ0tPC33WPsqbyhEIn6xVA2N+Y2Gh08AQl8kxk4ftQDSWSAhLoLWnFWBw6QqDyESIyYDsC/pzLpILwdo7qnewxmLnaMSQB4uJLeRCQNaiEQs5u58gr6uTI6Y+SptKB2d0DqT4FpUUdOQ1r4fqNa01KiJgykIyojPosfZwtuOsU+z2UCzMWMih+kPUtI+8zO5AjE4ue2v22rd56yMHaO1ppay5jEnRk4Z0EXmKo2tlrGCMxduIlWDhaCQMeZH+4ibY8Kv+58mq9vpoLngmhidy26zbWJO9ZvidxykTW8hBFfpprrQn9wxLXw989BB5UZm09HZgldbhu4MUrFaW/+7HfR7uiKlQUSdkLbK7Dk61nnJb+XAgizIW2dtx+WqRp0amEhMa45QxOlyGqSuM7M7m7mbKm8r94laBfrEcKxEr0B+q5o87jtHEcNuFm8OHvshOOc+5fEWyrbnLKC54CiG4p/ieQc20JxI+CbkQ4r+FEIeEEJ8KITYLITz/bx0tshaqR0+t8v3PQXMluUVX2TcZzQbcYrbAghtVgwtbEtGocfIjMIdBxlx73GpVWxWNnY0eheXNSp5FpEVFfvhqFQohyInNsS9QgrLIIywRhJnDPD6OYZE3dzer0EMvq+cNxLhQjaVbbMMi9yX0MBgYRsJIXGYAhMepYnOjHLky0fHVIn8DmCWlnAMcAb7r+5D8TOpMCI2Bk9vd79PbDZW7YPtvYduPIWU6udO/AKgC9x75VOffqB4/2eSHQY+Aih0waT5YwuyhgyebT9LS0+KRRR5iCqE4TVX787ZeuiNZsVn2AlAwOKvTEwyL/HjjcTp6O3yOWHEc25UFV7Js8jK/HM8f5MXlEWmJZF7KvOF3HkMYRsJIv1tAuVdGOZZ8ouPT6oqU8nWHpx8BV/s2nABgtqjbO1cWeV8vfPxHeOdB6LT1lYzLgrUPMilmMuHmcOdu4kMRPwUKVsGeTXDR/epzA01PB5zeC4u/CUBUSBRxYXEcOHsA8Dwd+cqpV9Jt7fa47vNQZMdm80rpK3T1dRFmDvNKyA2L3Eje8ZdrxWKy8MMLfuiXY/mL9Kh0dly/I9jDGDFeW+SgQhD3P6dS90epzOtEx59q8xXgb348nv/IWgzb/lMV64mwiVv5B/DKt6HmgGpOUXwLZJ6vCnChukg/eOGDI7MGi2+Gv92gXCzTRiGO9PQesPbAlEX2TZOiJtm7k3jql16dvZrV2av9MqTsmGwkkormCgoSCkacng+Dhdxtb1JN0DAscu+EvBA6G1V8eZTvxoPGA9eKEOJNIcR+Fz9XOOzzANAL/HmI49wuhNglhNhVWzvKKe1ZiwAJFR+r58fegscvh65WuPbPcMNzKmEh1jmOd1X2KgoSCjz/nMK1KmV/tGLKjbuMKQvtmzKi+rM7vbrt9RGj7onhJ/c0esYRI+vySMMRIi2RHjff1YwePlvkoN0rfmRYi1xKuWqo14UQNwOXAyuldN+8Ukr5MPAwQElJiZe9N7xkcjGYLMpPPnkBbPkGpEyDf3obQkfW3XtIzCEw78uqyUVLNcQEuPpZxQ5ImgpR/T58xxT7YAi5sWh3okUJuTcWeaQlErMw0yf7yInLGbUuKxrP8clHnuQg5NlLht5X4xG+Rq2sBe4HNkgp2/0zpAAQGqU6B53cDs/foUrcXvUn/4q4wYKbVDbpXrc3J/6hqwVObO+PyrHhKOSeRK34m5jQGBLDEznZfJI+ax/NXa67FA2FEMK+4OmvhU6Nf7Fb5O6SgYYibgpYwnXkih/xNWrlN0AM8IYQYq8Q4vd+GFNgyFqshPzIq7D6B5A+TGy4tyTlQ/ZSFb1itQ6/v7d8+GvoaoLirzhtdmzwHAyLHJT4ljeX09LdgkR6NQ67kPtpoVPjX9Ii0/iX4n9hba4Xa0Emk7LKtZD7DZ+EXEpZIKWcIqWcZ/v5ur8G5neybAuCBathYYCHueAmlW154oPAHL/lDHz4GyjaCJnOjYKNeh1RIVFeF8DyFSME0Z7VOYJkIANDyPVC59hECMGts271vnlC8lSoO+zfQZ3DTPzMToOC1bDsO3Dl7wMf8lS0QSU+uFr0rNgJj65VC63e8u5PoK8LVv7fQS8ZseDBssZBLXjWdtRyuvW012MxIlf8lQykGWMkF6rkuZ7OYI9kQnDuCHlIOKx4YHTCnUIiYPYX4cALypftyO4nlItnpPVfDOqOqmMU3+qc+mwjNjSWSEtk0IUcYF+d6sbji2tlvGU8ajwkearqsVtfGuyRTAjOHSEfbWZuVFbzsbf6t1mtcNRWWGuoTNOheOsH6kJx0f0uXxZCkBWbFdSQPaNuiBEH7k2IWl5cHkVJRQHvdqMJEkYI4ijXJp+ojJ+6meONKYsgIhEOvaREHVQCT1utql/ujZDXHYWDLyoRj3Yv1A8ufXBEtU38jWFFG0LujUV+x7w7+PrcsbvkovGRJKN4lo4l9wfaIg8UZgtMuwyOvK5quYCKmBEmmHMtnNoNvV0jO+bux1U8fMnQXWAKEgqYEhu8sqgRlgjSItNo7m7GIixEh0SP+BhCiHFVn1szQkKjIDZTR674CS3kgWTG5SpEsPx99fzIq8pSn3YZ9HZC1T7Pj9XTqWLTp1+ueh+OcYz479iwWJ3Qo3FN8tTxZ5E3lKuAhTGGFvJbRa5WAAAOk0lEQVRAkncxhETBoZeh6RRUfwqFl/SHQp740PNjHXxB1YopuTUQI/U7hnvF08JdmnOQ5EJlkbtPCB9bnDkAf1wBT2yA7rGV/6iFPJCEREDBSiXkR7aqbYVrVdurpIKRRa7selR1IM8ZOyVYh8KIXPGqFofm3CB5KnS3qnIWY53aw/DkBlVxtLcDyt4N9oic0EIeaGash9Zq+OCXqodoyjS1PWuRWvD0JPuz5qDat/gWlRU3DjCEPJhhkJoxzngpnlV3DJ5YDwj46psQGq3cpGOI8aEK45mpa9QCZdNJZY0b/uKsJaqUp5Hd1terXC2uhH3342AOhXnXj9qwfcVwrXiT1ak5RwhC/06veO27qgXkzS9C2kxV9vrIa2PKJaSFPNBExEPOher3wkv6txt+8pPb1Qnxyr3w2KWq0YUjXS2w76/Ksh9HtZunRE8h1BTql2YVmglKTIaybsdy5EpPB5S9pyLNUqerbdMuhZYqqNo79HtHER3fNRqcd5uyvnOW9m9LzFO9C09sh/Z6ZXWHx8O7P4W516kUf4B3fgKdzbD4jqAM3VtCzCE8vvZxnZmpcY8Qyr0ylpOCyv+hIsymOlTznroGEMoqnzQ/aENzRFvko8GM9XD7O2BxSNIRQlnlh16Ct/9DpfTfuFl1TfnHL9U+1fvho4dU56HJxa6OPKaZnTJbL3ZqhmasV0E89qYquZt9Qf+2qGTIPA8Obw3euAaghTyYZC2BnnbIXQZX/FY1vZh9jWoC3VQJL/2zcs2s/H6wR6rRBIbkQmiqgO62YI/ENcfeUK7RkAGlIqatVa6V5qrgjGsAWsiDyeyrYek/w7VPgcVWcnbF/1HFhB6/HCp3wur/gMjE4I5TowkU9porx4I7DlfUl6lxFbhoklZ4qXo0aidV7oLPN4/e2AaghTyYRCXDqn/v94cDJOTA+bereuZZS1TrOI1momKPXBmD7pVjb6pHV0KeOgPismDnIypJ6JGV8Mwt0Hzaeb/eLtj7VxWVFkC0kI9Flt2nYsav+E3ga6drNMEkMQ8QY1TI31KGlYty0QgB09fBmc9UMEKxLeN6YCjloZdhy9cDbq37RciFEPcJIaQQQsea+YOIBFj/S9cnkEYzkQgJh4Ts4WPJaw7BC99S8dyjQW+XCjssWOXemFrxAHz1LbhjZ39Z6YEXpJqD6nH34wEbKvhByIUQU4DVwEnfh6PRaM45kguh9tDQ++x6VHXcqjkwOmM6uR162lRnMXeExUBmicq2jkmHsNjBFyRjXic+COhdhz8s8v8HfAcYO2lOGo1m/JB9gRLomiHEvHSbejQs3EBz9A2VTZ17oWf7GzHxtQP6kNYegikLVXZ3AK1yn4RcCLEBOCWlHLYeqxDidiHELiHErtraWl8+VqPRTCTmXQ+mEPdC13Sq39I983ngx3PiQ/j4EeVWCY3y/H1GNUeD3m44e1yFL05fB3v/MvIeBB4yrJALId4UQux38XMF8AAwuAOwC6SUD0spS6SUJSkpwWtDptFoxhjRKap2/76/qJT4gRjWeFhs4C3y6v3wl+sgbgps+PXI3ps8FVpO9/fpPXsMZB+kTFfBCx31qsNXABhWyKWUq6SUswb+AKVALrBPCFEOZAKfCCHSAzJSjUYzcSn5CnQ2wedbBr92fBtEpapaRb76yKWE3y2GHX8Y/Fp9GTz1BWWF37h55LWNBoZSGv7xlGmQe7Gqfhog94rXrhUp5WdSylQpZY6UMgeoBBZIKcdBcWGNRjOmyLlQ1ejf/ZjzdqsVSt9RTVpSi6D5FHQ0ev857fXqYuDqgrH5a8r1ceNmiPeiVeIgIT+sWjsmT1ULogtuUt3C6vyf/KTjyDUaTfARQrkfKnaoTjwGNZ9Dex3kL1clZME390pDuXqs/Ni5y09bnfrsxXf2VzkcKYl5alHT8OfXHlRx6EZ6//wbIGOumo+f8ZuQ2yxz/49Qo9GcG8z9sooUcbTKj9v843kXq2xK8M290lCmHq09qgSGQek76jF/hffHNodAQm5/j4Haw5Ayo//1mHT42nv9Jaz9iLbINRrN2CAqCYo2wieb4PjbalvpNkieBrGT1AJkaIyPQl6uHoUZyj/o3358myojPWme98eG/siV3m612Gl0BAswWsg1Gs3Y4ZIfq4zmv1wLn/1dhQLmL1evCaGscl9dK1Gpqo542ftqm5TqwpF3MZjMvo0/eaoKOaw7Atbe/ruIAKOFXKPRjB2iU+GWlyBjHjx7m2rqkLe8//W0IhVL7m2btYZy5bfOWQqndqvyubWHVdhg/vLh3j08yYXKbWNURdQWuUajOSeJSFCRI3kXq8qgOQ5NHVKLVLetFi+D4xpO2IT8QiW4FTv73Th5fhJygAMvAEI1zhgFdKs3jUYz9giLhhs2Q1eTqmlikFqkHms+h9iMkR2ztxuaK5WQZy3q95NXf6pCHxOyfR+3UV+9aq9a+AyN9P2YHqAtco1GMzYxmZR17ohdyL3wkzdVqKYtCTnqQjF5ARx/S4m5L9EqjkTEq168oDI6Rwkt5BqNZvwQlaSE8owXkStGxEpCjnrMWQqn96h2i/5wqxgY7hVv49G9QAu5RqMZX6TO8C4EcZCQ2yobmixK1P2F4V7RFrlGo9G4IXWmqmNi7RvZ+xrKVcJRjM23bpSXzTwfwmP9Nz7DIh+liBXQi50ajWa8kVakwhLrjg7tvuhsUhUTjQ4/DeWqcJXJZr+GRavm5v52gcz+IvR1Q/pc/x53CLRFrtFoxhe5y9SjEavtiubT8LNC+OyZ/m1GDLkji7/pv4VOg6gkuODu/gvGKKCFXKPRjC/isyB9Nhx6xf0+x95UVvvev6jnUroW8gmCFnKNRjP+mLZOVStsddNtzCi2VfYetJ2FjgboatZCrtFoNGOG6esACUe2Dn7NqGGePlt16Dn04uCIlQmGFnKNRjP+SJ8NcVmu3SvV+1RbtcXfUtmVn2/RQq7RaDRjDiFg2qWqzG13m/NrRu2U/OUw80rlXjm1W23zRxr+GEQLuUajGZ9Mv0wtaBrCbXB8G6TNVpUUZ25U7pVPNkFksnPdlgmEz0IuhPiWEOKwEOJzIcR/+WNQGo1GMyzZF6jqiI7ule42OPlRf0na9DnKvdLVNGHdKuCjkAshlgNXAHOklDOBn/llVBqNRjMc5hCYegkceRX6etW2Ex+q8rSOzShmblS/ayF3yzeAn0gpuwCklDW+D0mj0Wg8ZMblamFz67eht0u5WSzhkLW4f5+ZV6rHCSzkvqboFwIXCiF+DHQC90kpP3a1oxDiduB2gKysLB8/VqPRaIDp62HxnbD9N2pBs7NJibjRuR6Ue2XtT2Ha2uCNM8AMK+RCiDeBdBcvPWB7fwKwCDgP+F8hRJ6Ug/swSSkfBh4GKCkp8bJPk0aj0ThgMqk+n9lLYMs3lJCX3Oa8jxCw6OvBGd8oMayQSylXuXtNCPEN4DmbcO8UQliBZMBNupVGo9EEgOnr4Gvvw86HYd6Xgz2aUcdXH/kWYAWAEKIQCAXqfB2URqPRjJiEbGWdRyUHeySjjq8+8keBR4UQ+4Fu4GZXbhWNRqPRBA6fhFxK2Q3c4KexaDQajcYLdGanRqPRjHO0kGs0Gs04Rwu5RqPRjHO0kGs0Gs04Rwu5RqPRjHO0kGs0Gs04RwQj7FsIUQuc8PLtyZybSUfn4rzPxTnDuTnvc3HOMPJ5Z0spUwZuDIqQ+4IQYpeUsiTY4xhtzsV5n4tzhnNz3ufinMF/89auFY1GoxnnaCHXaDSacc54FPKHgz2AIHEuzvtcnDOcm/M+F+cMfpr3uPORazQajcaZ8WiRazQajcYBLeQajUYzzhlXQi6EWCuEOCyEOCaE+NdgjycQCCGmCCG2CSEOCiE+F0LcbdueKIR4Qwhx1PaYEOyx+hshhFkIsUcI8ZLt+bkw53ghxN+FEIds3/niiT5vIcQ/287t/UKIvwohwifinIUQjwohamz9GoxtbucphPiuTdsOCyEuGclnjRshF0KYgd8ClwJFwJeEEEXBHVVA6AXulVLOQPVCvcM2z38F3pJSTgXesj2faNwNHHR4fi7M+ZfAq1LK6cBc1Pwn7LyFEJOBu4ASKeUswAxcx8Sc8+PAwI7PLudp+x+/Dphpe8/vbJrnEeNGyIHzgWNSylJbQ4ungSuCPCa/I6WsklJ+Yvu9BfWPPRk11ydsuz0BbAzOCAODECITWAc84rB5os85FlgG/AlUoxYpZSMTfN6ohjYRQggLEAmcZgLOWUr5HlA/YLO7eV4BPC2l7JJSlgHHUJrnEeNJyCcDFQ7PK23bJixCiBxgPrADSJNSVoESeyA1eCMLCL8AvgNYHbZN9DnnoRqVP2ZzKT0ihIhiAs9bSnkK+BlwEqgCmqSUrzOB5zwAd/P0Sd/Gk5ALF9smbOykECIaeBa4R0rZHOzxBBIhxOVAjZRyd7DHMspYgAXAQ1LK+UAbE8Ol4BabT/gKIBeYBEQJIXS7SB/1bTwJeSUwxeF5JuqWbMIhhAhBififpZTP2TafEUJk2F7PAGqCNb4AcAGwQQhRjnKZrRBCPMXEnjOoc7pSSrnD9vzvKGGfyPNeBZRJKWullD3Ac8ASJvacHXE3T5/0bTwJ+cfAVCFErhAiFLUw8EKQx+R3hBAC5TM9KKX8ucNLLwA3236/GXh+tMcWKKSU35VSZkopc1Df69tSyhuYwHMGkFJWAxVCiGm2TSuBA0zseZ8EFgkhIm3n+krUOtBEnrMj7ub5AnCdECJMCJELTAV2enxUKeW4+QEuA44Ax4EHgj2eAM1xKeqW6lNgr+3nMiAJtcp91PaYGOyxBmj+FwMv2X6f8HMG5gG7bN/3FiBhos8b+AFwCNgPbALCJuKcgb+i1gF6UBb3bUPNE3jApm2HgUtH8lk6RV+j0WjGOePJtaLRaDQaF2gh12g0mnGOFnKNRqMZ52gh12g0mnGOFnKNRqMZ52gh12g0mnGOFnKNRqMZ5/x//Avvt8rYsuIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/cons_news_22_1.png" }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "x2, y2 = LSS2.simulate(ts_length=T)\n", "plt.plot(range(T), y2[0, :], label=\"c\")\n", "plt.plot(range(T), x2[2, :], label=\"b\")\n", "plt.plot(range(T), x2[0, :], label=\"y\")\n", "plt.title(\"innovations representation\")\n", "plt.legend()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Simulating the Income Process and Two Associated Shock Processes\n", "\n", "We now describe how we form a **single** $\\{y_t\\}_{t=0}^T$ realization\n", "that we will use to simulate the two different decision rules associated\n", "with our two types of consumer.\n", "\n", "We accomplish this in the following steps.\n", "\n", "1. We form a $\\{y_t, \\epsilon_t\\}$ realization by drawing a long\n", " simulation of $\\{\\epsilon_t\\}_{t=0}^T$ where $T$ is a big\n", " integer $\\epsilon_t = \\sigma_\\epsilon v_t$, $v_t$ is a\n", " standard normal scalar, $y_0 =100$, and\n", "\n", "$$\n", "y_{t+1} - y_t =-\\beta^{-1} \\epsilon_t + \\epsilon_{t+1} .\n", "$$\n", "\n", "1. We take the **same** $\\{y_t\\}$ realization generated in step 1\n", " and form an innovation process $\\{a_t\\}$ from the formulas\n", "\n", "$$\n", "\\begin{aligned} a_0 & = 0 \\cr\n", "a_t & = \\sum_{j=0}^{t-1} \\beta^j (y_{t-j} - y_{t-j-1}) + \\beta^t a_0, \\quad t \\geq 1 \\end{aligned}\n", "$$\n", "\n", "1. We throw away the first $S$ observations and form the sample\n", " $\\{y_t, \\epsilon_t, a_t\\}_{S+1}^T$ as the realization that\n", " we’ll use in the following steps.\n", "1. We use the step 3 realization to **evaluate** and **simulate** the\n", " decision rules for $c_t, b_t$ that Python has computed for us\n", " above.\n", "\n", "The above steps implement the experiment of comparing decisions made by\n", "two consumers having **identical** incomes at each date but at each date\n", "having **different** information about their future incomes.\n", "\n", "### Calculating Innovations in Another Way\n", "\n", "Here we use formula {eq}`eqn_3` above to compute $a_{t+1}$ as a function\n", "of the history\n", "$\\epsilon_{t+1}, \\epsilon_t, \\epsilon_{t-1}, \\ldots$\n", "\n", "Thus, we compute\n", "\n", "$$\n", "\\begin{aligned}\n", "a_{t+1} &=\\beta a_{t}+\\epsilon_{t+1}-\\beta^{-1}\\epsilon_{t} \\\\\n", " &=\\beta\\left(\\beta a_{t-1}+\\epsilon_{t}-\\beta^{-1}\\epsilon_{t-1}\\right)+\\epsilon_{t+1}-\\beta^{-1}\\epsilon_{t} \\\\\n", " &=\\beta^{2}a_{t-1}+\\beta\\left(\\epsilon_{t}-\\beta^{-1}\\epsilon_{t-1}\\right)+\\epsilon_{t+1}-\\beta^{-1}\\epsilon_{t} \\\\\n", " &=\\cdots \\\\\n", " &=\\beta^{t+1}a_{0}+\\sum_{j=0}^{t}\\beta^{j}\\left(\\epsilon_{t+1-j}-\\beta^{-1}\\epsilon_{t-j}\\right) \\\\\n", " &=\\beta^{t+1}a_{0}+\\epsilon_{t+1}+\\left(\\beta-\\beta^{-1}\\right)\\sum_{j=0}^{t-1}\\beta^{j}\\epsilon_{t-j}-\\beta^{t-1}\\epsilon_{0}.\n", "\\end{aligned}\n", "$$\n", "\n", "We can verify that we recover the same $\\{a_t\\}$ sequence\n", "computed earlier.\n", "\n", "### Another Invertibility Issue\n", "\n", "This [quantecon lecture](https://python-advanced.quantecon.org/hs_invertibility_example.html) contains another example of a shock-invertibility issue that is endemic\n", "to the LQ permanent income or consumption smoothing model.\n", "\n", "The technical issue discussed there is ultimately the source of the shock-invertibility issues discussed by\n", "Eric Leeper, Todd Walker, and Susan Yang {cite}`Leeper_Walker_Yang` in their analysis of **fiscal foresight**." ] } ], "metadata": { "jupytext": { "text_representation": { "extension": ".md", "format_name": "myst" } }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" }, "source_map": [ 10, 29, 34, 580, 587, 601, 614, 617, 631, 643, 645, 693, 704, 709, 721, 725, 730, 741, 745, 751, 770, 775, 784, 791 ] }, "nbformat": 4, "nbformat_minor": 4 }