{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "(smoothing_tax)=\n", "```{raw} html\n", "
\n", " \n", " \"QuantEcon\"\n", " \n", "
\n", "```\n", "\n", "# Tax Smoothing with Complete and Incomplete Markets\n", "\n", "```{index} single: Smoothing; Tax\n", "```\n", "\n", "```{contents} Contents\n", ":depth: 2\n", "```\n", "\n", "In addition to what's in Anaconda, this lecture uses the library:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [ "hide-output" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already up-to-date: quantecon in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (0.4.8)\r\n", "Requirement already satisfied, skipping upgrade: numpy in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from quantecon) (1.18.5)\r\n", "Requirement already satisfied, skipping upgrade: sympy in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from quantecon) (1.6.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied, skipping upgrade: numba>=0.38 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from quantecon) (0.50.1)\r\n", "Requirement already satisfied, skipping upgrade: scipy>=1.0.0 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from quantecon) (1.5.0)\r\n", "Requirement already satisfied, skipping upgrade: requests in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from quantecon) (2.24.0)\r\n", "Requirement already satisfied, skipping upgrade: mpmath>=0.19 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from sympy->quantecon) (1.1.0)\r\n", "Requirement already satisfied, skipping upgrade: llvmlite<0.34,>=0.33.0.dev0 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from numba>=0.38->quantecon) (0.33.0+1.g022ab0f)\r\n", "Requirement already satisfied, skipping upgrade: setuptools in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from numba>=0.38->quantecon) (49.2.0.post20200714)\r\n", "Requirement already satisfied, skipping upgrade: certifi>=2017.4.17 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from requests->quantecon) (2020.6.20)\r\n", "Requirement already satisfied, skipping upgrade: idna<3,>=2.5 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from requests->quantecon) (2.10)\r\n", "Requirement already satisfied, skipping upgrade: chardet<4,>=3.0.2 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from requests->quantecon) (3.0.4)\r\n", "Requirement already satisfied, skipping upgrade: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /Users/matthewmckay/anaconda3/envs/quantecon/lib/python3.8/site-packages (from requests->quantecon) (1.25.9)\r\n" ] } ], "source": [ "!pip install --upgrade quantecon" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Overview\n", "\n", "This lecture describes tax-smoothing models that are counterparts to consumption-smoothing models in {doc}`smoothing `.\n", "\n", "{cite}`LucasStokey1983`{cite}`Barro1979`* one is in the **complete markets** tradition of Lucas and Stokey .\n", "* the other is in the **incomplete markets** tradition of Barro .\n", "\n", "*Complete markets* allow a government to buy or sell claims contingent on all possible Markov states.\n", "\n", "*Incomplete markets* allow a government to buy or sell only a limited set of securities, often only a single risk-free security.\n", "\n", "Barro {cite}`Barro1979` worked in an incomplete markets tradition by assuming\n", "that the only asset that can be traded is a risk-free one period bond.\n", "\n", "In his consumption-smoothing model, Hall {cite}`Hall1978` had assumed an exogenous stochastic process of nonfinancial income and\n", "an exogenous gross interest rate on one period risk-free debt that equals\n", "$\\beta^{-1}$, where $\\beta \\in (0,1)$ is also a consumer's\n", "intertemporal discount factor.\n", "\n", "Barro {cite}`Barro1979` made an analogous assumption about the risk-free interest\n", "rate in a tax-smoothing model that turns out to have the same mathematical structure as Hall's\n", "consumption-smoothing model.\n", "\n", "To get Barro's model from Hall's, all we have to do is to rename variables.\n", "\n", "We maintain Hall's and Barro's assumption about the interest rate when we describe an\n", "incomplete markets version of our model.\n", "\n", "In addition, we extend their assumption about the interest rate to an appropriate counterpart to create a \"complete markets\" model in the style of\n", "Lucas and Stokey {cite}`LucasStokey1983`.\n", "\n", "### Isomorphism between Consumption and Tax Smoothing\n", "\n", "For each version of a consumption-smoothing model, a tax-smoothing counterpart can be obtained simply by relabeling\n", "\n", "* consumption as tax collections\n", "* a consumer's one-period utility function as a government's one-period loss function from collecting taxes that impose deadweight welfare losses\n", "* a consumer's nonfinancial income as a government's purchases\n", "* a consumer's *debt* as a government's *assets*\n", "\n", "Thus, we can convert the consumption-smoothing models in lecture {doc}`smoothing ` into tax-smoothing models by setting\n", "$c_t = T_t$, $y_t = G_t$, and $- b_t = a_t$, where $T_t$ is total tax\n", "collections, $\\{G_t\\}$ is an exogenous government expenditures\n", "process, and $a_t$ is the government's holdings of one-period risk-free bonds coming maturing at the due at the beginning of time $t$.\n", "\n", "For elaborations on this theme, please see [Optimal Savings II: LQ Techniques](https://python-intro.quantecon.org/perm_income_cons.html) and later parts of this lecture.\n", "\n", "We'll spend most of this lecture studying acquire finite-state Markov specification,\n", "but will also treat the linear state space specification.\n", "\n", "#### Link to History\n", "\n", "For those who love history, President Thomas Jefferson's Secretary of Treasury Albert Gallatin (1807) {cite}`Gallatin` seems to have prescribed policies that\n", "come from Barro's model {cite}`Barro1979`\n", "\n", "Let's start with some standard imports:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import quantecon as qe\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "import scipy.linalg as la" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To exploit the isomorphism between consumption-smoothing and tax-smoothing models, we simply use code from {doc}`smoothing `\n", "\n", "### Code\n", "\n", "Among other things, this code contains a function called consumption_complete().\n", "\n", "This function computes $\\{ b(i) \\}_{i=1}^{N}, \\bar c$ as outcomes given a set of parameters for the general case with $N$ Markov states\n", "under the assumption of complete markets" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "class ConsumptionProblem:\n", " \"\"\"\n", " The data for a consumption problem, including some default values.\n", " \"\"\"\n", "\n", " def __init__(self,\n", " β=.96,\n", " y=[2, 1.5],\n", " b0=3,\n", " P=[[.8, .2],\n", " [.4, .6]],\n", " init=0):\n", " \"\"\"\n", " Parameters\n", " ----------\n", "\n", " β : discount factor\n", " y : list containing the two income levels\n", " b0 : debt in period 0 (= initial state debt level)\n", " P : 2x2 transition matrix\n", " init : index of initial state s0\n", " \"\"\"\n", " self.β = β\n", " self.y = np.asarray(y)\n", " self.b0 = b0\n", " self.P = np.asarray(P)\n", " self.init = init\n", "\n", " def simulate(self, N_simul=80, random_state=1):\n", " \"\"\"\n", " Parameters\n", " ----------\n", "\n", " N_simul : number of periods for simulation\n", " random_state : random state for simulating Markov chain\n", " \"\"\"\n", " # For the simulation define a quantecon MC class\n", " mc = qe.MarkovChain(self.P)\n", " s_path = mc.simulate(N_simul, init=self.init, random_state=random_state)\n", "\n", " return s_path\n", "\n", "\n", "def consumption_complete(cp):\n", " \"\"\"\n", " Computes endogenous values for the complete market case.\n", "\n", " Parameters\n", " ----------\n", "\n", " cp : instance of ConsumptionProblem\n", "\n", " Returns\n", " -------\n", "\n", " c_bar : constant consumption\n", " b : optimal debt in each state\n", "\n", " associated with the price system\n", "\n", " Q = β * P\n", " \"\"\"\n", " β, P, y, b0, init = cp.β, cp.P, cp.y, cp.b0, cp.init # Unpack\n", "\n", " Q = β * P # assumed price system\n", "\n", " # construct matrices of augmented equation system\n", " n = P.shape[0] + 1\n", "\n", " y_aug = np.empty((n, 1))\n", " y_aug[0, 0] = y[init] - b0\n", " y_aug[1:, 0] = y\n", "\n", " Q_aug = np.zeros((n, n))\n", " Q_aug[0, 1:] = Q[init, :]\n", " Q_aug[1:, 1:] = Q\n", "\n", " A = np.zeros((n, n))\n", " A[:, 0] = 1\n", " A[1:, 1:] = np.eye(n-1)\n", "\n", " x = np.linalg.inv(A - Q_aug) @ y_aug\n", "\n", " c_bar = x[0, 0]\n", " b = x[1:, 0]\n", "\n", " return c_bar, b\n", "\n", "\n", "def consumption_incomplete(cp, s_path):\n", " \"\"\"\n", " Computes endogenous values for the incomplete market case.\n", "\n", " Parameters\n", " ----------\n", "\n", " cp : instance of ConsumptionProblem\n", " s_path : the path of states\n", " \"\"\"\n", " β, P, y, b0 = cp.β, cp.P, cp.y, cp.b0 # Unpack\n", "\n", " N_simul = len(s_path)\n", "\n", " # Useful variables\n", " n = len(y)\n", " y.shape = (n, 1)\n", " v = np.linalg.inv(np.eye(n) - β * P) @ y\n", "\n", " # Store consumption and debt path\n", " b_path, c_path = np.ones(N_simul+1), np.ones(N_simul)\n", " b_path[0] = b0\n", "\n", " # Optimal decisions from (12) and (13)\n", " db = ((1 - β) * v - y) / β\n", "\n", " for i, s in enumerate(s_path):\n", " c_path[i] = (1 - β) * (v - b_path[i] * np.ones((n, 1)))[s, 0]\n", " b_path[i + 1] = b_path[i] + db[s, 0]\n", "\n", " return c_path, b_path[:-1], y[s_path]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Revisiting the consumption-smoothing model\n", "\n", "The code above also contains a function called consumption_incomplete() that uses {eq}`cs_12` and {eq}`cs_13` to\n", "\n", "* simulate paths of $y_t, c_t, b_{t+1}$\n", "* plot these against values of $\\bar c, b(s_1), b(s_2)$ found in a corresponding complete markets economy\n", "\n", "Let's try this, using the same parameters in both complete and incomplete markets economies" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAFNCAYAAABxHZysAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3xc1Zn3f890lRn1btlykeUqdwzYYIwBA6EEQgglvCEEAoQEwkLKJtl9s9lks2ksyW7CbgJJXgIhsAFTgjGh2WAb917kJhdZvc5IGmnqef+4c0czc/toRhrj8/18/AHdc885z9x7Z+55ztOIMQYOh8PhcDgcDofD4WQOpvEWgMPhcDgcDofD4XA48XBFjcPhcDgcDofD4XAyDK6ocTgcDofD4XA4HE6GwRU1DofD4XA4HA6Hw8kwuKLG4XA4HA6Hw+FwOBkGV9Q4HA6Hw+FwOBwOJ8PgihqHM44Q0XeI6OnxlkMLIvo+ET033nJwOBwOJ3MhosuI6Ox4yyFCRDVExIjIMt6ycDjJwBU1TkZBRHcQ0Q4iGiCiViJ6i4iWj7dcqUDuBcYY+zfG2L3jJZMcmfai5XA4HM7YQESniGiIiPqJqI+INhPRA0SUkvUiEf2RiH6YirEUxj9FRFeka3wOZ6zhihonYyCifwDwJIB/A1AGYCKA3wC4cTzl4nA4HA7nPOJ6xpgTwCQA/w7gWwCeGV+ROJzzE66ocTICIsoD8AMADzHGXmGMDTLGAoyxNxhj34icYyeiJ4moJfLvSSKyR9ouI6KzRPQYEXVErHFfjBn/WiI6FNklbCaixyPH7yaijQmyMCKaFvn/PxLRbyKWvQEi2kRE5ZG5e4mogYgWxPQ9RUT/GJmrl4j+QEQOIsoB8BaAysg4A0RUmehSSEQ3ENHByE7meiKamTD240S0j4jcRPQiETkUrufdEVn/M3JuAxGtimn/IhEdjlyPRiK6P3JcVs5INxsRPRvpc5CIFseM963Ide0noiOxc3E4HA7n3IMx5maMvQ7gcwC+QERzgOi7+OdEdIaI2onov4koK7ZvxK2/K/LeujNy7MsA7gTwzci75Q25eSPv4Icj76YuIvqZaNEjoqlE9D4RdUfaniei/EjbnyBs8L4RGf+bMcPeGZG3i4i+GzPXBSR48Xgin+WJlF1ADicFcEWNkylcBMABYI3KOd8FcCGA+QDmAbgAwPdi2ssB5AGoAvAlAL8mooJI2zMA7o/sEs4B8L4B2W6NzFMMwAfgYwC7In//FUDiD/udAFYDmApgOoDvMcYGAVwDoIUxlhv51xLbiYimA3gBwNcBlABYC+GFY0uQ5WoAkwHUA7hbRe6lABojcv5fAK8QUWGkrQPAdQBcAL4I4D+IaKGGnDcA+AuAfACvA/iviNx1AL4KYEnk+q4GcEpFLg6Hw+GcIzDGtgE4C+CSyKGfQHi3zQcwDcI7959jupRDeO9UAfgCgN8SUR1j7LcAngfw08i75XqVaW8CsBjAQgheNfdEjhOAHwOoBDATQDWA70fkvAvAGQgWwVzG2E9jxlsOoA7AKgD/HLMJ+ksAv2SMuSC8s1/SeVk4nDGBK2qcTKEIQBdjLKhyzp0AfsAY62CMdQL4FwB3xbQHIu0BxthaAAMQfpjFtllE5GKM9TLGdhmQbQ1jbCdjbBiCIjnMGHuWMRYC8CKABQnn/xdjrIkx1gPgRwBu1znP5wC8yRh7hzEWAPBzAFkALo4551eMsZbI2G9AeFEq0QHgycj1eBHAEQCfAgDG2JuMsRNMYAOAv2PkJazERsbY2sjn/hMEZRkAQgDsEK6vlTF2ijF2Qudn5nA4HE7m0wKgkIgIwH0AHmWM9TDG+iGEK9yWcP4/McZ8kffLmxA2GY3wk8j4ZyCERNwOAIyx45F3pC+yDngCwAod4/0LY2yIMbYXwF6MvL8CAKYRUTFjbIAxtsWgnBxOWuGKGidT6AZQTOqZmSoBnI75+3TkWHSMBEXPCyA38v+fAXAtgNNEtIGILjIgW3vM/w/J/J0bfzqaVGRUI+7zMcbCkbGqYs5pi/n/2M8nRzNjjMnJQkTXENEWIuohoj4I16ZYQ77EuR1EZGGMHYdgBfw+gA4i+kuMuySHw+Fwzn2qAPRA8PbIBrAz4qLfB2Bd5LhIb8Q7Q8TIe1BE9j1KRKWRd0wzEXkAPAftdxeg/O78EgTrYAMRbSei6wzKyeGkFa6ocTKFjwEMA/i0yjktEIKbRSZGjmnCGNvOGLsRQCmAVzHi3jAI4aUDACCicgMyK1GtICOTOTeWuM8X2bmsBtCcpBxVkTHiZCEhru9lCBa7MsZYPgQ3S/FcLTklMMb+zBhbHpGfQXCN4XA4HM45DhEtgaCobQTQBWGDcjZjLD/yL48xFrtpWBCJdxYx8h4UUXqP/jgyRn3EXfHzGHl3GRlfOJmxY4yx2yGsDX4C4K8JsnM44wpX1DgZAWPMDcHH/ddE9GkiyiYia8TyI/qZvwDge0RUQkTFkfM1a3sRkY2I7iSivIhLoQeCux4guEDMJqL5kcQc30/Bx3mIiCZE4sG+A8E9EhAscUUkJE6R4yUAnyKiVURkBfAYhJi4zUnKUQrg4ch1/CwEf/61AGwQXBU7AQSJ6BoAV8X005IzDiKqI6LLIwrgMISXeEijG4fD4XAyGCJyRSxMfwHwHGNsf8TT43cQ4ppLI+dVEdHqhO7/Enn3XgIhHvp/I8fbAUzRMf03iKiAiKoBPIKR96gTQlhDHxFVAfhGQj+944uf8fNEVBL5XH2Rw/z9xckYuKLGyRgYY08A+AcIiTs6Ibg+fBWCBQwAfghgB4B9APZDSOihtx7LXQBORVwlHoCwCwfG2FEI2SbfBXAMwo7haPkzhJivxsi/H0bmaoCgbDZGXEbiXEEYY0cicv0nhF3L6yEERfuTlGMrgNrIWD8CcAtjrDsSU/AwBMWwF8AdEJKDiHKoyimDHUIK5y4I7iWlEBRUDofD4Zx7vEFE/RDewd+FEAf2xZj2bwE4DmBL5J36LkbiwQHhPdALwQr2PIAHIu8VQEjsNSvybnkVyrwGYCeAPRBi3MTyAP8CIcGIO3L8lYR+P4awodtHkezOGlwN4CARDUBILHJbJB6dw8kIKD6EhcPhjAYiOgXgXsbYu+Msx90ROT4RxcI5HA6Hc35ARAxAbST+mcM5r+EWNQ6Hw+FwOBwOh8PJMLiixuFwOBwOh8PhcDgZBnd95HA4HA6Hw+FwOJwMg1vUOBwOh8PhcDgcDifD4Ioah8PhcDgcDofD4WQYlvGauLi4mNXU1IzX9BwOh8MZQ3bu3NnFGCsZbznOFfg7ksPhcM4P1N6P46ao1dTUYMeOHeM1PYfD4XDGECI6Pd4ynEvwdySHw+GcH6i9H7nrI4fD4XA4HA6Hw+FkGFxR43A4HA6Hw+FwOJwMgytqHA6Hw+FwOBwOh5NhcEWNw+FwOBwOh8PhcDIMrqhxOBwOh8PhcDgcTobBFTUOh8PhcDgcDofDyTC4osbhcDgcDofD4XA4GYamokZE1UT0AREdJqKDRPSIzDlERL8iouNEtI+IFqZHXA6Hw+Fwzi2IyEFE24hob+Q9+i/jLROHw+FwMh89Ba+DAB5jjO0iIieAnUT0DmPsUMw51wCojfxbCuCpyH85HA6Hwznf8QG4nDE2QERWABuJ6C3G2JbxFozD4XA4mYumosYYawXQGvn/fiI6DKAKQKyidiOAZxljDMAWIsonoopI37TRMtCC1kHpFPNL5sNsMqOpvwkd3g5J+6KyRQCA057T6BrqimszkxnzS+cDABrdjegd7o1rt5qsqC+pBwAc7z0Ot98d1+4wOzC7eDYA4EjPEQwEBuLasy3ZmFk0EwBwuPswvEFvXLvT5sT0gukAgINdB2EiE2YUzgARyV4Dj9+D473HwcAAAPXF9bCarYrXZkHpApjIJHttCISFZQuj18ZutqM8p1x2XjU8fg+O9R4DIFyvWUWzYDHp2RMQkLuuRY4i1OTVAAB2d+yGzWTDrKJZitdlMDCIo71HEWbhuM81WvqG+3DCfSLu2LT8aciz52n23du5F8FwEABgMVkwq3AWrGar7rkTn0cTmbCgdAEA4JT7FLqHu+POt5gsmFcyT3Nct8+N433HJcdrC2rhsrnQO9yLRnejpL2uoA65tlx0DXXhtOe0pH1W0SxkWbLQ4e1AU3+TpH1u8VzYzDa0DbaheaBZ0j6vZB4sJguaB5rRNtgmaV9YuhBEhCZPEzqG4p9lI9fmRN8J9Pn64trtZjvmFM8BABztPYp+f39ce5YlC7OKZgGQ/57nWnNRV1gHAOjwdqA0u1QivxESZRSvjRrDwWEc7D4Ydyz2e6SF+PtU46pBUVaRYZk5I0TejeJDYo38Y+mc8/jmNfB1N2F2pSud04w/NZcARVOV24+/C7jPpn5esx2Y/WnAmqW/z4kPgL6E38ryuUDVIv1jDHYDR94EWFj9vOoLgdIZyu2NG4Dek/HHyuYAExbrl0WOI28BA+3xxyZcAJTNUu5zaiPQnfAOKpkJTDSw3z/UBzT8DYi8Y3XjyANmfRpQWEugvw04+jbS/HU9fyEzMONTQHZh8mN4e4CGNwEWGjlmtgGzbgRsOfJ9AkPAwVeBkC9GFhNQdy2QUyzfJxwGDr4C+OPf9yioAaZclrz8GuhfPQMgohoACwBsTWiqAhC7EjsbORanKRDRlwF8GQAmTpxoTFIZjvQcwYfNH0qOzy2eCzPMONR9CFta4zcsCRRV1PZ17sOujl1x7XazPaqo7WrfJVnoOG3OqKK2tW2rZIFb5CiKKmoft3yM0/3xP8qVOZVRRe3Dsx+izRu/AK1x1UQVtfeb3kfPcA++Ov+rigulTc2bsK1tW/TvuoI6WM1WNPQ04KPmjyTn1xfXw2Q24WD3QWxtjb+NsQrNWyffgsVkwb1z75WdV42uoS78rfFv0b/tZnt00apFIBTAX478BaHYL1xEbnGBubZxLYIsiPuz7ldUJLe0bsHG5o0AABNMKVPUPmj6APu69sUdu3PGnboUtbdPvY2h4FD0b3OtOaoMaMEYw58P/znuupjJHFVGdnfslsiVZcnSpah1ejvj7pfIXTPvgsvmQstgi2x76ZxS5Npy0dTfJNte7axGliULje5GvH3qbUn7tPxpsJltONp7FB80fSBpFxX8w92Hsallk6R9QekCEAj7u/Zje/v2uData5NtyY5emx1tO9DQ2xDXXmAviN6bLS1bcNITv6Apyy6LKmofNX8kUTSrndWoK6xDy0AL1p1ah3vm3CORXy+BcADPH34+uhkDQNfmx2BgUHJfrCYrvrP0O4p99nTsgdVkxezi2djYvBEtgy24adpNXFFLAURkBrATwDQAv2aMJb5HU/qOHPjw15g/vF2Y8ZNM7VXAnf8r3zbsBp67BWlbZJvMQP2t+s71e4HnPhO/mASA/EnA1/fJ95Fj61PAhz/TPm/ixcA9b8m3Bf3AczdLlRpnJfDYYf2yJOJuBl64TXq8ajFw33vyfcJh4boEh+OPZxcD3zwh30eOnX8E3v2/+s+P5YGNgsIsx0dPANv+J7lxOfpwnwVW/mPy/bf9Flj/Y+nxUABY9AX5PodeA159QHp8eSNwxffl+5zdBrz8Jenx2TdnhqJGRLkAXgbwdcaYJ7FZpovkl5Ex9lsAvwWAxYsXj/qX8+Kqi7GoXLoTZTUJVooVE1bgosqLFPtfMekKrKheodh+7eRrcVXNVXHHKOaj3jTtJgRZ/A+dKSbs77N1n5UoHGYyR///87M+r9p+SdUleO3EawiEA4oyBsIB5FpzcV/9fQCAbGs2AGBZ1TIsLpfujImLuxUTVuDiyosVx82yZMEb8Cq2y7GxeSNOuk/ithm34dFFj6JnqAf/79D/i1qR9GA1W/HtC74tsTRaaORRvXHajXj52MsIhNSvi81kw0MLHgIgWMKePfQsrpx0ZVRRToairCLUF9dj1aRV0WNZFvUdVV/Ih1A4hAfnPQgGhn5/P57e/7TqfU2EgWF6wXRMy5+GaQXTJO1XT746TiZAeFY7vB0wk1l1oT0pbxIeXfSo5Lj4uaYXTJdtz7YIz9rsotmYmi/d0c6xCDtZC0sXRpWaWHKtuQCApRVLo5sjsTjMDgDA8qrluKDiAkm7+F1cOXEllk9YLv/hAKyuWS17bUSun3o9rmHXxLXHfo9vmX6L6vf89hm3K36PD3UfQstAi6JsegiFQ2BgWDFhRXTDwePzoH2wXdU6VuAoiLtvTf1NaBuQWiZj2dG+A1mWLMwuno07Zt6BEAshy2zAYsBRhDEWAjCfiPIBrCGiOYyxAwnnpOwdafnMb7H0mU2495LJuO+SKaMZKnN54xGgT2qtj+JpAcCATz0B1F2jfJ5Rgj7gV/OBvjP6+/S3Ckra1T8BZt0gHNv4JLDjGUFZMenM7dbXBLiqgHvfVT5n3beB5l3K7QNtgpJ25b8Cc28Rjn38a+Ff0A9YbPpkScQduRc3/w6oifwmv/PPwEnphnqUwU5BSVv1z8C824Vj234HbHxCUG5t2frnduQDX/lYv7ztB4HnbxGuqZKi5m4CSmYAd63RPy5HP7+7fOS5SZa+JiC3HPhyZMOXhYEn69XHFX83HtkrWN8A4Per1X9PxLa73wQKY35TLY7kZdeBLkUt4lP/MoDnGWOvyJxyFkB1zN8TAIxudaIDu9kOu9mu2O6wOOCA8gXMsmQhC8qLEFHpSbY9x6pgctXZLi6UBa8ZZawmK1y2ePcWrWuj9dlzrDkSdy4teod70eHtgNVkhdVmjSpSYS0XjQQsJovk88QiXvfExXEs4XAYZpM5Ok7fcB96fb3wxZq5k+DSCZfG/e3xe7C9dTtmFs1EgaNAts/6pvXY1b4L/7hU2DHKMmfh09M+jQm5E3TPayITbq1T3rlVup9/OvQnFGcVK/b1hXw40XcCVblVilZB8X4qYTPbYDMrv9i12jP9ezya77mJTIaf/0TMZMaFFRdict7k6PP8wZkPcNJ9El9f9HXFfmc8Z+C0OaNK+uyi2ZhdNFt1rlA4BBMJC0at3ydOcjDG+ohoPYCrARzQOD1p5tROwcI5vXhyayduXlGEolzl79g5S0EN0CQxTI7giSxDSmcBrsrUzu3IF5QvvURlmTEiS3GtoDANdgLOMn3j9LcIipra5ymcIriCKSmAnojcpTPjZQETlLj8JK254mcsmz0ybuEUYP9fBeuGnKt/f6RPSex1mR5pa1V3a02cW+u6SKB4GZTGzatO/fPDEXBVAR5p6IMhPM1AXsK9zy0bec7l6G8BsgqF35CoLBPUv9Pic1JeDzjGzqVcT9ZHAvAMgMOMsScUTnsdwP+JZH+8EIA73fFp5wPigklNIblh6g14eOHDaZk7FFaeV44wC0dlBoQd/W8s/oYhC5Y34MWaY2twyn1K8RzRWhGG8gL4surLcN/c+6J/m0za1zIZPD4P3jnzjiTWMZbE62I1WzGvZN6YuJNpKQpunxv/e/R/cbY/DTEcHJjJDAamudmihtVsxeqa1ZjkmhQ9pkcB/HPDn+Ncu4PhIIaCQ6qyhFk4zqrPSQ1EVBKxpIGIsgBcAaBBvdfoeeyqOgwFQvj1BwZcyM4lnBWCe6N/UL5dVBxcFamf21U5Mr4exHOdMYtJZ0QuIwtVT4v253FWjiiAsmM0x88fK5fa4laPbJJxKwAwIdZLbx/x8xm9vkbvc26pECOlNk8y43L046oY3TMHCMqVM+EeuSrUv1eeFqnyraePLXdMlTRAXx21ZQDuAnA5Ee2J/LuWiB4gItHBcy2ARgDHAfwOwFfSI+75hdPmRH1xvaZrXTowkSkuJkYPiYs8E5mQbc02lEjEH/JjX9c+SXKHWPLt+bi8+nIU2OUtWIBgBYm1cImuaqO1bqw5tgYvHXlpZFzSHjfxuoRZGKc9p+H2uRX7JOINePHT7T/F7o7dhuQ1k1nd8hiRO1aR5KQOPZstWjDG4Av54p4xPYpa4gbBttZt+On2n6q63IZYiD8L6aECwAdEtA/AdgDvMMakgZ0pZlppLj67qBrPbTmNs73GXNnPCVwayoW4O564iEvV3EYUiX4ZpVGUX69ljjHhs7qqtGWLnVMiS2v8eXr66KG/FbBkAVkx72ZRVqXPGFWmYxVYg9dFPNfofTaZAWe58vMTCkSsndyaljaclcbusxyeVqnS5axQH1dWUasUxlLazJTrMwZovpEZYxsZY8QYq2eMzY/8W8sY+2/G2H9HzmGMsYcYY1MZY3MZYzvSL/onn/KcctxUqx7Iv6V1Cz44I03EMFqWVy3HLdNvMdQncZHnD/nx3un3ZDP+qY0BqCsOefY8XDLhEkVXQ0BINLOzfSSKXo9CpYd+fz8GAyO7t3oW4okL5mA4iD8e/CMOdh1U7CM3xlBwyLCVU2tBzxW19JJlyUKBvWBUFrU+Xx/+fdu/Y1/nSMIBE5lUnznGGEIsFL9xosOqzC1q6YExto8xtiDyHp3DGPvBWM39yBW1AAFPvntsrKYcO7SUC0+LkJTCkga3T62FoESWVsDuAuzOkWNRRVOncuTzAIFBbYUkapFSUY4sjgSFKkUWNVdFfAZFLetYfytgsgA5Jfr7JBIKAAMd2gqsHM4KFYW2DQDjbo/pxFUpPNc+Y6E2UfyDgM8to3RVabg+yij2zkohC+RQr/4+YwBfnZ3jnHSfxNHeoykftzirGFW5xn70EvsEw0FsbNmI1gH9P/x6FIdQOIS+4T74Q37Fcw50HcDmls3Rv60mK6YXTEe+PV+3LEryxcomLmq13Mli+yRjZdGjwMqhpaiJ4/LFeXpYXL4YDy982FAZhkTk7r3WfRWt4XLPqlq/++rvwzWTU5h0gTPuVOZn4QsXTcIru87iaHu/dodzCS13vf7W9LmtuSoF5UAlqVW8LC3SRV5OieB6p1fh88hYwuRw6rCoORMUqqwCoeTAaC1qidYnLeuYp1VIBGGKeQfZnYJSq/e6DLRDUKiSuNdqrndylkdOajFqVU5EvHeJz52rQlDg5BTAoF+wlMq5PgLKGwRylrsxgCtqGUzzQDN+tOVHON4rrXElEmZC0oxU0zLQggNdxuLcL6u+DDfV3hT9OxmFRI+i1j3cjV/u/mW0VpscidYEq9mK22fcrrtMgNq4RpWumUUzsaxqWfRvPQvmRJK1fK2oXoEVE5Qzm0bH1ZtxjDPmiJsAsc/zorJF+NyMzyn2UVLuYtvkyLJkwZHmDFacsecrl01Djs2Cn799ZLxFSS3RhZVCXImnOX1ua2LsVWLNMCU8MkqjlutdIv0y8VxyaMVeyS04iSJKyygUNbl4ruxCQQFUu0dyCpZTI14ocV4guXvtVHFhlYvl46SWZOI0YxH7JT5DahsESi7RThULdzgkJNrhFjVOLARCkAVVF1axWdpSyf6u/XjjxBujGiNZd8NsS3a0xEKy4zLG0nJd5BKmPLroUdWEKdMLpmNJ+ZLo30QEAo2JRW1K3hTVFO7lOeW4Z/Y9qMjhL6J0cLT3KJ49+KzhUhexyN374qxiTMlTTrluJjPumHEHZhaOPJdifzXr74dnP8SRnk/YYp6DghwbvnzpFPz9UDt2nVFw6zkXseUA9jx1a006LWqAfsXG0yKvSCSjkGh9JpNZPeudp1l+wemsTN71kTF51zAidWVUyZ3MSJKJ0SSNcVUA/n7AJ2Nt1mvB5CTPaF1u+1UsaoD891PJUir2kbMqD3YKCXq4RY0Tiy6FBCwtbmtmMhtWsF47/hpePvpy9O9kLGplOWX4xpJvoLagVlU2rXETLV+MMfxixy+wqVlaONkIk1yTMNE5krrYRCa4bC5VxbLf3y9JHGIik6G4JZvZhvrietW4PDnaBttUMzrazXZUu6rHJWHN+cBgYBAnPScN1cxLRM6a2jXUhYPdBxWfIROZUFtQGxffWpFTgZXVK1VLJXzc8jEa3Y1Jy8rJXO5ZPhnFuXb85K2GUcVMZhxKVqCgD/B2pc+iZkRRC4cEy5vcIs9lIJmCkpuXknxyC04WycCoKEuSFjVvNxDyy8eJuao0lGk5BdbAdVFarOtBlFdOUehvEayBWcbeuxwDOFWUIz0oKelqFjW5BDaA4IILkn8WlPqMAVxRy2D0uMhZTBbVGlTJQkSGFbU+Xx/6/SO7Unrit5IhahlQyUrJEG9RIyJ4A14Mh4ZHNfdVNVfhkgmXRP/2h/xY37ReVRn6W+Pf8JeGv8Qd++z0z6K+pF73vC6bCzfV3oRqZ7X2yTGsb1qPvzUqJ5dz+9zY07FnVBYfjjJiYe3RJLHJteVixYQVcUrXoe5D+OvRvypuVgTCARzuPoy+4ZHsqeU55bh0wqWqSnmixZjzySHHbsHDq6Zh68kefHhMuZzIOYeSoiOmg0/XwspIZsKBDqHYtZzFx2XAiiXWfrLqcE9Wskh5e4SECbKKWoV61js11KxaSsq0r1+wZikqjW2CkqtnbrNdcLM0ipqiICqRsbF8nNRiyxZqEo7GoubIE6zrseixqCVaci02IW5U7llIZwZZDfgbOYOhyI+DmuXozpl34rYZt6V8bjOZEUbYkJKVuMgjInx36XclRaLVaB9sx4sNL6LD26F4TtRSp/ID/pnaz+COGXdI+o0262MiwXAQG85uQPOAsuuKXBxhXWEdSrJLFHqkDq3P3DbYhtdOvAaP35N2Wc5H9Fh/tXDZXLis+jIUZxVLxlX6fg4Fh/DS0Zdwwj1SPysQDsDtcyMYDirOxbM+frK5bclEVBdm4afrGhAOf0KsakruelH3pjQtrKKxVzosAf0qMVROFde7RIwkM1CySKnFuYlZ77w9+uaIG1fFqiVmyEz8vVKzELoqBOV2QHktMDKOTLZJvai53vWPT/KI8w6jpS5iUXIptuUICpySRS0x62lUFoUNDm5R48iRZcnCorJFKHQksUs0SpKJL5OrwWQxWaIKpx4GA4No6G3AcFDZ8uUwO3B1zdWq1iWHxYFsa3bcMbPJuDtnIv+z93+wtnFt9G+9ddREy4pIY18j2gYVCoDKcLb/LH645Yc40WescK2WC2uysW8cfaSiLEQgHEC/vz9OwdJyKw6Hpe6SJ/pO4MldT2oWZzfyfeWcW9gsJjx2Zaa+OSwAACAASURBVB0Otnjw5v5R1i7KFFwVQpB/KGEDIpoIIk0LKzH2So9FzaOiNBqJ0ZHLHKmEqyKS9jxBAVSLu1KL0dFC1aJWCQSHpWnPlRJBANqZK2ORyzapF7VkFkqxfJzUolYiQQu1guRKiWI8LdKsp1p9+luFBD056d9gT4SvzjKYHGsOrptyHSY4Jyies+7UOmxu3qzYniwLSxfi/vr7DS3g5RJ4/P3U33Go+5DuMcSFp9pi0Wq2YmnFUpTllCmes6NtB/Z07Ik7RjDuzpmIN+iNizfS454qZ6VYc3wNtrdt1z1vmIURYiGJwqcFr6M2vmRZslCWXTaq69vkacITO5+IK3OhpQCGIb2vWsodYwxhcIvaJ50b5lViRrkTv/j7EQRCqfUwGBecFQALA4MJlhc15ShVuKr0WQKiSoxc/JaoqOlIKGKk4K5S7FVUOZJT1FTitfTIRiYhiYlkXIV4PjV3Mq1acIlzJ3ufRde7RIU7WlycK2ppx0jimETUlHQll9t+laLxSnGaonKXhizrWvDVWQbDGEOYhVUX2if6TqB5MMm0pirk2nJRnlNuaHe92lktqb22u2M3znjO6B5D/Kxqi0XGGDq8HXGFpxPZ07kHB7vjC0rPLp496uyGydREk7M0GnXDHE0dNS3ZkhmXo48p+VPwwLwH4twWjSK3eaGpqMl8j0yRn3vR2ibHd5d+F5dUXaLYzjn3MZkI37y6Dqe6vXhxe9N4izN6lCxS/a2AJUtYhKdtbp3p7PtbAJNVKL6dSDRGSmOhqlT7SQml2Kv+VgAkr1CNJrFDfwuQUwrI1YxUiudTcyfTGwOolG3SCHJxgkO9ghtouiyynBGclcJGS6JVXItQMJKkR8WipuT6qNTHVSHc+8CQ/j5phq/OMpih4BD+dcu/YkfbDsVzQuFQWnbAO7wd2N623VC2uqsnX40V1fE1u7QUhUR0FbxmITy19ynsat+lfI5M2YLrplyH+aXzdcuiJF/c4leHa9tFFRdhacXSuGNGs2rK1dLSw9KKpfj0tE8rtkevN/8pyFjklK6ZhTNxz5x7FGueyX2PxFp5St9HIoLFZElLXUZOZrGyrhRLagrwy/eOYciffPxkRuBScJETrU/pdOVVir1KxNMquEnK1avUmz1yoG1kTj0oKbCeFqHOmqxCpZL1Tgs165NSYof+ViFOyCqT4CinBDBZtK/LUK/gVqlkIdGDnOvdOMYknXe4KgWruN6ahCKDHUI/pXvkqhTGjFUAtRR7pQ2C0W4GjAK+Ostg9FhrGJhhdzg9nPacxtqTa+EL+kY1jlGFxGKyIN+eD4vJojomYNzdMBXIJUz59gXfxvKq5Yp9ZhbNlBTaNppVU49LqBzlOeWYnDdZsX1G4Qw8UP8Acm25hsbl6KNloAVP73/aUDxiInL3PteWi2pnteL3JN+ej7tn341JrknRY1rfm0A4gLWNa3HSfTJpWTnnBkSEb149A539Pvx+0zl+v5WK1BpxE0wWpdirRNRiy6xZ8q53iRit6aUUe6W24DRbBQUpmeLDai5oueURWWTukVIfkylSY05DURtNDTUROcsoV9TGDqM1CUW0Cp27KqQKYLSMhEofOVmMJPJJMVxRy2D0KCQhFkrLDnjUUgT9ysTT+5/GulPr4o4ZVUhqC2rxyMJHVF3F9BSMlnM3fGrvU3j1+Ku6ZZFjdvFsiXun3WxXVSy7hrri0qQDwr01Yml02VxYUrYEuVZjClWHt0O1gHGWJQtlOWWq8nOSxx/yo3mgGd5g8uUP5CxqvcO92N2xG0PBIdk+NrMNk1yTkGMdSVlc4CjA6prVismJAqEAtrdvV824yvnksKSmEKtmlOJ/NpyA25t8nb9xJ7tIcCuUWGsMJN5IFr1ui1qxTnpS9Ktla5TDli2f9U5rwemq0F+/LG5cFdcwpbTnWu5kepJMjKaGWnSeSiG7ZCjme2D0enOSJ1mXWy0lXc465tG4r04ZS7RYRoJb1DiJ6EnP77Q6kWPJUWxPlqiSqBLPkki/v19igVMrBD0atApGy1nUwiysmppcD9dNuQ5zS+bGHXvvzHto6GlQ7PPSkZfw99N/jzt2/dTrcVn1ZbrnLcspw7VTrkW+wXiLPR178MqxVxTb2wbbsK1126ivC0eeVNQSLM8px5UTr4xTuloGWvD6idcx4B+Q7TPgH8Dezr1xdQ1dNhcurLhQ8RniiWXOPx5fXYd+XxBPbTCWTTajEC0vsYuxaFHnNC+sosk3VBaYjEUUEhXXPFelthUrGQuPq0omdk/D0ijXRwu/Fxju0xhXRhnVcifTk2QiJRa1SgAs3vLiicTyOcuTH5ejDyOZT2PRUtLlrGPRsh0qyUSAeKXRo9EnzfA3cgajZ5F3X/19WDVpVcrn1uN2mYhcsdyvLvgqbpx2o+4xjvYexZ8O/Uk1UYgon5psX5n/FVw/9fr4Pkh9HTVAyDCp5i4WYtI4wmpnNUqzS3XPEWZhhMIhwwt+revU2NeIt069Nao6XxxltOLC9FCcVYyLqy6OKzeh9f3sGurCq8dfRedQZ/RYIBxAh7dDsfQFTyxz/jGzwoVPz6/CHzadRJtbuSRKxpPouia6N6U7EYRaUV0RnwcIDKorJImKphxqtZ9Ux42RLTAkuGlqymLQsqHHqpWY2CEUEKxYasqdmCpd7b0njpk7CoVKTlHobxGsgHKxfJzUkl0EmG3JWdRMVqG/HGoWNSXF3uECbLnxz4JaGYkxgL+RMxgiwsWVF6vWC0sXydZRG21cmMfnQaO7UVMhuW7KdZhdPFux3WKySNz5jCY2SYQxhh9u+SE+OvtR3HEtN0Y5BbbR3YhGd6PuuQ90HcAPt/4QPcPGCpFqpueXSePOSR1ikpbRWNSGgkPoGuqKu4960/Mnuks+tfepuCLYsSSbsIZzbvMPV05HmDH86v1j4y1K8rgqFRZjaVbUROVATcnSE1vmknG9S0S0PhmJU060SOm5LkpZ79TQY9VKVKYH2gEw7esSGBSUXcW5m4VskxabfnkTkXO9G8eYpPMOIn3xiImIrrNySXqAEQVQYlFTyHoqkrhZoVZGYgzgq7MM58pJV2JK/hTF9ucPP4/dHbtTPm9tQS0eXvAwChz6d+/CLBy1IIisb1qPj1s+NjQGoK041JfUS2LFYnnvzHuS+m2jLXgdYiFZhcxk0uGGmRBHuKFpg0ThU0NP2QI5zGQGA1OUL9lxOfqwmW2odlbDbrYnPcaBrgP49Z5fwxsYiXPTVNRkCl5H+yi4M4s11LjSfn5RXZiNO5dOwovbm3CyS92TIWNJtLyMlaImxl6pLTD1xDo5KyBxvUskGcXBKWa9iyiAehacSslZ1NBrURvqGVEAtRJBAPpc4lJR60wumcVYJKPhjKAnTjMRrULnJpPguhp3X5uVs55GZamQPguijOMAfyNnOMPBYfhDfsX2xr5Gw1YWPdjNdhQ4CgwlmZhZOFNSp+xY7zFDliO97lctAy3oHupWbN/RtgOnPacl8tXm1+qWJRElJdIEdUtdmIUlmTm1YuwSiV4XpZ0jBbRc5MTPlI7MoRygKKsI98y5BzV5NUmPIffcaSUaEu93rAIe7aOQIKjQUYjvXfg91JfUJy0r59zkoZXTYLeY8PO/KyceymhcFUDACwy7hb/HMhGEq1JdqdFlxdIR6+ZpNr5QTIy90hNr45JxF9NCj2tY4rh6rHB6kkxoLdb1IGt5GYNkNJwRknG51VPbLNHlVs+GR2KcploZiTGAK2oZzi93/RLvn3lfto0xFt0FTzW9w73Y1LwJHr+Ky0ECN067EfNK5sUdM1rYWa9F7cUjL2Jj80bVcRLHWFa1DBdUXKBbFr2yaSldV0++WlK/Len6cga/svUl9bhn9j2K1zPEQjDBZDjtP2fsiCpdMVbZKmcVHpz3IMpz5OMyZOuoJeHOzDk/KHHace/yyXhzXyv2n3WPtzjGScy+6GkFyKTu3pSyuRWK6op4dFixtGLdxOQoRhWHRItUvw7lKJnEDp5WwO4C7E6VcStGzgX0WeES+8jOnYJCxKLrnSiTGMs3TjFJ5yWiRU3vBna0HpqW0pVgHdPTx1kh1C0UvU88KdgMGAVcUctw1Bb0DCx6TqrpHe7Fu2fehXt4dC9to3XUsq3ZKM0u1fxMWuPKxcsxxka1SFVyE/zagq/hptqbFPvNLpotiTNMlwKbSJ49D9WuasV+F1dejK8t+JqhMTn68fg9+M2e30jccI0gbgLE3kO72Y7S7FLYzPJxGZPzJuP++vtR5BgJso5aV8Pyvye9w71Yc2zNqGq+cc5d7r10Cgqyrfjp28oZbDOWRNe1/hYhbsk8BmVH5GpwxdLfAmQVAlb54vQAlIvsinh7gJAvCdfHBIuUpwWwOdUVqmRSpeuxPiV+Rk8LYLYD2fLlQnTJEhgW3ClTsYiOdb1LRcp/jjGcFUBwSMgeqodht2BF12tRi3WL1urjqgTCQWAwkozL0zyuSjtX1DIcNYUknVna9JQGiCXMwvjx1h9jU/OmuONGFZIFpQvw4LwHNV0uteqzMcYk1+XPDX/G7w/8XrcsiZhNZlxQfgHKcuJ3abWsUWc8Z0ZdR60ypxLLKpfBajADVddQF/Z27kUgLB+knmXJMpzyn2OMzqFOxXpneoh+z2N+rgf8A9jauhW9w/KFdh0WB8pzyuOeF4fFgRum3qDohjkYGMS+rn1xKf055w8uhxUPrZyGj451YfPxrvEWxxiJitpYxhdFY68UsmbqcbXKLhSUFiWFL1lXTtnrojFGNOudAUVNT5xY1DrWHC+L2vvTmiUouVrXJRX32lkRL1uqxuXow2jRa733yFUZcYvuGykjobmpkPCsapWRSDNcUctw1BQSxhhKs0sNF0HWg55i27GEWRj+sF9yvsPiUNz1H618ipZGxkBEEsuXiUyK1gQ92M12XDP5GkxyTYo7/uHZD7G1dativ2cPPYudHTvjjl0x6QrcXHuz7rmrXdW4YtIVhuvSnXKfwqvHX1VMyX689zi2tG4xNCZHP0a/R3LU5tfiU5M/Fbfx4PF7sO7UOsXi1J3eTmxv2w5faKSuodVkxYLSBYrF5HnWR87nL5yEijwHfvL2kVFlKh1z5Fwfx2qRrRXTpVW3DBCUFbVC08nWcUqMverXeV204u4S6W/Vls2ekPZcb2yZWpKJ6HVJwSLaFWN50ZOpk5NajLrcRjcvdLg+iuNq1VBLlKW/NaaMxPjUUAO4opbxqFnUbGYbHpz3oCT+KRUkY1EDpIu8W+tuxZ0z79Q977bWbfjjgT9qnqdmqSMifO/C72FF9Yr4PjApJlLQA2MMwXBQsoA52nsUx/uOK/YR48BiKc4qNlRHzR/ywxvwGl48iXFNSteqobdBYgXlpA4xSctoykJU5FZgcfniOMutVrzZ2YGzWHtybZyCzhjD2f6zinGnoow8XvH8xWE149ErpmNvUx/ePqiSgTDTsNgFpSTW9XGsdsC14ss8OmVxqihHydZxSoy90htro6eum0g4pC9+LiqLAeteVBYli1oKXRRdlUBwWIhNG8tkNBwBoy63epX0qMtti/7i6LHWvWgZCW5R4yhwYcWFmFk0c8znNWoJSDYrYSK9vl60Dmq/IK6adBWWVS0zNLbJNLqC193D3fjR1h/hQNeB+HFVlEYxjjAxPf8p9ynJOGpsbtmMn+34mUGJRxQFxTTuLMwX5mlES1HWg9vnlsSNaWZ9DEvdokMshGcOPIO9HXtl+/BSDRwAuHlhFaaW5ODnfz+CYOgcSjwjxqL4I9kfx2phpRZfFvQLcS66rFgqsW56aj8pjhuxSIVDQoIEPdfFSKr0gQ6AhXSOWzGSMEKvO1liLbhY9C689RBrlfW0CtY/h2v043L04YyxfOlBb20zOYualmKfUwKQeeRZ0NMnjXBFLcO5oOICzCicIds2GBjE0/ufxpGe1KdULssuw+OLH8fU/Km6zlfKSri5ZTPWNq7VPa9cbJkcU/KnKBYCD4QCeO34a2jsiy8LYDSxSSJq6fm14ggT09/v7dyLd06/o3vuZLMziotuJYtOKDz6IuUcZcxkxrT8aci3Jx8HuKV1C/5w4A9xx/SWXTCS0h8kxCwmbipwzi8sZhO+sboOxzsG8Mru5vEWRz+iojPWiSDULGoDkQ0WXRa1ivikB7F4WrRrP6mO2yIojOGgMVn0hArodUETz+lvFaxWwWF9CqyzEhjsEJTeRDwtgDVHcKscLbGudzw1/9hjsQHZxSPWYy08zYIV3aJRozROAdep2JvMkfprrclbs1MIV9QynAH/AAb8A7JtgVAAzQPNo0pUoITZZEaONUd3HTUzmbGwdKHEna91oBUn3Cd0zxtiIV2KWstAC872n5VtC4QD2NO5B51DnXHHpxdMx8LShbplSUQtPb9avBwgtVIYraOmV4FNRLMwskwZA07qsJgsuHPmnZhVNCvpMeTukeZ9hfRZJSIQSPFZnZI3Bd9c8k3VQvKc84PVs8sxrzofT75zFMOB5N12xxQxriq6sBojRc3uEpQFOYuakVinWNe7REaTzCB6XQwkyHBVClaywU7tc43EiYlxeO6zxmQBRpTeWMT4v1R4hcQmkODFrscHMU5QD3rjUC32EQVQT9ZTETG5TAZkAOUrtAznhYYX8NqJ12Tb0hlT4g148f6Z93Wn6nZYHLh+6vWSjHLJpKHXY+F55/Q7ePf0u4pjiHPHMqd4jmF3ST3j2s12WEheoTWTGbfV3Ya6wrq440brqOlVYBOZkj8F99ffjwJHgWx7uurwcVKHXKmJPHseHlnwiKICGA7LuzEa3SDgnJ8QEb51dR1a3MN4bsvp8RZHH85KwNsF9EbkHauFNpFy8g0jWQnVkpJ4dCTrUBs3OAx0HDYui56EInoTNIjnhINA237hb73JRAB5lzg92Sb1kuj6yBW1sceIy21/i37lSXSf1ZPYJ1YW0QqnVUYizYxBkRHOaFBTdNIZU+IL+fBR80codBQqFtWNRVz8JSqNZpMxd8MCRwEmOCdonmciE/xhGVcIKJctCIQDCIaDyLIkV10+Wng44Xp/bsbnFPuYTWaJkiaOYVSBTUZRy7JkqX7eG6feOKpEFxxtfrXrV1hYthDLq5Yn1Z8xJon9NJFJtazCgrIFqCusk2QJVdsgOOM5gy2tW7C6ZjXy7HlJycr55HDx1GJcUluMX39wHLcuqYbLkYTb3VgiLthbdgv/HUvXNaX4Mo+BpBTOGOWobHbCOM3ApIuSk02cu3ln/Dx6+uixbniaAZNVsFoYlUVvMhFAPslEfyswKfnN1zgsNiE2yX1WsN5x18exx1kBnN2u71xPK1C1SOe4lcLzY7brV+xdlcCJDyIZTTXKSKQZblHLcNQW9MkWQdaDlmtVIt3D3fjBlh9IEmQQ1OudJbK8ajlurbtVl3xqZQsAqUL17ul38Z+7/1O3LIk4rU4sr1quaJ2SIxAO4GjvUbh98YXDterAJTK9YDounXCp7vNF3D43trdtV6yNZTPbklZcOfro9/ePuo5aYuxnIBzAR2c/UnT/zbJkoSirSLJxctO0m1BfUi/bp8/Xh8M9hxEMB5OWlfPJ4purZ6DXG8DTH50cb1G0ERWQ5p2CO6I99WVrVOeWtYS1ABYHkKXjnaEU6xYY0lf7SXHcmOtisgjKiN4+eixqnlYhnkdPIjFXgqKWq70JrChLODyyiE4VzgrB2hcOcovaeOCqBLzdyjUJRYI+wXpu2KKmM+spIDwL/n6g6+i4Fz7nilqGo7agt5gsqHZWI9uSnfJ5k6mjBkgtarnWXLhsqc+cpFpHDQwOs0NiTTCqHCWS78jHqomrUJRVFHd8a+tWrDu1TraPN+DFCw0voNEdn9hkWeUy3Fd/n+65p+ZPxUWVxndUu4e6sfbkWvQM98i27+7Yje1tOnewOElhNhkrbp7IorJFuGbyNXHHwiyM95veR1N/k2yfU+5T2Ny8WXJ8ZtFMRQt5Ojd+OOcmcyfk4VP1FXj6o0Z0Dfi0O4wn4oK9/cDYW0PE2KtwwvtFjC3TsxsvKi2JCt9oiy87Y65Lrk6FSsx6p8v10UDiDXHB235AmMOio8ZqVoF8MfBocpQULqJdlYJsALeojQd6LblRd1sDz523SygjYcSiBgDtB8c1kQjAFbWMR00hKcoqwj1z7pHEhaUCoxY1payPKyeuNKSQrDu5Dn9p+Isu+ZRibQocBfjWBd/C7OJ49xEzmUdV8DoYDsIb8Equydn+szjWe0y2j5IbZq4tV7HwsByDgUHF+ldqaN3H/Z37sb9rv+FxOfoh0Kjiwqqd1dIYR6jf1xN9J/B+0/uS46c9pxWLZHNFjSPHY1dOhy8Yxn+9L18rMmMQF1bjYQ0RY6+8XfHHjcSWWWxATqlUIYkuSkepqBm5Liaz/lpqRuK5cksFBdCILGIMYKIsRuL/9OKqFGRL9bgcfWgVjxcxWpBcPI+FjPfJAOsqfyNnOIvLF+OiiiR900eBVvrvRJQUEqP0+frQ5+vTPO/SCZfiuinXGRrbaGKTRE66T+JnO34mqfOWTBzh2f6z2NyyWfcC/u1Tb+sqBJ6IlmVUb/IWTvKobbbooW2wDS0D8Ys3re+nUvKZV469go9bPlbsI8rL4YhMKcnFrYur8fzW02jq8Y63OMo48gHRjXusF1ZOBbfFfp1FnUVcMsrRaOs4ibFX4vhGZNGyqDFmLEOimPYcMPZ55JJMGMk2qZdYmbiiNvbodbk1UhICiH9GjLg+Gu2TJriiluHMKJwhsQyJNA8046k9T6F5IPW1buxmO76z9DtYWrFU1/lKCsmejj147tBzuueVy3AnR3lOOapd8nXUeoZ78NKRlySLWzOZEUY4aeuGktVQzbVNyUrR6G7EO6ff0b2ATzaZiJiEQi2NO7egpJe6wjqUZ+uIxVDgg6YP8MaJN+KO6UnPL/c9Uot5tZltyLfn8zpqHAmPrKqFiQj/8e7R8RZFGaKRBdl4uD4C8QtMxiLxWwZkccpkj0xFHSdRBiMLTj0WNZ8HCAwa/IyRc418HrEWXCxGF+t6EGUis75YPk5q0ev6aFRJj1PADbo+GumTJvgKLcNx+9zoGuqSbfMFfegY6khL8D8RwWqy6l7E51pzcVHFRZJMdL3DvZL4LDX0KiStA62Khb69AS8O9xzGYGAw7niNqwYrq1fqliURJauhiUzRdOiJKCmwycQAJmPp0HKR43XU0s/1U6/H4vLFSfcPs7BEeSIi1ULr4XBYtmyHmvV3Xsk8PLLwEZ5chiOhPM+Bu5fVYM3uZhxpk09MlBGIC7KxXliJ88YqE94eIOQzZpmRs2L1t+qv/aQ4bhLXRankQCxGXdBiZTBkUYskg4jdZPW0CApVbqlyP6NEFdpywfrHGVsceYA1W8dz1yJYz1UyH8eRjEXNGjM+t6hx1Hj39Lt4oeEF2bZ0xpQwxrDu5DrF2KtEChwFuKrmKknclYlMYGApV0h2tO/A3xr/pjgGIFWOavJqcOmES5OuO6d0vbMsWcix5sj2KXAU4K5Zd0lKDhiNAUy2jlpJdgm+tuBrmJw3WX7ccHLjcsYOJWX6scWP4ZIJl8j2UbJMG63fx+GIPLhiKnLtFvzs7YbxFkWZqEIyxkXbxdirWPe8qMXHoEVtqCc+653HoPuk7LhJWtT8A8CwSmx0sp8RMKjcVQlKrzcmKVY022QKFSpXErJxUodaTcJYjBY6d+QLCqDerKciyWxwpAFeRy3DUUuakc6YEiLCtrZtsJltqC2o1Tw/FA4hyIISK1ysQqJHIajMrQRB+8unJy4sUSHzh/wYCg7BZXMlpawpKWqrJq7CqomrZPvYzXZMyZsiOZ6URS2JF5LFZEGhQ7lQ43319/ECyGnmmf3PoNBRiJtqb0qqf5iFJe62AJBtVc72elXNVbh84uWS42rfm32d+7C3cy/unHknV945EvKzbXhgxVT87O0j2HGqB4trxq8ArCLj5fooxl61HwTO7hCOifWgjCiN4sLw+LsjsVw9jaNXHEQZjCpHAHDiPSBPPswAZ7YmMW4Si1/xfp54HyiMbDp2HU39fRZl4xkfxw9nBdB9YuR7JEf3cWPPHJEwbsivL+upiKtSKBSvp4xEGuGKWoajtgOe7ixtRpJvnHCfwAsNL+DeufeiKnfkxWRUIbly0pW6ztNTXy5Rgd3VsQtvn3ob31j8DdVFrhLlOeW4vPpyQ30H/AM47TmNmryaOKubqCjqvS6LyxYn5eI6FBzCzvadqM2vRVlOmaTdRCbo0Is5o8Af9iMQDiTdP8RCsJD0p/rDsx+iNLsUMwpnSNrsZjvsZrvk+LWTr5WUrRDpGe5Bo7tR10YJ5/zki8tq8MfNp/CTdQ146f6LkvZOSBtF04Tiy/kTx37ugsnA0beEf1HImCyiEvLinfHHF909OtmKpgJkAgpqjMvyvxpzm+3GFJuiaQBIuF5GZXnl3vjjc27RP4Ye7C7B4lI0NbXjcvRTOBnY9SzwtPzmd5QFnzc2btE0IKhRn02uT9cxfWUk0ghX1DIcNWUpx5qDqXlT4TA70jK3kWx1SspRji0HZdllYEit1UatJpqJTHDZXJIFqShbsrKUZpeiNFvqD7+3cy8Odh3EHTPvkLR1DHXgr8f+irtn3x2nqM0rmYe6wjrdSl9iena9+II+vHfmPeRac2UVtQ/OfIDCrELMK5mX1PgcdRhjCIVoVO6GV068UlaZ3ta6DTOLZsoqage6DmAwMChJBjTRpbxoFC13Gbf45mQM2TYLHl5Vi3969QDWH+nEyhkpjA9KBfNuByZeBGSPg7XvM78TLGqx5BQDTunvriITLwLuXgsEErJrTkg+xhUAMOtGoGw2kGfAule1CPjiOsH9UQ1XJWA1sAapuxb4ypYR5UsP5fXAPW8DvoT4yKpF+sfQAxFw73tAdpH2uZz0cOUPgJk3aJ9n9Dvx6d8ARrN+r/wuAkNQFgAAIABJREFUcNFXjfVJA1xRy3DUlKWJron4/CyDuwoGUHO7TETJujevZJ4hJeBPh/6EfHs+rp96vep5atelJq8Gjy56VHLcaMmBRIaDwxgKDiHPnhf3OXuHe3Gs7xgYY5JFrphkJPG62Mw22Mz6d2m6h7phJrMkWYsWYtZHpc+8t3MvavJquKKWBs50e/G1v+zG2fApPLxSPnOrHpSym6pt4hzqPoSuoS6JonbacxqMMdnai2Emn4CEw4nltiXVePqjRvxkXQNWTC+ByZRBz4zZChRru+qnBVfl6F0UiYCaZamRJxaTGSgxuNlHBExKQ2kgkwkolW4uacoy8cLUyyJHwaSxmYcjT1YBUKvPs8oQOfrr1kZxuIR/4wwPRMhw5pbMxdU1V4/L3BaTRbf1KVVumP3+fgwFhzTPW1y2GF+Y/QVDY0fdMBUyNGqxp3MPfrX7VxhOMJ+Ln1nuWilliuzwdmB903p4E3dOFVhzfA3ePPmmYZk166gppHHnjI7X97bgU7/6CIdbPOgfCuN4p/Fi5SKN7kZJqQlAO05T7ru4vmk91jetl+2jtzQG5/zGajbhH66cjoa2fryxTyPon8PhcDijgitqGU61sxr1JfWybQe6DuDJnU/C409+EajGY4sfwzWTr9F1rpJCcqTnCJ7e/zT6/fpSOutdLOY78lHtlLc0nHKfwnOHnoPb5447PlqLWtS9MyGph9q4Si6hnd5ObDi7QVJCQG3uZJRgMd5IMc5RIY07Jzm8/iC+9dd9ePiF3agty8Xbj14KB5uAU63Jp9Zed3IdNrVskhzXUtSMZn3MtebKuvZyOIlcX1+JmRUu/OLvR+EPJrfxxeFwOBxtNFd+RPR7IuogogMK7QVEtIaI9hHRNiKak3oxz1/cPjea+ptk24aDw3D73RkR/F+WXYYVE1ZIajANh4bRPNCsO5mCXoWkfbAduzt2yy5UPX4PTrhPSJJvVOZWYnXN6qQSiYiyATJ11FRqlSn2Mag0hlhINvOfFqJSqbSg51aU1NHQ5sEN/7UJL+1swkMrp+LF+y/C5OIcXDP1MuxqKMVwILkNAqV7r5VoyGgdtWVVy/CluV9KSkbO+YXJRPjm1XU40+PFi9vPjLc4HA6H84lFz8rvjwDUfO++A2APY6wewP8B8MsUyMWJsLN9J/5w4A+ybUrWmlTx3un3sKNNJUVqDOU55bis+jKJoqZVcDkRvWnoj/cdx+snXpfNhKikHBVnFePCiguTLuirdL2zrdkoziqWjeebnDcZX5rzJRTYC+KOG62jxhiLxpsZwWay4fHFj2NJ+RLZdjOZYTHxUNXRwBjDn7acxg3/tQnuoQD+dM9SfGP1DFjNwv26bl4FBv0hrD/SkdT4SpsXD8x7AJ+p/YxiH7nfBSMJgjipg4iqiegDIjpMRAeJ6JHxlmm0XDa9BBdMLsQv3zsOr994RloOh8PhaKO58mOMfQigR+WUWQDei5zbAKCGiAykOeKoYSazYsFoccGVLte1wz2HccpzSte5vpAPHr9HoqyIyoVehWRa/jRU5mgHZKspOkqKmi/kQ4e3I+lU6dH6bAkWzPml8/HQ/IfgsEgzX2VbszHBOQFWc3wGyrGyqBERcqw5iinZH1/yuO6SCBwpbm8ADz63C//06gFcNKUIbz1yCZbXxgctNwXfQ37FBryxt1VhFHVCLCS7eWExWRS/+3fMvEM20ZCaRe3Dsx/ixYYXk5KRo0kQwGOMsZkALgTwEBHNGmeZRgUR4VtX16FrwIc/bDo13uJwOBzOJ5JUxKjtBXAzABDRBQAmAZiQgnE50KeQpMuiplarLJHdHbvxHzv/A8OhhEQbBi1q10+9HovLtdOuqiXJUCoEftpzGk/tfQod3uQsG9Pyp+GammsMKcZdQ13Y1b4L/pA/7ni0VIDOrJqrJq7CorLkUhG/f+Z9NPY1JtWXo8zO0z249lcf4d3D7fjOtTPwh7uXoDhXWrvMYjJhWlk23mtox6DPuOWBMSZrUdvcvBnbWrfJ9rGYLLLK+crqlbi59mbZPt1D3Wj3thuWj6MNY6yVMbYr8v/9AA4DMJArPTNZNKkQV8wsw3+vP4HeQb92Bw6Hw+EYIhU+T/8O4JdEtAfAfgC7IeweSiCiLwP4MgBMnDgOBSnPQdQUkqKsIswsnJkRBa+V0tDnWHNQ7axOuXudmgLrMDtQklUisUKMNuvjBOcETHBK9yCO9R7DxuaNuGX6LXDa4pNGnHKfwpsn38S0gmlx6fgnuSbh2xd8W9HSlcisouQ33zc1bwIDw5T8KXHHGWN49firirW4OPKEwgz/veEEnnjnKCrzHfjrgxdjfrVy2QQiQm1ZLnbsCeO9hg7cMM9YCu9b626Vddc93HMYNrMNF1RcIGnb3LwZdotdotyXZJcozhNiobT9lnBGIKIaAAsAbE33XGuOrZFY7afkTcHCsoVgjOHlYy9L+kwvmI76knr4Q368fuJ1SfusolmYVTQL3oAXa0+uxYLZw9jQegyPrzuKa+ZWYF7JPNQW1MLtc+Od0+9I+i8sW4gpeVPQPdSND5o+kLQvLV+Kalc12gfb8VHzR5L25VXLUZ5TjuaBZnzc8jFmF83GzKKZsp+fMYb3zryHhWULUegoRKO7Ebvad0nOu3LSlciz5+Fo71Hs69wnab928rXItmbjUPchHOo+BEB4n1w+8XLk2fNk55aT5f2m99E73AsC4TPT5d2W9bCpeRNaB+Mt9Lm23GiG6A1NG1CUVYQ5xcopA9Y3rUeYhXH5xMsBAG+feht59jxcWJF8Gnxx41HczBSfv9qCWl0lYILhIF49/ioAoDKnEhdXXax77k5vJz5q/ii6JtB6DheVLcLkPO1abk2eJmxtE76qF1dejMrcSrQMtGBzy2bJuZdOuBSl2aU44zmDbW3STbRVE1ehwFGAxr5G7OqQPodX1VwFl82FIz1HsL9rv6RdfA4Pdh/E4e7DkvYbp90Iq8mKvZ17caz3mKT9lulCgfCd7Ttx0n0yrs1MZtxUexMAYGvrVkluBIfFgeumXAdA3/PXOdQZ155vz8cVk64AALx7+l30+foACB5Ky6qWoTynXCKvXtoG26LrnNjPc1n1ZShwFMj2cfvceP/M+3G/jwTCRZUXoTJX/h3tD/mx7tS6uI13u9muWU5qtIx69cwY8wD4IgCQ8O08Gfknd+5vAfwWABYvXpzaCsifUMQfPDkXuRmFM9K6wFZLVpCIUtbHia6JuGfOPbrn/MWOX2Bh6UKsnLhSU7bYeWOZWzIXc0vmGuqjB4/fA1/QJ1nseoNenOk/I+tSqWT1NJvMMEO/JbR5oBnZlmzFHx01lBTuMAtjX9c+FGUVcUVNJx2eYXz9xT3YfKIb19VX4N9unguXQ13ZNpMZ5S4bylx2/G1vi2FFTSm7qZrFe1/XPuTb8yWKWlN/Ezw+D2YXS+u6KcW1cVIHEeUCeBnA1yPvzsT2lG5mdng7EGTx+6YlWcLvFwOTtaCKrudK7ZNcQp2pMAsL7RZgVjXDx6cbMb0qjGn50wAIv7Ny/cXyJoFwQL494pXhD/tV+/uCPhzrPYY+X5+ioub2ubGpZRMKHYUodBRiODgsO6b4TvAGvLLt4vdsMDCIdm87GGPoHu5GZW6lpFahEgOBAWxs3gin1RndeGnoacC+zn347PTPGvLU6PX1SuT0hXzR/9/athW51lxFRc0b8GLD2Q3RewUA29u2AxAU5WTDKdq97Xj20LO4ZfotmJI3BR3eDvT5+tA62KqoqPlCPrzY8CKWVy0XFHRvO4YCQ2joacDSiqW6YtYBoXzOga4DKMoSilV7g0Lpm2A4qPgcefwebG7ejPqSesXF+fb27WjoaUCBoyB6jX0hn+yY4hpgKDiUVLu4iazULioig/5B+faIojzgH1D1jvD4PJL22E1jt88tac+x5ET/X+v56xnukbTHvqt6hnuiilzPUA+yLFm4dsq1ivJqkW3NRq4tF8f7jkePdQ11oSy7TFHZD4QDCIQDaB1sjRoSuoa6UJFTofgsuH1utA60otfXG92Uz7Ykl5zOCKNW1IgoH4CXMeYHcC+AD+VeQJzkqC2oRZ49T7flJZU4LA7d84o/IKNd6A0Fh3RZ8WYUzsAE5wTkWHM0zxUxmsAjkU3Nm7Cvcx++dcG34o6rWT3DkLc0un1ubG3digWlC1StHCLPH34ec4rmJPVjZjbJL+hF2fjiXB8fHOnA4y/txaA/iJ98Zi5uXVyta0FDIIAYrp1bgee3nIFnOKCp3MVyoOsAirOKJTuOJjJJFuEiSu6Sezr24GjvUVlFjVvU0gsRWSEoac8zxl6ROyfVm5n3z7tfsc1EJjw0/yHFdrvZrtqea8uNtt8w0YtVv9iA3uYqzL9QKCdT6ChU7V+eU67aXu2sVm2fkj8FC0oXYHfHbjDGZL+LHUOCm7uonIrWQCXml87H/NL5iu1LypdgSfkSMMbw8x0/N+RGL557c+3N0YLz/f5+HO45DI/fo9syByBq2VBicdlibGrehGA4KOvNIsoSaz371JRP4fUTr6NnuCeq7Bilw9uBoeAQnFZhEXv/vPuxoWkDNpzdgEAoIInVFvuc9JzE0oqlsJqseGj+Q9jXuQ9rjq9Bz3CPrvejOE5pdikemPdA3PGirCLF52jAP4CtbVuR78hXXJy3e9sxNX8qbp9xe/TY5LzJqs9mXWEd6gqVC4zPLp4t+xssovUcXlBxgawnhciyqmVYVqVcOH3lxJWqm+FX1VyFq3CVYrvW8yda5pS4te7W6P8/s/8ZifXNKC6bC6trVmM1VkePefye6HMoR3FWcZwceijJLlH9TU0XetLzvwDgYwB1RHSWiL5ERA8QkfhtmAngIBE1ALgGwDmfzSqTKM4qxqyiWbI/tuub1uMXO36RtrnvmnWX7gc5FI4kNklItNEy0ILf7PmNYomBRPSm58+2ZqM0u1T2uuzp2IPfH/i9RDkZrUVNKZW9ahxhWF4Z8ga8+Lj1Y/QMq+XpiRmHhZPK+ijKpxbjyOuoqeMPhvGjNw/hi3/YjhKnHW98dTk+t2Si7utWW1CL+SXzcV19JfyhMN45aCwObM2xNTjYfVByXEkBB5SVLjUrnJwyyEkNEW+TZwAcZow9Md7ypJrqwmzceeFEvLSjCcc7BsZs3pLsEvjD/qgbVSKiQqJ3sa8XIsKyymUSd3I15GQpyy6La9OCMYbXjr8m69YWS2l2KcIIo2uoS7csYg3F0SyaO72dMJMZhY7CuHEZmOK4oizitYiVxYgiPK9knmG3zRxrDrIt2ej0yssWCofQPdSN0ixeXzJdfK7uc/j8TGniK70wxrCzfafkWXfZXKrv6PbB9jgroB6S3eQfLZoWNcbY7RrtHwOoTZlEnDj6/f3o8HZgomuixLrlD/klSSrGi2n50+CwOCRfjFA4hM6hTviC2l+IMAuDQd4SkEj3UDeO9R1DfXG9pC5an68PTf1NEqWx0FGIG6bekHRRXyVlSU1RU3IJVXNplSMUTr7emVJKdlG55hY1ZU53D+JrL+zGvrNu3HXh/2fvPcObONP273NULVmusuXeO8U2nWCcAiT0kISE9ArJkgYpS7J5d/OU3eef50lfSCchu9kkGxIIkEAooSXGphkHGxdw702SLUu2JFtt3g+OhCXNSCPZAgPzOw4+MKO5Z2RJM/d1X9d1ngn489Is+PE9+3tZy49IkkRMsAh7znVg5TRmekskScIC6pJEHsGj/a24Mryme9iw6p8+JQ/AgwDKf+/nBoD/jyTJvZfxmsaUp29KxXfFrXjnYDU+vN874SNPGTmhpyoLV+gUCBQEUiryjhZP+qeA4QUbP56fXRWINVCS6+RIC3E/jeo39qNUUUqb/bFiC7p0CsrFF7leDj+un13GwZp1lOvkXpfCd+u6IRVJ7coVo/yjkBueS9unrtApIOAI7DKKYaIwLE5cjChJFONzu+rHo4MgCMjEMtqA0EJaMC9uHm35OcvokQgkozpea9RiT8MeLEpchDDRRcXlJnUTyhRlWJ6y3Ok5SZIkPq/4HFNkU7Ao6aL7WENfAw40H8C9Gfci2M+573zzuc2IkcT4vCfNEdZAaZzToG7ArrpdWDdlndODiGn2yVuOtR3DkHnI1gDqirjAOMQFOt/MbPL8cL8SQRfUUCHXyXGg6QASAxOdAjULaQEBwilo9Of7Y4psitux6aCb/Ip4IsRIYij3TYuYhszQTOceNRflknTn9vazXjd1HW0wJuaJ7UROWC7yQ2k7/ryzAhwC+PiBaVg0ybtsk9lihpk0Q8AVYFl2FLYUNkKlNSDE3/3f3VpS7PjZKweGMDfyVsQE03sCOh7TP2iEcsDo0argoNGMA5VdWJF7xQsUXlZIkiwEcFWnrsMkQqzJT8bGw7Uoa+1DjguBnbEiQhyBlWkrESOh/n5ay+F8AUmSUA2pIOFLGN1Dw0RhdhNJYPjZESAIYJw5kmvtSznpsPbk0S0ExgXEQcKX2D0jBVwBpkVM87rsERjOxsVK7Behgv2CsSJ1Be0x3bpuhIvD7a6Fx+G5LO1zRGfUQWvUQiqSevyclIllKJWXUpbP8rl8jwNyFs/oN/SjsL0QOeE5bhcgqLCVNztkzdUGNUoVpZgTPcdpX99QHwwWg9O9gc/hQ66TQ66XOwVqJosJCp0CacGXPi/FNiSMc6zy9lQ3XF8Haq39rU7KQHQMGAbQo+9x2u5JQEKAwBTZFEblV+5sC6j+LkaLEa39rdAZdW7Hp8IaADqSEJiANZPXUJbXiPlip4eQu+t3xJpV8cZHDRi++VD9PcR8MTbM2DCq4PVqRGcw4aXtZVi/tRSZkQHYuz7f6yANAA61HMI7JcPVbstzomGykNh8jJldAtXixf6KTsx76xes+vgELBbqNqZ1U9fZTY6Km3qx8N0C/L+fzkNvpPYR3Fm7E7vrd9v+X9vdjxXvF2H91lJc6GLbjlncsyY/CaH+Arx5oPqSnE/AFWBS2CTaVfnVk1djRQp9kDAa2vrb8N7Z9xh5jZIkiUplJTQG599RQkACY1Vk66TUXfDJ4/Dw7JRnafuccsJzcGPcjU7blyUvw0Qpfe+UK0iSxCTpJGRKnbNxJEnSPnclfAkSAxOdtmsMGtT31TM6d1VPFT4s+xCaIc/vUzKxDEKe0CY+MpIefQ/lZ8YydnAIDk53nUazptmr46lKZ0f+3/qboTrGcc4WJh5eSKEqhe0d7IUFFp8t/LiCDdTGOa4Mo33d/O+J6mNBWwG2VGyhHANgFpDwODzcmnIroxIQV/1mdL1k6iE1Pq/4nPHN35FpEdMYZRdH0qxppvS68jSjtip9lcvmY1cUtBWgVF7q/oUsON+pwfL3CrGtpA3PzkvF1idmIzZkdKpOHIJjKzOdFBOEVdNj8cmv9ShpVrk91mbeDg4GjWb8ZVc51n71G4R8LrqGKvFRMaUmhQ2zhcSmw7W4+5MTMFpI6DUpSODeSvnansEem2n91tMtWP5+IZQDQ/jnozOQGRno4btmuRYJ8OPj6ZtSUVinRGEtdX/UWKPQKSh7OIHhZ8poS6vocDWpc0Q1pML22u2Uz56V6SsZl1IpdApI+BKnKhJPMFqM0Bq1tPuZCno5QhAE5ifMpwz09jTswcfnPqY8bmX6Ssrn6tnus/j6/NcwmqkXlkai0Cug0ZH4v59aYDR7du1TZVPxwrQXKIXJDjUfwpdVX3o0Hotn+PP94c/z97o3Uq6Tw5/n7/T5SUVSECAof5/WQM0x6BLxRAgUBFJmuK3jjHW/KxPYQG2c48owOi4gzqu6bMbn9sRHjaaPRsgVIjU4dcwlTF0FOkHCIMpSGOsx3oqJJAQmUCqGdWm78HHZx5SCKTWqGhxqOUR5jf8x+z9cKjtZIQgCWdIsr1dyypXlqO1zbj7XGDTYemGr1ytZVxMkSeLLE01Y8UER+gdN+Hr1LLx4SwZ43NHfIh1/R68um4CoIBH+uK0MeoPr7yKfw8cfsv8AfyTjtg+K8NXJFvzh+mQcev4GCEQqHGk8S3nc3oa9+LWpBPd/dhLvHKzB8pxoHHnxBsQFh+DX89R9rRbSAoOJxLPfnMWfdpRjWkII9q3Px40ZbCM9C3MemB2PmGAR3jhwwSYX7kvKFGXDfl0W+99Ss6YZ+5v2e11B4Q5XkzpHbJM8NyWL7rCQFsblYZXKSmz6bZNTH3uTuglvnXkLrRrn59X5nvN4o/gNRsGnIzqjjrZnXuonRb+h36PPIlwc7lKEZCRynRxN3TxsLW7Fd2eYCZdZcSU4IdfLR/2ZsbjHVZ+gO+jKm/kcPkL9QinHlevkCBYGQ8gVMr6Wbl03OOA4lS9fCthAbZzjKiOVK8vFwsSFTtvHCjoRCiospIXyhhckDML9Wffb5Ihd0W/ox19P/BUl3SVuX+vq7zI7ajYemviQR8cwQa6To0vb5bTd6gdEJZhCl90jCOceOjrMFjPqVHXoG6RWNnMHh+BQmnwPmYZQrarGgOHSqbSNR/p0Bqz9qgSv/lCJOSlS7FufjzmpY3cz5hJcWGCxTVoD/Ph4865sNCq1eH3/BZfHcggOBAjFA5vLoOgfzm69siQLQWI+JkYFo17RDxPFCvJZeSle/uFXlLWq8ead2fj73bkI8OPjpol8nGg/BeXAoNMxZtKMf59qxb6KLmxYmIEvH5sFWeDYizCwXN0IeVw8f3M6zrWpsb/C+X451sjEMphJs5OCbqO6Eac7T1NKwo/luV35VVmxvoZqNb5vsA8fl32M6l735aK3p91uJxPvCh6HB9WQymnSaQ3CqHrRrGqN3mQ3CtoL8E7JO5TBufV9O45b3FWMD0s/pFTfY6r8SJIkurXdaJEPl49uPFTrdgHMkb0Ne3Go2X5B1Wg2QjWociqpYxl7ZP4yKHQKrxZ2HpzwIG5Noa4SifSPhMnibGFzXfR1WJy0mPKY1OBUShGbGEkM8mLyGJcpjyVsoDbOiQ2Ixf2Z99vJ3V4q/AX+kPCZlY2MRpXQiieqjzEBMVg/ZT1iA5ip5wGelxs6crD5IPY07KEdl7KP0EIdwBrNRuxp2IOGPve9SgaLAV9f+BoXVK4n9XRwwKEUc7Fe77Usz1/c1IslG4/hyAU5/rI0C58/PANSifMq22iwfp+twiAAMCclDI/MScQ/jzehqI6+RMxgNuD1X37CgEmFfz8+2y67NTU+FHqjCScbnC0eGpT9UA4Y8f59U3DXCL+3zDg9OAGl2Fve7nRMu0qHJqUef16ShadvSgWHc+1+L1hGx+1TYpAmk+DNn6spFxLGEroJvVwnR6hfqE89SGViGZR6pdtnikKnoF3B9+f70y4Cjga64Khb140AQQBl+aRUJAUHHEbBpyNyrRxhojDK5wndZ9Sl7YLWqIWA4yzGEuoXCi7BdRs0ao1ayLX96NWIcFtuNOT9Q/jn8SaPrl01pLIzSwaG/24kyMvSk3StIRPJ4Mfzc1mSS4eQK6RUaASAlWkrcV/WfU7boyXRSA9JpzxmVtQsysAvIzQD8+LneXx9YwEbqI1z/Pn+SA1JpZQX3lazDR+XUdd9jwWLEhfh0UmPMnotnYDHgGEA75a8izJFmdsxPFF95HP4CPYLpnwIH245jK+qvnLaPtqMmtlC3RPoTp6fKoC1wIKS7hJ06dw/nK3jei3PT+O3ZV29uhbl+c0WEu/93rvF43Kwfe0crMlP9klwEh8Qjxtib3Da/vKiTCSH+eOl7eegGaTuw+jV92N/417MSLMgI9LevHNidDD4XBJ7znXYbSdJEpUdfYgKFGNepv0kI0kagEA/Pn6iCNQqW3gQcaS4ZyYrRc0yOrgcAhsWZqBBocX2kjafnssaXFAFar6eZE8Om4w70u5w+0xxdS18Lh8hfiFug6M6VR0+r/iccWVFiDAEPILnNK5Cr6D1BeNxeAgThXlV+ujqPQYKAuHH9XMa13oMVXDHITgIF4W7zagJuUJEEfNhGYrC+gXpmJ8pw0e/1EGtc9/bZsUacI8sn/WVBx+LM1NkU/D8tOc97idtH2jH4ZbDtCW1VN+rAcMAqnqqoDfpacclSdIuE2eymKAaVF2SUm4q2EBtnKMz6nC+5zxleZpjTf7lZErEFMyLc15tIAgCGoOGkd+bJwHJgGEABW0FlIaemiENpZG0gCvAnWl3IiU4xe34VJAgKZUXbYEaRdaKLoC1ZVkY/PA9CWCp4BHUqfrRjnul0q0ZxAOfncLbB2uwLDsaP62b61Mp8cSgRNwYd6PT31kk4OKtVTnoVOvxt91VlMfuLmvHoMmCFbnOmeMAoRhJ0hDsq+iCwXTxu3esVgGVzoCFk6KcHlRcDhfxUjGKm5SQ918sf2xQDKD0fCoeylkEsYB1bWEZPTdPiMCU+GD8/VAtBo2+e1bxOXyEiux7UYwWI3oHe30eqEX6R2KCdILbcqh7M+916VMoE8ncZo46tB1o7W9lLCRi9QgbGRxZSAsUOoXL4CNc7D44ckRr1EJr0tL2cxEEgfnx8+0UIUlyuP/M1We0LGUZFiUuot0PDAe6ta0BiA4IQ6JUjD8uzED/kAkf/cpcNIyqfDYpKAm3p95+WaqZrjW8repp6GtAYXuhnW/fSHRGHf5V+S9U9Vx8vjZrmrGtZhvUQ2rKY8wWM9468xYK2wtt2+Q6OTad3YQLvd5VNY2Wa2uGdgXSo+/BdzXfUZZF0GVrxorirmJ8V/0do9cmByVTqhK6Umd0xBqoMfnRao1aHG09SvlAoVPD5HF4mBg20WufGLpxhVzhsJ8bhWDKLYm3YM3kNU7bXdkuOGLtL/M2oHpk0iO4P+t+52sgOAgRhlxTPmpHLnRj8cZjKG3twxsrs7HxnuHeLV9itBjRb+inXHWfGh+CJ29MwbaSNhyqsl/5NltIfHWyCVJ/AbJjnM1858XPw3PT1kGtN9qVT24+Vg8RT4T8VOfeCg7BQUKoGBaQ2Fd+8Z6ypbARfA4R4WkYAAAgAElEQVQHD89JHMU7ZWG5CEEQeHlRJro0g/jXiSafnmtV+io75UTNkAb+fP9LUrbWomlB+4BzhnokwX7BLkUIZGIZevW9MFros0Byndzj+3WWNMtOfMRCWrA0ealLEbLc8FzkxeR5lD2gk0gfyfTI6UgOSrb9Xz2kxpB5yKVYR4wkxu3zulZVj6Lm88hLlQ4Lb0UF4rbcGPyjqBFdaudeXCqopNyDhEHIDs++5hYyLxd7G/biYPNBj45R6BUIEgRRlhQDgB/PDy399r9PuU4ODji03ysuhwsRT2Q3t6RTibxUsN/AcY4rw2iSZNbP5S09gz1oUDPze1LqlZTlErZsE4WYhSN+PD/MipoFqZ/7QMqdjxpVAEuSJBr6GiizbUywkBbKlZsgYRAenvgwkoKSnPZZDU0d8aQM0/rZj/VnHS2Jxrqp65AQmDCm445HDCYL/mdPFR775xnIAoTY/WweVs2IuyT9eaXyUrxT8g5tqcX6+enIjAzAn3aUo1d7MfN86Hw3WlRaZEUF0q4Y5qeFI9CPh92/lz9WdWhQWNuLJyY9hxvi8p1ezyE4CBLzkSbzx+6y4WOUA0PYXtKGyZNO45yq0OkYFhZvmZ0sxQ3p4fjgaD3UeualaJ4SLg63yzRJRVK8OP1FZIVm+eycVn6s/xFF7UW0+9v623Ci44TLqpL4wHhMkE5w+RpvSjnnxszF/Pj5tv/zODzkynJpDcIBIDUkFdMipnl0bwz1C8WixEUuPVCN5mEfU6twCAkSueG5LvvMdUYdiruKKT1arWyt2IdBQQXyRghAPb8gHRaSxKYjzmrHVEhFUsRIYuzmDecU51yel2Vs6Rvqc+oTdIdcJ3eZHaYqn5Xr5AgVue5ddVR+lOvk4BE8hPg5L5heCthAbZzjSgDD5z5qYC7Pf6DpAH6o/8F5DA8yaoGCQLc3e8dxPTG8BoAvz3+JckW52/GpWBC/APkxzpNfV1QqK3Gm64zTdoIgIOQKGX1+AfwAPJD1AGUgyISTnSfxa+uvXh17NdCk1GLlR8fxWWEjHpydgF1P5yFV5hw8+wp3vwEBj4N3786FWm/Aq7sqbCvZmwsaEB0sQFyIiPJ7UqGswI6673DLhAj8XNmNQaMZnx1rgL+Ai/tnUQffE8MmYv2U9bh1chLONKvQ0afHlyeaMWSyICOaR6lcysIyGjYszIBab8TmAu/8K5mgMWjwS+svThPrS7EQ405avEZVg0PNh1ze61OCU7AyfSWllxcw3CPTo+/xql/KQlpsmboubZdb0RKSJCHXyaEadO/zaCVIGIRZUbNclmW2D7Tj84rP0dY/3LMY4heCFakrXAd3FiP2Nu6lXTAmSRJV8jaQpkC7QC1eKsZ9M+PxbXErGhTuVY35HD7WTF6DzNDh0ky9SY+ddTsvW6nbtUiEOAI9+h7GLT1mixlKvdKtKqdT0MXAckEmlqF38GKG2xoQXq7sKhuojXMIDD9oqAKSrNAsSl+vsYJLUItQUEEntMEluJggncDIe8JCWmA0GxmVXLgKYGViGeUqHUEQIEB47aOWGJSI+MB4p+1aoxabftuEc4pzTvvKleU40+0cqAHAn2b+CdfHXu/2vHwuHynBKQgUeGc63KhupHzgtPW34V+V/6Ls87ta+KG0HUs3HUNLrw4fPzANf7ttEvz4l1Y8xfZddZFVzooKxHML0vFTeSd2n+tESXMvSppVWD07B89OfdauZMhK72AvqlXVWJYThYEhE74tbsWPZR24c3okDrTsRJ3KeXXSqpC1PGf497Hjtzb860QTFmTJECji2jL4LCxjxaSYICzPicbnhU12fZFjicFswK9tv9q8LPc07HGSW/cVjpM6R+Q6OaQiqds+NpIkaccYMg8hNSQVsRLmKsfAcEbqf0/9L852D/stHms/5radgQSJT899itNdpxmfp0ndRNvzY8WaDbSKm+hNerfP+kBBIIRcIa24iXpIjQ51P+IDoxDmoNb7zLw0CHkcvHOwhunbsF3P5S51uxYJF4dT2mzQ0W/oB4/Dc/sZycQyaAwa6E16xpYLVg8/68LP5fbTY5/K4xxryRNVQDIzaiZmRc3y2bk5BAdm0swocKIrN+QQHNyVfheypO5LUFr7W/Ha6dfQqGl0f20c+izFvPh5WJq8lPo4D0y8HWlSN9GuRqqGVBg0UXtTjbaPUG/So7KnEv2Gfq+Opwu4tUYtGjWNjIRerjR0BhM2bCvD+q2lyIoKxN71+Vg0yX2m1hdYV/XdLRD84fpkTIkPxqu7KvDmgWoEifi4Z2YipCIpZV+KdRFnVnIwQv0F+J+fqkACuG92NM73nodqyHlFXKlX4ljbMYQHAZNiArHxcC1UOiOeuD5lTCw2WFioePHmdBjNFrx/xLPSJqZYpdytE+xaVa3X90tPcZzUOeKuPMvKF5VfYFv1Nsp9/nx/3Jt5LzJCMzy6NhFPBB6HZ+u9Uuhci3cAw89ITwyISZLE1uqtLss/AUDMF0PCl9iCri8qv8C2Gur3a8UqiEJ3LS3qTij6hzArPtFpX3iAEKvnJmHPuU5UtLsOIgGgpLsEbxS/AaPFyAZqlwGmvnlWgv2C8fKMl132WwJAlCQKyUHJGDINgcfh4Zkpz2BKxBSXx8T4xyAvOg9CrhAkSWJR4iJMj5jO7I34ADZQG+cECYPw2MTHKFfUjRajT5UfJQIJZCKZnf8THRbQlxsyxTqRZTJZDOAHYMP0DcgJz/HoHJ6YeDuyu2E3jnccd9ruSvXRVR/h7vrdKJWXuj1v72AvttdsR6e208Mrvnh9lB5vpG963y43VR0aLHuvENt/a8O6eanY+sRsxASLLtv1WL/P7n5HPC4Hb9+VgyGTGScbevHg7AQYSS2Otx+nXK22jsvhAIsmRcJoJrF0chQig4R2+0ei0ClwpPUI+g39WJYdDaOZRE5cMGYkhrgsGWZhGQ2JYf64e0Yc/n2qBS091FLao8Hai6LQK6A36aExaC7ZJNu6Ok8lr28wG9A31MfINDlAEEA7SfV2cZEgCESIIyDXyW3lk0z+Lo5qka7QGDQYMg8xHleuk8NCWqDUKxn1/ISLwiHXyykXjI8318NMkpiXlkZ57OPXJyNEzMcbB9ybiYt4IgyaB6HUDffbC7lCr6tYWDwnTBSGWEmsR88ggiDcvj45KBkPTngQwX7BIAgCoX6hbj/XYL9gLEhYgBC/EBAEgQnSCYgLvHy2NexTeZzD5/ARFxhHWfu9pXyL2xWp0TAjcgaezH2S0Q/H1STvnZJ3cKTliPsxPFA3JAgCYr6Yspzku+rvsLN2J+VxHILjtReGhbTYshgjcVXa5qqPsLq3Gm0D7j2GbH8XL3+udFnE0fqzjTdIksQXx5tw24dFGBg04evVs/DCLRngcS/vbS7SPxI3x99MqQrqSHK4BP+1fCLiQkV4aE4CegZ7cLDlIPqGnL2TbFllixl3T49DkIiPtTekuAzAR/Z23poTjRAxH+vnpw6rpUmzGE0oWVi8Yd38NPC4BN456H7S7A0ysQzdum4odcOl3JfK/yrULxSPTXqMUrjEWsbFpGxKJpZBbVDbxDZG8l31d/j6/NdeXZ816FLqlbDAwug3Hi4OR7+xn9afaiTWAJXpuHKdfLgXiTQzCu4ixBHQm/SUZsg9ygRYVPORl0JdLRHox8fTN6WioEaB4/WuS/xtGR293KW/G4tv4HF4WD15NaPqKwA41HwIh1sOMx6fJElU9VRRagZQYTAb0KPvgVwnR7Om+bJ5qAEAa5gzzjFajKhUViI2INapz2s8rYDfFHcT7YTfYDbAYHFfXueJr5fJYsKvrb8iJTgFiUGJdvs0Bg38uM4G4QBwV/pdlCqMTDCTZkr1PVdiEa4yahwOs6DR9nfxsn9IyBVSls5Zx70aHkZ9OgM2bD+Hg1XduCkjHG/dlQOphFqy91ITJgpDWIz7Hk0r98yMx92/K1JqVPRBl4gnQohweEU6Jy4YZf95CwDYeg7pekaB4c8+LliEs/9xi23fnel3Mr5GFhZPiQj0w6N5Sfj413o8cX0KJkSPbbZCJpbhfO95W58ananzWMMhOIgLoF5tj/SPxCuzXmE0zsjSL8fx5Dq5ncy+J4SLwzFoHrQp6jEJYK1/O7lO7vR8dcSaeQsTu7/HTZNNQ1Zo1sXSQgafUY4sBzmyHEoJ9hP1fZganeTS+/GB2QnYUtiI1/dXY9dTUtrn3cjy2VUZq1waIrP4DpIkGc1JzveeZ7yw+H3N99CZdOAQHAwYBjA90n0Z408NP6FJ04T0kHRUKCvw0oyXGJ3LF4yPWT4LLQazAT/U/4BGtXPfFl1f2FhR2VOJLeVbKFf4HKEKmKxwCA4jeX5raRiT90SCRGFHIaV/jasANjk42euVVouF3rw6IyQDoSJnY8z7s+7HvZn3Uo7HAXVJotN5MbrM19LkpVibs9Zpu5ArRIQ4wqVM7ZVAcVMvlmw8hl+q5fjL0ix8/siMcROkAcOy1D36HpceSY449rVRffY54TlYN3WdU7adAEHrLeOJLQQLy1iz9voUBAh5ePPA2KvpzYyaiVdmvgJ/gT/iA+IRJAwa83PQ0drfimNtxyj38Tl8RvdYuh4dg9kA1ZDK61LOxMBE3BR3EzJDM/Fg1oOM7G9iAmJwb+a9iPB3PxGW6+QIFARCxHNfXh4uDkdCYAIUegUIEIyCOyFXSHkvUwzocaG/CDmJru9lfnwunl+QjrLWPhyodC5PtcIhOAgThUGuk0PMF3vtt8riPSXdJXi9+HW3ffNMRUGsCLgCdGo70a3rZvw7CheHQ2PQoLW/FeHi8Mu6oM0GauMcV9kaX2fUdEYd2gbaYLKY3L62VdNKW9POJbiU/VuOSP2kyI/Jh4QvcftaV4bRrv4udao6t+akdFhAL5hyT+Y9mCh1Nvzmc/m0BqVMhU1Ga3hNR0ZoBtbmrL2kE5qxxGwhselwLe7+5AT4PA52PJmHNfnJ4y5D2NLfgvdL30fXgGtZbCq86SOUiqR4btpzlMIDdIGawWzA66dfR3FXscfXyMLClCAxH0/emIqj1Qqcahhbjyo+hw+CIJATnoNHJz16Se8DzZpmHGk94iQodbjlME51nmI0RrAwGHnReU6TT4V++LnqbaAWLg7H9bHXI0wUhuTgZFpPxpGIeCKkh6QzCr5ujLsRd6Tdwfh6zvecB5fgYkH8AsaLhMfbj+N0p70K5aHqenDFtUhjkGi8Y2oMUsL98dbP1TCZ6Z+5ubJcSPgS/Nr6K6OyT5axRcwTY8g85FaJWqFXgATJeNFdJpZBb9Kj39DPOLizlit7Etz5CjZQG+e4Moz2tY+atR+LSdZnZ91OFLZTm+USBMEoIAkXh2Ne/DxIBAwCNS991PY27nW64TNlVfoqj5V/jnccpxUMkQgktEHcSGICYvDYpMe8vlmUyktpe/auVLrUg7j/s5N452ANbs2Jxk/r8jE5dnwGnJ54CTriyuy8oa8BX1R+AY1Bw3i82IBYbJi+AfEB9jYTZtKMQfOg10I7LCxMeWROImQBQrxxoHrM+z4ONB2gFHzyNdZJneNiZZmiDB0DHYzGIAgCCxIWOFnLjIUCoc6ow96GvegcYC5I1T7QjgplhdvXhfiFICHwom9jnXwAZgv953qw+SDkOjnmxMyxbWvp0WHQSH/vqeurwzmlvf1NQUM9BFwOrktw7y/K43KwYWEG6uQD2HGWfqF2dtRsyMQy/NL2i63CRztkQpuKDdouBdbAy53yo6e/iZEBHdPgbmRAd6nKqOlgA7VxjitFwZmRM5Eeku6zc1tX3pjK89OtYE4Om+w0MaTCaDZiwDDAKKgjCIK2dDApKInSRw2gV0BkQmJQIu2PfNNvm3C05ajT9lJ5KWpU1D4uj016DMuSl7k9r4gnQlxAHGX5BxO6dd2oVjk38FcqK/FZ+WeUtgLjmcPnu7F4YwHKWtV4664cvHt3LiTC8dtuO5pyw/SQdLw47UXKciWdSYcmTZNTmYhCp8CXVV9SThB5HB7EfLHTqvrVJizDMn4RCbhYvyANJc0qHDrPTIqbKdW91TjYfBCVysoxHdcdVMqPOqPOoxV8YLgn3dECRuonxYyIGbZ+VG/YWr0Vxd3Ftj41JpTKS/FTw08un/8agwbFXcUYMAybSrf26nDLu79i4+Fa2mNC/UJR0VNhu28NGs1YsukYXtlRTnuMzH9YLXLktZztaIIs0A8REmYT74UTI5ETF4y/H6xxGRS29reCR/Bs5uOv77+Ahe8W+MwDkOUijjYbdFjVTEP9nNtNqLALuhgGdyMrjdiMGotLXBk758XkMVbI8QZPMgF0ZYEAcHPCzciV5bodo6KnAm+XvM3Y/4ZOwXFx0mLMiZ5DcYRnJt6OVPZU0t5A9CY9hizOvXxjUZ6qGlShVF7qdXMzl+BS2jhoDBqvy0AvB0MmM/66uwqrvziDyCAR9qybizunxY67UkdHRhOo8Tl8SAQSlyI2juPqTXo0qBsoA/B+Qz8Otxx2+h57IuTDwjJaVk2PQ6JUjLcOVLvMvniLiH9p7TiChEEQcAS2QMhsMaNMUQbAs0leSXcJPjn3CSqVlahR1aBGVYNAQSCWJC8Zk/ucoyCZK2RiGQbNgyhXlqNGVWN7/qiH1LZrK+kqwd7Gvbas/rFaJSwk8NmxBij6qXvbre/jQu9wn+KZJhUGhkzYVdqOqg7q6oAIcQSMFqPtb9rSo0OvoRXJIcx7rAmCwMsLM9ChHsRXJ5spX6MeUuN873mYyIvtHr9UK6A1mPGBjzwAWS5itdmwlj6O/K6N/JcZmom1OWsZP6/8+f6YETEDq9JXMbZcIAgCK1JWYEnSEq+FfMYK9qk8ziFA4A/Zf8C0iGlO+7RGrU/Niv15/oiVxDJaZbdY6DNqTLEGE0zHeXnmy5gfP9+jczAtw3SEJElsr9mOqp4q+nEpylNdCb783PQzI9uCtv42/FD/A6U8MRPo3vOV5KPWqNRi5UfH8XlRIx6+LgE7n5qDlHD3JbLjgZFKi57SMdCBoy1HKYMuukDNVdClM+pQ2F7o1APgqz5IFhYq+FwOXrwlA9Xd/fihdOwWi7LDswFc+lIlgiAQLYm2ZWFMpAk/N/8MDjiI9KeWjqcixj8GALC9dju+ufANvrnwDWr76LNTTJkgnQDAs6DROjndWbcT31z4BqpBFYDhMkTrtRW0F4DP4dtKP4vqlAgW8zFksuCDo9SBTUbIcO+s9e9SWKcEj0MgQMjDWz9TWzdE+UcBAH6o/8F2DGkWY1pMCuP3AwBzUsOQnxaGD47WoX/QWdzJOonPDMkEMBwQtvTqECYR4N+nfeMByGJPTECMTZWxSdNk+66N/Gf9LnrCkuQlyJJmeTRPzZXlYkbkDEYtKr5k/NYLsQAYfgDQ3eg3/bYJ0yKm4ZbEWyj3j5bUkFSkhqQyeq2ZNNMGJJvPbUawMBirMla5HMMT1UcAlB5qAPD+2feRHpJO+Xfx1vDaem10E1m6cV31EbYNtDFaDRyt6qNVzMVR9vZKyaLsPNuGv+ysAI/LweYHp+GWicwnPuOBIGEQliQt8cqjrGOgAwXtBZgeOR1+sLecoMt4W7PMdMI3gHNwx+fykRuey0gRjoVlLFg6OQqfFNTjnYM1WJodBSFv9GW3N8TegOkR0xn1OY81qzJW2RZO+Rw+1kxeAzFP7NG1xAbE4qmcp+zsbIKFwaO+tlmRszBROtEja5oYSYzdtVizcZmhmXZzEglfAj6XD4uFRFG9EguyIsDncvD1qWasnpuEuFB7VdppEdOQHppuC4qK6pSYGh+CeVky/N++Czjd2IuZSfYlbZH+kXg692mbAnVRnRKhmI5HcxZ6/Ld4aWEmlr9fiE+PNeKFm+1bRwiCwIbpG2wT86Lfvdc23jMFq78oxruHavDu3e6rg1i8Z2HiQtszLC04DWsmr3F6zbX2nBrfMzQWAMCZrjNo1jin6n0tJuIJd6bfSZn1s8JEOdLTwOFwy2GUK5zr2nUmHe35lqcsxy0Jnge27q6NTsHRpY8aGKo+jjLzJeKJECwMtgWbI68NGL99SdohE174rhTPf1uGCdGB2Lc+/4oL0oDfyy4iZyDYz/MJl6vPXsQVIUIc4fT5ufLHowvU/Pn+WJG6AvGB7ntJWVjGAg6HwEsLM9Gm0uObUy1jMiZBEJclSAOG77PWvhYOwUGMJAYhfp71lREEgXBxOGIkMbZ/1izdaCAIwiv/0JHXYg1e/Pn+dtdnfc9VnRr06YyYmxqG9fPTwCEIvHvQuT+bIAhbkKbSGlDRoUZeahgevi4REYFCvLH/AmVLQ5goDDGSGFtAODc5AUKe533bk2ODsDQ7Cp8da4BywLk8U8wX2xaBC+uUiAgUYk6KFI/mJWFXaTvOdzIXb2LxHD7nolK2mC+2+65Z//G5V7alkKeMj1k+i0sOtRzC+d7zTtt9Lc/frGnGR6UfoVtL7z1iJSU4hbasgkNwnIIEKqzlV0wDhzJFGRo11P5ydObQkf6RXvmo2SbMND+ZLGkWpYDJ89Oex9LkpZTHMBU2sZaEevtZz4qahfVT1zsdHygMRFxA3Ljs8apoV2P5e4XYebYd6+an4ZvHZyM6+NL2nYwVJosJnQOdXsk9u1ogiAuMw9qctU4Zd2spElW5hqueVxaWS01+WhiuS5bivSN1GBhyv5jHMn4prBvOPs1JlSIyyA+P5CViZ2k7LnTRBzYnGnpAksDcNOmwyMz8dJxpVuHIBXoxCVtAmOZ9VuXFm9MxZLLgfRd9ZxYLieN1SuSlhoEgCJsH4FsHqMszWVh8BRuoXQFQiWaQJAkSpE+zIUazEXK9nFEf3IXeC7TeFxyCQylm4UhCUAIWxC9g/J7ohEFc9YU19DXQqjC6whYs0QSAixIXUWYUCYKgL5fkMBM28VUv2RTZFDw26bExHXO0kCSJfxY14o4Pj0NrMOHfa2bjhZvTweNeubeqfkM/Npdv9up7540aY2JQIp7KfYpy4cT6/XVcIOjSduGvJ/6K6l52EsJy6SAIAi8tykCP1oDPC50X3ViuHIrqlMiICIAsYLhE+8kb3Ac2hXVKSIQ8ZMcOVxvcNT0WSWH+eGM/vciMNSDMS2EujOJIcrgEq6bH4etTzWjtpV5Aq+rUQPV7hhC46AF4+IIcxU29Xp+bhcVTrtzZzzUEVf+TL/uLSJLEjt/a8GvN8A3RnVk1SZL4tvpbWs8VpkqLMZIY5MXkMTLkBIaFVjz1UTvecRwFbQWMxh+JkCvE6kmrKU2tXbGvcR+tAEmgIJCRAtGksEl4MudJRuajVFT3VuPLqi/HvQy/SmvAE1+W4L92VyE/LQz71l+P61Ku/Fp063eRSVbZEVdBulwnx2fln6FV08p4vAB+AP4868+YKptqt91MmkGCHJfZVZarmynxIVg4MQKbCxrQq/WdOBaL7xg0mnG6sRd5qReDp2CxAGtvTMGh8/SBTVGdErOTpeD/vhA3LDKT7lJkpqhOifQICWSBfpT7meKqPNN6HgC2QA246AH4+j7q8kwWFl/ABmpXAFSqfQQILIhfgMSgxDE9l1pnxFNf/4YXvivDuz/XwWwh3Zbnucv4TJBOsKlOuUJn1KF3kPlKFV1GKjs826YS5QidpD+Tc8UGxNLW+X9W/hm+q/7OaXtJdwmt4enylOVuBVaA4TptmVjmdVCuMWjQoG5w6tsraCvAlvItXo051pxq6MGSTcfwS7Ucry6bgM8eno5Q/8urtDRW2EQ/GGSVHcmLycMrM1+hzKiZLCa0D7RDZ7JfEa5V1WJL+Raoh9ROxxAEAR6H5xSQ2VQf2UcCy2Xgj7dkQGcw0SoFsoxvfmtWYchkcSpHfHRO0rC5OUXfWWuvDs09OsxNtT9myaQoTIoJxDsHazBksr9nUgWE3uKuPLOQIiC0egCeaVbh8Bh7ALKw0ME+la8AqHywuBwu8mLyEBcQN2bnKWnuxZJNx3Cwqhu3T4mB1mBBR98gpez8SNypEs6InIGZUTPdnv9Exwl8WPoh4+vlc/gg4JwBuDXlVtrA0FvD6yHzEM7Kz6JH30O5nyRJSgGTsegjbB9ox+nO0173FdGpA/Yb+j0KjH2B2ULi74dqcO+nJyHkcbDjyTysnpt0VWV2RtMXxiE4EHAFHgmDaI1atA20US5ImCwm7Gvch4a+Brvt1t8wXWkvC4svSYsIwMqpsfjyZDPa+7zzi2S5fFgl9mcm2QddIgEX6+anobhJhaPV9oGNLWOVZh90uRKZsQWEYxCoAcPlmRKK8sxBoxnFTdQBodUD8E0feQCysDjCPpWvAB6Z+AgWJtrL0FpIC3r0PTa52tFgtpD44GgdVn1yEhwOsP3JOXjzzmyE+PlD0Rvk1jzUOlGkm1ybLCYYzc6eJU7jwLOg5onsJ7AyfSXj1wP06ozuGDAM4Mf6H9E20Ea5nyrr6a6PsKCtAN/XfO/23HWqOuxr2ufxNVuxnt9x4u6ql+9S0KUexH2fnsTfD9XittwY7FmXj8mxQZftenyF9XfhzQJBdW81DjYfpNxnC9QcSpNdqT6SIHG66zQ6tB2Ux4xXBVCWq5/nbk4HSGDjIc97OVkuL0V1SkyJD4ZE6GyZc/eMOCRIxXhjfzUsIwIbq6IilR8mnchMYZ0SXA6BWcljUxIfLBZg7Q3D5ZlnRpRn/taiwqCROiAc6QH4Y9nYeQCysNDBBmpXAEHCIIj59l4kWqMW75e+TylP7wlyzSAe+vwU3jxQjcWTIvHTunzkxgWDx+VgycR01NRMQYjAtf+TNdtHN8nbUbsDn5V/5vZaxsJuwGA24G8n/oYTHSco94/WR43uPVL14bnrI+zR99AGfo7jEKAXJXEHXUbNQo7epNxbDlV1Y/HGApS3q/H2XTl45+5cyof81YCAI8DtqbcjNZiZJ+FImjXNKO4qptxnC9QcMt6uBEjosnuBgkDMipzFqGeShcUXxASL8C3vqasAACAASURBVOB1Cdhe0oY6ef/lvhwWhqh1RpxrV9OWI1oDmwtd/fixbHiByGIhcby+x6ao6AidyExRnRJT4qgDQm95NC8R4QFCvD6iPLPITUC4dHIUJkYH4u2fa2AwsQq6LL6FDdSuAM7Kz6Kyp9Jum20yxlB4g4qj1XIs3ngMJc0q/N8dk/HevVMQ6HfRn2JZdjT0RrPbWmwhV4hHJj6CzNBMyv1Myw0tFs8yagVtBTjWdsxum5k0wwL6AGR+/Hzcm3kv43PYxnUjkU+VqSNJEgKOgNaYm8thFjS68mJjgogngkzk3ON2OTJqQyYz/nt3Jdb86wyigkTY8+xcrJzmbGtwNcHlcJEdnu21LQTdZyTgChAXEOckMuOqZ9RaKuz4XQ0ThWFR0iKPfZ9YWMaSp25MgVjAw1sH2KzalcLxeuWwxL6LcsRlk6MwISoQbx+shsFkwfkuDXq1BpfHOIrMuAsIvUUs4NnKM3+pVgAACut6XAaEHA6Blxb9Xp55emw8AFlY6GADtSuA4q5inFOcs9tmKzek6NFyh8FkwWt7z+PRfxQjPECI3c/MxT0z452Cm9RIAiExh7C19KTL8bgcLhICE2zGlyPp1gwyVn00k2aPAoeGvgY0qB16bdzImQf7BSNM5PmN3l1GLSM0A+mh6Xbb+Fw+Xpn1Cq6Lvo7yGKbCJp7+XRxJC0nDk7lPOk3CZWLZmIvRuKJBMYA7PjyOfxQ14ZE5idj59BwkU5S9XI00a5qhGlR5fJyrrGegIBCPTXoMqSH2mTqrIS3VAgFBEODAeeHEQlpgtBhZJTOWy4pUIsTj+cnYX9mF0ta+y305LAworFPCX8BFTlww7WuGA5sMtPbqsbW4xdaf5i7o2rBwWGTmw6N1ONHwe0CYNraBGgDc83t55uv7L0ClNaC8rc/ttV2fFobZyaF470gttKwHIIsPYQO1KwCqbI23PSXNPVrc+fFxbC5owAOz47Hr6TykRVArGXI4QFw4iTOtcvQP0veYDZmHUKYos5uI6gwmvLS9DLNeO4yKdg2jQC07PBvz4+czfi9UmTpbfw5NANukbsJZ+VnG53Aal2bSPDtqNuZEz/FoTKZlmJ727jElLyYPt6bcOubjUrHjtzYse68Q7X16fPrQdPzXrRMh5F07/VBfVH7h9ffO09/4pLBJWDN5DaXhNTC8gODI+d7zeO3Ua1DoFR5fIwvLWLImPwlSfwErgX6F4CixT8cN6eGYlRSKTYdrcbCqG2kyCSLcSOynygJw57RY/OtEM7adaYO/gItcFwGht/C5HLxwczoudPXjz7vKYWEQEBIEgZcXZUI5wHoAsvgWNlC7AqAyjPbGBPmH0nYs3VSIJqUWH90/Ff9z22T48ekngVyCi4RQMUxmMw5WddO+bsAwgF11u9DaP+zndL5Tg+XvFWJbSRtEfC5KmtVuvdgAICEwAbmyXMbvh0qe39qvQ1cSWtVTRSvO4AqZWIancp5CQmAC5X6SJJ0+I71Jj+9rvnfK+lkJEgYhQuy6/w8Aboi9AWtz1np8zVZa+1uxpXwL5LpLLyc8MGTCC9+W4oXvyjApJgj71ufj5gnu3/PVhrciNgD9YozepMcHpR+gTFHm0Xh/mvknpwURmzy/DxYEWFg8wV/Iw7PzUnGioQfHapWX+3JYXNDaq0NTj45ROeJw39lwYFPcpGJcwrh+QTpAAIcvyDGLQUDoLcuzo5EVFYi95V2MA0JreeYnrAcgiw9hn8pXAFSlgxK+BEuSliDSP9Lt8dbs1vqtpciIDMDe9flYPJnaZ2wkBEEgTCJEWAAfe8510r7OFjSCgy9PNGHFB0XoHzTh69WzcO/MeJxv8sfk0Gluz6caVEGhY76iTzX5FXAFmBk5E+Ei6n4gDsc7HzU+h49wcTiEXCHl/m0127D53Ga7bQazARU9FegbpC7hmRM9Bw9PfNjtuUU8EWVZKVOMZiPaBtqcDK931u7ENxe+8Xpcd1S0q7H8vULsKm3HcwvS8M3jsxEV5J1p95UO0/JfR5anLMf6qetp9yv1SuiM9j5qxV3F+KjsI4++5+4sNlhYLiX3zopHbIgIbxy4YKcUyDK+OF5PLbFPx7SEENtCHVOJ/ZhgER6aPbxAOtb9aSOxlmcC8CggZD0AWXwNG6hdAVCV+In5YsyInAGpyLVM7cjs1jM3peLbJ2YjNkTs8hgrXIILEMB1ySEoqFGgT0e9YmS9tm1n2vDqD5XIS5Fi3/p8zEkNw7KcKAzpI6HpTXF7voPNB7GtZpvL15gtJN47XIs5/3sYWj3HKXAS88VYnLQYsQEXBSpIksTW0y2Y9dohNMh1Xqk+9g324WTnSWgMzsaYAPVn5E3Wk4rq3mqc7jzt9fHWck3HQGHAOOA0yR8LSJLE54WNuOPD49AbzPj347Px3IJ0cDlXjzeap4wmo0ZXbktnu6AxaKDUKWmP29+4H6XyUrttY/VdZWEZC4Q8Ll64OR0V7RrsraBfJGS5vBTW9SA8QIg0GfNe41eXTsB9s+I96jV7Zl4q7p0Zh1tzor25TMbcmB6OZ+el4vH8ZMbHsB6ALL6GfSpfAdyZficemPCA3TaD2YAubRetjxpJkrbslmbQhK9Wz8IfF2aA50HZAJ/DR1ZoFm7OTIHJQuJAZRftuUxmEjvOduLmCRHY8vAMSCXDAdSUuGBEB/Ox61y92/O5Uzfs1gzi/s9O4u2DNehQD0KjyHXKSJEkaSeKoBk04tlvzuJPO8rRrRlCYW2PVxNmpV6JA00HoB5SU+73Rp7/TNcZfFL2idvMR1VPFU52uhZ0cQWdJLsvVB97tQY8/q8z+OueKlyfHoa96/Mxe4w8b65kvA3UiruK8UvrL7RjAs62C+5+R1W9VWjpt1cqc6dqysJyqVmRG4OMiAC8/XMNjGZWAn28YbGQOF6nxFwaiX064qVivHa767YLR4LFAvzvHdkID6CuaBkrCILAi7dk4LoUz55ZrAcgiy9hn8pXACKeyClz1KntxCfnPkF7v7PhYp/OgLVfleDVHyox5/fsljclAwKuAKsyVmFJxhQkSMW05Y9m0ox6xQC0QxY8dWMKOCMyJwRBIDejA2fUX0PlpobblY/akQvdWLzxGMpa1XjzzmzMSZFiz7lOpyCnW9eN1069hmpVNUpb+7B00zHsq+jChoUZWDU9FmWtahjNnmfU3Im3UGXUrNdGd4zOpEOXrsumKEnHaP3O6AyXx9pH7WRDDxZvLEBBjRL/uXwCPn1oOkL9qQUtrjVuS70NUyOmenxcfV89LvReoNxHF4C78yOkWlSIkkQhPyaftrSXheVSw+UQ2LAwA41KLbadce83yXJpudDVjx43EvvXCqwHIIsvYQO1ccyByi48/fVvONV+1snAma5U6UxTL5ZuKsSRC3L8ZWkWPn94BsIko5t8EQSBZdlRKKpTolPtnNoPFYahsfY6TI1KxZR4Zx+mGYlSWGChzchZIeGcCTCYLPifPVV47J9nEBHoh93PzsVd0+OwLDsazbpz+LjkW7vXW4OR43U9uPOj47BYgO/+MBtP35SKW3NioFWnYLL4Ho/71NyVhtFJ7Uv4EkqVvZFjuSvFHK08vx/XD7GSWPhx7RW2RjuuFZPZgncP1uC+T09CLOBhx1Nz8Ghe0mUz0x6PpIWkMeondcTVZ0QQBFKDU51sFyyka5VQAoRToBYjicG8+Hm0SpEsLJeD+VkyTEsIwcbDNdAbPF9gY/EdTCX2rxVYD0AWX+E2UCMI4nOCIOQEQVTQ7A8iCGI3QRBlBEFUEgTx6Nhf5rXFoNGMV3dV4A9fluCn8k7srDyDku4Su9c4+oWZLSTeP1KLuzefBJdDYPvaOViTn2yX3fIUkiTxRvEbKGovwt3T4yHgcfDKjnKngOTQ+V509vrhD9dTG14nSiUI8OPix3PO2b+RmC32mYAmpRYrPzqOzwob8fB1Cdj51Byk/l4Lv2hSJLgCNX5ptP9aWiwWkCTwj6IWpMok2LsuH9MSQgEAs5NDEeYvwdEqrcdBhLtALTU4FdMjp9ttCxeH48XpLyI9JJ3yGOtY7kri3E283REuDsfqyasRFxhntz0pKIlWxZIpHX163PfpKWw8XIvbpsRg97NzMSnGe+GTq5UmdRM6Bjo8Ps5dGeP9WfcjOzzbbpvUT4qkoCTaY6jUUg1mA7RGLSuHzjKusEqgd2uG8MWJpst9OSwjKKxTIlUmQWSQa4n9awXWA5DFVzCZ/f0TwCIX+58GUEWSZA6AGwG8TRAEuyzrJXXyftz2QRG+PNmMNXOTkCAV41ybsw+ZLXDgcNCtGcSDW07hrZ9rsCw7Cj+tm+vSfJIpBEFg0DQIg9mAeKkYf1qUiV+qFdha3Gp7DUmS+KigHLFRHZiVTC1SwuVwkSD1x8l6JRT91D11ADA3di5uiL0BALDrbDuWbjqGll4dNj84Df+9YpJdTXuovwAZEUGoU2jsJpcWWNCm0qNdNYhn5qUiSHwxm8XjcnD9BB6OtPwKtd5eAdEd7gK1LGkWro+93qMxbRk1i28zanTMj5+P/Nh8r48/WNWNJZuOoaJDjbfvysE7q3IhETqbLLMAexr2OGXFmeDNZz8zaiZWZayi3S/iicDn2Gd5T3Wewltn3vJKaIeFxZfMTArFTRnh+PBoHdQ6ej9PlkvHkMmM0429bNmjA6tZD0AWH+A2UCNJsgBAr6uXAAgghlMUkt9fy9q0ewhJkviuuBXL3yuCvH8I/3hkBv6ybAKWZUehTq6F1mD/gLIGDhVtGizeeAxnW/rw5p3Z+PvduQjwoy6184aRIggPXZeIOSlS/M+eKrT2DqsFnmjoQbWyDUmJNVAbqVeRrH5sFpLEfhcKXslByUgOSsafvj+H574txYToQOxbn49bJlKXjE2ND8XAoBFlbRcFPsykGRc6NYgMEmERxXHZCUZYRBX4+bzr7J4jmaGZeG7qcwgROpd2AoDRYnRSUJTr5Pjmwjfo0lKXfAYJgpAYmOg2u3dX+l14cMKDHl3vSNRDanxU+hGqe6u9HmMkg0Yz/uvHSjz+rzOICRZhz7NzsXJarPsDr2GYmps7wuPwXJYjflT6EY60HPFozMcmPYYVqSvstrGqjyzjmQ0LM9E/ZMInBe5FqVh8z9mWPuiNZrbs0QGJkIdnfvcALKxjPQBZxoaxeCq/DyALQAeAcgDrSdJLHeprlP5BI9ZvLcVL359Dblww9q3Px02ZMgDAsuxoWCwE6uT2svCR/pFYkbICb+9vg1jAtfVujXVfEIfg2DyWOBwCb9yZDYIg8MdtZbBYSHxa0IBgMQ9JYf60K/+JQYm4M3MJUmUS7C6jD9Q6BjrwY+UFbC1uxeq5Sfjm8dmIDqb33cqNCwWHQ2JP2cWSsmY5ia6uRDw4I4tS4TIzKghiARf7yj0rQ+Nz+QgSBtEaaf/a+iveKXnHbpvWqEWNqsbJv8xKljQLD098GCKea28xAVcAP5735SUW0gK5Xg69yb6/8JOyT/Bj/Y8ejVWvGMAdHx7HP4834dG8ROx4ag6Sw5lLM1+rEIRzXxgT7s+6H/dl3Ue7v9/Y7/T92t+4H19UfuHReSykBQQINlDzEe5aCFhcMyE6ECtyovF5USO6NcyrIUiSxJcnm20Li1cDTUotvjnd4v6FPqSoTgkuh8Cs5NDLeh3jkft+9wB8fT/rAcgyNozFU3khgFIA0QByAbxPEEQg1QsJgniCIIgzBEGcUSiYGxtfzZS19mHppkL8VN6JP96Sjq/WzEJE4MVJeWZkACICRahT2CsJBQmD0K+OQU2XAevmp9l6t8YaRzXD2BAx/mP5BJxq7MVffqjA0WoFlmdHgsuhn+TFSGIwJ2YObs2JQ3FzL7rU1A/a3fW78dHpHxARKMTLizLdWgmEiQOQEBKGPec6bTfErSdV8Dfn4qFZEymP4XG4iA8Vo7BOAc0g8zKajoEOFLQVwGCmVq6kkl937CP0luKuYvzW/ZvXx9P1wg2Zh9yWXY7k+5I2LH+vEJ1qPbY8PB3/uXwihDzWIJkJ3mbUvBl3wDiAfgO98tiRliM42nLUbtto+yBZ3PJPuG4hYHHDCzdnwGQm8d6RWsbHNCi1eHVXBf686+qJjz/8pQ6v7Ci3iXlcDgrrlMiJDULgGFbvXC2M9ADcV+FaQI2FhQlj8WR+FMAOcpg6AI0AKFUlSJLcTJLkdJIkp4eHh4/Bqa9crNmolR8dh9lC4tsnZuOZeWlOpsAEQWBlxlK01N1kt5I4YBjAewUnEB7Aw4pc35lAZodlI9rffvy7psViQZYM/z7VAhGfi0WTIgDQByRD5iEo9UosmRwBkgR+KqfOqnVqdKiXa/HInCQIeO6/mvmx+Xgy50l0aQZR0qJCg2IAP1d14J6ZMogE1MdzOVzES8UwmM34ubLb7TmstPW34WjrUZgs1FW9XIILEqR9v9yIPkIqqnursem3TegbdN14fE5xDpU9lYyvleraAGd1SXcy7lYGhkx44dtSvLitDJNjgrBv/fWYnxXh9fVci9CpgrrjQNMBHG8/7nJcT/3xWjQtTj5qFrCBmi9h0ELA4oZ4qRj3zYrH1tOtaFJqGR1jDWYKahQ4Xn/ll6KRJInC2uH38cb+y9MHpRk0oqy1j+1Pc4HVA/Ctn6tZD0CWUTMWT+YWAPMBgCCICAAZABrGYNyrFuXAEB77ohj/b+95LMiKwN51+ZieSF9CcGtOHEiSg59G+JgdrCtDWf8PuHd2uE+zGkuSlzipyhEEgdfumIyIQCEeyUuEvx/Htp2KCmUFPij9AOFBJLJjg7DlWANlNqukuQcCLg/3zYpnfH3zsyIg5HGwp6wDWwobIRB1Qy3eAaWe+qHMITgI8xciKkiIPeeYlz9agxy690jlVWYL1Gh+ZkaLEaohFUyk65bO0WY7rMc6PtSZjFvRrsayTcewq7Qdzy9Ix78fn82qfHnB4qTFWJCwwOPj6vvq0TZA7yFFZ7Tu6nOl8vxLDU7FTXE3eXx9LCyXkmfmpYLP5eDtg8wk0AtrlYgO8kN0kB9e3199xQs8NPXo0KEexPSEEJS1qbH/MmRsTtb3wEKysvyuGOkBuL2E9QBkGR1M5Pm/AXACQAZBEG0EQawmCGItQRBrf3/J3wDMIQiiHMBhAC+TJHnlL135iKI6JRZvPIbj9T34222T8NEDU+2UCakw89qREF9jF1j8WNYGHofAqmmJPr5iamQBfih46Sa8tDADGaEZeCb3GQQLqZUmrav7JEniv2+diC7NIP66u8ruNe19etTKNZiZFIYgEbNyinJFOb6v+xo3ZYRh97lObC9pw02ZYRAJuLQT1QnSCdgwYwOWT05BYa3SrQm3FXfm1SPfoxUeh4dQv1D3Pmo+Vn3kcXhIDkpGgCCA8bgkSWJLYSNu/7AIQyYLtj5xHdYvcM74sjAjWhI95j5qAJAeko4YSYzdNgtpoe2lBKjl+ZOCknBd9HUeXx/L2MK2B7hGFuCH1XOTsLusAxXtapevNZktONHQg+vTw/HcgnSUtfbhgAdVFOMRq0DF/63MRqpMgjd/robpEmdsiuqUEPG5lJ6pLBexegD+/VANBo2smi6L9zBRfbyXJMkokiT5JEnGkiS5hSTJj0mS/Pj3/R0kSd5CkuRkkiQnkST5le8v+8rDZLbgzQMX8MCWUwgS8fHD03l4cHYCI/GP9oF2REa047eWPrSpdOhU61FUJ0eqTIIQ/9GZWbvj/bPvY1fdLsp9Qh4XBEFAyBVCKpKCx6GWZh9p7DwlPgRP3ZiK7SVtOFh18aH5j8JGACRuSJcxvja1QY0mTROW5kSiV2vAkMmC5TnDk2G6yS2fw4eYL8atObEwWUjsd2PCbcWagaAKANV6I+ID4zEvbp7d55kSnIJnpzyLMJHzyqNab7Rdoy991HQGE0Dy8OCEB5ElzbLblx2WjbiAOKdjerUGrPniDP62pwo3pMuwd10+ZiaxTeOjoUndhDpVncfHufNRW5S0CDOjZtptiwuIQ2JgIu0xHILjtDgwYBhwW4LL4nvY9gD3PHFDMoLFfLx5wLWKbXm7Gv2DJuSlhuGOqTFICffHW5chsBlLimqViAkWISXcH3+8JQMNCi2+/+3SZmwK65SYlRzKqD3hWsbOA/B40+W+HJYrGPaXdgloU+lw9+aT+OBoPe6aFosfn8lDVhSl3golXIKL+FARABI/nevEP4qaQBIkMiICfN5XQoJ0m/HpHOhEUXsRrdCGY0Cybn4asqIC8cqOcvRqDVDrjfjmdAvmRi7EwuS5jK/N+t7z06QIEPKwIEuG6BA/u32OKHQKHG4+jLgwIDnMH18cb4LB5P7BTSUMYu3dmvLXn6FQSZAfm08brFoxmi34333nkfPfP6OgZnh11Kqq6erc3mTUdpd1YNb/O4xXaRrpFyUtwuTwyXbbTtT3YPHGAhyrVeK/b52ITx+ahhB/1hZxtBR1FOFo61H3L3SAaR/hSK6Pvd5lmaWEL4FEYC8+dLjlMP5R+Q+Pr4+F5VIT6MfHUzem4NcaBU7U99C+ztqfNidFCh6Xgw0LM1AnH8COs55Zs4wXzBYSx+uVmJsaBoIgsHBiBHLjgvH3Q7WXLGPTqdajXqFl+9MYYvMA/KUeaj3rAcjiHWyg5mP2V3RiycZjqO7qx6Z7p+CNO3MgFnhmCkwQBCR+PGTHBmJ7SRv+faoFM5NC4O/H83mgxkStrrW/FYdaDtEKbTj2bwl4HLyzKgdqvQF/2VWOf59qgdZgxnM35CNKEsX42qzvXcADdjw1B2/dlWMLKun+Lr2DvSjsKITWqMXLizNxoasf7x91n+nIi8nDhukbbO+lol2N5e8VYldpO7gcAttKGtE32GeXHatV1eKLyi8wYBgAALT26nDXxyfwya8NEPI4OFylQUZIBoRc11nRp3Kfwu1pt7v/g/yO3mDGn74/h2e/OQuD2YLd59rxdvG7Lg2XTWYL3jlYg/s+Owl/AQ87n56Dh+e493hjYYa3qo8SvgRiPrWRPAB8UfkFvqv+zqMxl6csx/1Z99tt83YxgIUZVC0El/uarmQeui4RUUF+eOMAvaBGYZ0SE6ICIZUM318XToxETlww/n7wyixFq2hXQzNoQl7acJBkzdh0qgfx5YnmS3INRXXDgTHbn8acDQszodYbsZn1AGTxEjZQ8xGDRjP+sqsca7/6DUlh/vhp3VzcmuOdOqN1ArVkcgRq5QMYGDLhyevycXfG3eBzfCuPy0StzlVZIABE+UdhadJSBAouZhGzogLx/M3p2FvehY2Ha5CXKoVQLIdCx7wvY2SmLi0iAMFiAWIDYjEvbh5t8DNSAXHhxEjcMSUGHxytQ1mr67IvHocHMV8MkiTxeWEj7vjwOPQGM755fDZumRiJ/bXF+Pv/z955R7dxXVt/z6CQAEiCvfeuQonqlZIsq9tyt1xkx+W5y0XPLbGTl/etJC+JHXfLvSpusdziSFaxLKtRvRdKpNh7AzsIkCgz3x8UQAAEZi5IEBTE+1tLa4mYuXcuUYh75pyz97HX7GTROw2dqOisAAcOm07XYcXre1HarMXbqyfj3rkpOFLCY3H89U5LI21hGZY4IC9s6MQ16/Lx9dFqPLIgDR/8Zip0Bg7nGxsH+Kj96cCfsKt6F+ra9bj9g0N4Y0cxbpgUj42PzcW4WDXR9ShkOFNnJOH+CfdjcdJil8dNnGlAJvuzc5/h2wvfunUdjudoUD6MOGshGOk1+TL+MgnWLsrAiap2uxJ6CzqDCccr2zE3o/9va19gk4W6jh58ftA7gY0nybfJEFqYlRaGeZkReGtXiVt2MwBwvr4T3b3CQlYD1lDcjPAAObKiAsVPpgC46AGYG4uP8yvQ5IYHIIVigQZqw0BJUxeue2sfPj9YhQfmpeKbh2YjKUw16PkkrAQSpl8Gf1ZqGOamJiM7NHvYM2rOFOIcEfMLC/EPwdToqQMyAw/kpWJSYjB6jBzuz0vFtxe+xfEmcr8wlUyFKGWU3QYzWhWNvPg8yCXOy/UsUvmWNf/vNeMQEeCHp745JXiXtai1CDurduLvWwrxp03nMC8zHFueyMOM1DCsnBCDDr0ZjV29dptxy/+/OVKLR788gfSoAGx+PA8rcmKwckIszIQ9cr9U/oKzGmEfIJ7n8fnBSly7bh/a9UZ8du8MPLssG3PSwxEe4IeqVv2AtfHg0dVjwtVv5qOgrgOv3jIRL6+aCJWfexlfijjO1Bk9gbPPp96kh5FzvWnbX7cf3xd/b/fYUAVrKBRvc+PkeKRGqPCPbUUwOxgLH6log8HMDcj8zE4LR15GON7aWYIuNwObkWZfiQZjYoIQHmB/E/LZpVlo1xnx/m5yse3OHiOufWsfnv/hDPEYnuexr7QFs9LCwVJRKbd4cnEmjGYOb7jhAUihWKCBmgfheR5fH6nC1W/mo7mrF5/cMw3Prxgz5KbbmTEz8YeZf0ByWDBeuyUXf7l+PDR6zaDECdxlfNh4ZIZkCp4jJl3fa+5FvbYeveZeu8elEhbv3jEFL908EfMzI9zeLI4NG4uHJj4Elaw/CNab9GjraXOZBbRI5VvWrFbI8OJNE1DSpMVLAs3p5Z3l2F19AJ/ur8B1ubH44DdTrb1bC7IioZRJUdmiGyDPz3E83t9TjunJodjw4CwkhPYFq2NiApEU1YsPz76Bsg7hL9gTTSdQ1Vnl8niHzohHvjiOP/z7LGakhmHz43nWO8kSlsFVOdGoaetFt6F/Y2IJGnaeb0abzoAND83C9ZPiBddBGTyDzaj9q/BfONF0QnBex/e6mTe7tIQAAI1eg4rOCrvHqOE1xdeQSlg8syQLxU1a/ODQd7avRAO5hMW05IHKhM8uzUabzogP9viOi5DeYMbRijbMTQ8bcGx8nBpXT4jBR/nlaO7qdTJ6IIfKWmEwcfjxZB0K6oTVMy1caNSiuasXebTs0W2SwlS4bbp7HoAUigX6zewhOnuMQrYIIQAAIABJREFUePxfJ/Hb785gSlIItjyRhyuyyBUMSbluUhzSIgJwqvkUvir8yuPzOzI7bjamRk8VPEdMur5OW4f3z7yPeu1Ao+uoIH/cNCUeDMOIKtyRcLThKN448YbLLKAzGf15mRG4Y2YiPtpXjoNlzpvTOY5DYX0Xek0cHl2YbheU+sskmJESjupWHXpN/dc182ZUtujQ2GnAw1ekQSbp/90YhsGV2ZGo72pHY6fwH26O51yaZh+rbMWKN/Zi+7lGPL8iG5/ePQ0RgfZ3XK+eGAuzGThV0++3y/EcTGYeOwo1WDQmipY6DjMLEhbg1uxb3R5X0l6CVr1rn2RnGTWe512+XyxjOM4+aJwSNQV5cXlur49CGUmWjY/GhHg1Xt1+we5vb36xBpOTgp32g+fEq3HVhBh86EZgM9IcrWx1miG08NSSLBjMHNYRZmz2lWjgL2OhVoirZ1qwlF7OyaCB2mB47KIH4CuEHoAUigUaqHmAU9XtuPqNfGw+U49nlmbhn/fOQGSQ50yBKzsr8UPxD9AZddbHvHUH3MyZXYqEWJgVOwtPTXnKZUaNRIae53lwcO93KmsvwwenP0BbT5v1MbEyzPjAePx+xu+Rqk61e/y55WOQEKLE09+cgtZJ3X6P0YTz9VosGhOJ9MiB9fnzMiJhMHM4VNbfY6eUKnGhToLMSDUWZA6U2l48NgY8gD3Fwt4+HM8NyJCYOR5v7SzBqvcOgmWBbx+ejQfmpTktSZmSGIJANhEFNkk5M29GmUYLbY8ZD85LHTCG4llC/EMQqXT/xo1Y71hGSMaAjLdYRk3CSAYojWaEZGBc+Di310ehjCQWQY3adj2+ONj3B65F24tz9Z2CyoRPLc5Er4nDWwRCUpcC+SUayCSMS5uUlHAVbpmWgC8PV6GqRef0HMf5ZqSE4eEFadhV1OzyBqUt+0o0SAlXIS5Y4fb6KUBkkD/unZuM/5wiz2JSKAAN1IYEx/F4b3cpbnxnP8wcjw0PzsSaK9I9bgrc1tOG05rTdqWDZt4saGrrKb4s/BLrC9YLniOXyAfIfdviqProDEuA5U6g1mPuQV13nZ2YAsdzYMC43NwyDAMpKx1wXOUnxcurJqK2XY//++n8gHGHKjTQG3jcn+c8qFmWnQ15zyTsOm8jJtIeh7qKubg/L93petIjghCslGFvcZPg7+lYEtrU1YPffHwI/9hWhOXjo/HT43nITXBuNg4ALMvguvTrcPxCCDp0F8sfeRallTHIjkjElCRqXDrcVHdW42TTSbfG8DwPHrxgOfDMmJnIi7fPhGWHZiMpKMnlGIZhBtw00eg1aNGLb9YolEuNOenhmJsejnU7S6DtNWF/qbgyYWpEAFZNTcAXhypR3Soe2Iw0+0o0mJwYIqgY/cSVGWAZBq/+IpyxaejoQUmTFnPTw3H37GREBfnhxa2u1TOBPluZg2UtmOOk9JJCzgPz0tzKYlIoAA3UBk1zVy/u/vQI/ralEIvGRGHz43mYkjQ8psCW4MVODILzTkaNpLemuK0Ye2r2uDxOklFjGRZ3jb0LE8InEK/N2bximcYuQxe2lG9xWoY5LTkU9+el4qvDVdhV1B88mTkeuy80IipI4fKOZlRAOJan5+HX851WUZL395QhKsgP1+bGOR3DMAySQpU4V9+Buna903Msv6clKN99oRkrXt+LY5VteOHGHLx52yQE+Ysrf149MRZGM49t5/rES3YWtqKhPhuP5c2ian9eoKClANsqtrk1RkxN1YLjBmtx0mLBcuUgedAApdFNpZuwqWyTW+ujUC4VnlmahdZuAz7cW4Z9JRoE+kuREydczm0NbC7xUrTWbgMK6oQzhEBfG8E9c1Lw75O1OF/f6fI8i7/cnPTwi+qZmThe1Y5fzru+YXiyuh06g5n6pw0RtaLPA5A0i0mhADRQGxT5xRosf30vDpa14M/Xjcc7d0yGWjl8MvlOAxJ4x/eIRK2utL1U0KPLWaDpCMMwSFYnI9jfdWbI2RjA3jBazCC419yLww2H0dLj/I/kk4szkRkVgN9+d9qafdp+rgENtTl4dvpal0GNwWzA3Gw5tIYe7CpqRkFdBw7UHcKEccddiskopAosSp0G3qzET6cHBo4WnpvxHBYkLMBL24pw18eHEabyw8ZH5+KWaYnEQdbhtg2Iij2LTafrwfM83t1TiqQwGa4c4/k+SspASNRTHeHBI0IRYSeW48j3xd/jrZNvuTXv7NjZuC/nPrvHBmOsTaFcKkxMCMby8dH4YE8Zfi1swqzUPpNrIaLV/rh7TjJ+OFmLwgbXgc1Ic6C0BTxP1hv28Pw0BPpJBYWx9pVoEKaSIzu6r4T/5inxSA1X4R/bCgeoZ1rIL9aAZYBZqTRQGyp3EWYxKRQL9JvZDYxmDi9uLcSdHx+CWiHFj2vm4M6ZScOekbBsoGw3ejNjZuKmzJuG9bqWa4sFamKbPLWfGtenX4/YANc+ckbOiDPNZ9wqv7IGsDbCCGNCx2BJ0hKXY5w9l7b4yyR4+eZctGgN+N//9Eniv7+nDAmhSqzIcb3+Om0djnd8jZAgLTadrsOHe8vh79eD2HDXzeoqmQoPTL4N4yPTsPF0netfFH13NNftLMENk+Lw46NzkOGmj43BbEBOvAr7SjT4+VwjztTVISFjO861Csv+UzzDYOT5ZawMj+Q+gslRk12ew2BgGePLR1/G1oqtbl2Lqj5SfJ2nlmRBbzSjqavXzj9NiIfnpyFAJLDxJCYz5/bmPL9Eg0A/KSaIZAgBQK2U4aEFadhR2IQjFQNFiHieR36JBrPT+yX2pRIWTy3JwoVGLf7toJ5pYV+JBjnxwcN6Q3q0QJrFpFAs0G9mQqpbdVj13gG8vasUq6YkYONjczEmJkh8oAeQslIopfYeZOGKcME+FE9B6qMmlN1TSBWYEDEBaj/XXzS9pl58X/K9qFS947yJgYmQSfq/PBKCEgTLviwiC0Kb5px4NR5dmI5/n6zD//10Dser2rFkcjf21+W7HCNhJGBYBnkZYfjlfCM2nqrDnPQwKGQEZYkTYnC6pgOVLQPVH42cET8U/4DXdu9BoL8Uf7puPPxl7mdSJYwE4+MCYeZ4PL3hFNQKCVLDVYKiExTP4awvzBM4+3wKeagBwMmmk/jwzIcDSoapjxrFl0mPDMDNUxIACPen2RKslOOh+Wn45XwTjjoJbDxJj9GMmX/bgXfd8DsD+oKkGQQZQgv3zE5BZKAfXtgyMGNT0qTtC2Qdes2Wj49GTpwarzioZwJAV48RJ6rbnVoDUAYHSRaTQrFAd2kEbD5TjxVv7EVJoxZv3jYJL9w0QbCp19NkhGTgmWnPIFoVbX2surMaxW3Db56YHZqNKVFTBM8RU6YzckZUdFSgy9Dl8hzLZtOdzWJsQCzuGX+P3fPS0duBZl2zyzGOhteuWHNFOnLi1PhgbzmClTIkRLejsLXQ5fmW339eZhh6jBx4APOywsDA9fOiM+rw10N/RUJsXzZtk5PyRxNnwv6a48gvL8PqGUkIGKQZNcuwiAqSIzVCha5eE26aGgeJhBGUcad4DgkjAQ/erWBNZ9Th47Mfo6jV9d1+ZxlvMyfsR6g1alGrrR3g+UczahRf539WjsUn90xDWoRrcStH7p2TgohAP7wwzKVoRyvaoNEasO7XYrRoyWwBqlp0qGrVIc8NSXyFXILHr8zA0co27Cyyz9jk2/Sn2cKyDJ5dloXadj2+PGTv2Xm4vBVmjicOfinikGQxKRQL9JtZgB6jGc//cAaPfHEcqREB+OnxPKyc6Lr8zZscbDiInyt/HvbrjA8fj1mxswTPEbsbrzPqsP7cesHAcjCqj87YVb0Ln5//3OVxCSPp2zSLfCHLJCxeWTURKrkE9+elQsoygmuz/P5jYwOREKrAdblxCFZKBZ8XlmFh5IwIUUkxLTkE/zxQ0a/KeBGe51HY0AUJI8E9c5IF1ywEy7DgwOHGyfEI9JPihskxfY/TPwFeYVr0NDya+6hg4O6IkTOiuqsaOpNrVTpngRoPYT9CZ1nlhYkLMT16OvHaKJRLkQA/qdv+pZbA5khFG3YVub7JN1TySzSQsgz0RjPe2llKNGZfqfPASoxbpiUgOUyJF7cWgbPJ2Owr0SA5TIn4EOWAMXPTwzE7LQzrfi2xs6jJv+i5NjmRqgN7EqEsJoViC92lueBCYxeuXbcPXx6qwoPzU/HNg7OQGDbwj5s3aNI1YUPRBjR0N1gf85bqo8FssPNvc8Y1adfg4YkPuzxuCVY8Lc/frGvGWyffQnlHud08QsGRSqbCH2b+QdTEGwAyogJx6PeL8MiCNNE+PGtGkeGw+fE8/O2GHIT6hyIxKNHlGFuRlT9ePc6uL85CS7ceZc1azEmPRNQQvPmyQrOQok7BQ/PTkP/bhQi+2GtAsyjeQSlTIkwR5lY/q+UzIRTcpahT7DLePM+L+qhZsqhmrv/zmBWahWR1MvHaKJTLiVunJSApTIkXthbaBTaeZF+JBpOTQnDzlAR8frASNW1kfmfRQf5Ii3AtKOQM2cWMTWFDF3481Zex6ZPYb3UZ9DEMg2eXZaOl24CP9vZ/p+4r0WBacuigSu4prmHZgR6AFIoz6C7NAZ7n8a/DVbhmXT5aunux/t7peG75GJfKfd6gx9SD863n7Q2vMdAEeTjYXrkdb598W/AcCSux6xNzxBIMCGWxxIyqnWHmzdDoNegx9djN40lxlwC/Ps81nhfOUqj91Lgm7RrEqmIR6C+DXMpiduxsrMpa5XKMbaBm2xe35Ux/CeSGo1UwcTyunRg/pN9jXvw8zI6dDQnLQK2UQSVTYV7cPIQpaN+BN2jobsD+2v2i/WO2kJQDjw0bi4WJC+0emxE9A/GBrt8vlvl49H8eq7uqqY8aZdRiG9j855SwsNNgaOs24GxdB+amh+OJRRkAA7z2i3DrAsfx2F+iwZz08EF9p12VE4NxsUF4+ecLMJg4nK5ph7bXJCixn5sQjGXjovHB3jK0aHvR1NmDC41aKss/TMzNCMec9DCrByCF4gwaqNnQ2WPEY1+dwO++P4OpSaHY/EQe5mdGjPSynCoVcjznFcNrEjGRY43HsL92v+AcgHBGLdg/GPfn3I8UdQrx2pzZFjiaQzti5sz4d8m/Bft+nGExynaFQqrApMhJbtkLOK7f0hf3+3+fRXNXL3qMZnx5uAoJwcFIixBX/HIHtZ8aVyReMcBPizI8VHVWYXvVdhjN5IEaSZbZzJnRa+7vd2EYBstSliEjJMPlmEB5IBICE+wydd8UfYP9da4/wxTK5c7VOTEYGxOEl7cXwWDyrPDPgbKLEvvp4YgNVuCuWUn4/ngNLjS67ts+V9+JNp3Rrf40W/r6zrJR06bHV4erkF/cAoYBZqUJ35x7emkmdAYT3t5VOujSSwo5zy7NtnoAUijOoIHaRU5UteGqN/Ziy9kGPLM0C/+8dzoiAwdfauZJnAYknHd8j0jk+QtbC1HQUuDyOInhtYyVITYgFkoZeXmp5S6jO6IIDMPgVPMpNOoaia8DAHeNuwurx6x2edzEmVDdVQ2tQWt9bGv5Vnxx/gvBtUyJmmIVQ7H0xWl7TXj+hzP44UQtWjql+NPc5zA+fLxb63Xkq8Kv8NGZj+zWqzVo7crfKMMHyc0KRySMBHEBcYKfid01u/HC4ResP/M8DyNnFMxeZ4dm497x99rNS33UKKMdi6BGdase/zri2VK0/BINAvykmBjfd8PtkQXpUMmFbQEswh+zh6C2OC8jHDNTQ/Hmr8X45XwjcuLUCFbKBcekRwbipinx+OxAJb49VoMQpQxjvaRwPRqx9QAkFZmhjC5G/Tczx/F4d3cpbn73ADgO2PDgLKy5It3qMXIp4CwgWZG6AitTVw77tSWMhEieX1Bog5Xg1qxbkR2a7fIcrUGLY43H0NHb4dbaLNe3MCNmBq5IuMLlGEsWwdNS6d3G7j6Fvrb+L95OQyc6e4WNVK9OvRpZoVnWnzOiAvHMkixsP9eI//vpPMbHBYneASWB5+0VBys7K/HysZdRp/V8mQ9lIJbstzvvuzBFGO7LuU8wy2xRk7QEZj3mHvz10F9xqOGQW+uj8vwUCjA/MwIzUkLxxo4SdHuwFG1fiQYzbST2Q1RyPDAvFT+fa8TxqjaXY7KiAod0w9jSd6bRGnCmtoM4M/bEokyAAfaVtNh5rlGGB4sHIKnIDGV0MaoDteauXtz1yWH8fUshFo+NwuYn8jAl6dJTNpKxMgT7BduV3oUrwhGhHP6yTJZhRRUSxTZ5LMMiKzRLsB+qtacVm8o2udUnI5fIkR6cjkB5v/lzijrFLvBxhGEYsBAv53Rke+V2HK4/7PK4qzJMsSyFYwAFAPfOTcH05FBoe024fVYYvi76GjVdNW6t1xHHElbL/6k8v3ew7UccjnktrydJr2dJWwnePvk2Wnv6faM83dtJofgi/YFNLz7OLxcfQEB1qw6VLboBPmT3zk1BeIDcqd9Zj9GMw+WuhT/cYXJiCJaMjQIA4l6zuGAFfjMzya0xlMFj8QAkFZmhjC5G7S5tb3Ezlr++F4fLW/GX68bj7dWToVaImxOPBGGKMDwx+QlkhmRaHzvfch6l7cN/9yUtOA0LExeKCoGIbfKK24oF/c0Go/qokqmwesxqpAWnWR9r6G5Ak65JYBRZOacjRa1FqOpyXQ7jbCNO0kf44pEX8XOFvc2ChGXw5u2T8P9WjsXcjCAUtRWh2zjQDNsdHH9ny+tJsyjewSL8484NgjptHd499S5qta59dhzfd9YAXOBzZOAMaNY32/XLifV2UiijhSlJIVg8Ngrv7ylDW7dhyPPtu1jCONeh10zlJ8VjCzNwqLwVe4o1dseOV7ah18RhboZnxJ7+uHIsHpyfiukpocRjHluYgfvmpmBFToxH1kARhlRkhjL6GHWBmtHM4e9bCnHnR4cRopThP4/OxR0zk3zubvKemj043OA6w+MpkoKSMCdujujzIyS0AQBfF32NU82nXB73lI/a1vKt2FK+RfAclUzl9qZULGtoCcjcNRF2JdYSFeSPu+ekgGE9E1A5lrBa/u+Orxdl8GSHZuPJKU8i1J98o9Rj7kGjrlFQgMQxUOM48YyaM9XHmzNvxoSICcRro1AuZ55ZmgWtwYR3dg/9Zmh+iQZRQX5OTbhvm56I+BAFXthibwtg8VybnuKZQC0+RInnlo+BTEL+/apWyvCHq8desjewLzdIRWYoo49RFahVt+qw6r0DeHd3KW6bnoj/PDoXWdGB4gNHGJ1Rh8/OfWanVOitnpIeUw9ae1oFM2r3jL9HUGgDEO91I8kEONJr7sWrx17F0YajdvOIzbF2ytoBkuZiiM1ryZjYPk+xAbFIDHTtowaIZ/esAewQSxTTgtMwIbx/I24tkfOCcigFkElkCJQHuvX+Jsl6xgfGY378/P7SW1z0XhO4seKs5zUrNAuRSveMgimUy5XMqEDcMCken+6vQH2HftDzcByP/aUtLiX25VIWTy3JxLn6TmyysWXZV6LBpMRgBPgJ3wClXF6QiMxQRh+jJlD76XQ9Vry+FyWNWqy7fRL+dkMOFHLf2KRyPIeyjjJ0GvqFKTh4x/D6RNMJvHniTTsJ8MEg1us2mIwaAwadhk67tZFksQaDmI+ahJXgpsyb7Prjrky8EouSFgnOKxaoWQPYIX5UcyNzMT9hvvXnKGUUFiUuglI6Mibuo40WfQt2Ve9ySyyHpI8wITABCxIWWH0M/SX+mBs3F1HKKJdjrEHdxewbx3Moai2y61mjUEY7axdlADzw+hBK0c43dKK12yDY53XNxDhkRwfi5Z+LYDRz6NAZcdoN4Q/K5QOJyAxl9HHZB2p6gxnPfX8Ga748jrTIAGx+Ig9XT4gd6WW5hbP+JzPnnZ4SEmn9HVU77LJazhDzY0tRp2BN7hq3BFKcSZ6T9NpsLN0oKAziDH+pP/ylrtW3WIbFuLBxbvuSSRiJ4HMrZaQI8QuBXCIsqSwGx3N2ZssRygjMiZvjlh0CZfC09bRhd81uu5stYpBk1IycEV2GLut7SClT4srEK62WD85QyVRID06Hn9QPQN/fkn8V/QvnW84Tr41CudxJCFVi9cxEbDhajZImrfgAJ1j604SCLgnL4JmlWahs0eHrI9U4UKYBz1MRj9FKn8iMn1ORGcro5LIO1C40duHat/Lx1eEqPDQ/Dd88NAsJob63MXUm7e0tlTbLNYSCiXMt51DZWSk4j1hAIpfIEa4Ih4wlr4e39trY/DETy3wBQFlHmaBAgzMeyX0Ei5MWi86r0fc3hX927jP8UPyD4JgpUVMEzYkTgxLx+OTHERswtJsLW8u34tVjr1p/1pv0aNG3eFyFkOIcS1bMnedbIVUgJSgFfhI/l+cUaArwyrFXrJk6M2dGt7EbJs61tHi0Khqrx6y2ljoOpuyYQhkNrLkiHQqZBK9sH1wpWn5JCzIiAxAVJCyxvzA7EtOSQ/D6jmJsP9cElVyCiQnBg7omxbdR+Unx+JXpOFTeit0XXAuwUUYPl+U3M8/z+PJQFVa+mY/WbgP+ee90/G55tluNtJcSlrI3203eb8b9xu0+q8FgCYaEsmEkwdHNmTdjVuwsl8ebdE3YX7cfehN5PwDDMGDA2K1tacpSzI6dLThuMKqPJHx1/iucbDpp/Vlr1MJgFlYNmxM3Z8hm1iSwrP3vfFZzFutOrnPr+aYMHpLPkSOJQYn4zbjfIMTftWWIY1a5QdeAl46+hLKOMuLrkEj6UyijkfAAP9yXl4rNZxpwqrrdrbG9JjMOl7cQlTBabAGau3rx3fEazEwN89n9CmXo3DotEQmhCry4tchOZIYyOrns/hJ06I149MsTeP6HM5ieEorNT+RhXubw+40NJyzDIlIZCYVUYX0s1D8UQfIgr1wbEM4EmHmzqChFQlCCYFlgnbYO2yu3o8fU49b6xoWNsxNBSFWnIj4wXnAMy7BW0QVSNhRtEFSttMw7QPVRRATEYDYIBnMVHRX4Z8E/0d7j3ibBEceMJs2ieBfrzRbOszcIHLPKlvmFehobuxvx6rFXUdbeF8xZ3he+pnxLoXiD+/JSEKqS48VthW6NO17Zjh4jR1zCOC05FFdm932X0f600Y1cyuKpxVk4V9+JjafrRno5lBHmstqlHa9qw4rX92JbQQN+tzwb6++ZjshA4ZIDX0DCSvDwxIcxOWqy9bHD9YdR0VEx7NeOD4zHipQVdkGiIxzPicq8F7cVo6rTtQ/ZYAOHGzNvtMtIlXWUkfmoublhLmwtFDXjdszUkShzri9Yj28ufOPyuNaoRXlnOUy861I2Elg4rI1zX7yFMnispY9u3CAo0BTgjeNvCPa1OWbUSARIePB2IjyWMTSjRqEMJNBfhjVXpGNfSQvyHfzOhNhXooGEZTAjldyS47kV2ZiYEIyl4133mFJGB9dMjEV2dCBe2X4BRjNtURjNXBa7NI7j8c6uUtz87gEwDLDhoVl4aH4aWPbyvUO8o2oHitqGX8I1XBGOadHTBIU05BK5YB8NAPxS+QsO1h90edxT5Vf/Lv43DtUfEjwnSB7klogGz/PgwYuuzdGCgCSAJVV9HKrf2YAgEjRQ8yYxqhj8bvrvkB6cTjymx9yDtl5h5a8BPmoEnyPHMUqZEneOvRPpIeRro1BGE6tnJCIuWIEXt5ELPOSXaJCbEIxAf/K+6/TIQPy4Zg7igl3fGKWMDliWwbPL+kVmKKMXn9+lNXX14K5PDuOFrYVYNi4aPz2eh8mJrns6fJX1BevtlApJ1A09Qa+5Fw3dDYKmu49NegxLkpcIzkPsF+Zm4PDmiTextWKr9WcSH7XVY1ZjZdpK4muQZvtY1t6CIDMkEwmBCYJjxERWSJT/SEhSJ2Fu3Nz+Ejnal+RVWIaFn8TPrfc3yWsUoYzA4sTFCJQH2o0R9PxzCNRkrAyp6lSvlFJTKL6Iv0yCtYsycLqmA1vPNoie36E34nRNOy1hpAyJK7L6RWb0BvL+ZsrlhU8HansuNGPF63txuLwVf7shB+tunwS1gvzulS9Rp62zu7vO87xXekoqOirw3un30KwfmvqQmDz/YAM1o9loF0QOhxE4aVBzffr1mBEzw/rz8pTlmBo9VXAMwzBkPmpDNLxOVadiYeJC63smPTgdK1JW0Iyal+g2dmNbxTbUacn7DUiyqaH+oZgdN9saqIUqQrEwYSHUfmqXYxyFTfQmPc5qzrrl8UahjDZumByPjMgA/OPnIphEStEOlrWAoxL7lCFiKzLzyf7ykV4OZYTwWdv7qi8eh7zoMD6SSZCRGABlgRQoGOlVDR8s0wbu3DYAb4AHD45pg6TwVwCvDO91YQAYLbjC/XD1dvkWWmRDhvFwXf7IorOv2O7gl06PTwGPceDhV3gD4EaZH8O0g+OlwJ53AQAc0wqG3wrsetPlmO3QwQwey6AiugYPHqFMBxSFewGB3zGFeNX9SNAJEwAc+dbpcX8YEAU9pIUHMZT7KkbwMICHEn1KmbEAfMtN0LfphRkHmQ5E8yrECryHbOGgBxg9JIWH4OozYQSPDnAIAgs5GIQCyBOZVw4OY9ANdeE+ADJ0wITvmE6s4gOghhO/vugcYPnfidZMoVyuSFgGTy/NwoOfHcN3x2twy7REl+fuK9FAKZcgl0rsU4aIRWTm3V2lWD09CWrl5ZmMoLjGZ2+nx4b4IyFEgfFxaihlPhtvEiMBYMlHWe7lsUPsWyK77kUfNbiuyz/HGNAM4bS8BBCUUZCDQRBYt3uxHOc1X3xMiAaYUCeyXlv8wOAxPhiTRDbYZTCiGv2iHy8zbdgBneCYCfDDZIF5x0GOh6CGcogf1WPoxUtMO3ouvo4d4NCAoQmUUMixvHrutISHQoJsXib4fm6ACW8xHdb3nQE82mCGWeDzqgKLVQhECmR2a/LZLwMKxUssGRuF3IRgvLq9GD1G19+faSCHAAAgAElEQVQh+SUazEgJhVxKP1WUofP00ix09Zrw9u6SkV4KZQTw2QhHuuJFxK0Y6VV4D/boK+BDMoC0lWB5Hv9t7OoT8BAR8RjydTsqgHPrwY29C1AnDzjO8Rz4g38GG78ASJjvcp6rLUbQLiT6yzrKUN1ZjXnx89wq6WRPrINZFQ1k3gQAuL2jDGq5GlCEuR5z/gtwJj2Qcx/xdUjYdvIdhCnCkJC1CgDQc/D/wMVMBwSMsid4dAWuYesPAxVbwE19GpCpcKBiK042ncTvpv/OSysY3bCGTuDYqzCnXAWIlMNayL74T3BebS1w5kNw2bcDIRkoaj6D70u+x5rcNYJ2GLaYu6qBsx+DvTgHhUJxDsMw+O2ybNz2wUH880AFHpiXNuCcunY9ypq7cft01xk3CsUdxsQE4brcOHy6rwL3zE5BtNr31cwp5NDbPT5CfGA8gv36yigYhkGQPEhUadETiPmokQpthCvCBTeOFR0V2FOzx+2+u7FhY5EclGz9OVWdijCBIM2yVjNHnlHrNnZjfcF6FLcVi8/r6KMm8rzojDp0GbpcHj/ZdBIfnvkQJm6I8vyO6oCc+NoonsPqdyaQ6RoMVn+2i68ridR+r7kXLxx+AUcajvStyUOCNRTKaGBWWhjmZ0bgrZ2l6NAPFNnaV9J3UzIvw7f9WymXFv+9KBMcz+P1HcL7EMrlB92p+QirslYhL76v+8RoNmJX9S7UamuH/bphijBcl34dwpXOgyzSTV5peynOtZxzeZzjuUGJoyxMXGgV7OB4DgWaAmj0wl43YkqLjhjMBlR0VqDb2C08L9s/L8/z4CAubLKlfAs+LfjU5fFOQydqtbVDDqoshuS2G3q6Mfcejn5nJOyp2YNXjgn3oDrOawkEhd4vDBj0mHusIjzU/JxCcY9nlmahQ2/E+3tKBxzLL9EgPMAPmVEBI7AyyuVKYpgSt09PxIaj1Shr1o70cihehH4z+yC95l7srtntloLcYFHJVJgYMdGldDcPHmq5WtBnDQCONBzBnpo9Lo8PJXCwBIsmzoRvi79FUauwv1ywXzBC/MktHEgNgW0tCEg2zJbjQr48lvk84aNmOx8P76iGUvrwl/jjjzP/iJkxM4nH9Jp7oTfqBc9xfF0tmWISeX7L+zo2IBb35dyHmIAY4rVRKKOZ8XFqrJwYi4/zK9DU1WN9nOd57CvRYG56GP37SvE4jy7MgJ+UxcvbL4z0UihehAZqPsLXhV9jS/kWAN69A240G1HVWeUym+Qn8cPaKWsxOWqy4DwkPmqD+X0+OfsJPj//uXUOy7WEWJK8BLdm30p8DdJ5bTN1PM9jStQUxKiEN79itgVm3gwW7JC/9GNUMViUuMgaUJs5mlHzJgzDuP0amnmzNRPqigB5AK5Kucr6PiOxkrAcs5zrJ/FDXECcV0qpKZTLhacWZ8Jo5rDu136Bh6LGLmi0BuqfRhkWIgL98F9zU/DT6XqcqaF2KqMFGqj5CO297WjvbQfg3Z6S9t52fFLwCSo6KoY0j4SRiPqoDeb3YdDvQzZcJs6kgdqy5GVYnrK8bw2sBFenXo0MEXGG4QpgHYlURmJO3BwopAoAwNSoqViWvGzI81LI4HkeG0s3imZ7HceIvfYKqQJTo6da+zITgxKxPHk5ZBLXEs4M02fRYPk8tve041jjMeiMwgqlFAqln+RwFW6ZloAvD1WhsqXvRmZ+cV/ZPQ3UKMPF/fNSEayU4cVthSO9FIqXoIGaj2Db/+TNjJpYb023sRufn/scpe0Da/Ud5xEq8VuavBSPTX7M7fXZGkZbywRFMhf5tfn44vwXxNeQMBJEK6OtQY4rolRRiFRGAujbZAv9vrZzCwWwwX7BSAwaunqY0WxEa08rjFxfX1JCUAKyQrOGPC+FnONNx902vGZF/kSbOTPqtHXWjHe0KhrTY6ZDxgp77UyKnGTNwtV112FT2SZ0GjqJ10ahUIDHr8yAVMLglYulaPtKNEiNUCE2WPi7gkIZLEH+MqxZkI69xRrsLxHux6dcHoju9BmG+ZhhmCaGYc66OP4MwzAnL/47yzCMmWGYUM8vdXTjjcyRMxzLpBzpNfeitKMUWqNwc6uEFQ5IpKx0UKVXtoEOaS9Ze2876rX1xNeIUEbgwYkPItmJPYEtZR1l1oyJzqTDnw7+yaqs54rssGwsTFjo8vi06Gm4c+ydxGsVWtubJ95Ek64JANDY3ejWc0AZGgzD9JXGuuGkFh8Qj3Hh4wTP0Zv0+ODMB1ahHq1Bi4buBtGbBCvTVmJM2BgAVPWRQhksUUH+uGdOCn48WYdT1e04VN6KuTSbRhlm7pyVhBi1P17YVkR0Q5ji25CkZD4F4LJGiuf5f/A8n8vzfC6A5wDs5nm+1UPro1zEtv8pXBGO303/nVcyIpbslKsgy1oWKPJWuiLhCtw97m6Xx083n8bemr2DWp/lD5VKpsJ9OfeJPi9iWazBcqT+CH6t/hUAedYzVZ1qVa0cThwD7l+rf8XGso3Dfl1KP7Y3W0jIjcy1ltK6wlFM5FjjMbx3+j231kVVHymUwfPQvDQE+Uux5svj0BnMtOyRMuz4yyRYuygDp6rbsa2gcaSXQxlmRL+ZeZ7fA4A08LoNwFdDWhHFKfGB8YgNiAXQF5z4SfwgZYffr1wso2YN1Fjht1KgPFBQafFC2wWcaj7l9vrGhI7B+PDxAPqycnEBcVDJVIJjxPrCHKnV1uKD0x+gobtBeF62f16OI+tr6zZ2W7NczthRtQPrC9YTr1VobQDssrJ0Y+5dxLLKg50TgF1WmYG4cMnLR1/G5rLNALyboadQLjfUShkeuSIdNW16sAwwM1XYx5NC8QQ3To5HWoQKL/1cBDNHs2qXMx7bqTEMo0Rf5u07T81J6WdR0iIsTloMoK/5f1vFNlG/ME/gL/XHqsxVSA9Od3qcdJNX0VGBg/UHXR4frJjI5KjJmBU7C0CfefTxxuNo72kXHONuoNZj6kFdd53Vd8oVtllP0izFofpDePfUuy6Pd/Z2WkVkhoLlubVu6DkzDdS8jL/E3633+HcXvsN7p4SzY5bX0JJVJhEgseBYMkzlxCmUwXHXrGREBfkhNyEYaoVwfyiF4gmkEhbPLM1CSZMW3x2vGenlUIYRT+7UVgLYJ1T2yDDMAwzDHGUY5mhzc7MHLz266DR04mD9QXT2Dn/zv5SVYkzYGJfZMJZhEaGIgL9E2EetuL0Yv1b96vK4mR9c4GDiTDCYDQD6npeNZRtR3y3cexXiF4L4wHjia1iDLpGsoW1pm8VHTWxjLmEk4OFaeIQH+cZbCEtpqiXTN9jAmDJ41k5Za73ZQoKZN4v2tFleV9ugi+R1tb1ZMTZsLNbkrkGAjBr0DicMwyxjGKaIYZgShmF+N9LroXgOhVyCrx+YhddvnTTSS6GMIpaOi8bEeDVe234BPUbPt3NQLg08GajdCpGyR57n3+d5firP81MjIiI8eOnLn42lG/HPgn8CIFc39AQcz6GkrQQt+hanxyOVkXgk9xFRoQ0WwyNDv7F0ozUjRSqjPzV6Ku4adxfxNUjFFmxL2/wl/pgdOxvhCuF+BTFVzcEGsI6E+IdgRcoKRCgjPDovZfggUX1kGRbXp1+P7NBsAOSfI9vsr0KqQLgiXNSzjTJ4GIaRAHgLwHIAYwHcxjDM2JFdFcWTJIerkBCqHOllUEYRDMPgt8uyUdfRg88PVo70cijDhEd2agzDqAHMB/CjJ+ajDERv0luVFb3ZU8LzPL4o/AIFLQVDmsdi7Owyc+RGyZazeYHhE0UgnXd+/Hz8ZuxvAPQZES9OWoxoVbTgGLEewME+L44EyAMwLXoa1H5qAMDipMVYkLBgyPNSyNlavhWH6w8Tn8/xnGjwxDAMJkRMsNpC5ETk4KrUq0Tnts2o1WprcaDuAEyciXhtFLeZDqCE5/kynucNAP4F4NoRXhOFQvFxZqeHIy8jHG/tLEFXj3B7BsU3EVWjYBjmKwALAIQzDFMD4H8ByACA53lLc831AH7meb57mNY56nEmQ++NjJqjqpwjddo6bK3YihUpKwSDEsuGkwcPBgPXfcfYOwYlM2u74STNfJ1oOoEDdQdw/4T7Rf2mgL4+vaTAJMhZueB5liAI6Hu+DGYD5BK5YKAlpqoZrYr2SEmakTOiRd8CtZ8aCqnCI95sFPcobi9GrCoW02OmE51P2kdY1VkFlUyFMEUY4gLiEBcQJzpmYsREBMoDAfT1j/5S9QumRg2/+ugoJg5Atc3PNQBmCA0oKirCggUL7B5btWoVHnnkEeh0OqxYsWLAmLvvvht33303NBoNbrrppgHHH374Ydxyyy2orq7GnXcOtP146qmnsHLlShQVFeHBBx8ccPwPf/gDFi1ahJMnT2Lt2rUDjv/1r3/F7NmzsX//fjz//PMDjr/22mvIzc3FL7/8gr/85S8Djr/33nvIysrCxo0b8fLLLw84/tlnnyEhIQFff/013nnnnQHHv/32W4SHh+PTTz/Fp59+OuD45s2boVQq8fbbb2PDhg0Dju/atQsA8NJLL2HTpk12xxQKBbZs2QIA+POf/4wdO3bYHQ8LC8N33/W16D/33HM4cOCA3fH4+Hh8/vnnAIC1a9fi5MmTdsczMzPx/vvvAwAeeOABXLhwwe54bm4uXnvtNQDAHXfcgZoa+76kWbNm4W9/+xsA4MYbb0RLi30VzJVXXon/+Z//AQAsX74cer3e7vjVV1+Np59+GgAGvO8A+t67lN97UmUQ2iY8iA/2lqP510/oe88BX3jvCSEaqPE8fxvBOZ+iT8afMkzYBiTezKgxDCNYtqgz6lDdVW01UnY5D/oDElebz8EEns4CWLHNrd6kR7O+mVhQJFWdilR1quh51Z3VaNA1YFr0NNR21eLjgo9xx5g7kBac5nJMWnAarpFe41LBc178PKI1itHR24H3Tr+HGzNuxPjw8SjvKIe/xB8xATEemZ8ijru2EFmhWUTv0S8Lv8SkyElYmrwUGr0GBrPBqhDrirz4POv/qTy/V3D2x23AnSmGYR4A8AAA+Pm57ytJoVBGH2qFDFflxODDvWVYbKCVEZcbzEiZ5U2dOpU/evToiFzbF/lP6X9Q0l6CJ6c8CaA/e+SNrNpfDv4FM2NmYlHSogHHilqL8K+if+G+nPsE7+T3mnthNBuhkqmcrnlvzV7IJXLMiBG8yTyArRVbcarpFH47/bcwmA3o6O2A2k8NucR19utQ/SFsrdiKZ6Y+A6XMcz0F2yu343D9Yfx+5u9R0VGB9efW486xdxIFecNNa08r3jzxJq5Lvw4TIyZi3Yl1iFZF46bMgXefKMPDO6feQahfKG7JvsWj875w+AVMiJiA5SnL8UPxD6juqsbjkx8XHGPiTODBQ8bKsKt6F3bX7MYfZ/5xWP+eMAxzjOf5UZm2YxhmFoD/x/P80os/PwcAPM//zdUY+h1JoVBIKW3WYsmre3DnzCT8v2vGjfRyKG4i9P1Ib6H6CLGqWGQEZ1h/ZhhxryRPIZQJIFU39JP4IUAe4HLN51vPo7S91O21panTMDt2NgBALpEjQhkhGKQB4uWcjpzVnMW6E+vQbRSu7LXLeoIs6ymWkdxQtAHfXPiGaJ2Ca4P970xVH72Puxk1E2cieo86ZpVJMmPrC9bj68Kv+8eApfL8w8sRABkMw6QwDCNHn/jWf0Z4TRQK5TIhLSIAq6bG44tDlahu1Y30cigehAZqPsLU6KlYmbYSAFDdVY2NpRtFAwdPcWv2rZgSNcXpMdKyqVptLXZV77JK6Tsy2MAhIyTDWsbVom/BwfqDRAEVAFHpcwt6kx4tPc5VL22RMBJw4MDzPLHh9YW2C/j47MfQGrROj2uNWuiNeqfH3IEaXo88KpkKCqmC+PyPznyEr4u+Fj3Pzmid8HW1FeHheZ4GacMMz/MmAI8C2AbgPIANPM8PTaGJQqFQbHj8ygywDINXt18QP5niM9Cdmg/Som/B8abjLoMeT5OiTnEpM6+QKBAXECcqtFGvrcfumt3oMfc4Pc7x3KA2iwazAV2GLgBAo64R2yq2WX92hVquRnpwOnFgSBqMWs2HwVvHkPio2V7DERLlPxIc1SVpoOZ9Vo9Zjeszric+n/Tmha3UvjuBmmVMXnyeaKkkZejwPL+Z5/lMnufTeJ7/v5FeD4VCubyIUStw9+xk/HCyFoUNw++zS/EOdKfmI+yq3oWXj/YpEZH6hXmKotYi1GprnR5LDU7FfTn3Idg/WHAOq+qji55IUqNeRw7UHcArx17py2IRiqykh6Rj9ZjVUMlURNcgzY7ZeqKFKcKwIH6BVVlPbIyrEjdS5T8x/CR+uC79OqSoU6zXo4HapQ0HstdoZepKzIyZCYD8c2Qb3PlJ/BAkDxraYikUCoUy4jy8IA0BflK8tK1opJdC8RCiqo+USwMzb4bepLf+H/CO6iMAbCnfgmR1MuLSxWW/XSFm7CxlpaK9ZWLzDlcAaymRFJt3StQUjA8bDykjRbgiHPMT5ovOLRaoeaqXTMpKMTFiovXnW7JugUJGXoZHGTo7q3bCwBmwNHkp0fmkQXpqcL9Yzbz4eaIKrEBfj6vlPVfUWoTWnlbMip1FtC4KhUKhXJoEK+V4aH4a/rGtCEcrWjE1OXSkl0QZIvSWuo/Aot8w2pKV8lZGhGVYl5mwAk0B3jn1jmhfmJix88MTH7b24LmD7bykGbWSthK8euxVNOuaia4R4hdCVCqpkCoQ7B8MhmGsCpRiYhBigVpacBoSAhOI1ikEz/Oo6qxCR28HACAhKMFlOStleKjrrkN1V7X4iRfhQWZ2XtlZac14JwQmEKmM5oTnIDcyF0Bfn+SB+gMiIygUCoXiC9wzJxkRgX54YWvhoPxpKZcWNFDzEewMoxkGMlbm1UDNVSas29iNJl0T0RwAudIiKbaG0aRG4GbejE5DJ0wcmd/IuPBxWD1mtejz3dDdgD01e2AwG3Cu5RxeO/6aNTByRUxADG7KuAnBfs5LR5ckL/FIpoMHj08KPsGp5lMA+pQsG7obhjwvhRyWYWHmyFUfp0ZNRUZIhuh5W8u3Yk/NHgB9Xn6uypRtmRAxAdOipwHoV32kUCgUiu+jlEvx+JUZOFLRhl1FZDekKZcu9NvZR7A1jJ4WPQ3Pz3ge/lJ/r1zbtp/FEdKywKyQLDw3/TlEKCKcHv9P6X9wsunkoNYG9AWAOeE5WDt5LXFfmDtS6STUamuxs3onesw9VtsCseclSB6EceHjPOrn5gzr++dioPB98fc413JuWK9JsUfoc+SMOXFzMC5M3A9HwvbP+3Plz9hZtVN0TK+515oF53myzB2FQqFQfINbpyUgKUyJF7YWguNoVs2Xod/OPkK0KhqTIidZN9zeRCijZhHaEFU3ZCWQS+Qus13nWs6hQed+hicxKBGLExdDxsogl8ih9lOTqzMSlgTsqdmDN46/IXqeNWvIcdaASGwtepMeZe1l0Bmd+56sO7EOW8q3EK1TCIZh7OwDePDUR83LCH2OnKEz6mA0i/eb2fn3Eaqnbi7bjI/OfASA3HuNQqFQKL6BTMLiycWZKGzowsbTdSO9HMoQoN/OPkJGSAauSbsGUlaKcy3n8H3x916rPb4u/TosTlrs9BipdL1Gr8G2im1o62lzPg83ONXHaFU0ZsfNhlwiR3VnNfbU7BEtaXQ3o6Yz6aAziRtIDkbYRKPT4LPzn6G+u97p8R5Tj8cyfwz6BCRIS0QpniVIHuSyxNUZb5x4A79W/yp6Hov+QI1U9dE2aKTm5xQKhXL5sXJCLMbEBOHlny/AYPJs2wnFe9BAzQdp6G7AWc1Zr220o1RRLoUngv2CkapOFQ1IOg2dOFh/EJ0G594ePPhB9cn0mnuh0Wtg4kyo6qrCzuqd1rJDVwTIAjA2bCyx+TDHkcmk25ZhEnuvscJB42BtC5yuj5VYBWls10vxDkuSl+COsXcQn0+q+ugYdLnro3Z9xvW4N+de4nVRKBQK5dKHZRk8uywLVa06fH2kaqSXQxkkVJ7fRzjeeBybyjZh7ZS1XvfAKm4rBsdzyArNGnAsJyIHORE5onMIGTvzPD/o8qsLrRfwfcn3WJO7pj84Egn4IpQRuDnzZuJrcOCIgkhbwZSkoCQsSVoCGSsTHGN5XlxlR0mV/0i4Pv16BPsFEweRlJGF9HO+JHmJ3RhSHzXL+0DsPUqhUCgU32RBZgRmpITi9R0luHFKPJRyuu33Negr5iMwDAMefF//kwezLCQcqDsAE29yGqiRYtu/5QgPHoHywEGJo1gyUrby/B73UeM563WEyAzJxDNTn4G/1B8swyI2IFZ0jK1IjDM8ZXgNwPr6cTyHB3IeEBVdoXiWg/UHUd5RjtuybxM9l+d5cCALuqJV0db/X5t2LWQS8cCLZfstN442HAUP3qoCSaFQKJTLA4Zh8OyybNz4zn58nF+ORxeKKwlTLi3oLXUfwRroXBSD8GY2xFZVzpE9NXvw9sm3RecQ6gtjGRZPTnlyUDL0lkyXpdyQBStaEtqka8ILh19AUWsR0TViVbHIDskWPU/KSqGUKcEyLLqN3dDoNaJ9hBbbBVfP78TIiYgLGLzRuC0VHRVo6G4Ay7CICYhBgDzAI/NSyGjraUNVJ1n5CalqKABUdVZZ38sJQQl2gZsrMkMyrYbsBS0FKNAUEK2LQqFQKL7FlKQQLB4bhfd2l6Gt2zDSy6G4CQ3UfATb/ieZRObVbIhFhMIZOpPOZd+ZLdYSP5H+MXexLTckDWAZMOgx9xD7qE2NnooVqStEz2vRt2BH5Q6097TjUP0hvH3ybdGgMUgehNuzb0diUKLT41enXo2xYWOJ1inGj6U/4kDdARjMBhxtOAqNXuOReSlk2PaFkbAwYSFSglJEzzvUcAi/VP0CAChqLUK91rkwjS2p6lTMjJkJgKo+UigUyuXOM0uzoDWY8M7u0pFeCsVN6Lezj2DZ8HM8hysTr8QjuY947dqCPmqEQhtRyij8ceYfkR06MDPVa+7FF+e/IM5wOa4N6Ntszk+YjyenPik6xtYk25N0GjqRX5eP9t524qBRLpEjIyQDQfKgAcd4nveosqclUOg2duOn8p9Q01Xjsbkp4rjjo8YyLPLi85AQlODWvD+W/ogTTSdEx+hNerToWwBc7GtjqbAMhUKhXK5kRgXihknx+HR/Beo79CO9HIob0EDNRwjzD8OMmBleM7m2hWFcZ9RI++UYhnGZXTJxJpS0lxBl5hyJUEbgqpSrEOIXAhkrI1JytM1OkvDdhe+snlNC2JankmYpjJwR51vOO7UtMPEm/Ongn7Cvdh/ROsWw+KgNVy8fRRihz5EjHM+hracNveZe8XltMt6kNwgO1x/GupPr+nrheG5E/BkpFAqF4j3WLsoAeOD1X4pHeikUN6A7NR8hWhWNZcnLECQPwv7a/dhYutFr116avNSlAAKpKqHOqMPG0o2o7qwecMzq6zWIzaLaT42p0VMRIA/AuZZz2FOzR3SMbbkkCQbOQJR9sxVMIRWCMJgN2HBhA0raSwYcs6zPUzYMDMP0rY0nMymneBa1XI2YgBiiLKnOqMMbJ97A6ebToudabBcA8jJGR88/+l6gUCiUy5uEUCVWz0zEhqPVKGnSjvRyKITQQM1H4HkeRrMRHM+hrrsOlZ2VXru22k+NEP8Qp8eildFID04XncPIGXG86Tg0PQP7oqy+XoMovzKYDajT1kFv0qO0vRRHG4+KjpFL5MiNyEWofyjRNUhl0m3LMDmOIwqwhFQfzZxnZfQtGTUqzz8yTI2eivty7iN6X3Agz3qyDGtVU3X3vcrxHB6a+BBWZa0SHUOhUCgU32bNFelQyCR4Zbv7rSaUkYHK8/sI5Z3l+OzcZ7h73N1evwNe1l6Gtt42TImaMuDY9JjpRHNY7+BzTgKSIQQOzfpmfHjmQ9yWfZtV9VEMhVSBa9OvJb6GO8bDQN/mNyc8B3GB4mqNQqqPns58rUhZASkrpaWPPoAl8CJ57efGzsXUqKl940gNrx2M1j2VtaVQKBTKpUt4gB/uy0vF6zuKcaq6HRMTgkd6SRQR6E7NR7DL1njZ8LqgpQC7qncNaQ6hckMGDML8w+Avcb//ztYwerieF9LAOEoZhd/P+D2yQ7OREJSAiRETRccIPS/uZFVIiA+MR7QqGhHKCKzJXYNkdbJH5qWQcbr5NN499S4MZnF5ZHduXgT7B1sl+f8r57+c3lBxxNbWYkflDpxsOik6hkKhUCi+z315KQhVyfGPbTSr5gvQQM1HsO1/8ractoSRuOzR+qH4B6wvWC86h63QhiMh/iF4dNKjgzLUti0dJA3UjGYj/nzgz8QiHZkhmcgIETeJZBgGUlYKhmHQom9BQ3eD6BghYRMZK8PMmJmIVEYSrVOMio4KlLWXQcbKEK4Ih5/EzyPzUsjQm/Ro1DUS2UK4k/Ws1dbiWOMxAEBcQBzUfmrRMcnqZKxIWQE5K8cpzSlUdZH5u1EoFArFtwn0l2HNFenIL9Egv5ja9Fzq0EDNR7Bt/g+UByLY33vpapZ17f+kN+mJMgQSRgI5K/e4upxt6SBp5othGDv1QzFmx83G7NjZoufpjDpsLtuM6q5q7KrehW8ufCO+FjC4e9zdTrNvCqkCS5OXIiFQXKKdhL21e7Gzeifae9qxv3Y/Ono7PDIvhQx3RGxUMhWWJy9HjCpG9NzC1kJsLtsMM2fG8cbjaNI1iY6JVEZiWvQ0yCQyYqVICoVCoVwerJ6RiLhgBV7cVuhRGyCK56E9aj6CrWH0NWnXeP3aznrLgL5NJ0l/i1wix3MznnN6rFnXjE1lm7AoaZHbQYltRu3mzJuJDLXdlefneZ7odzRyRhxpPIJoVbRbtgVJQUlOj3E8ByNnhIyVeWQjzTIsePBo7WnF9qrtiA+MJ8q+UDyD7c0WMZQyJXH/p0UkxsAZsLFsI5YkLRHNwuZmIMcAACAASURBVOpNerT3tCNcGU78XqVQKBTK5YG/TIK1izLwzLensfVsA5bniN8UpIwM9DaqjxAgC0BeXB7C/MO8fm0WrMsAyBPCJj3mHlR1VaHXJO4Z5UigPBDXp1+PxMBEMAxDFNAwDAMGDLHh9bun3sWGog2i59kGgO70y53VnEWttnbA4826Zvz98N9R2FpINI8YLMPCzJmp6uMIYdtPKYbBbEBjdyNRttpRqIfk81jSVoL3z7yPjt4O4pstFAqFQrl8uGFyPDIiA/CPn4tgMpPduKZ4H7pT8xEC5AFYmLgQEcoIbCrbhF8qf/HatWfHzcbjkx93esydgOT74u9xVnPW6RxAvxKdO8glckyImIAQ/xAcqDuA/bX7icaxjOtyTkfc9abieM6tLMWmsk04ozkz4HFPqz5KGIk1iLRdL8U7BMoDkRKUQvQ+b+xuxLun30V110DfQUcsr6ORM9r9LDiG7X+vylgZZKxMdAyFQqFQLh8kLIOnl2ahrLkb3x2vGenlUFxASx99BI7noDPq4CfxQ722HiqZymvXVkgVUEDh9FhacBrxhv9cyzmo5WqMDx9v97glwzOYgMTMmVHdVY0Q/xBcaLsAnucxO068n2xGzAziMktiyXOb0jZ3+n5YhnWaZfG06iPLsDDzNKM2UqQFpyEtOI3oXHdeI4uCo0WkhMSP0Fb18ampTxGtiUKhUCiXF0vGRmFSYjBe3V6Ma3Pj4C+jZfCXGjRQ8xG6DF147fhruCbtGq+rPlZ3VqOsowxz4+YO2ATmxecRz2MJFByxeEYN5ncycAasP7ceS5OXwsybIWXI3tKLkxYTX8OdQM0SbM6Nm0ucsWPh+efFGVckXAETZ4JG36fyRPuSLl3cyXrmRubaKaaSCPa4I2xCoVAolMsThmHw7NJs3PbBQXx2oBL3z0sd6SVRHKC31H0ESw+JmfO+j1p1VzV21ewi7ulyBcuwTuX5/SR+iFXFDkou3ta2gOM5omwC0FcmZikVE4MD2fMtl8jxh5l/wKzYWUhWJyM1mOwPnitVTU9nvsIUYYhSRSEzNBP/PeW/Eeof6pF5KWSUdZThjeNvEKkyuhOoKWVKhCnCoPZT45GJjxDZXFiCdBNnwrcXvsX5lvOiYygUCoVy+TErLQzzMiPw1q4SdPaQ7Yso3oMGaj6Creqjt1XaLP0szgK19069h+8ufEc2D8Nas0S2JAQl4P4J9w/KL8zWn82dAPbN429ia/lWonOnRE5BmpqsZM1CrbaWyEcNcK2qqfZTY378fIT4hbh1bVdUd1bjdPNpyFgZguRBxEEtxTOYOTPaetvcMrwm+Zw3djdif+1+mHkzIpQRUEidlynbEqWKwvXp10Ptp0ZBS4E1y0qhUCiU0cezS7PQrjPigz1lI70UigO09NFHsO1/ilBEIMTfM5t3EoTk7I2ckUgSHwCC5EGQS+TDtjYJIyEWRWAYhrjsa37CfOL1/FjyI9JD0rG/dj+UMiVWj1ktOub27NudPi8h/iFYkLCA+NpinNKcQmFLIcIUYShuK8as2FnU9NqLuKP6GK2KxrVp1yLYT9wvsa67DturtiNJnYSqzipkhWaJZksD5YGYEDEBveZeu7VRKBQKZfQxPk6NqyfE4MO95bhzVhIiA/1HekmUi9CMmo9gDUg4Drdm34qFiQu9dm1brzJH3JHnf2jiQ1iUtGjA48VtxXjv1Hto72kf9No4nsN/5fwXbsq8iWicRQGRhF5zr1WoQYwzmjOo19a7lfWMUEY49TMzckZ0Gbpceti5i4SRwMybUaetw+6a3TCaaYmDN7GWLxOUEKv91MiNzIVSphQ913ITp62nDT9X/oxmXbPomF5zLyo7K6E1aPvmGITiKoVCoVAuH55ekgWjmcO6X0tGeikUG+i3s48gYSRYlLgISWrn5sjDem3WdSbAE/1yOpMODboGp/1rYjAMg1uzbh2gJCmGK2ETZ7x05CXsqt5FdK6tBD7p81KgKcCFtgsDHi9pK8Erx15Bs158402CxZKAyvOPDO4YrXcbu1HdWU3UR2nbb2b7sxAavQafFnxqlf+nGTUKhUIZ3SSHq3DLtAR8eagKVS26kV4O5SJ0p+YjSFgJ5sTNQVxAHNYXrMe+2n1eu3ZOeA5+O+23CJIHDTjmTkCyqWwT8mvznc4BDH6zmBWahXBFOLaWb8WxxmNEY9zJqLljCGwJhtzJqOXX5jtdt6cDKkcfNdqj5l2UMiWyQrKIsmTFbcX4uOBja8ZLiMH4qNkGd4GyQI+XJFMoFArF93j8ygxIJQxe2V400kuhXIQGaj5EW08bdEYd6rvr0WXs8tp1pawU/lJ/p8HKxMiJSPn/7d15fJTVvfjxz5kte0JIAoQ1QZawJiyJiCgosmjFfS21UHqLylWL2rr8tPtya0vr1WJL3cq1lyrqVWu1UkBAIaACsggkhABhDYEkZF8nc35/TCZmn+dJJpkJfN+vV16QyTlnvslMcp7znHO+JyrRUDvHS45zuux0i8c9S/s6OiDJPp9NXnkeBwoPcKrslKE6k/pOYnTMaK/ltNa4ML680zNQM3OOmtXS+qDR11kfPfvyGgaA8uvfrWJDYrkr6S76hfXzWtbMIN3z3jR14HV9mVB7KI9MfoTkuGSvdYQQQlzY+kYG853LE/nHntMcOF3i73AEMlDrUV7Y/QLbTm8ztS/MF/LK81ibs5bSmpaDw5mDZxpedugZxDTX2Zmjd7Lf4cuzX5oaHKXFpxmK22xsYfYwbBYbN1xyA5f1v8xQHYuytLoPrbMzjc1d2u9S7k+5Xw687gHMvO+G9hrKo5MeJTYkFjD2fpFz1IQQQrTmvisvISLIxrK1MqsWCORKrQfxnEPm0q5unQ05X32ebbnbKK8tb/G1Wlet4Yu9tpYbRjgiSIhMwGbpWBJSz4HRdbrO8M+l0llJRa33NdiefXNGB0tLUpYwO2E2CVEJhmZOPG23ljnT10sfwx3hxIbEcnn/y3ki7QkZqHWzgsoClm1fZujMMjODdLvFTrgjnMSoRJZOXEp8eLzXOo0TkKzKWMWxkmNe6wghhLjwRYXauX/GMDZknuWLo4X+DueiJ1dqPYgnAUZ3H3jd+GiA5p754hk2HN9gqJ22UuKPihnFgjELOpwq3nNgtEu7DGevW525mrey3vJaTqGYMXAGgyIGmYop63wWeeV5hsoqVKs/2/7h/Zk1eBbBNt+kyT1ddpptp7cB7kPGje67E75T7iw3lCDE834w8hoVVRWx8fhGymrKiAqKMnTDI9wezl0j3csws4uyW70JI4QQ4uK0cGoCfSKC+O2aTENHyoiuI+eo9SCeJXJDIod06zlqnlmq1g6rNjNojA6K7vCsWXs8B0aH2kIJthob1BjN+miz2Eydo/bR0Y+IckSx+dRmkuOSmZs412udm4bf1HDMQGP9wvoZnpUzIqckh3XH1hFmD+NsxdlWj0oQXcfMcsMR0SOICorCYfGe5KO4pphPT31KqD2U6rpqJvWdRJg9rN06DquDkb1HNhzKLrOrQgghPEIcVr5/zXCeencfGzLPMnNUX3+HdNHy2jsrpV5VSp1VSu1rp8wMpdRupdR+pdQnvg1ReHiWDi4Ys4CUPind9ryeWarm6fO11mi04WWBt464lRuH3dji8S9yv+CPu/7Y4f0yFmVBo3lo4kOGD4g2OlBzaRclNSWGzxzLKc7hZNlJUwPYSEckEY6IFo9X1FZQUFngs7tZntfpSPERtp/Z7pM2hXFmBmoxITGMjhltKDOnp93c8lw2nthIpbPSax2ny0nW+SwKKguatCGEEEIA3DF5EImxYfx2zUHqXDKr5i9GeueVQJvTAkqpXsCfgBu01mOA230TmmjumiHXMC52XLc/r+cCv/nAxszyrPaU15ZTWFXY6qySETcPu5krBlxhqk5biU2aK60p5dmdz7I3f6+hdj3LO+t0neGL38zCzFbT8+86u4vlu5cbWipnhCcep8spF+Z+0NbvUWsKKgs4XHTY0CC9+TlqRn6Pal21vJ75OgcKDzRpQwghhACwWy08OnsEB/NKeX+PsYzawve8Xq1prT8F2ttN+E3gHa318fryZ30Um2gmOS6Z+PB4/rjrj+w+u7vbnndwxGB+POXHDI0a2uRxz0Wk0Yu89cfW8/7h91s87sli2dEB38CIgcSExPB65uvsz99vqI7Rc9TMfo9WZTW9j3Bf/j4+y/2sxeNdcY4auC/S5cK8+9mtdsbHjicmOMZr2T3n9rAqY5Wh34nm56iZyfqoUMQEx8g5akIIIVq4bmw8YwdE8vu1WVQ7vd9kFL7niyvAEUC0UmqTUmqnUurbPmhTtOJcxTnyK/MprCqkpq6m255XKdXqBaNSimkDpjEwYqChdvIr88kty23xuJnZp9YcLjrM4aLDZJ3P4nz1eUN1xseNZ0r8FK/lzKay9+wjNLMktLvS88uMmn8FWYO4efjNDO011GtZMwP9xq8rYCihjqdOv7B+PDDhAdPJcoQQQlz4LBbFY3OSOHm+kr9/ftzf4bRq1/Hz/Oyf+00tzzxeUMHjb++lvNppuE5xZS0/eGsPZ4qrOhJmh/kis4MNmATMBEKAbUqpz7TWWc0LKqUWA4sBBg8e7IOnvri8lfVWQwbA7rzQLq4uZvOpzUzuO7lJcgubxcbMwTMNt9PmOWomDpRuzcYTGxt+HkbT84+KGWWonNlZrcigSKzKyqIxi1rdd9Yazx675up0HYrWB8kdMTpmNEN7DeXjYx9ToAp80qboGmbOSowNieXJtCfZfXY3R4qPGKrnKSPnqAkhhGjPFcNjuWxoDMs3ZHP75EGEBwVWHsKVW3P4x+7TjB8Yxc0TjE0cvLXzBKt3nKB/rxC+f81wQ3XW7j/D2ztP4tKaP9zRjXkifNDGSWCN1rpca50PfAokt1ZQa/2i1nqy1npyXFycD5764mJRloa75kaSDPhKdV01O/N2UlDV9OLepV2U15Y3xORNWwk84kLiGBE9osPxNf65GE3PX15bzvkq77NvZmfUbh9xO7cMv4VBkYPoFdzLUJ22fi6+PobBYXUQ6Yjk5uE38/2J3/dZu8KYOlcdv/rsV2w5tcVrWbMzag6rg4l9J/JY6mOE2kK91vHsY8spzmHlvpXkV+Ybei5hnlLq9vpEWy6l1GR/xyOEEGYopXhs7kgKymt4dctRf4fThNaa9Gx3//X7tVnUOI3dfNxSX+elzUcoKKs2VMfzPO/uOsXBM6UdiLZjfHEV+A/gCqWUTSkVClwKeD/RVZjWZEDih3PUmqfnL60pZdmOZew9ZyzRRlv7wib1ncTNw2/ucHxWZf16AGtiv9zK/Su9lotwRDBryCz6hhpPTet0Odlzbo/hi1+LsrR69EFS7ySuTbzW8PN6k1+ZzycnPqGspkzOUPMDi7Lg1M5Wl7k2Z2agVumsZE3OGnLLcwmxhRh6bZVS3DP6HoZHD+dY6THDN1tEh+wDbsF9E1MIIXqcCYOjmTOmLy9+eoTC8u7beuPNwbxS8stquH58PCfPV/L6F96XZ5ZU1bLnRBHXjetHRY2TP2067LWO1pot2QVMHxFHeJCN3/37oC/CN8Tr/KVS6nVgBhCrlDoJ/ASwA2itV2itM5RSa4C9gAt4WWvdZip/0XEWZUEp5T5jyRHVbc/bsEyqWXp+s8sCo4Ojqarz/dpez4xU7+DehNhCDNcxsuwrzB7G1P5TDcey4fgG8ivzySjM4NqEa4kNifVaZ9aQWVw96OoWjw+MGGh4/58RBZUFbDq5ieKaYqIcUabOhxOdp5Rq83Dz5lL7pRpenut0Ofk893NKa0rJLMxk5uCZhn4nh0YNbUjlL3sWu47WOgM6nx1XCCH86QezR7LuwKf8aWM2T18/2t/hALDlkPuG+JPXjSK/rJo/bjjEbZMGEtbO8szPDhfg0vDtyxIID7Lxt23HWDQtkQG92r5+zMorI7+smm+MjyctsTe/+/dBdh4rZNKQ3j7/npozkvXxbq11vNbarrUeqLV+pX6AtqJRmd9prUdrrcdqrf+7a0O+eFmUhTBbGHcn3U1CVEK3Pi+03M9idqA2Y9AM7k66u8Xj/zryL17+6uVOxRdiC+HBCQ8yNnasoTqe7Ize1NbVkl+Zb/gctbMVZzlecrwhLiOCrEGE2lsuVyuqKmo4kNgXPPFkFWaRWZjps3aFcUZvEMSFxpEYlWioTc+NlOMlx9l6eqvhWDIKMjhZerIhLiGEEKItw/tGcOvEgbz22TFOFXk/r7M7pGfnMzQ2jAG9QnhsbhL5Zd6XZ6Zn5xNitzJhcC+WXjMCFPz3uhZpNZrwLJW8fFgs37k8gdjwIJ756KDPzrltj/TOPcj0gdOZNmBatz+vVVmxqZZ3J3yVlbDSWUmVs+MzbXMT5nLTsJtM1bFYjF0wnyo7xQu7X+Bk2Ulj7dYvbwPj+wgPFx1mw/ENLR7ffGozqzJWGWrDiIbztrSzW/c4iq8ZvUFwovQE2eezDbXpmanxpOc3eh7hP4/8k11ndzXEJTpOKbVeKbWvlY8bTbazWCm1Qym149y5c10VrhBCdMjSWSNAw3Pr2x/YdIcap4vPjxZy+TD3yqWJBpdnbsnOJy2xN0E2K/17hbDgsiH835cnOZTX9r6zxgPCUIeN788cxhc5hWzK6vq/0zJQ60Eu6XUJofZQlm1fxpGiI932vOGOcJ6a8hQT+kxo8rjZRBtbT23lr/v+2uLxzqbnjwmJwaZs/M/+/+FosbGNrlZlNbxXyFPeaLue2Tej31NOSQ7pp9JbfW5fznQ0nLdVV9vhw8VF50zsO9FQKvzPcz9nTc4aQ202nI9XV4sFi+EldhYsOCwO4sPisVvshuqI1mmtr6lfUdL84x8m25GEW0KIgDWgVwj3XDaEt3e2P7DpDrtPFFFRU9cwUAP38szyGid/2tj6jc7c4koOnytnWqM6S2YMI8zR9r6z2joXnx0paPI8d6YOZnDvUH675iAuE8cCdIQM1HoQz7K6cmd5QKTVDreHc/Wgq4kLNXZBUVpb2upSvs4OSI4UH2Hn2Z3klOQ07LnxJql3EnMT53ot5xmMGr74VZaGvXxGjwqwKisuXC2m0M2kaDcaG3T+OATRcXMS5jA6xvva/o6co+bC3O+RxWJhWPQwFo9fTLgj3HA9IYQQF6//vGoYoe0MbLrLlux8LAouuySm4TFvyzPTs93ZyxsPuqLDHCy+cihrD+Tx5fGW2cBbGxA6bBYenT2CjNwS/rn3tC+/rRZkoNaDbDi+gY9yPgKMp6H3BafLybuH3uVgYdNfynBHOFcMvMJQwgxoe9lXna7r1MBh99ndDSnPjV6oDooYxKS+k7yWMzujFhUURUJkAveOv5dh0cMM1fHE3PwsNV/PqA2MGMjjqY8zNGooDqvDZ+0K41zaZegmi5nX3qqs/HjKj5kSP8XUklajs8qic5RSN9cn4roM+FAp9W9/xySEEB3Vu9HAZlcrA5vukp6dz/iBvYgKaboipL3lmenZ+cSEOUjq1/Sc20XTEokNd/DMR5ktbppvOVQ/IBwa0+TxeeP7Myo+krX783z0HbUuoE6tq62t5eTJk1RVde+p3z3FsNphDAkZAkD5yXIyTnfPKQhaa/rV9KOiqoKMvIwmj2u04UOZY5wxzAyeSUZG07jHOMeglSYjI4Pg4GAGDhyI3W58KVbjC1qjF7dlNWWU1pTSL6xfu7GbTZhy9eCW2Ru98bTdfAloZ5eEtvY8wbZg7hl9j8/aFOY8/+XzJEYlcuOw9rcumbl54Xn/zh4ym1lDZhmOxaIs7M3fy7nKcywcs1AG711Ea/0u8K4v2pI+UnSkjxTC1747LZH/2ZrDM2syef17U7o9q21pVS27TxRx//RLWnzNszzzr+lHWXzlUIb1cQ/K3Cn285k6LBaLpWm8YUE2Hrx6OD95fz+fHspn+oivV4qlZ+czbmAvokKb/s5ZLIrXFqURG961fWdADdROnjxJREQECQkJksq4FYVVhQ1JN2JDYrvtwkprTW55LhGOCCIcX9+FqHZWU1BVQExwDEG2IK/tlNaUUlpTSnxYfKuvr9aagoICTp48SWKisYx30GygZnCSeNfZXWw4sYGnLn2q1UQpHv3C+nH90OuJdEQajqespoyMwgyG9xpu6NDrtrJqTomf4tPjDMpqytiWu41xsePoF9bPZ+0K44xmfTQ7m/rhkQ9JjEo0tKzS4/YRt7Mjbwc783YariP8S/rIi1tH+0ghfM09sBnGT/95gM2H8rlyRPfuqf38SCF1Lt1kOWJjS2ZcwurtJ1j27yxW3ONePXXobBnnSquZNiym1Tp3pw3mpc1H+O2aTK6oH8yVVtWy60QR900f2mqduAjv176dFVBLH6uqqoiJiZEOqA2eBBAhtpBuTafteT3aSkNq9PWyKmu7g0ulFDExMabvFnt+FvFh8QTbgg3HAi0HR81FB0czqe+kVtPnt+az3M947svn+NfRfxk+8PrSfpfy1KVP4bA0/dkMjhzMiOgRhtowotJZydbTW3k983W2nd7ms3aFcZ4z/7yZmzCX64deb7jdPef28K8j/+Lj4x8brtMvrF/DeYySnr9nkD7y4tbRPlKIrnD3pYMZGB3Cb/+d2eUJNZrbkp1PsN3CxCGt3wyPCQ/ie1cMZc3+M+w+UeSuc+jrFPut8ew723+6hA+/ygXgi6PtDwi7Q8D1ztIBtU2hsCor0cHR2Cz+nwxtvqfKm1B7KLEhsS1e4/zKfAoq3Rs8O/L6W5WVYGswi8cvNnxAtGePn7eL5vLack6Xncbpchpqt6S6pCE9v9F9hFaLFZvF1uJ7P1N+pkvOUSupKeFE6QmftSuMsyqr4XPU+ob1NdVuubOcffn7DNfJLMzk4PmDDfVFzyB95MVNXn8RKIJsVh6ZNYJ9p0r4177cbn3u9Ox80hJjCLK13Xd994pEYsK+3neWnp1PQkwoA6PbvvF+Q/IAkvpF8Pu1B6mtc309IBwc3RXfhiEBN1Dzt6lTp/o7hCZWrlzJAw88ALgHOr2CWt492LRpE1u3Gj/otiOsytpuB/HTn/6UZcuWGW7v17/+dcP/O3tg4BUDrmDx+MWm6hidUTtYeJCXvnqJ8tpyQ+12ZBnmidIT/OvIv1pkrPx3zr9Zc9RYinazscmFuX8YXfp4sPCgqSM4PK+tmZmxLae2cKrslOE9pkJAYPeRbemOPtKbzvSRQgSqG1MGMLJvBL9fm0VtXfdkI88rqeLQ2bI2lzB6hAfZeODqYWw7UsCmg+dapNhvjdWi+OGckeQUVLB6+wnSs/NJTehNsN1/10wyUGvG33/M2+OwOnBpF7lluQ2H20L3dEJ9w/o22Z8GX8+o1TmNZY6rqK0grzwPl3Y1HajVJyTpqHBHOCU1Jby09yXOVRg7fNDzfN5m1MxmfezIYKigsoDtedupdla3eG5fXkB3JOmK8K3kPskk9U7yWu7Tk5+yLdf48tSODNQ8ZRMiEwzXESKQ+8i2+Hug5nQaW5HRmAzURE/gGdgczS/nrR0nu+U507PbX8LY2DcvHcyAXiE8+tYeymvqmpyf1park/oweUg0v197kKy8MkN1upJcrTUTHu4+T2jTpk3MmDGD2267jaSkJObPn98w87N9+3amTp1KcnIyaWlplJaWUlVVxXe+8x3GjRvHhAkT2LhxI+C+23fTTTcxb948EhMTWb58OX/4wx+YMGECU6ZMobCwEIAZM2awdOlSpk6dytixY/niiy9axHb6zGnuuP0Orp1+LZddehnp6enk5OSwYsUKnn32WVJSUti8eTPnzp3j1ltvJTU1ldTUVNLTWx6mbDSul156idTUVJKTk7n11lupqKgAYOHChTz5wye56/q7+H9P/r8mbb/00ktce+21VFZW8r//+7+kpaWRkpLCA0seoMZZwxNPPEFlZSUpKSnMnz/fXakT45ETJSf4+PjHnC4/bWj/D0BiVCI3D7uZYGv7e9rMZn1sPDgzuvSxcdbH5s/ty5mvxm2ZSeMufGdK/BRS+qR4LWf2yIoQWwhgbqBmVVaGRAzh22O+bbiOEIHcR7bW9/mzj3zkkUe46qqrePzxx5u03VYfee+991JXV9d6HylEgJo5yj2wee7jLCpruv7Ily3Z+fQOczCqn/ckb57lmYXlNahmZ661RSnF49cmcb7CPSHiz/1pEGBZHxv72T/3c+B0iU/bHN0/kp/MG2O4/K5du9i/fz/9+/fn8ssvJz09nbS0NO68805Wr15NamoqJSUlhISE8NxzzwHw1VdfkZmZyezZs8nKcp/hsG/fPnbt2kVVVRXDhg3jmWeeYdeuXTz88MO89tprLF26FIDy8nK2bt3Kp59+yqJFi9i3r+l+k+9///t8d8l3SZuaRlV+Fd+49htkZGRw3333ER4ezg9+8AMAvvnNb/Lwww8zbdo0jh8/zpw5c1qkxDca1y233ML3vvc9iqqK+PXPfs0rr7zCgw8+CED2oWw2frwRq9XKT3/6UwCWL1/O2rVree+99zhy5AirV68mPT0du93O9+77Hu+sfodf/9ev+dMLf2L37t2A+yDvzjhcfLhhz5XRC9WYkBhiQrz/wnoGT0bbjQqKIj4snluG30JUUJShOm1lffT1jFqYPYwfT/kxL+59seHCXnSvmroaNJoga/uZosxmfVySsoS3st6ipNr430yLslCra70XFAFJ+sjW+8jW+r7u6CMBnn766SZ9ZFZWFuvXrzfcRy5ZsoRVq1bxm9/8huXLlzf0kUIEMqUUj81N4o6/bGPl1hzun9EyZb6vePaaXXZJTIsU+225acIAXtp8hLAgG71CjWVLT03ozTWj+rL3ZBGj441n/e4KATtQCwRpaWkMHOhOTpGSkkJOTg5RUVHEx8eTmpoKQGSk+wXcsmVLwx/npKQkhgwZ0tAJXXXVVURERBAREUFUVBTz5s0DYNy4cezdu7fh+e6+3XB5awAAIABJREFU+24ArrzySkpKSigqKmoSz6aNmziQcQAAu8VOSUkJpaWlLeJev349Bw4caPjcUy4iounSRSNx7du3j6effpr8wnwqyiu4du61DfVvvfVWXLiwaPcF5d/+9jcGDhzIe++9h91u5+OPP2bnzp0NP6uKigoie7d8w4fYQjo1c9SRJX0VtRWcrThL//D+7WaiNDujltInxdCMSWNtDdQ6exB4c55B373J9/qsTWHOG5lvUKfr+M7Y77RbriOzqbePuN1UeYuycKL0BC9/9TL/Me4/TNUVAgKvj2yr72uuK/rIoqIiysrKmDNnTkP922+/Hav1699jb31kZWUlffr0ae9HLkRASkvszdVJffjzpmy+mTa4xZljvpJ9toy8kmquMDHLZbUo3lg8BbOJKZ+/O4WSSqfhAWFXCdiBmpm7el0lKOjru95WqxWn04nWus0zwIy0Y7FYGj63WCxN1q43b7f55y6Xi/c/fp+QkBD6hvZtc/may+Vi27ZthIS0P2tiJK6FCxfy3nvv0W9YP97++9tsT9/eUMceYudc5Tn6hLo7lrFjx7J79+6GM1601ixYsID/+q//AtyDo6Lqph0r0GLvm1kd2ReWU5LDW1lvcX/y/Q3xt2ZE9AiigqJMZdk8W3GWQ+cPMaHPBENp/a3KilVZW2TRnJswF7vVd3/s6lx1fJTzEUnRSQyLHuazdoVxFmWhxlXjtZzZGbV1x9YRZg9jan/jiR6uH3o9Hxz5wKeZRUX3kT6y9T7SSN/XFX1kcnIyK1euZNOmTQ11wsLCmrTnrY8Uoif74ZyRXPf8Zv7y6WEem+t9L3ZHbDGxP60xozNpjYU6bIQ6/D9Mkj1qJiUlJXH69Gm2b3cPWEpLS3E6nVx55ZWsWrUKcC93OH78OCNHjjTV9urVqwH3nceoqCiiopounbv6mqtZ+ZeVhNpCUUo1LIuIiIhoctdw9uzZLF++vOHzziyfKC0tJT4+HqfTyVtvvNVqGU9ijgkTJvCXv/yFG264gdOnTzNz5kzefvttzp51L20sLirm3Cl3sg+73U5trXvZlda6U5kfPRe0/UL7YbcYG9i0NYvVXFxoHGNjxxq+aN6Xv48/7/kz64+vN3xY9cjeI3l6ytMtDqFOiEpgQPgAQ20YtTNvJ6syV7H7rCyp8QeLshh6r88fNZ+rB19tuN3DRYdZd2wdm09uNlwnKiiKcHu4JJYRPuXPPrKtvq87+sja2tqG768t3vrIwsJCjh07BjTtI4XoCUbFR3Jjcn9eTT/K2ZKuOesvPTufITGhDOpt7GzbC4H00CY5HA5Wr17Ngw8+SHJyMrNmzaKqqoolS5ZQV1fHuHHjuPPOO1m5cmWTu3FGREdHM3XqVO677z5eeeWVFl//3R9+x55de7gy7UrGjhnLihUrAJg3bx7vvvtuw0bp559/nh07djB+/HhGjx7dUK4jfvGLX3DppZdyx7w7GD5iuNfy06ZNY9myZXzjG9+gT58+/PKXv2T27NmMHz+e6+deT+X5SmwWG4sXL2b8+PHMnz+fvIo8imuKOxyjZxbtntH3EO4IN1SnrQQezRVWFZJTnGM4lirn13+cjKbnb8uRoiNdco4aQEFVgc/aFcYZPfA6JiTG8B5H+Pp34GjxUcN1Dp0/xO5zu+WoBuFT/uwj2+r7uqOPnDVrFklJ3mcR2usjZ82aRW6u+zyqxn2kED3Fw7NG4KzTPL/hkM/brq1z8dmRQr8n9+huqrNnWHXU5MmT9Y4dO5o8lpGRwahRo/wSj7/NmDGDZcuWMXny5DbLOF1O6lx1OKyObj/3qKCyAKvF2uQct7KaMkpqSugX1q9Td+Vzy3MJtYU2XJiafR/U1NVQU1dDmD3M8M8l+3w2qzJXsWjMIgZFDmqz3Ppj6/ks9zOenvK0oXZ3nd3F+4ffB+DhSQ8T6fC+CTW/Mp8tp7Zwef/LiQuNa3j82Z3PMjRqKDcOu9HQcxvxi22/wIWLKwdcyVWDr/JZu8KYNw++SX5lPktSlrRbbseZHcSGxJIQlWCo3Ve+eoWTZScZ1msY80cZu7B759A7fJX/FTHBMTwwof1zqHxBKbVTa932HzjRhPSRTRnpIy8WF/P7QAS+H723j9e/OM76R6aTEBvmvYJBO48Vcuuft/Gn+RO5bly8z9oNBO31jzKj1oPYLDZqXDXklud2+pBos2JCYlo9bNuMamc1Z8rPUFPXbI9OJ78Vh9VBdlE2L+x+geq6au8V+Dp1vov2lz6aTejR+Dw4o/XKa8vZc24PpTVNN72b3adkKL76gayk5/ePsbFjSeuX5rXcx8c/JrMw03C7nvdaR85RS4xKNFxHCCGEaM+DVw/DbrXwh3VZPm13y6ECd4r9od4zdl9I/L9LTgA02YDcFqfLSYWzouuDMSjIGkSvoF6mDqt2aVeLpBmdPfD6TPkZPjzyIU7tNNxO39C+3DXyLuJC4totp7U2fTaVh9F67aXn9/WyNJvFRl1dXad+3qLjRseMNlSuTteZet95ktaYeb9YlIUIRwTfGPoNw3WE8BcjfaQQwv/6RAazaFoCL2w8zL3ThzKmv/Fl/O1Jz85nbP8oosPMJwbpyWRGrQeprqumzuXe39LdSx+Lq4sprm66j8xutRNqDzUfi48nA89WnMWp3Rm4jF7chtnDGNl7pNesjGYvmCMcESREJvC9cd/zepi2h+fiurUDr309o/bopEeJC4kzvJdP+Fals7LF71FrzA7S7xh5B0MihhBsM/aeA/fvisvV/oyyEEIIYdbiKy8hKsTOb9cc9El75dVOvjx+/qLbnwYyUBMG1bpqqXU1zUDldDlbLmNsR1spm8Pt4e2eZeZNR85Rq3JWkXU+i7KasnbLmb1gTohKYMGYBfQP7294ANvejJqvB2p2q50lKUuY0GeCT9sVxqw/tp6Xv3rZa7mOvPYLxy7khktuMFzeqqyUO8t5PfN1U88jhBBCtCcqxM6SGZfwSdY5PjvS+eRlXxwtxOnSTJOBmghk/lyuplAt9sVV1FaQX5lvuq3GSx+VUkQGRZqaCWiuIwO1ouoiXs98nZNlJ9stl9YvjZuG3WQqniPFR9hwfIPhfYQ2i41ga3CL2OePms+kvpNMPbc3Hx39iJ15O33apjDOqqxesz56lgebGah9evJTPjzyoalYZgyaQVxIHNVOY/s6hRBCCKMWTE2gX2Qwz6zJ7HRehS3Z+ThsFiYnRPsoup5D9qj1QJ0Z1PiS2b1lFmUhxBbSZIZKa90we9DR5Zye9oxkWGwcC3hPz983rK+pWHKKc/jbgb8BcNUgY1kVY0NieTzt8RaPD44cbOq5jdh1dhe1rlrC7eGM7G3uDCPReRaLxevZfQrF0olLTc0ynyk/Q0ZhBn1C+5DaL9VQnRBbCCG2kG5fRi2EEOLCF2y3svSa4TzxzlesO5DH7DH9vFdqQ3p2PqkJ0QTbL75EaDKj5kcLFy7k7bffbrfMypUrOX36NPD1jFqEPaLLY2tsxowZ7N65u0USkPqgmsjJyeHvf/97q+3YLDaig6OxW78+lFqjyavIo7y2vMPxeQZdd4y8w3Qdb3d5TpWdMnWOWuOL8M5cAGut2XtuL2crzna4jdZ44gukpDQXEwsGBmpKERUURYgtxHC7npsVeRV5huscLT7K8dLjco6aCFhm+0h/mTFjBs2PUmhLe32kEBea2yYNZGhsGL/790HqXB2bVTtbWkXmmdKLcn8ayEAt4DXuhBxWBzHBMT7ft9Seujr3jJPVYsVmaToB29qMmtlOyDNQ6syyzkt6XcKTaU/SP6y/4TpGZ9TST6Xz0dGPTLdrRkVtBW8efJMjRUcaHqvTdbyb/S4HC32zEbe57nwPia9ZldXrQK3WVcunJz/lVNkpw+16Xk8zg65jJceA7k9MJIQv+Xug5ukjjZKBmriY2KwWfjBnJIfOlvHuLuN9WmPbDrv3uF2M+9NABmotvPbaa4wfP57k5GTuueceAI4dO8bMmTMZP348M2fO5Pjx44D7bt/999/PVVddxdChQ/nkk09YtGgRo0aNYuHChQ1thoeH8+ijjzJx4kRmzpzJuXPnWjzvzp07mT59OpMmTWLOnDnk5uby9ttvs2PHDubPn09KSgo11TVs/WIr066c1qRcc0bjuv/++5k8eTJjxozhJz/5ScPjCQkJ/PznP2fatGm89dZb7u/BEU4vRy8WLFjA008/TV1dHT964kfMvXIu48eP5y9/+QsATzzxBJs3byYlJYVnn322SVxOl5PcslwqaluZzenEtaJFWdh8cjMr9qwwXMdzQevtotmlXaYuZDsyO+HSLjIKMyisKmzyWEfbM0JmUfxjRPQIZg+Z3W6Z2rpaNp7YyKlS8wO1jpyjNiRyiOE6QgRyH1lZWdlquea6oo8EcLlcTfrIH/7wh6SmphruI4W4EF07th/jBkTx7Losqp3mbmwAbDmUT1SI3Wdp/nuawN2j9tETcOYr37bZbxxc+5s2v7x//35+9atfkZ6eTmxsLIWF7gvnBx54gG9/+9ssWLCAV199lYceeoj33nsPgPPnz7Nhwwbef/995s2bR3p6Oi+//DKpqans3r2blJQUysvLmThxIr///e/5+c9/zs9+9jOWL1/e8Ly1tbU8+OCD/OMf/yAuLo7Vq1fz1FNP8eqrr7J8+XKWLVvG5MmTqayu5IcP/5CVq1cyNmFsk3LNGYnrV7/6Fb1796auro6ZM2eyd+9exo8fD0BwcDBbtmwBYMWKFTidTubPn8/YsWN56qmnePHFF4mNjuWzzz9D1Skuv/xyZs+ezW9+8xuWLVvGBx980OrPuLUz1DrrfNV5tpzeYqpOqD2Ue0bf4/UcNbMHXnsO0jajtayPnpk+X892hNhCKKstk1kUPxkUOYhBkYPaLeN57c0Mujz7Mzty5t+l8ZcariMCiPSRLfrI9so11x19ZFRUFNu3b6e6utpwHynEhUYpxeNzk/jWK5+z6rPjLJqWaLiu1pr07HymXhKD1XJxXrcE7kDNDzZs2MBtt91GbKx7erV3794AbNu2jXfeeQeAe+65h8cee6yhzrx581BKMW7cOPr27cu4ceMAGDNmDDk5OaSkpGCxWLjzzjsB+Na3vsUtt9zS5HkPHjzIvn37mDVrFuBeShEfH98ivoyMDA5mHOTOG+7EbrG3Wc5oXG+++SYvvvgiTqeT3NxcDhw40NAJeeL1+N7i73HDLTfw1FNPAbB27Vr27t3Lu++8C0BxcTGHDh3C4fCeAKG1wVlnlj6W1bafYr81doudoVFDvZYzmyY91BbKqN6jmBI/xXCd1pZhepaE+nrma+GYhbyb/S6htvbPjxNdo6K2grLaMuJC4tocLDfMplqMv/ZXDb6KjMIMwmxhhut4nt/brLIQHoHeRxotZzQuM33kvffeyx133NGij/TssTPTRwpxoZk2PJbLh8WwfGM2d6QOIjzI2PDjaH45p4urWHLVxbnsEQJ5oNbOXb2uorU2NNPQuExQUBDgnknx/N/zudPp9Frf87xjxoxh27ZtXuMbkTSCf274J/3D29+P5S2uo0ePsmzZMrZv3050dDQLFy6kqqqqoVxYWNMLvtQpqWz+ZDNVVVUEBwejtebZ/36WWXNmNclOt2nTpjZjam0wplBEOCKwW+yt1DCmI4OZOlcdmYWZ9A3rS2xI238AzJ6jFh0cbSqpCbS+DLMjsypGxITE8B/j/sOnbQrjdp/dzbrj63gy7ck2szp29LVfkrLEVHnP++4f2f8w/Z4VAUD6yFbjM1LOSFxm+8ipU6eyceNGHn300YY+8o9//CNz5sxpUq69PlKIC9ljc5K48YV0Xt58hKXXjDBUJz3bfQTUxZpIBGSPWhMzZ87kzTffpKDAvXHRs6xj6tSpvPHGGwCsWrWKadOmmWrX5XI13FX7+9//3qL+yJEjOXfuXEPnUltby/79+wGIiIigtLTUXS5pJIUFhez4fEeLcmaVlJQQFhZGVFQUeXl5fPRR+wkzvr3w21w952puv/12nE4nc+bM4YU/v8C5MvdegqysLMrLy5vE25bGmRatFqt7oGbt+ECtI4OZOl3H24feJqswq91ycxLmMDdxrqm295zbwycnPjFc3qIsRDmimly4h9pCWTxuMaNiRpl6bm8+Pv4x64+t92mbwjjP0tj2kth4BuwWE3+et5/Zzmv7XzMVy6S+kwi2BhNkDfJeWAh6QB/ZTjmzzPaR3/3ud7nuuuua9JF//vOfqa2tBcz1kUJciJIH9eLasf146dMjFJQZO79zS3Y+A3qFkBBz8a4CCtwZNT8YM2YMTz31FNOnT8dqtTJhwgRWrlzJ888/z6JFi/jd735HXFwcf/3rX021GxYWxv79+5k0aRJRUVGsXr26ydcdDgdvv/02Dz30EMXFxTidTpYuXcqYMWNYuHAh9913HyEhIXyy5RP+8re/8NPHfsqPHvlRk3JmJScnM2HCBMaMGcPQoUO5/PLLvda598F7WVG5gnvuuYdVq1aRcSiDWVNnYVEW4uLieO+99xg/fjw2m43k5GQWLlzIww8/3FBfKUWoPbTJ7JnWmjpdh0VZOjx75Kln5hw1zx1bb1kf+4WZO/fjfNV53st2782YPmi6oTpWi5Wlk5a2eCw+vPUlO52x48wOquqqGBUzigHhA3zevmifZ/DV3nLD3sG9eSz1MVOzzIVVhRwtOcq+/H2MjR1rqI7NYsNmsUkGUGFYoPeR27Zta7OcWR3pIx955BGKi4sb+sicnBwmTpyI1tpQHynEhe4Hc0ay9kAeL2w8zI/njW63bJ1Ls/VwAdeNjb+o99Wrzp4W3lGTJ0/Wzc8dycjIYNQo384gBILw8HDKyszvo2qupq6G/Mp8egf37vZDr4uri6morWgyeCioLMClXcSFtp+Qoz2tfU9m3wf5lfm8sPsFbh1+q+GLVJd28YvPfsGMgTPaHVBlnc/CYXGQEJVgqN2iqiKe2/UcAD+57CdeSret0lnJ/vz9JEYlEhMS0+F2mvvlZ7+kTtexcMxCyfbnBzvO7ODDox/yyKRHiHD47jzENTlr+Dz3c2YNmcXU/lMN1TlddpqXvnqJMTFjuG3EbT6LpS1KqZ1a68ld/kQXCOkjRVsu1PeBuDg88X97eefLU2z4wXQGRrc9U7br+Hlu/tNWnr97AjckGz9+qSdqr3+UW6k9iM1iIyYkpsV5Zt313G3tqTFKa93w4UsxwTH8eMqPDQ/SwD0Lp1BeEylsOL6Bz3I/M95uB7I+Arye+To783Y2fF5aU8qHRz/kTPmZDrXnjcyi+IcnQUh777vi6mLWHVtHfmW+6fbNJOXxtF9dZ2wJihBCCNFZ379mOCh4dt2hdss17E+7xHc3q3siuVrrBr66U2hRFkqqSyiuLvZJe2aE2cNazOxojG0sbyy3PLdJlkZPBsjOZH1USrH64GrTe3QsymLoHLWOpDw3K6c4h4LKgibP64mxK8hAzT8GRQzixktubHdGvKSmhK2nt1JUVdSlsXjeAwPDB3bp8wjhjcymCXHxiI8KYeHUBN7ZdZKDZ9rer7klO5/R8ZHEhF/c+6jlaq0HcWkXta5anK7WM2V1t0hHZIf2hTWZUfPB5Fp1XTUHzx/kaMlRU/UWjV1Eanxqu2XMnqPW0QFn80FjV2V9DLO7M5XJgdf+ERsSS0qflHYTeDQM0k3MzobbwwFz5+553lsje480XEcIIYTorPunX0K4w8aytQdb/XpFjZMvjxUxbfjFm+3RQwZqPYjnAs5bAoyuUF5bTl5FXpNBlsPqML0csvlApmFGrRMbRetcHft59A/v73WgqbU2NViyW+1M6DOBe0bdYyqW5gO1hrO0fDygumX4LSREJkimPz+pqK3gROkJaupq2izj+f0289onxyUTHxZPr6Behuu0diyEEEII0dWiwxzcO30o6w7ksfPY+RZf355znpo610Wdlt9DBmrCEK01da66JodVVzmr2r3gbLOtRm3YLDYiHZGdGpB0dNZp77m9HCs51m4ZT0ZKo+wWOzdccgNDe3k/TLsxq7I2GYB3ZFbFiCGRQ1gwZgHRwdE+bVcYc6zkGK/ue5XCqsI2y7hc5tPzRzgiWDx+MUm9k0zHtPHERtN1hBBCiM5YNC2R2PAgnlmT2SJ3QXp2Pg6rhdQEuVaRgVoP0pl9XF2hpKaEshqTewuafQs2i41wR3hDkoWO6Oggb92xdew9t7fdMvNHzWf6QGNp9j0+PfkpW09vNVUnLjSuSRbA/uH9eSDlAQaFDzLVjjdbT23lzYNv+rRNYZxn0N/uOWqYH6QfKDjAij0rKK8tN1zHczNhcMRgw3WEEEIIXwh12Hho5jC+OFrIJ1nnmnxty6F8Jg7pRahDThGTgVozU6caS23tT/5YtuYZJLbI2Ghy7BhuD28Sv0u7qK2r7VQmSM+yyQi7uXTnFmVpMrvXmj6hfegVbHw5mdaajSc2su7YOlOx3DP6HmYMmtHwud1iJyYkplMHgbdm86nNZBRmUFJT4tN2hTFGlhsO7zWcpy99mv5hxtMR55blkleRx6Hz7WfRaszzOyeJZYQZPaGPFEL0DHelDmZQ7xB+u+YgLpe7Tyooq+ZAbgnTZNkjIAO1FrZuNTcT0p08AxK/7C9qZUCm0aZn+SIcEU0y3lU7qzlXea5TCVKsyorD4uDS+EtN1bMoi9f9bV/mfcmJkhOG2/TVoYwFlQVsPbXV/IylF7WuWp+2J8zxzJK1N1BTSmG1WE29l2q1+3WtdFYaruNJz19QVeClpBBfC+Q+UgjRszhsFh6dNZIDuSV88FUuAFsPu/sk2Z/mJgO1ZsLD3dnTNm3axIwZM7jttttISkpi/vz5DXegt2/fztSpU0lOTiYtLY3S0lKqqqr4zne+w7hx45gwYQIbN7r3faxcuZKbbrqJefPmkZiYyPLly/nDH/7AhAkTmDJlCoWF7r0qhw8fZu7cuUyaNIkrrriCzMzMFrEpFDHBMd1+2DW4B0MtBogdmARzaVeTi1RfJBNRSvF42uOGD/r1MJKef03OGjIKMzocm1HvHnqX9cfWN3yeX5nPuuPrmhxl4EuS9dE/PPvO2lv6eKrsFB8e+dDng/TmSmtKm/wrhBGB3EcKIXqeG5L7k9Qvgt+vPUhtnYv07Hwigm2MGxDl79ACgtfFn0qpV4HrgbNa6xYnCiulZgD/ADy50d/RWv/cF8H9z/7/afHY6JjRpPZLpbaulr9n/r3F15Pjkknpk0JFbQVvZb3V5GsLxiww9fy7du1i//799O/fn8svv5z09HTS0tK48847Wb16NampqZSUlBASEsJzzz0HwFdffUVmZiazZ88mKysLgH379rFr1y6qqqoYNmwYzzzzDLt27eLhhx/mtddeY+nSpSxevJgVK1YwfPhwPv/8c5YsWcKGDRuaxKOU4nz1eYJtwaayu/lCsC24xQCxIzNq5yrO4bA6fJ7MYvmu5QyKGMTNw282XKd5Ao/WuLSrWwY1eRV5TQ4e9sTVVfsSZbmbf8SFxnH7iNvpG9q3zTL5lfnsyNvBZf0v69JYPDde+oX269LnEV1H+sgN7YUnhOgBLBbF43OT+M7K7byx/QSbD+Vz2dAYbFa5TgEDAzVgJbAcaO804c1a6+t9ElEASUtLY+BA92GwKSkp5OTkEBUVRXx8PKmp7vO3IiPd6d23bNnCgw8+CEBSUhJDhgxp6ISuuuoqIiIiiIiIICoqinnz5gEwbtw49u7dS1lZGVu3buX2229veO7q6q8v2htzaVeHMi12hZjgGNMzYUqpJvvCfHHgNcD56vMUVReZGqjdnXS31yQmLu3y2XLG9rSV9bEzSVZaE24Pp7imWGbU/CTMHsbomNHtlunI0QyhtlAAU7PtnrL9w43vhROisUDsI4UQPc+MkXGkJfTmt2syKa1ycu90c5mzL2ReB2pa60+VUgldH0pL7d3ds1vt7X491B5q+u5gc0FBXy/1s1qtOJ1OtNatXri3lwyjcTsWi6Xhc4vFgtPpxOVy0atXL3bv3m0oLn8ceF3lrKKouogIR0TDBaRFWbBbzCe7qHPVUeWs8vkSTm+JQZqLDo4m+3w2uWW5TR6PdEQSHx6PS7vQaNODmisGXEG/MHOzFBZloaymjJKaEiIdkQ3JPnw98zUnYQ57zu2RGTU/qamr4WDhQWpcNQ2HVIM7aU10cDRVzqqG96OZGwTDew3nSNER4sPiDdfx3ByRfYs9l/SRQogLgVKKx+aO5LYV2wDZn9aYr67WLlNK7VFKfaSUGtNWIaXUYqXUDqXUjnPnzrVVLKAlJSVx+vRptm/fDkBpaSlOp5Mrr7ySVatWAZCVlcXx48cZOXKkoTYjIyNJTEzkrbfcy1C01uzZs6fN8v7Yo6ZQuLSL4upiCqsKKawqNJUK3MOiLNS6ahvOkXJYHPQK6uWTWashEUNM13kn+x3eOPhGk4/Pcj9rUibUHmqqzasHX+111qS5UHsoZyrOcLL0pPtzWygKRbDVt6/1qJhR3JV0FzaLpLz1h0pnJe9kv8MHRz5o8p7LLsoGoKi6iO1521vfE9qO+PB4Fo5daOoGgWe2tspZZe6bEKIdgdBHCiF6nskJvZk9ui8JMaEMjQ3zdzgBwxdXa18CQ7TWZUqp64D3gOGtFdRavwi8CDB58uSO52P3I4fDwerVq3nwwQeprKwkJCSE9evXs2TJEu677z7GjRuHzWZj5cqVTe4SerNq1Sruv/9+fvnLX1JbW8tdd91FcnJyi3L9wvr55Tw1h9VBXEhck1mrjszK9A7u3WRG0G61+yQF/eOpj3do8PHt0d9ucac3xBYCuL+/+8bfR1xoXKfj8+aW4bdQWFnYcBTAqJhRJEQmmB4kisAWFRTFQxMeajE4igxyLw+LCY5h8bjFhNpDuzy7a2xILD+c/MOG97sQvuDvPlII0XM9f/cEqmu7Z8tJT6GMnF9Vv/Txg9bUpSCbAAAKG0lEQVSSibRSNgeYrLXOb6/c5MmT9Y4dO5o8lpGRwahRo7zGIy5s8j4Q4sKjlNqptZ7s7zh6CukjRVvkfSDEhaW9/rHTSx+VUv1U/dBXKZVW36YczCOEEOKip5T6nVIqUym1Vyn1rlKqe1P2CiGE6LG8DtSUUq8D24CRSqmTSqnvKqXuU0rdV1/kNmCfUmoP8DxwlzYyTSeEEEJc+NYBY7XW44Es4Ek/xyOEEKKHMJL18W4vX1+OO32/EEIIIRrRWq9t9OlnuG9uCiGEEF4FXI5umYy7uMnrL4S4gC0CPupMA/I38uImr78QF5eAGqgFBwdTUFAgf4guUlprCgoKCA7u/uMHhBCio5RS65VS+1r5uLFRmacAJ7CqnXbaPcJG+siLm/SRQlx8AuowpYEDB3Ly5El66hlrovOCg4MZOHCgv8MQQgjDtNbXtPd1pdQC4HpgZnt7uL0dYSN9pJA+UoiLS0AN1Ox2O4mJif4OQwghhPAJpdRc4HFguta6ojNtSR8phBAXl4Ba+iiEEEJcYJYDEcA6pdRupdQKfwckhBCiZwioGTUhhBDiQqK1HubvGIQQQvRMMqMmhBBCCCGEEAFG+St7lFLqHHCsk83EAvk+CKe7SLxdS+LtOj0pVpB4u1pH4h2itY7rimAuRNJH9gg9Kd6eFCtIvF1N4u06Pu0f/TZQ8wWl1A6t9WR/x2GUxNu1JN6u05NiBYm3q/W0eC9WPe11kni7Tk+KFSTeribxdh1fxypLH4UQQgghhBAiwMhATQghhBBCCCECTE8fqL3o7wBMkni7lsTbdXpSrCDxdrWeFu/Fqqe9ThJv1+lJsYLE29Uk3q7j01h79B41IYQQQgghhLgQ9fQZNSGEEEIIIYS44PTYgZpSaq5S6qBSKlsp9YS/42lOKfWqUuqsUmpfo8d6K6XWKaUO1f8b7c8YPZRSg5RSG5VSGUqp/Uqp79c/HqjxBiulvlBK7amP92f1jwdkvB5KKatSapdS6oP6zwM2XqVUjlLqK6XUbqXUjvrHAjneXkqpt5VSmfXv48sCMV6l1Mj6n6nno0QptTQQY/VQSj1c/3u2Tyn1ev3vX8DGKwK/fwTpI7tST+wjpX/sOj2lfwTpI1vTIwdqSikr8AJwLTAauFspNdq/UbWwEpjb7LEngI+11sOBj+s/DwRO4FGt9ShgCvCf9T/PQI23Grhaa50MpABzlVJTCNx4Pb4PZDT6PNDjvUprndIozWwgx/scsEZrnQQk4/45B1y8WuuD9T/TFGASUAG8SwDGCqCUGgA8BEzWWo8FrMBdBGi8osf0jyB9ZFfqiX2k9I9dp0f0jyB9ZKu01j3uA7gM+Hejz58EnvR3XK3EmQDsa/T5QSC+/v/xwEF/x9hG3P8AZvWEeIFQ4Evg0kCOFxhY/8t6NfBBoL8fgBwgttljARkvEAkcpX7PbaDH2yi+2UB6IMcKDABOAL0BG/BBfdwBGa989Jz+sT426SO7PtaA7yOlf+zSWHtk/1gfl/SRWvfMGTW+/sF4nKx/LND11VrnAtT/28fP8bSglEoAJgCfE8Dx1i+T2A2cBdZprQM6XuC/gccAV6PHAjleDaxVSu1USi2ufyxQ4x0KnAP+Wr905mWlVBiBG6/HXcDr9f8PyFi11qeAZcBxIBco1lqvJUDjFUDP7R+hB7yvpI/sEtI/dp2e2j+C9JFAD136CKhWHpP0lZ2klAoH/g9YqrUu8Xc87dFa12n31PhAIE0pNdbfMbVFKXU9cFZrvdPfsZhwudZ6Iu7lU/+plLrS3wG1wwZMBP6stZ4AlBMgyyLaopRyADcAb/k7lvbUr6u/EUgE+gNhSqlv+Tcq4YX0j11E+kjfk/6xy/W4/hGkj2yspw7UTgKDGn0+EDjtp1jMyFNKxQPU/3vWz/E0UErZcXdAq7TW79Q/HLDxemiti4BNuPc6BGq8lwM3KKVygDeAq5VS/0vgxovW+nT9v2dxrw9PI3DjPQmcrL9jDPA27o4pUOMFdwf/pdY6r/7zQI31GuCo1vqc1roWeAeYSuDGK3pu/wgB/L6SPrLLSP/YtXpi/wjSRzboqQO17cBwpVRi/aj7LuB9P8dkxPvAgvr/L8C9zt3vlFIKeAXI0Fr/odGXAjXeOKVUr/r/h+D+RckkQOPVWj+ptR6otU7A/V7doLX+FgEar1IqTCkV4fk/7vXW+wjQeLXWZ4ATSqmR9Q/NBA4QoPHWu5uvl3RA4MZ6HJiilAqt/zsxE/dG9ECNV/Tc/hEC9H0lfWTXkf6xa/XQ/hGkj/yavzfidfQDuA7IAg4DT/k7nlbiex33etVa3Hc0vgvE4N4we6j+397+jrM+1mm4l8bsBXbXf1wXwPGOB3bVx7sP+HH94wEZb7PYZ/D1ZumAjBf3mvY99R/7Pb9fgRpvfWwpwI7698R7QHSgxot7c38BENXosYCMtT62n+G+yNsH/A0ICuR45SPw+8f6GKWP7Lp4e2QfKf1jl8XcY/rH+nilj2z0oeqfRAghhBBCCCFEgOipSx+FEEIIIYQQ4oIlAzUhhBBCCCGECDAyUBNCCCGEEEKIACMDNSGEEEIIIYQIMDJQE0IIIYQQQogAIwM1IQxSStUppXYrpfYppd5SSoWaqNtfKfW2yefbpJSabD5SIYQQontJHymE78lATQjjKrXWKVrrsUANcJ+RSkopm9b6tNb6tq4NTwghhPAb6SOF8DEZqAnRMZuBYUqpMKXUq0qp7UqpXUqpGwGUUgvr7yj+E1irlEpQSu2r/1qwUuqvSqmv6utcVf94iFLqDaXUXqXUaiCk/nGrUmpl/V3Kr5RSD/vpexZCCCGMkD5SCB+w+TsAIXoapZQNuBZYAzwFbNBaL1JK9QK+UEqtry96GTBea12olEpo1MR/AmitxymlknB3UiOA+4EKrfV4pdR44Mv68inAgPq7lNQ/jxBCCBFwpI8UwndkRk0I40KUUruBHcBx4BVgNvBE/eObgGBgcH35dVrrwlbamQb8DUBrnQkcA0YAVwL/W//4XmBvffkjwFCl1B+VUnOBEt9/a0IIIUSnSB8phI/JjJoQxlVqrVMaP6CUUsCtWuuDzR6/FChvox3VznPoFg9ofV4plQzMwX2n8Q5gkZnAhRBCiC4mfaQQPiYzakJ0zr+BB+s7I5RSEwzU+RSYX19+BO67iwebPT4WGF///1jAorX+P+BHwEQffw9CCCFEV5A+UohOkBk1ITrnF8B/A3vrO6Ic4Hovdf4ErFBKfQU4gYVa62ql1J+Bvyql9gK7gS/qyw+of9xzY+VJH38PQgghRFeQPlKITlBat5hFFkIIIYQQQgjhR7L0UQghhBBCCCECjAzUhBBCCCGEECLAyEBNCCGEEEIIIQKMDNSEEEIIIYQQIsDIQE0IIYQQQgghAowM1IQQQgghhBAiwMhATQghhBBCCCECjAzUhBBCCCGEECLA/H+UeNVJJAPc1QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_7_0.png" }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "cp = ConsumptionProblem()\n", "s_path = cp.simulate()\n", "N_simul = len(s_path)\n", "\n", "c_bar, debt_complete = consumption_complete(cp)\n", "\n", "c_path, debt_path, y_path = consumption_incomplete(cp, s_path)\n", "\n", "fig, ax = plt.subplots(1, 2, figsize=(15, 5))\n", "\n", "ax[0].set_title('Consumption paths')\n", "ax[0].plot(np.arange(N_simul), c_path, label='incomplete market')\n", "ax[0].plot(np.arange(N_simul), c_bar * np.ones(N_simul), label='complete market')\n", "ax[0].plot(np.arange(N_simul), y_path, label='income', alpha=.6, ls='--')\n", "ax[0].legend()\n", "ax[0].set_xlabel('Periods')\n", "\n", "ax[1].set_title('Debt paths')\n", "ax[1].plot(np.arange(N_simul), debt_path, label='incomplete market')\n", "ax[1].plot(np.arange(N_simul), debt_complete[s_path], label='complete market')\n", "ax[1].plot(np.arange(N_simul), y_path, label='income', alpha=.6, ls='--')\n", "ax[1].legend()\n", "ax[1].axhline(0, color='k', ls='--')\n", "ax[1].set_xlabel('Periods')\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the graph on the left, for the same sample path of nonfinancial\n", "income $y_t$, notice that\n", "\n", "* consumption is constant when there are complete markets.\n", "* consumption takes a random walk in the incomplete markets version of the model.\n", "* the consumer's debt oscillates between two values that are functions\n", " of the Markov state in the complete markets model.\n", "* the consumer's debt drifts because it contains a unit root in the incomplete markets economy.\n", "\n", "#### Relabeling variables to create tax-smoothing models\n", "\n", "As indicated above, we relabel variables to acquire tax-smoothing interpretations of the complete markets and incomplete markets consumption-smoothing models." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAFNCAYAAABxHZysAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydeZwU1bn3f093zz7dszMbAwPMsI6IAooLoiJxiYZocLnBRCXGmHivmmhMbrZrvOb6ui8xMYoakmhQ474FEVEREWQRWQRmhnV2Zu+efXr6vH9UVU8vtfZ0z4zwfP30R6ZOnXOerqquOk89GwkhwDAMwzAMwzAMw4webCMtAMMwDMMwDMMwDBMMK2oMwzAMwzAMwzCjDFbUGIZhGIZhGIZhRhmsqDEMwzAMwzAMw4wyWFFjGIZhGIZhGIYZZbCixjAMwzAMwzAMM8pgRY1hNCCis4moOuDvQ0R0Xgzm2U1EZ0d73GgTq+/PMAzDMAxARCuI6O6RloMZPbCixow4RNQR8PERUXfA30tHWr5oonYTFkLMEEJ8NEIiqcIPC4ZhmKFDRFcR0SYi6iSio/K/f0JENNKyjRRE9BERXT/ScigQ0Z1E9NwIzHstEa0f7nmZrxesqDEjjhAiVfkAOALgkoBtz4+0fAzDMAxjFSK6DcCjAO4HkAcgF8CNAM4AED+McjiGay6GYaILK2rMqIWITiGiz4iojYjqiOhxIoqX204noiYiKpL/PlHeb6rGWDOI6H0iaiGiBiL6lbw9gYgeIaJa+fMIESWYkM1GRL8kov1E1ExELxFRZkD7mUS0QZapSn5zdgOApQDukK2Fb8n7+l0K9eRRXDGJ6Db5zWwdEV2nI+NHRHQPEX1ORO1E9EaIjP8ionq5bR0RzZC3q8opM4uIdsh9XiSiRLlPNhG9LX/fFiL6hIj4/sIwzHEJEaUBuAvAT4QQLwshPELiCyHEUiFEr7IfEf2diBqJ6DAR/UZ+viTI99OygDFzZI+TMfLfFxPRdnm/DUQ0M2DfQ0T0CyLaAaCTiEqISBDRNUR0RH5+/jpg/zvlZ8JzROQhop1ENJmI/lt+3lQR0TcCvx8RPSM/h2qI6G4isstt1xLReiJ6gIhaieggEV0ot/0BwHwAj8vPl8c1jp/q80luu4iIvpLlrCGi2+Xtms8hIiogolfk43yQiG6Wt18A4FcArpTl+TLgOxyQ5zhIGt498nF7WX4eeohoGxGdGNCurBM8ssyXytunAfgLgNPkedsChs0gonfkPpuIaJLch4joYfl8tMvP4jIwxzZCCP7wZ9R8ABwCcJ7879kA5gFwACgGsAfArQH7/gHAWgBJAHYA+E+NMZ0A6gDcBiBR/vtUue0uABsBjAGQA2ADgP+V284GUK0h261yv7EAEgA8CWCl3DYOgAfAfwCIA5AFYJbctgLA3Trf2Uger7xPHICLAHQByND43h8BqAFQBiAFwCsAngtoXyYfiwQAjwDYHtCmJefnAAoAZMrn40a57R5ID504+TMfAI309cQf/vCHPyPxAXCBfL92GOz3dwBvyPfiYgDlAH4gtz0L4A8B+94EYJX875MBHAVwKgA7gGvke3SC3H4IwHYARfIzshiAALBc/vtEAL0Apsn73wmgB8D5kJ65fwdwEMCv5Xv6DwEcDJDldfm5lyI/rz4H8CO57VoA/XIfO4AfA6hVngnys+l6g+Oi93yqAzBf/ncGgJPlf6s+hyAZJbYC+B0kS+ZEAAcAnB/w3QOfjSkA3ACmyH/nA5ihIeed8nddIs95u3zc4uT2yyE9M20ArgTQCSA/4DitDxlvBYAWAKfI5+F5AC/IbefL3yNd/l7TlLH4c+x++I03M2oRQmwVQmwUQniFEIcgPRQWBOxyJ4A0SA+IWgB/0hjqYgD1QogHhRA9QnqzuUluWwrgLiHEUSFEI4DfA/ieCfF+BODXQohqIb0ZvRPAEpJcTJYCWCOEWCmE6BdCNAshtpv82kby9Mvt/UKIdwF0AJiiM94/hBC7hBCdAH4L4ArlracQ4ln5WCjynyi/BdbjMSFErRCiBcBbAGYFyJUPYLws2ydCSE8WhmGY45BsAE1CCK+ygQa9LLqJ6Cz5XnwlgP+W78WHADyIwXv+PyG98FP4rrwNkJSgJ4UQm4QQA0KIv0FSvOYF7P+YEKJKCNEdsO33QohuIcSXAL6EpLApfCKEeE+W+V+QXhb+PyFEP4AXABQTUToR5QK4ENKL004hxFEADwO4KmCsw0KI5UKIAQB/g/R8yDV78AyeT/0AphORSwjRKoTYFrBd7Tk0F0COEOIuIUSfEOIAJIX1KmjjA1BGRElCiDohxG6dfbcKyWraD+AhSC+E58nf41/yM9MnhHgRQAUkJUyPV4UQn8vn4XkEP2edAKZCUnr3CCHqDMZivuawosaMWmS3i7dl9wc3gP+D9PADAMg3xRWQLEYP6igGRQD2a7QVADgc8PdheZsR4wG8Jj902yBZlwYgPYj05jPCSJ7mwAc/JItaqs54VSFjxQHIJiI7Ef0/2SXDDentKxBwfDWo15j7fgCVAFbL7iK/NBiHYRjmWKYZ0r3WHx8mhDhdCJEut9kg3W/jEX7PL5T/vRZAEhGdSkTjIS3YX5PbxgO4TXkGyc+hIgQ/LwLv/wpa93AAaAj4dzckRXMg4G/I+4+H9CypC5j7SUiWtbB5hBBdAX0NMfF8+g4kj5LDRPQxEZ0mb9d6Do0HUBByrH4FDcVRfrF5JaR4wjrZDVE1rELGf5yFED4A1ZDPAxF9nwbdU9sgrVcies4KIdYCeBzSS+kGInqKiFwGYzFfc1hRY0YzTwDYC6BUCOGCdGP1Z8oiokIA/wPgrwAeJO3YsioAkzTaaiHdxBXGyduMqAJwoRAiPeCTKISoMZjPyMoUqTxaFIWM1Q+gCdKb2cUAzoNklSyW91GOryVrmPzm8zYhxEQAlwD4GREtHILcDMMwX2c+g2ThWqyzTxOke3LoPb8G8C/6X4JkVfsugLeFEB55vypIbpGBz6BkIcTKgLFi5dVQBem7ZQfM7RJCzDDqaFIu3eeTEGKzEGIxJMXwdUjHSO85VAXJbTPwWDmFEBdpySNbFhdBstDthWSB08L/nJVj4sYCqJWV6+UA/hNAlqyk70KEz1lZrseEELMBzAAwGcDPrY7BfL1gRY0ZzTgh+Yl3yG+zfqw0EBFBsqY9A+AHkHzW/1djnLcB5BHRrSQFaDuJ6FS5bSWA35AUpJ0NyYfdTJrevwD4g3wjVoK8lQfy8wDOI6IriMhBRFlEpLguNEDyj9ciUnm0uJqIphNRMqTYtpflN6ROSA/aZgDJkKyVgRjJGQRJQe0l8nlxQ7IuDhh0YxiGOSYRQrRBcl3/MxEtIaJUkpKEzIIUAwX5XvwSpGeJU36e/AzB9/x/QrLuLMWg2yMgKQA3ytY2IqIUIvomETmH4bvVAVgN6QWpS/5ek4hogVFfGaPni+bziYjiiWgpEaXJXjXK80bvOfQ5ADdJyVWSZItdGRHNDZCnmAYTj+QS0beIKEWWowP6z7PZRHSZbD29Ve6zEdJ5FgAa5XGvg2RRCzwOY0lOkmYEEc2Vz3ccpFi3HgO5mGMAVtSY0cztkN6seSA9lF4MaLsZktvCb2WXx+sAXEdE80MHkd9ALoL0hq0eko/4OXLz3QC2QEpGshPANnmbEY8CeBOSi4UH0k35VHm+I5DcMm6DFBS8HYNxAM9A8q1vI6LXVcaNVB4t/gFJoa2H5Dd/s7z975BcbGoAfCXLH4iRnKGUAlgD6YH2GYA/i1FWG45hGGY4EULcB0nxugNS4o8GSC6Cv4CUKAoA/gvSovsAgPWQlLFnA8bYJLcXAPh3wPYtkOLUHgfQCsnl79pYfp8Qvg/JbfMref6XIVmfzPAopJjuViJ6TKXd6Pn0PQCHZLfIGwFcLW9XfQ7JCvElkFxHD0KyZD4NyVoHSPF4ANBMRNsgrY1vg+TN0gIpNv4nOt/nDUjKdKss22VyjNxXkGIOP4N07k8A8GlAv7UAdgOoJ6ImnfEVXJDWQq2Qjk8zgAdM9GO+xigZeBiGOcYgoo8gZbJ6eqRlYRiGYZhjDSK6E0CJEOJqo30ZJhLYosYwDMMwDMMwDDPKMFTUiKiIiD4koj1EtJuIblHZZypJhYl7SS48yDAMwzAMwzAMw0SGoesjEeVDKqi3TQ5S3Qrg27LvrbLPGEhZi74NoFUIwT6zDMMwDMMwDMMwEWJoUZML/W2T/+2BVC+qMGSfo0KIzZDSzDIMwzAMwzAMwzBDwFKMGhEVAzgJwKZYCMMwDMMwDMMwDMMADrM7ElEqgFcA3CqEcEcyGRHdAOAGAEhJSZk9dapeoXeGYRjmWGHr1q1NQoickZbj60J2drYoLi4eaTEYhmGYGKP3fDSlqMnF9V4B8LwQ4tVIBRFCPAXgKQCYM2eO2LJlS6RDMQzDMF8jiOjwSMvwdaK4uBj8jGQYhjn20Xs+msn6SJCK3+4RQjwUTcEYhmEYhmEYhmGYcMxY1M6AVGl9JxFtl7f9CsA4ABBC/IWI8gBsgVQ13UdEtwKYHqmLJMMwDMMwDMMwzPGMoaImhFgPgAz2qQcwNlpCMQzDMAzDMAzDHM9YyvrIMAzDMAzDMAzDxB5W1BiGYRiGYRiGYUYZrKgxDMMwDMMwDMOMMlhRYxiGYRiGYRiGGWWwosYwDMMwMYSIEonocyL6koh2E9HvR1omhmEYZvRjquA1wzAMwzAR0wvgXCFEBxHFAVhPRP8WQmwcacEYhmGY0QsragzDMAwTQ4QQAkCH/Gec/BGxnLNyw2voba7CjAJXLKcZeYrnA1mTtNsr1wDt1dGf154AzPg2EJdkvs/+D4G2w8Hb8k4ACmebH6OzGdj3DiB8+vsVzQPGTNVuP/Ax0HoweFtuGTB2jnlZ1Nj3b6CjIXjb2FOA3OnafQ6tB5org7flTAPGnWp+3u42YO/bgM9rvg8AJKYB078NkEYVKk89UP4eYvxzPX4hOzD1m0ByZuRjdLUAe98BxMDgNns8MH0xEJ+i3qe/G9j9OjDQGyCLDZhyEZCSrd7H5wN2vwr0dQRvzygGJp4dufwGsKLGMAzDMDGGiOwAtgIoAfAnIcQmlX1uAHADAIwbN25I83Ws+xNm9WyWZjyWKf0GsPRf6m097cBzSxCzRbbNDsy8wty+fV3Ac98JXkwCQPp44NYd5ufc9ASw7n7j/cadDiz7t3qbtw947rJwpcZZANy2x7wsobTXACuvCt9eOAf44QfqfXw+6bh4e4K3J2cDd+w3P/fWFcCa/zG/fyA3rpcUZjU+eQj4/MnIxmXM0V4NnPPfkff//Cngo3vCtw/0A7OvUe/z1RvA6zeGbz/zAHDenep9qj8HXvlB+PYZl7GixjAMwzBfZ4QQAwBmEVE6gNeIqEwIsStkn6cAPAUAc+bMGZJ24fjOUzj1mU9x/fwJ+OH8iUMZavTy1i1AW5V2u7sWgAC++RAw5cLozevtBR6bBbQdMd/HUycpaRfcC0z/lrRt/SPAlmckZcVmMmVAWxXgKgSuX6O9z6pfAjXbtNs76iUlbdH/AicskbZ99ifp4+0DHPHmZAmlXT4Xly0His+U/v3+74CD67T7dDZKStrC3wEn/oe07fPlwPqHJOU2Ptn83InpwE8+My9vw27g+SXSMdVS1NqrgJypwPdeMz8uY57l5w5eN5HSVgWk5gE3fCj9LXzAIzP1x1XuG7d8KVnfAODZ8/XvJ0rbte8AmQH3VEdi5LKbgBU1hmEYhhkmhBBtRPQRgAsA7DLYPWLKSifi5LJWPLKpEZctyEJWakKspho5MoqBqjDD5CDuWun/Y6YDroLozp2YLilfZvHLMnVQluxSSWHqbAScuebG8dRKipre98mcKLmCaSmAblnuMdOCZYGQlLj0CK25ynfMnTE4buZEYOfLknXDHqf+fQBJGfLLMlluq9N3aw2d2+i4hEHBMmiNm1YU/euHkXAVAu6aoY3hrgHSQs59au7gda6GpxZIypTuIX5Zxur/ppXrJG8mkDh8LuWc9ZFhGIZhYggR5ciWNBBREoDzAOyN9by3fWMKuvsH8KcPLbiQfZ1w5kvujX2d6u2K4uDKj/7croLB8c2g7OsMWEw6ZbmsLFTdtcbfx1kwqACqjlETPH+gXHqLWzOyhY2bD0BIsV5m+yjfz+rxtXqeU8dIMVJ680QyLmMeV/7QrjlAUq6cIefIla//u3LXhivfZvrEpw6rkgawosYwDMMwsSYfwIdEtAPAZgDvCyHejvWkJWNScfnsIjy38TCqW7tiPd3w4zJQLpS346GLuGjNbUWR8KgojYr8Zi1zQkjf1VVoLFvgnGGy1AXvZ6aPGTx1gCMJSMoIGLcweM5Q/Mp0oAJr8bgo+1o9zzY74MzTvn4G+mVrJ1vTYoazwNp5VsNdF650OfP1x1VV1AqksYSG17lan2GAFTWGYRiGiSFCiB1CiJOEEDOFEGVCiLuGa+5bzisFCHhkTcVwTTl8GCkX7lopKYUjBm6fRgvBMFnqgAQXkOAc3OZXNE0qR71uoL/TWCHxW6R0lCNHYohCFSWLmis/OIOikXXMUwfYHEBKjvk+oQz0Ax1HjRVYNZz5OgptPQDBbo+xxFUgXde9Hcb7qtHXCfS2qyhdhQaujyqKvbNAygLZ3Wq+zzDAihrDMAzDHKMUpCfhmtPG49Vt1Shv8Iy0ONHFyF3PUxc7tzVXgaQcDPSb299TG77IS8mRXO/MKnxuFUuYGk4TFjVniEKVlCGVHBiqRS3U+mRkHXPXSYkgbPbBbQlOSak1e1w6GiApVBGcaz3XOzXLIxNdrFqVQ1HOXeh158qXFDg1BdDbJ1lK1VwfAe0XBGqWu2GAFTWGYRiGOYb5ydklSIl34IH39o20KNHFv7DSiCtx18TObU2JvQqtGaaFW0VpNHK9C8WjEs+lhlHsldqCk0hWWoagqKnFcyVnSgqg3jlSU7CcBvFCofMCkZ1rp44Lq1osHxNdIonTDETpF3oN6b0g0HKJdupYuH0DUqIdtqgxDMMwDBNNMlLiccNZE7H6qwZsO6Lh1vN1JD4FSEjTt9bE0qIGmFds3LXqikQkConRd7LZ9bPeuWvUF5zOgshdH4VQdw0j0ldGtdzJrCSZGErSGFc+0OcBelWszWYtmEzkDNXl1qNjUQPUf59allKlj5pVubNRStDDFjWGYRiGYaLNsjMnIDs1Aff+ey+EVrD81xEtK5C3F+hqip1FzYqi5huQLG9qizyXhWQKWm5eWvKpLTiFnIFRU5YILWpdzcBAn3qcmKvQQJlWU2AtHBetxboZFHnVFAVPrWQNDIzlY6KLU0c5MoOWkq5nUVNLYANILrgg9WtBq88wwIoawzAMwxzjpCQ4cPPCEmw62IJ1FU0jLU700FJ0lHTwsVpYWclM2HFUKnatZvFxWbBiKbWf4kwU2NWySHW1SAkTVBW1fP2sd3roWbW0lOlej2TN0lQa6yUl18zc9gTJzdIqeoqCokQGxvIx0SU+WapJOBSLWmKaZF0PxIxFLdSS64iX4kbVroVYZpA1gBU1hmEYhjkOuGruOBRlJuG+VXvh8x0jVjUtdz2/e1OMFlb+2CsTlgCPTgyVU8f1LhQryQy0LFJ6cW5K1ruuFnNzBI2rY9VSMmSGKoB6FkJXvqTcdhw1nlst26RZ9FzvPCOTPOK4w2qpi0C0XIrjUyQFTsuiFpr11C+LxgsOtqgxDMMwDBNL4h023LZoCnbXuvHOziHWLhotuPKlIP8Bb/B2fyKIGC2slNgrMxY1t47SaCVGRy1zpBaufDnteYgCqBd3pRejY4SuRa0A8PaEpz3XSgQBGGeuDEQt26RZ9JJZaMXyMdFFr0SCEXoFybUSxbhrw7OeGvXx1EkJegLLSAwTrKgxDMMwzHHCt04swNQ8Jx5cvQ/9A76RFmfoOPMB4QM6QywvespRtHAVmrME+JUYtfgtRVEzkVDESsFdrdgrv3KkpqjpxGuZkY1sUhKTsHE14vn03MmMasGFzh3peVZc70IVbn9xcVbUYo6VxDGh6CnpWi63Hp2i8VpxmopyF1hGYphgRY1hGIZhjhNsNsIdF0zBoeYuvLi5aqTFGTpaFilPHeBIkhbhMZvbZDp7Ty1gi5OKb4fij5EyWKhq1X7SQiv2ylMHgNQVqqEkdvDUAiljAHucyrga8Xx67mRmYwC1sk1aQS1OsLtVcgONlUWWGcRZIL1oCbWKGzHglZP06FjUtFwftfq48qVz399tvk+MYUWNYRiGYY4jzpkyBnOLM/DoBxXo7jORrGE049JwkVOsT7FMBKEVexWKu05yk7SpLLnMZo/sqB+c0wxaCqy7VqqzpqpQ6WS9M0LP+qSV2MFTJ8UJxSWF90nJAWwO4+PS3Sq5VWpZSMyg5no3gjFJxx2uAskqbrYmoULnUamf1jlyFUhjBiqARoq91guCob4MGAKsqDEMwzDMcQQR4Y4LpqLR04tnPz040uIMDa0itVbcBCNFK/YqFL3Ysrgkdde7UKzW9NKKvdJbcNrjJAUpkuLDei5oqXmyLCrnSKuPzSbXmDNQ1IZSQ01BzTLKitrwYbUmoYJRoXNXfrgC6C8jodNHTRYriXyiDCtqDMMwDHOcMbc4EwunjsGTH+9He1f/SIsTOclZklthmLXGQuKNSDHrtmgU62QmRb9etkY14pPVs94ZLThd+ebrlwWNq+MappX23MidzEySiaHUUPPPUyBllxwI+B1YPd5M5ETqcmukpKtZx9wG59WpYolWykiwRY1hGIZhmOHi9vOnwNPrxRMf7x9pUSJHsbwELsb8RZ1jvLDyJ9/QWWAKISskOq55rgJjK1YkFh5XoUrsnoGlUa2PEX1dQE+bwbgqyqiRO5mZJBNRsagVABDBlhe3HMvnzIt8XMYcVjKfBmKkpKtZx/xlO3SSiQDBSqPboE+MYUWNYRiGYY5DpuW78O1ZhfjrpwdR394z0uJETqjrmuLeFOtEEHpFdRV63UB/p75CEqpoqqFX+0l33ADZ+rslN01DWSxaNsxYtUITOwz0S1YsPeVOSZWuFwOojJk6BIVKTVHw1EpWQLVYPia6JGcB9vjILGq2OKm/GnoWNS3FPtEFxKcGXwt6ZSSGAVbUGIZhGOY45WeLJsMnBB5bWzHSokSOq0BjMRZjRU1RDvSULDOxZS4V17tQFOuTleQooRYpM8dFK+udHmasWqHKdEcDAGF8XPo7JWVXc+4aKdukI968vKGoud6NYEzScQeRuXjEUBTXWbUkPcCgAhhmUdPIeqoQ+rJCr4zEMMCKGsMwDMMcpxRlJmPpqePx4uYqHGzqHGlxIiPU8jJcipoSe6W3wDQT6+TMR5jrXSiRKA5OJeudrACaWXBqJWfRw6xFrbtlUAE0SgQBmHOJi0atM7VkFsORjIYZxEycZihGhc5tNsl1Nei81mhnPfXLkh9+LSgyjgCsqDEMwzDMccxN55QgwWHDA6v3jbQokeHKB/q7gJ526e/hTAThKtBXakxZsUzEurlrrC8UQ2OvzMTauFTcxYww4xoWOq4ZK5yZJBNGi3UzqFpehiEZDTNIJC63ZmqbhbrcmnnhERqnqVdGYhgwVNSIqIiIPiSiPUS0m4huUdmHiOgxIqokoh1EdHJsxGUYhmEYJprkOBNw/ZkT8M6OOuysbh9pcawTmn3RXQeQTd+9KWpzaxTVVXCbsGIZxbopyVGsKg6hFimPCeUoksQO7jogwQUkOHXGzR/cFzBnhQvtozp3FAoRK653ikxKLN8IxSQdlygWNaOahAr+emhGSleIdcxMH2e+VLfQ55P+dkfhZcAQMGNR8wK4TQgxDcA8ADcR0fSQfS4EUCp/bgDwRFSlZBiGYRgmZlx/1kRkJMfhvvf2jrQo1gl1XfPUSnFLdscwzG0QW+OpBZIygbhE7X20iuwqdLUAA70RuD6GWKTctUC8U1+hiiRVuhnrU+h3dNcC9gQgOTNyWfp7JHfKaCyiA13vopHyn7GGMx/wdkvZQ83Q0y5Z0c1a1ALdoo36uAoAnxfobJT71Iyo0m6oqAkh6oQQ2+R/ewDsARBqN18M4O9CYiOAdCLiVxEMwzAM8zXAlRiHm84pwScVTdhQ2TTS4lgjVFEbzvgif+yVRtZMM65WyZmS0qKl8EXqyql6XAzG8Ge9s6ComYkT81vHaoJl0UuOEpckKblGxyUa59qZHyxbtMZlzGG16LXZc+QqkN2i2wbLSBi+VAi5Vo3KSMQYS6+biKgYwEkANoU0FQKoCvi7Wt4WQdVE86yvWY8NtRvCtt968q2It8dj7ZG12NKwJaiNQPj53J8DAFYdWoUdjTuC2hPsCbjlZMm78639b2FPy56gdmecEz+e9WMAwCvlr2B/e3D9mczETFx/wvUAgJV7V6LKUxXUnpech+/P+D4A4G+7/4aGruDg4XHOcbhq6lUAgKd3Po0ebw+uP+F6JDrU38btbtqNNUfWoHegN2j7zOyZuGDCBQCABzY/AB98Qe2zc2dj4biF6Pf14+GtD4eNe1r+aZg/dr7qnFp82fglVh9aDYFB0/UFxRdgZs5M02P4hA/P7HwGLT0toIAb+JVTrsR413jsad6Dtw68hUR7IpaVLUNqfKrqOLuaduHdg+/6/xZCIM4eh+9O/S7yUiJP47uxbiM+rvoYd8y9A0SE9w69h30t+3DNjGuQlpCm2e/1ytdR3lru/9thc+DKKVeiMNVaXQ4z10xLT4u/TQiBc4rOwSn5p6iO1+/rx9M7noan34MTsk/AhRMuBDC0a6arvwuPb388rP2ssWdhXv48tPW04amdT4W1Lxq/CCeNOQlHu45ixe4VYe3fnPBNzMiegSpPFVbuXRnW/u2Sb2NyxmQcaD+Al8tfDmu/YvIVKE4rxr6WfXhj/xth7VdPuxoFqQXY0bgDqw6tCmtfVrYM2UnZ2FK/BWur1oa1/2jmj5CWkIYNtRuwvma9f3thaiGWTlsatr9ZfMKHZ3c9i5aeFiTaE3HzyTdb6v/i3hdx2HMYQPD9R43Vh1Zje+N2/9/FrmJcMeWKyARnvnZcPW88nll/EPe+tw+vT8oKugePatRcH7MmDc/cgbFXmXJLDVwAACAASURBVBPC243qlgGSsqJXaDrSOk6hsVcekwlJjOLuQvHUATln6++TEJL23GxsmV6SCf9xicIi2lUA7HtXrntnIlMnE10CXW5zZxjv7395YcL1URnXkSBvM/gdBf6m/WUkRqaGGmBBUSOiVACvALhVCBGaK1Xtbh7maEpEN0ByjcS4ceMsiKlOTlIOyrLKwrbbSDIU5qXkhbUHPngKUwrh8wUvRh22wUMy1jkWdrIHtScoJxrAONc4JDmCgwsDFYdiVzHS4oMX74GL+Unpk5CTlBPUnpU0WA8iKzELO5p2wN3n1lTUZmTPgI1sONh+MGh7QWpB0D4ixO83P0W6eAmkegzHJI9RnU+PGk8N+gb6cNKYk/zbMhIs1HyBpDh0e7vhsDkwLXOaf3tKXAoA6fgVOYtQ3lqO1t5WTUUtNS4Vecl5yE7KBgD0DvQiNT4ViXYd9xMTVHmq0DMw+ObUGedEa28rWntadRW1ImcR4m3xfll2NO3A0a6jlhU1tWsmM2nQdaQ0vRSd/YOZ2/a27vX/HtTo6OvA0e6jmOCaECSL3jVjg033mrHb7Krtitzx9njV9sxE6Xsk2BNU25XjmxKXotruincBkM6JWrtyrbjiXartym85IzFDtT3BLv32s5KyVNvjbFIWqTFJY/zt1R3VYb9Nq/T7+lHTUYMiZxGKnEUAgLcPvI3ajlrcMPMGzX71nfVIjktGcVoxnPFO1HTU4JD7kO5cRzxHEG+Lx+SMyQDg//0wxweJcXb89LzJuOOVHXhvdwMuKPuaFPt1JEhKSaDrY/GZwzN3YHyZmqLmrgXyZxmP49RRjiKt4xQae+WuAyacZUIWE3XdFHwD5uLn/LIEWPcKTaQz0EsyEU0XRVcB4O2RYtOGMxkNI2HV5dasku53uZVdbc30CbTu+ctIjHKLGhHFQVLSnhdCvKqySzWAooC/xwIIO9pCiKcAPAUAc+bMMRkxqM2UzCmYkjlFs3161nRMzwoNpxvkhJwTcELOCZrtJ405KUjpCGVu3lxd+U4rOE23/cxC/QfJ9Kzp2NG0Az7h091vWtY0TMuaptmuWEnUcNgcuGjiRWHbaztqsb9tPyalm38reebYMzEnb05ESp5Cgj1B12JQkFqAU/NPRXlrue5xKU4rRnFaccRyaOHz+ZCbnOtX+Mc6x0rbDc7R7NzZg2MIHxaNXxSk9BvOK3yo6ajBrJxZmsopACwoWhD090UIP7eBDIgBANK1Hvhb0Ltm7Da76jWjkGBP0G1PjkvWbU9LSNNtz0zM1G3PSc7Rbc9PzUd+qvZNN1AhUmNC2gRMSFNZkMmUZJSgJKMEgGRl3tcytEx6Az7pHJVllfktowO+AXT1d+n2W7F7BWaNmYULiiXL+rrqdajtrIVP+DSV95L0EiTYEwzvXcyxy2UnF+LJdfvxwOp9OG/aGDjsX5Pk0EosSp+c/XG4FlZ68WXePinOxZQVKx+o2abeZqb2k+a4skXKNyAlSDBzXFwFwMFPzI3fcRQQAybHzR9MGGHWncyVD9R9qd5mJnOkWQKtsu46yfqX6Br6uIw5nAGWLzOYrW2mZlEzUuxTcgCyD14LZvrEEDNZHwnAMwD2CCEe0tjtTQDfl7M/zgPQLoSIqdvj8YCymPL6vJr7fFb7Gf598N9Rn3tT3Sa8c+AdS31c8a4gJa29tx33bLoHXzZq3GQjxEHS+wVlAatGR18H2gKCUr0+L6rcVXD36RTONIFXeIOsrHab9G9F4VHjo6qPsHzHcv/fNrIhNT7Vb4ExQ+9AL57d9Sx2Nu2MQGptFAVT+R5MdDkx58Qhuw4q11agcmUjm+41B0i/j8BrtSS9BN+c8E3dPmcXnc1K2nGOw27Dz8+fgsqjHXj1i5qRFsc8SlKP4U4EoZexsaNelsWEIqFYsdSy3rlrjWs/6Y5bKymMPq81WXSesX7MuqAp+3jqJKuVt8ecAussADqPSkpvKO5aIC5FcqscKoGud5yaf/hxxAPJ2YPWYyPcNZIV3eiFd5ACblKxt9nl+mt1kVuzo4iZV2VnAPgegHOJaLv8uYiIbiSiG+V93gVwAEAlgOUAfhIbcY8vzCgBVZ6qIbtWac1ttBAMpbK1Mijmj4jQ5+vTVTRDae9tx9M7n0Zla6XmPs54J+bmzoUzXjtz1QdHPgiKc+ob6MOzu5/F3uahZTTzCV+QUqMshPWOlafPE6Qgen1erD2yFofdhy3NCwS75prhb7v/phrPpZAal4qLJ17sd2tkRh8pcSm4adZNmJE96LdvJ+Pfp0/4ghS1gtQCzMmbo+sKyzAAcP6MPJxYlI5H3i9HT7+158CIocRV+RdWw6SoJbgkZUHNomYl1inQ9S6UoSQz8B8XCwkyXAWSlUzJeqeHlTgxJQ6vvdqaLMCg0huIEv8XjVjKwAQSXOx6ZHAZlLoIxGwBeEfCoAJoJuupgpJcZhRkADVc9Qkh1kM9Bi1wHwHgpmgJxUgUOYtw68m3+uOz1AhdjEULG9l0LVZqbDu6DU3dTf7kIX4lxsI4SjxOYBxYKBmJGbqubYCkOAUpVCaUXjPMypkVlGQjIzEDV025SjfWLNTVTEDgk5pPEGeLw3jXeFPzqllVzOATPvQP9Gu2J8clB7llMtFla8NWfHjkQ/zXyf/lj3Gzio1sYbFidptd193WJ3zwIfje0NXfhfbedoxJHqNpQX1s22OYkDYBl0y6JCJZmWMDIsIvLpiC7y7fhOc2Hsb18yeOtEjGOAuAriagVX4BNlwLbSLt5BtWshIGJjAITVnvrgMyiiOTT1EAj+6xLou7VrIs6KEsZM0kW3AVSla9etkzxGwyEUA6BukhuQ3MZJs0S6jr4wRrydSYKOAqANpNWtQ8teaVJ8Xl1hFv/r7gKgAa95orIxFj+NXqKCbOFoe0hDRdK0qoQhItzLyxDyVUITFjbQpFsb7pKSRCCAz4BnQXql5fsIuiMp5RLJkRJ+ScgBNzTvT/nWBPwJTMKbpxY6HKtPJvK7Ioyq5VpdzIRa53oBe1HbVhWUOZ6DDgG0Cnt9PyS49AOvs7saFmA5q7m/3bxqaORVl2eEIT/7wqiv2elj14audT6PR2anWzZP1mjm1On5SN+aXZ+NOHlXD3aL/sGTUoC/baL6T/D6frmlYtNbeFpBTOAOUobJwh1HFS5q7ZGjyPmT5mrBvuGsAWJ1ktrMpi5jvpJZkwmznSDI54KTapvVqy3rHr4/CjlzgmFCtKurNAGtdKHyW201NnXEYixrCiNorp6OvAx1Ufo7FL2/1gwDcQE1cmO+m/sVeVRQwEKZWKAmllHH/MlI5C0tLTgrs33Y1dTbt0xxmq0qiGu88dlFWx39ePfS37guLhQvEKb5AybSMbbDCOMQpE2deqouawOXTnqemowfKdy1HfqeJWwgwZf5ypiFwB8vR58P6R99HYPXgfmJE9AxdPvFizj53suLTkUn/2RmUbgLBMt4GExmAyxzd3nD8VrV39ePqT6LvXRx1lwV6zVXJHTNB+eRaTuVVdH2sBRyKQZCL7sVasW3+3udpPmuMGHBebQ1JGzPYxk6LfXSdZ3Wwm1iGuEEUt1URWUS1ZfL7BRXS0cOZL1j6fl10fRwJXAdDVrF2TUMHbK1nPrVrUrCj2znygzwM0lY944XNW1EYxXd4ufFT9UdACLZTkuGR/WvJoMjdvLq6efrWlPqFKo53sOHnMyZayQJpRSMxYpEKVRkU5GqrF4Pk9zwclWenx9uCFfS+gsk07pq4gpQAT04Jdh8wkgwjEGe/E5ZMvxziXtbIWRi6sShvHLcUG5RrUU46MiERJt5ENM3NmIjdlMEuc0l9PafQJH2xmFlzMccEJY9PwzZn5ePqTA2jqGOVWd2XB3rBr+K0hSuxV6O9ciS0z8zZeUVpCFb6hFl92BhyXVJMKlZL1zoyiZiXxhrLgbdglzeGIN+6TlKFeDNyfHCWKi2hXgSQbwBa1kcCsJddjIS4SGHSL9pjMegoM/t4ado9oIhHAYsFrZnhRFs96C+0lk5fEZO6MxAxkJFqrgRbq4mcjm+VYlzhbHIqcRUiOS9bcR7FO6Sldc/PmhrVfPuVyZCVmafQwh5oyCugrjWcUnhG2zWqylgR7gm6pCS1K00vR7e3WbPcnKSG+FcQC/294CJZcNbfXDbUb8MHhD/DLU36JOJVMcF6fFzUdNchKzPK75ZqxcHt9Xr4WmCBuWzQZq3bV4/G1lbjzWyYK0Y4UysJqJKwhSuxVV5OUnVHBXWe+UK4jHkgZE66Q+BelQ1TUrBwXm918LTWzBYoB6diQ3ZosSgxgqCxW4v/M4iqQZIv2uIw5jIrHK1gtSK7sJwas9xkF1lV+dTqK8aehH6K7XiQc7TqK7Ue3W3JbXDJ5CS4tvTRomxDC0hh5KXlYVrYsqGB3KGaUo8kZk8MUm6mZU5GTbMLtQ4eweDObsZVCjdtm34ZvjP+G6f27vd040HbAsHZWKHPy5mD+WO2gaL+1htPzx4SMxAzMzJ6pqkyZRS3ejEDwwad5b+jo68CK3SuCLL1mkvvMyZujW0OOOf6YmJOKK+YU4flNh1HVYu3+M6wkpgNy0fphX1g5NdwWPbXW3sa7VJSjodZxUmKvlPGtyGJkURPCWoZEJe05YO37KPFCgVjJNmmWQJlYURt+zLrcWikJAQRfI1ZcH632iRGsqI1iFBckPUXtzf1vYl31uqjPXdlaiTf2v2HJVTA1PjXMDfPezfdi9eHVUZXNjHLU2NWI1p7gNMcH2g+gobNhSHOrxZsB+ovflXtX4qV9LwVti7PHWXI3PNp1FP/Y8w/Ud1mLJVMSr2jBro+xpchZhEtLLx2Se7LfohZw3SkulVr3BjXlLi8lD5eWXIq0hDTNuS4ovgBTMqdELCtzbHLLwlLYiPDwmvKRFkUbosEF2Ui4PgLBC0wh5PgtC7I4VbJHRqOOkyKDlQWnGYtarxvo77T4HeV9rXwftSQTVhfrZlBkIru5WD4muph1fbSqpAcp4BZdH630iRG8OhvFmLEcHXYf1k02EilmlMRQttRvwd6W4DplNrJZis850HYAf97+ZzR1N2nu4yAHziw4Uzcl/qsVr2LVoVVB216veB2f139uWhY1fD71JCV656irvyssq+K66nWWCoFHmvXx7QNv49Ftj2q2FzmLcFnJZbo16ZiRpTitGD+d/dOgWndGLpVqSXnSEtIwM2empluxEAL9vn4ItYK7zHFNXloirj2jGK99UYN99Z6RFkcbZUE23AsrZd5AZaKrBRjotWaZUbNieerM137SHDeC46JVciAQqy5ogTJYsqjJySAC703uWkmhSjUfA2+IX6HNk6x/zPCSmAbEJZu47mol63liurlxI7GoxQWMzxY1RotkRzLumHsHThpzkuY+odkNo0UkNdA21m3E7qbdQdscpJ91MJRubzcauxt1F4t2mx0Lxy/UrUGmVl8ukiLeoZw77lzMyBr0x7eRDddMvyYoZX8oA2IgTJYvG7/ULeqtNgZgXVEzKrOQnpiOE3JOiLjGF6PPofZD+MPGP6DKXRXxGA6bA654V3BGVYPfp5pLa+9ALw67D2u6z/b5+vB/m/4PG+s2Riwrc+zy4wWTkJrgwP3v7TXeeaTwKyQm48KihRJ7Feie57f4WLSodbcEZ71zW3SfVB03QotaXwfQ49beJ9LvCFhU7golpberZXCbP9tkFBUqVwSyMdFDryZhIFYLnSemSwqg2aynCpG84IgBHDU+iiEiJCk+9xqEZjeMFkauVVqyhCqNVrMbmi3s3NXfBYfNgXi7etYoNeUokiLeoZyce3LYtuK0Yt0+aufIqgLrT/ph8VzbbPrHv723Ha09rShyFnGcWgwgIniFF/0i8jpU9Z312NeyD3Pz5vqtYTnJOTg171Td6x8IVuwbuxqxYvcKfHfqd1GaURreJ0KrLXN8kJ4cjxsXTML97+3DlkMtmFM8cgVgNRkp10cl9qphN1C9RdpWvVmWyYLSqCwMK9cMxnK1HBi64qDIYFU5AoD9HwBpGnGrRzZFMG4Ei1/lfO5fO5hkoqk8+udZkY0zPo4cznygef/g70iN5kpr1xyRNO5An7mspwquAqlQvJkyEjGEFbVRjBACa46swQTXBJRklKjuM+ALV0iiQSTZ6tSKb9ttdkvKkTKfkULy8NaHcWr+qThv/Hma44Qqe5EU8Q6lvrMezngnUuJS/Nu+av4KaQlpmq6YarXurCqwSjyeVeupgxy6x/+r5q+w+vBq/GLuL1hRiwH+QutDSM/f0NWAj6o/CnJbLEwt1HX9zUjIwJVTrgxylzRy0+XEMowR151RjBUbDuHeVXvx0o9OA41gEVhVskqk4svp1sqYRIWMCUD5v6WPH7Imi6KEvLg0ePvsa4cmW9YkgGxARrF1Wf5lMLc9wZpik1UCgKTjZVWWV68P3l4W5azXCS7J4pI1KbrjMubJnABs+zvw9EL9/U6yVj4KWSWA16A+m1qfpgpzZSRiCCtqoxgiwme1n8FOdk1FLSspKybxRaXppfjRzB9ZSoKgpjSePOZkS/KZTW5ht9l1k4moKo0RFPEORAiBJ3c8iQVjF+DsorP929858A6mZ03XXDhPzpgcVurAbrMmy3jneCyduhTpCSZ9smWMFEIzBcaZyIlGoXW134QQwl+cWu23khyXjKmZU4NlMUjCwxY1xojkeAduXliK376+Cx/ta8Q5U6MYHxQNTvwPYNxpQPIIWPu+s1yyqAWSkg04c9X3V2PcacC17wKh7slj5wxNtumLpRT6aRase4WzgetWSe6PergKgLhE8+NOuQj4yUb99Ouh5M0Elr0H9IbERxbONj+GGYiA6z8AkodWxocZAovuAqZ9y3g/q7+Jb/8ZsLr+O+fXwGn/aa1PDGBFbZRjI5vugn5Z2bKYzJscl6xby0wNn/CFKUdqNcT0cMY7UZJegjibfjpzO9l1rRQXFl/orx+lcNHEiwzH1UMrTsxI6fpGcXgafgc5LCVtSI1PRUm8urKux3jXePiED0II1bffbEWJLVFR1FSszJVtlfjn3n9iWdky1XT6HX0dqOusw1jnWL/7tJF1z6zbMXN8c9XcIjz9yQHcu2ovFkzOgc02iqxq9jggO9ytd1hwFQzdRZEIKLb2zDSFzQ7kWMzmSgSMPy0GstiAMVON9wuVZdy86MuiRoZ27DszDCRlAKWLoj9uSrb1Poku6TPCsKI2ynHYrMUyRYv23naUt5ZjWua0MIVHi5tPvjlskdc/0A8ffKaTVUzJnGIqPbhRYpBpWdPCtg21PpSW9clOdktlDADg2rJrLe3f0tOChs4GlGQYK7GBTEqfhEnp2m4cA74BkPwfE32S45IxO3e2ZUtoIGoKlFHx6pqOGryw7wX88IQfIilVUtSM6jImOhJxZuGZGJM8yqwkzKgizm7DzxZNxi0vbMdbO2qxeNYwJ+5gGIY5juBXp6McvQQYQgg8vfNpbD+6PerzNnU34d2D76K1t9V4Z5kkR1KYQvaPPf/Ai3tfjLZ4hvFmh92H0dbTFrbtQNuBiOdUlDGbLTz2Tc+i9uCWB/H+4fcjnheQ6tq9VP4S+gesJaXw+rzo6u/StN4psXyjLtbkGMEZ78TFEy/WLeBuhJpLopGlTs36mxKXgqumXIUJaeouRylxKVg4biHyUkY2cJoZ/VwyswDT8l14cHU5+ryRu5MzDMMw+rCiNsrRU0i8wouajhp09Bv4kEeAmULOgQghsObwGhxsPxi03WoCjw21G/Dw1ocN3QJPLzgd0zLDrWYKf9/9d2w7ui1o2/qa9Vhbtda0LKHoWdT0vmNoDTUA+Lzuc6w9Yl6WSF0UtzVsw/1b7ke3t1u1fdaYWbhyypWWxmSs4RO+IcVGzsufh1+e8ssgS6pRen7/tRpwvcTZ4zAlc4pmwWtFqR9qZlTm2MdmI9xxwRQcaenCi5uPjLQ4DMMwxyysqI1yfjr7p7h44sWqbcpiLBYxJYqblNkFpld48Wntp6j2VAePY9F1s9vbjY6+DkMLz9y8uZoukj7hgw/hddSGmp4/wZ6AxZMWh1kklkxegkXjtX2q1bI+HnIfCisOrkek8UPK/loJJLKTslVTtTPRobO/E/+78X+xtWFrxGPYbXYk2BOCfhNGGRwV62/gb8AnfChvLUdzd7Nqn9qOWty/5X4cdh+OWFZGHSIqIqIPiWgPEe0moltGWqahcvbkHJwyIROPflCJrj5rrt8MwzCMOVhRG+XouaUpSoeiVEV1Xpv+Aj8UtTf4gHXlyGwBb0+fB54+j2qbllIz1KyPcfY4zBozC9lJwUGpOck5YVkdFYQQqkqjVQU20ox8SgIKrQQS9Z31Q3IHZfSJpMxFKPta9mHN4TVB25zxTpxZeKbmdaf2EmdADGDl3pWaLwgiLQHBmMIL4DYhxDQA8wDcRETTR1imIUFE+MUFU9DU0Yu/fnpopMVhGIY5JuEn8ihnXfU6bKlXL/wXyyxtRq5VYbJoKI1WlSOzBbxf3Pci3tz/pmqbltJoJ/2U/kb0DfShyl2FrpDUyfta9mFP8x7VPlqZIq0qsANCSvoRqUVNS1HYVLdJ8zgyQ8efwGMIltxD7kPYXL85aFtqfCoWjluomfijJKME35v2vaB6f0ZxbYoyzxlAo48Qok4IsU3+twfAHgBf+ywcs8dn4rxpufjLR/vR2tk30uIwDMMcc3DWx1HOnuY9SEtIw5y88JoRBEKRsygmddSyk7Jx80k3By309NBSGsuyy9DZ32l6XrMFvO2kXUhbS2k0KnVgREtPC57d/SyumHxFUFbJTXWb4BVe1UyTADA3d25Q4WFFfiuyzM6djdJ06y6KyqJbL+kEL8xjh9HxN4OalVkIgS5vF+Jt8Yizh2cBdcW7wmog2sgGAmlmKNV6qcBEFyIqBnASgE2xnuu/P/lv9PuCExCdln8avjP5O/AJH+5Yd0dYnwVjF+CSSZegq78Lv9vwu7D284vPx6Lxi9DW04a7N90Ne54X/e5GXP3WK5iW78K3Jn0LZ409C/Wd9XhgywNh/ZdMXoJ5+fNwxH0Ej33xWFj71dOuxqwxs1DeWo6ndjwV1v6Dsh9gWtY07GrahRW7V+DC4guxcLx6cVwhBB7e9jAuL70cRa4ibKzbiJfLXw7b7/Y5tyMvJQ/rqtepvrj6zam/QXpiOlYfWo3Vh1cDAOJt8bj55JtNJ98RQuCPX/wRRzxHYCMb7jvrPlP91Hhm5zPY0xL8cjAnKQe/OOUXAIAntj+B8a7xuGjiRZpj/Gn7n+ATPvzXSf8FALh/8/3IT8nH1dMtFhIOQIktV7yAlOtPuaaM6Bvow6/W/woAUJZVZik78v62/Xhqx1P++9jiSYsxf+x81HXU4cGtD4btf8XkK3BK/imG424/uh3P73keAgLXlV2HGVkzsLt5N/66669h+94480aUZJRgW8M2/HPvP8Pabzn5FhQ5i/BZ7Wd4peKVsPY75t6BMclj8HHVx3jrwFth7b+d91ukJaThvUPvqSYou/uMu5HoSMSb+9/Euup1Ye0PLJB+j/8q/xc21QXffhLsCfjDmX8AADy/53l8cfSLoHZXvAu/O026H5i5/va37w9qL0wtxE9n/xQA8PDWh1HTUQMAsMGG68qu01w/mWFvy148u+vZoDWVw+bAf876T4x1jlXtU99Zj8e2PYY+3+ALJhtsuGbGNZiRPUO1T1d/F+7dfG/QmjY1LhV3nn5nxLKbgRW1UY5eGvrU+NSY1VFz2ByablVq+F3zQhb907OseffkpeSZUmD0CjnH2+Nx1ZSrwqwNC4oWoG8g8re+mi6VNjv6vOrjOmwO1YdloiNRdYGtRVpCmmYSCD1yk3NxTtE5SHao18Tz+ry8MI8hStmDoVjU1KzMnn4PHt76MC6eeDFm54YXfT3adRSNXY2YljUt6HrVe1nBilrsIaJUAK8AuFUI4VZpvwHADQAwbty4Ic9X2VYZlsxoUppUrkMIgfLW8rA+ZVllAAZjGkOZmzsXgOQqq7Snp/XisKceIi4Z8wulTMH9A/2q/d290tfu9nart/dJ7V39XartSvIsT58Hn1R/grqOOk1Fra6zDn/d9VeMd45HkasI7l636phKNt3WnlbVdsUTo6WnBeWt5RBC4JD7EGZkz8DSaUtV5w6lqbsJy3cuR05Sjv9e/sGRD/D2/rfx0NkPWcq8W9tRGyZnYFKx5/c+j6zELE1FrbWnFX/58i+YXzjfv+2FvS8AAL477bsRe+mUt5bjB6t/gAcWPIB5+fNQ2VaJGk8N9jTv0VTUOvo6cOtHt2JZ2TKcPOZklLeWo723HR8c+QBLpy81XY7mjco3sOrQKox3SXXQ2nqlrM99vj7N6+xo11E8u+tZXDLpEszIUl+cr9y7EmuPrEWhsxCdfdICvbOvU3VMJWmXp8+j2t7rlX6L7X3t6teh/FJFuc5CUV6yNXc3q7Yr9/bGrkbVdoWGzoaw9kT7YNHyuo66sPaMhMH1oOr1F1AYvcpTFdYe+Aw84j7iV+Sq3FVIS0jDr7N+rSmvEZmJmchOysb6mvX+bQfbD2JKxhRcV3adap8ubxe6vd34qvkrJDgS/H2mZ03XVNTqOuvwVfNXqPZUIyc5B0DwcYkZQogR+cyePVswxjyz8xnxt11/G/Z5e7w9Yn31elHXUWdqf5/PJ7wDXjHgGwja3t3fLdp726Mu33NfPSeW71ge9XH1ONJ+RNy54U5R2VoZtH3lnpXiL9v/otpHOS4+n2/Ic+9q3DWkMdRYuWeleGL7E1Eflxnk/UPvi4qWioj7v17xunhoy0NB2zr6OsSdG+4Um2o3qfb5uOpjceeGO4V3wBu0/Z5N94hVB1ep9mnsahTrqtaJzr7OiGXVA8AWMULPm9HwARAH4D0APzOz/9fpGXmkuVOU/upd8YuXvxzWee/ZdI+Y+9zcsOeOwsdVH4uyFWXii4YvojqveNSjBQAAIABJREFUz+cT81fOF//z6f+Y7vNp9aeibEWZ+Lzuc/+2F/a8IMpWlIlaT21U5Xt066PixL+dKHq9vartn9d9LspWlIlPqz/1b3u1/FVRtqJMHG4/HPG8b+1/S5StKAt6Rv55+5/FCStOEF39Xap9vmj4QpStKBMfHvlQdxwjbnz/RvGdN75jSd7GrkZRtqJM/GP3PzT3ufSNS8VNa26yNC5jnqXvLBXLVi2L+rgNnQ1DXncNJ3rPR45RG+Xoucg1djXiz9v/HJYSPxr0DfRhzZE1YVkctSAi2G32sDdxa4+sxZNfPhl1+fRivPoG+rCvZZ//zaxCTUfNkGrO6cabaVj33H1u3L3pbmxvHFqtu+2N2/Heofcs9/P6vGjraQtzf1IwGxPIRM55489DSUZJxP19IjwZjWG8mUZG2KumXIU5ueFu1IDk7jx/7Hwkx6lbX5nIIclc8gyAPUKIh0ZanmhTlJmMpfPG4aUtVag8Gv1yMVqUpJeg29uN2o5a1Xblrf6k9ElRnZeIsKxsGU4rOM10n4q2ijBZlIy7SpsRQgj8Zv1vVN3aAinNKMWAGNBcG1S0SvMF3pdK0kssyaJGZWslHDYHxrkGrcGl6aUQEJpJqyrbKv0yB/axKsslEy/B96Z/z5K8WYlZyEjI8MsQSr+vHwfbD/qPDRN9HjnnEfxl0V8i7i+EwMvlL4dd62OSx+haqctbyy2F5QBD84wZCqyojXLi7fGaF1ufrw+N3Y2aMSdDwSj9dyjtve1498C7aOhsCNpus2krMWq8VvEant31rOF+s3Nn44zCMzRleWHfC6hyVwVt/6r5K7xz4B3TsoSipajpZXDUcpfc3bQbL+17yfTcXp83oliymo4aPPrFo6jyVKm2Lxq/CBdN0I5jYIZO70DvkFxuLy291B9HoqBcC5pujHKsZ+i9ozitGFlJWap9erw9aOtpG1IcJ6PJGQC+B+BcItouf46pH95N55QgKc6Oh97fN2xzKgtorYV2ZVsl8lLyYhLHfW3ZtTi/+HzT+y8YuwB3nX4XMhMz/dsUpU1L/lCOdh3FG/vf8Mf3aGHmuLjiXchJygmXpdWcLGpUtFVgQtqEIHfFaVnTsHjSYiTYEzRlSXYkB8VxT0ibgF+e8kvMyFR3QVPjookXYXHJYkvyEhFKMko0FUKvz4ubT7oZZxedbWlcxjzZSdmm3VvVaO5pxu8/+z021G4I2r65fjN+s/43qutjn/Dh6nevxh+/+GPQ9s9qP8Nlb16m+eLnyrevxJ0b7oxY1kjhV+mjnP+Y+h+abZGmbDeDshA0myWxo78Dmxs2oySjBLkpuYPj6CT9UKNnoMeU4jk5Y7Jmm1ZxaKvFt0PJTc7FFZOvCFvofmP8N7QVNY3EJs09zdjTssd0OQKz+4Wi9NFKz6+VNZCJHo9/8TgmZ0w2FUyvRajCZWRR8wr12MN9LfuQ7EhGkasorG1n0068e/Bd3D7ndtNJhBhzCCHWAzAfhPQ1JDs1AdfPn4hHP6jAl1VtOLEoPeZzTs6YjPvOug9l2WWq7QfaDkSUhMkMPuFDjacGWUlZpqzQxWnFKE4rDtqWlpCGMcljTCtHiuJlZOEpdhVjnHOc5rP0pDEnITspO+i+khyXjMsnXx4moxUqWytx4pgTg7YVphbi7jPv1uxT0VqBkvSSoOdbvD3edOwfIMXctfa0YrxrvOUXmqXppXi98nUIIcLus0mOJM0YJyY6NHY1YvnO5Vg8abFmbJgeWr+Jus46vLH/DSwrW4aJ6ROD2mo7atHt7Q67NyQ6ElHRWoHKtkoUpBYEtfUP9GN/236cWXimZRmHClvUvsbEsu5RNNPzW60XZub7KIHAqmPo1FETEBFbDFLjUzEta1rYQzk1PlUz0YeeLIHtRgyIgYjq5RnNU9FagUPthyyPy5hnqNlGN9ZtxCfVn4SNeW7RuZjgmqDaR0uxX314NTY3bFbpEdtyH8zxwfXzJyAzJR73vzc8VrXkuGRcOOHCsNqWCs9d9BzuOuOumMz9ZeOXuOi1i7ClQb18TiA+4cOqQ6tUn1mzc2cj3h5vak6zilqcPQ7vXPaOpoXpkkmX4CezfhK2/Xen/c6SlTAQIQQunHAhFo4LT+wihEBrT6tqv6zELMzOU0+ItKFmg0qPcN4//D4Wv7EYDV0NxjuHUJJRgtT4VLT0tIS1HXEfCfMSYqKL3WbHyr0rsbVha0T9/W68Ib8JPfdZ/+8oJCRBsSorYwZy2H0YXuENctEdLviJPMrZXL8Zqw6tUm2LZd0jq66P0VKOzCokH1d9jOe+ek61TTkuYUrjEFOlu/vcqGytDHNjO9B+ABvrNqr20ToufkuXheMSyQLaSFFbe2QtPqv7zPK4jHmGasmtaK1QfdjMHztf1TIGAKcXnK4ar6EnSywt9MzxgTMxDjedU4L1lU1YX9E0LHPub9uvGb8bb4/XVOKGit6iLpQaTw1+/vHPg7LSKdx31n2m03tXtFYgOynbUkbmUHq8PWjubtZsb+9tjygWh4hw6+xbVRW933/2eyx5c4lqv/sW3Iefzf5Z2PZXyl/BjWtu9GdS1KOyrRKJ9iQ89l4T+gesvRRbUroEH1z+gapL+INbHsQP3/+hpfEYa2QmZiIzMdO0+28olW2VyEzMDDt/E9ImwEY21XGV36ySAVfBFe9CbnKuah+zL0liAStqo5xqTzX2tai/nUyKS0JJegmSHElRn5eIcPuc23F64emm9tdKzz8pfZKlN3RmFRLdBWeUlKNQDrYfxPN7nw9KgwxIP/qPqj5S7ZMal4ozCs4Iu4lYtVheWHwhlkxWf9DpYRTLpJaogokuejGMZtCqLdjW06YZDJ2WkBbmugEY1B/k9PxMFLh63jgUpifhvvf2+utqxZI397+JX37yy7CESVvqt+Dez+9Fe297TOZ1xbuQl5JnaoGpvGgZ6iJvQAz4yycYsergKlz4yoXo6u8K2r65fjPOfunssDpZALDm8Bqc+cKZYTWwzNDW0xY2l8J413gc7T5q6VyUZJRISUja1ZOQBFLZVolEUYgXNlfhpS3q8dha6CWcqGyr5EQiw0BpRmnkilprpap7c6IjEeOc41TdiivaKlCQUoDU+NSwtpKMElVZylvLYSc7JqSpe7HEElbURjl6i7zC1EIsnbY0Zm8MU+JSTAd5CgjYyR62yBvrHIt5+fNMW4NK00tNmZb1kpTkpuTi+9O/HxQrBwCzcmbhplk3RRy4qig7ahn4tGIB0hLScN7488LOUaIjEekJ6aaVxvTEdM0kEHqkxKXg/OLzNYuyDghzBcaZyNHLUGoGrZcXT+18Ch9Xfaza50D7Aexu3h22Xa8uo1amSIaxQoLDjp8umowd1e1Ytas+5vOVpJfA6/PiiPtI0PZN9Zvwz73/1ExiEa25zVjUlIWfWvbJmo4aLHlzCdYeWWs4zj3z78EfF/7RcD9AsiZWd1SHLTqVvyemTQzro2RrjCShyJM7nsS5/zpXVTnXSm7ywt4XsPj1xUE1uML6GMgihEBFawU6PdIz9tE1Fejus3a/vXvj3Xhoa3Ay1m5vN6o8VTGLcWQGKU2XFLVIXqI/uehJTffmqZlTgwpaK1wz4xr8ep563bb5hfNV6/+emHMilpUtM+2mHE04mcgoZ6iLvKGwrnodcpNzMSVziuG+pRml+M2834Rt7/Z2w9PnQXZStqkF4Pyx8w33ASS3Rq3jkuRIUn3rkRyXPKTU44oyppae3yd8qsHIXp8X/b5+JNgTgr7/zJyZmJkz0/Tcu5t2w2FzmDoXgSQ5kjAvf55me6QulYwxtW3duG/VXhzqTMFd3zL3FlwNLaung7Rf4mxt2IqjXUfDirjq3U9K0kuQEpdiqfAuw6hx6UmFePLj/bh/9T4smp4Lhz129xglsVRFW0WQIlTZWolxznFIdCRqdR0ypeml2FS3CV6fV7fMSWVrJQpTC1WT9GQmZqK8tRz7Wvbh3HHnRlU2QFKOAp81lW2VGJM0RjWueoJrAhzkiMi6UdFWgYlpE1XvH8rL18rWSszOHYxH29uyF609rarHpchZhHhbvKEszT3NaOttQ48nG9+eVYDXt9dixYZD+PHZ5ksy1HTUoLGrMcgF80D7AQiIEYlJOt4oSS9BWkIaWnpaLBseUuNTVS1jgORWrHY9ahU3B6CZxGZB0QIsKFpgSbZowSu0UY7eG/DdzbvxyNZHYubasaluU8TmaIXdTbvxxJdPmK5XYdZVRq92WVtPG3Y17UKPtydoe2NXIz6r/cyUz7saWhYHh80BIf8Xyv62/bhv832o7xzam+XP6j4zFbQeik/4cLTrqObxHxADMYlxPJ7p7hvAI2vKce6DH+HNL2uxvSITtQ2RW73tNruqVUDvN6DlLnnJxEtw0UT1rPBjnWMxN29uxHIyjILdRvj5+VNwoLETL281V4szUorTimEne5jlZTjc1r458Zu496x7DZ9bFW0VmpaZJEcSipxFhjXD1tesx/f//X3N1OGhFDoLkWhPDLP4VbRWaNZ1jLPHoTitOKJaakr2RjVyk3PhjHOGjVvZVomSjBLVxbTD5sCk9EmGsqTEpeCywt/C2zEdt5w3GQunjsETH1WivUu9dqgapemlONB+IMh9Vrme2PUx9lxWehneX/K+ZSVtZ+NOPLbtMbT1tKm2q11XTd1NeP/w+2F1dgMRQqB/YPBa6B/oR7WnesRK1xgqakT0LBEdJaJdGu0ZRPQaEe0gos+JKPJXx0wYSfYkJDvUrUA93h6098VGSQOkBaLZC/Ow+zBer3w9TCFQ3jKaHefx7Y/jtYrXDPebnjUdi0sWqz4gqzuq8UrFK/D0eYK213XWYfXh1Zp+9Eb4M1vawjNbAuoJO7SUuyPuI/jHV//QzISlNncklq/egV488eUT2NG4Q7X96mlX46zCsyyPy4QjhMCbX9Zi4YMf4ZE1FVg4LRcf3n42CjIIT38a7oZolmVly/Cdyd8J22636cebqSlqOck5mg/D9t52NHY1RiwnwwSyaHouThqXjkfWVKCnP3ZeIQn2BIxzjQtSSHq8PTjiORJza8iUzClYNH4R4uz67vSPL3wcP53zU832knT1uJhAdjftxhdHv0B6grmyBzayYVL6pKBxB3wDONB+QFf5MOvOGUhzdzNaelo0x1USjZw3/jz/NiGEoTL9u9N+h1+d8ivduZMcSWiom4SClEIUZyXj9vOnwNPrxRMfm4+zK80oRb+vP6j26qn5p+Ke+fegyKmesImJHpF6cWyq34TlO5drWrNbe1px/err8f7h9/3btjRswc8++hnqOupU+/T7+rHgxQVYvnO5f1t5azkufPVCU+7JscCM6+MKAI8D+LtG+68AbBdCXEpEUwH8CUB4flYmIvTMrYoSoOdyMRT0Yq9Cae5u/v/snXdYVGf6/u8zjRkYeu8dBFFRsYEi9iTqGpOoMVUT04tr1GRTNvvdTfLbTWI0vZjEVI1JTIyxd0AQUVQUVMrQq3QYZoBp5/fHOCPDOWfmzAAi8Xz2ynWtp75TmPM+7/M8940LjRcwI3CGyXZDcMH2OmwDEh8HH7N9VwC9j1rv/dYS6x4Lbwdvyvs9wWcC4r3iadUqmQQalBolSttL0aPtYXVvW3vJDGNiCpQ5H7WB4WJ1G/6z+zJyKlox0s8Jm5bFY1KYvqcwPrYIRwpqcKk2ASP96G0cbMGcoI6O1NFmSkvbStGl7aIt/UivTkdRaxHWJqwdsDFy3LoQBIGXbhuBezefwvdZ5Xg8mX0pmrW8n/K+SQ9vg7IBbmK3G5INOXf1HIQ8IUZ5jmI8xl/qb/Yaka6RSKtOQ4+2x6wxdIA0wKry/dnBs00WT7WkFq9Nfo2idtebOyPuxCTfSbSl/EyUtJUYXwcTS6OXmvy7TlEHhVph9jNi8sfrTUb1SWRWX8DtkYkgCAIxvk64M94f32SWYUViCHycLZe+GsZQ3FZs9NzycfDBgrAFFs/lGBjePPUmJAKJVc+f4tZi+Dr4MpY+Oooccf7qecS6xWJO8BwA+kwpn+Az+gUKeUI42zmbLFYYsrpDVQZrcUZMkmQ6AKrBxHViARy9dmwBgBCCILzNHM8xQAy275E1/k+GsTBlmwZahl6ukqOio4I2o8Ao+mFBAdESLmIXhLuEU8Yn4osYe3ssBY2sA1gbAzVLlgQ59Tmolg9uadJfmQZ5N9b/egGLPslEebMCb989Cn8+O9UYpAFAQrAHBHzgm8xym+6xp3QPrcdMckAyxnmNoz2HqfQx52oO0qvSac+x1VSdg4OJyWHumB7liU+Ol6C9i30pmrWEuYSZ9FwFOQXh+NLjxsnZYPKvk//ClvwtjPsvNl7E95e+N1vJMc5rHOaGzDXbImCuZJGJVaNWYfW41cZ/i/gi3Blxp9mgMsk/CfdE3WNVliPQMRD/mPgPxLjFMB7TpelCbkOuUThER+qwKHwRxniOYTynvacd2wu2o6KjgvGYDWc+gMb5AJIirlcKrJkdBR1J4sNj7DKDoc6hGO0x2mT+sqd0D0WghmPwqFPUIbM206pzLGVkBTwBwlzCUNRWZNxW3FqMIKcgsyJDfTPcslYZ7Ph2CJAGWDW+gWIgnsoXANwFAARBTAQQDGBoXs1fkCvNV7DtyjbaCT2TyfRAYU6sgDIWJh81K73L2AYkV5qv4NtL39JmpJhEP/qbUatX1ONK8xXK9trOWhytPErb+2ZOKbL3fkswZUgsQUD/sGUqkdtfth9FrUW0+ziY6dFo8VlqCWa8m4o/cmvw+LQwHF+XgmUTgsDnmU5wpHYixPo54M/cWjR1ssug9qaguQB1CmqZRpxHHOPEbXHkYiwKp5rdmutr46waOAaD9fOi0d6lxuZ06yXf2XJVcRWf5n5KmdDfCGEcS2WLqVWp2Hh2o9nKl0T/RLyT/A7cxG60+1VaFSo6KmxSINTqtMbnZGFLIQpaCsweryN1kLXKrFrA85X64v6Y++EiZi7LzG/Kx4P7HzSW4Qc4BuDNqW+aFcjq0nThrey3cKqW3qdUR+pQKS+FrsfHJFALcrfHfROD8POZKpQ2UhUl+yIWiLF1/lajWXd7TztePvEyjlQesXgux8AQ6RKJsvYyis0GE2qdGmXtZRazXBEuESb9q2x6VyNcI1AprzTqHBiEcoaqn38gArX/AXAlCCIXwHMAzgOgTRMQBPE4QRA5BEHkNDZyvRBsaO1pRXFbMe3kyk3shhi3mEH78qwavYq1dxeTWa6PvQ/+Fv43OImcWF+HzesxllSSNAGsGfPt3mO1louNF7FTRu2fa1A2IKMmgyJeAgC+Dr6YETiDojxmeI1046djZdxKm1aHCYJgLJEjSRI6cJNzayBJEgcv1WPOxnS8faAAU8I9cGjNdLx8RwwcxfR9KjyCh9EBTlBpddiWbf0KLZMJfEt3C5q66E2Fne2caSdNfIK571RDmleu4+CwhTh/Zywc44ctGeVokFN/IwcCpUaJzy58ZvQGeyPrDWw6u2lQ7tWXvpO6vsjaZAh2CrYo602SJOM15Co5kvyTzGaf6GjtbsWkbZPwW9FvAIDNFzfjhVSquXTfcSzfuxzbCraxvs+Z+jMWBbN6lxcC+mDIkgiLt703pEIpo6BInaIOarIbXuIQeEhNMyTPzoyEnYCHjYfZL0QaxjOU5sa3KhGu9DYbTDQoG2DHt7McdLlE4KryKjpUHdctF1gEdzpSh7L2MgDXvNqGUP2z34EaSZIdJEmuJEkyHsBDADwBlDEcu5kkyQSSJBM8PT37e+tbAsMEjS64iHGPwdLopYNWriTkCVlfm8/jQyKQUI53EbtgrNdY1nX1E3wmIMQpxOJxRpESHXXSOcpjFB4b9RglOAp0CsSa8WtojYDZwJRxMJep83HwQXJAMiXNbse3g5fEC0KCnaebk8iJVsKYDQvDF9L6ggx26exfjYL6Dtz/VTae+OEs7AQ8/PDoRHz1cAJCPcx/LnyCDxd7AZKjPPHDqQqoNNaV3jKVA+8u2Y3dJbtpz8ltyEVhSyF1LDw+4+KArYI1HByWWDsnCmqtDh8f65+KMBNBjkF6KfdrK+dp1WloUDYMyr360ndS1xe26pMrD67E2jT6/hx3iTs+nvWx1fLgLnYusOPbGQMPNmPh8/h6ERKWXmokSeK5Y8/h67yvzR7nKnaFh8TD2Pvz6MFHsSaVWWAF0C80mstYXmrU/8Yl+FJLLj0d7fDo1FDsuViH/BrLomu/Fv2KpJ+S0K3pNr52g/UDx+BjyBazFbLxl/rj5PKTuD30drPHxXnEYYrvFMhVctjx7bB38V7cHUkV5+rNKI9RWBm3ElKRFCRJ4qWJL7FOWgwG/X4qEwThQhCEYaloFYB0kiSZdS85rMIwcbK1XK8/nK47jVN19CUHfZnsOxkvTniRsiLfo+1BtbyatST+7ODZrLzCzL0vDkIH+En9KJNOIU8IJ5GTzVkDDamhD9TM9L51abpoVw59HHzwVPxTCHRipyiVWZOJ0vZSG0atN2qkC06Z+uc4TGlRqPDaH3m444MTuFzXgf8sGon9q6dhWiS7xabRnqORHJCMlUkhaJT3YF8evdoUE0xZZgGPuTQ5oyYDeU15lO18gk+7uAHoVc76igFxcAwEIR4OWDYhENuyK1HZbJvqrjmMwUWbDB2qDlxVXr1h2RCjRxhNMKFUK1Etr2a1Gu9l78U4SbW1CoQgCES66s2EDeWTbN4XNiqUBuoV9VCoFaxeo+G6Gp0Gpe2lCHIMsnyOq/4cuuxbWrn+N25uJH2m8bHkMLjaC/HOQeqiVV+cRc6Qq+UobS9FcVsxpEIpvO05uYUbRahzKMZ4joGQx27xGtB/vy3N5yb5TsLmuZvhL/UHj+Ah0CnQooian9QPL4x/AYGOgSAIAnND5mKs11jW4xpo2Mjz/wQgC0A0QRDVBEE8ShDEkwRBPHntkBgAlwiCKABwO4DVTNfisB5jjxfND/XRyqN4/+z7g3bvgpYCXG6+3K9rNCga8HX+16iR11g8liRJqLQqVn1b5nrfajpraMUXOlWdSKtKs1mCXEfqwONR/2TMlVTm1Ofg/XPv9zvQTq1KRWmbbYFaXWcdmruaKdsHu8dxuKPW6rAlowwp7x7HT6er8NCUEKSuS8FDU0KsMvANdwlHvFc8pkd6IszDAd9klrH2CyRJElKRFBK+hLLPnHk1U/Z3esB0PDrqUdpzQp1DaRdJ1Nqh8Y7h+Gvx/KxICPgENh62PGm2hQiXCBS3FbNSIBxIghyD8OMdPxr7m3pTJa/SB0ssessiXSJRp6gzim30Zk3qGjx5+Emasyxj6NEpay+DltSyyhJFukaisauR0Z+qN9Yo4kW4RKCkrQQVHRVQ69SsxFEiXCLQ3tOO5m7qM0zclYKe8r9jeiT9gqeTWIhnZkQgvagRJ0voy8SN97k2FlmbzJh5vBE9jhx6RHyR/u8omJ1o/MazG/HhuQ9ZX58kSRwqP4RfCn9hdbxSrURFRwWKW4tx9urZIfNQA1jI85MkudzC/iwAnHX7ICERSOAudqfdp9KqoNKpBu3efB4fKg27659vOI+y9jLcFXkX5RoAu4yghtTgv6f/i9lBs5Hkn2T22EDHQCyNWkrb+1bQUoCTNScx3nu8yXaFWoHU6lR42nvC09760lutjr5XiE2/XN9Jc3tPO3YU7cD0gOmsHlZs1TDp2F64HWHOYVgUYSouIRaI8dzY5yARUIOAW53jhQ14c89llDQqMC3SA68viEWkt6NN1+pUdUKpUcLL3gsrkkLw+q5LSCtqREq0ZWsEgiCwZrxpedDVjm5sPFSEOrIBUyLp+140pMYkC9fepcbHx4pR29aND5fTrwzWK+rBI3jG1cZutRZfZ5RhW3Yl9j4/FS725ntsODjM4e0kxsqkUHyeVoLHk8MR68eub5ktEa4ROFJ5BBcaLuj/fYMyagKegLF3LNotGtn3ZbOa8PfOzMV7xZvsK24tZiVVT3tdl0jI1XKcqDkBgN370rufbILPBLPHGrKA4S6W7ReWRC3B7ODZxnPYjGVR+CLcGXEnbel/dkkHxvrEwl7EPJV9YHIwvs4ow9sHCvHH0+6Mn0WQYxCEPCFkrTJsStlk1hCZY/BgawtxtOIoq+orAHgx/UW0dreCT/DR0t1CsYqg4z+n/oOzV89iesB07Cvdh8zl1ilSDiRcQ8JNzgi3EXh27LO0wgAaHX0p3kDBJ5gNdftSr6inLdswBBdsViMM92ITkDiJnBDjHkPpQzNch65UrL/y/NMDp2NJ1BLK9nCXcLwy6RVa6VYtqQUPPMoPj47UobqzGp1qy4pUOlIHEqTNnzWTgASP4MFN7MYFar0oaezEym9OY+U3Z6Ajga8eSsD3j0y0OUgDgKy6LHx5UW+eec/4AER6SfH8T+cha5BbONOUbrUWnxyXYcaGVPycU4WskhZcldPLeet0umsZNxLbsisxY0MqvjxRhn0F+fgsex/tOXtL9+JQ+SGQJIkD+XWYsykN7x4sxEg/J/RY2VfHwUHHk8nhcLQT4N2D5pUHbeH+mPtx6r5TcJe4Y5zXOPg6+A74PZjIbcjFV3lf0e4TC8RmpcANGIKWviWHSrUS1Z3VNgeeCT4JeCb+GcwMmokv5nyBYOdgi+eM8hyFT2Z9wmoiLGuTwdvem5VgWJhLGMZ7j0dpeyl4BA9hzmEWz5GKpLRBWoNcgWL1dkQHme8/Ewv5WDM7Cheq2nDw0lXG4wQ8AcKcw1DcVgxXsSuCnSy/TxwDy46iHZjy0xSzVhYArouCsFRBtRfYo6ClQG9xwfLvKMIlAvWKepxvOI8I16HNrnKB2jBmsH2PzEl590VLamlrhQ3b2FzHGgNvpVqJ4tZi2j9oS6IfbL3L+uImdoOvlPrw5xE8CHlCeh81hqDRmt7D/vaSMfUyKdVKZNZk2lwK+leivUuNN/ZcxrxN6cgpb8Wrd8Tg4N+TMTuPqUG1AAAgAElEQVTWu98/0L39CO1FAmxZMQEiAR8PbzljUQWvR9uDrVe24rucLMzeqA+cpkV6YNczSeCrwtFQRz+R0pJaVDZ3Y8FHGXhlZx4iPKXY9UwSPF3b8OuVfbSll1pSixaFGvd9mY0nfzwHe6EAW1dNwuaHEuDtZNk0loPDEs72QjyVEoHjhY3ILqWWsvUHO74deAQPC8MX4rvbv7uhE6ucqzn44NwHkKtMF18+PPchtl7ZyuoaflI/PBL3CKU00VDKaa2HmoFwl3A8OeZJhDmHIdEvkVUPkJPICckByayCr2fin8HbyW+zHs+RiiMQ8UVYM24N7UIrHd/kf0N5H/deyYfIPR2e7paFQu4a549wTwdsOFQIjZlS7jsj7oS72B2fXfgMrd2trMbGMXC42LlAoVYwCvMYKG0vBQmS9d9EpGsk2nra0NDVwLok2hAEFrUWDbn6Jxeo3eTUdNbgu0vf0U6mB9v3yJqmTibFOGsCEkPpIJvgs7GrEdsKtqFeSZUEZhL96K8wi6xVRquk197TjgNlB2hVxpg+I6NqJYvsHpMXG1uYepkUagWOVB65YepoNyNaHYmt2RWYsSEVWzLLsCQhAMfXp+Cx5DCIBAPz8yggBNBBZwyOAt3ssWVFAloUKqz6LgdKFfPCgVqrRnb1ZfxnXw4cRAJsWzUJXzyYgDGBLlgcF4+jFwVoUVDLk+8OewQf7Raho0uNj+8bi5+fmIwxgS6YGeOD+o5uXK6jTkK6NWp8l1mFK/UdeGPRSOx9fqqJNxEHx0CwIjEEXo52eOdgIeteTba8c+YdfHfpuwG9JhsMk7q+2bBdsl2s+7x5BA9rxq/BaM/RJtsN14xysV2BsLW7FW+desuqnvP8pnzsK6XPvvcmwDHApM1A1tAJrY75c92QswFFLUVYEbfCuK2yWYluNfNzObM2E3tK9phsSy3T+7HNDGU27zYg4POwfl40ZA2d+P08c7/8A7EPINI1Ep/mfgoS+teg6NGgunXgBXA4qPS1cGDCoMppTXaM7v+bPcfV+nMGCy5Qu8np0fSgvKOc1l8lyCkIIz1GDtq9F0cuxtPxT7M6likgkQqluCfyHgQ7Wi4jMKjRsQlIjCWVNAp2TObQ1gRHdJyqO4WMmgzKdqVaiez6bNoVuBFuI2ibzK0JGkU8EV6c8CISvBNsGLX+/TTbP3eLqj6eLGnC/A9P4NWd+YjwkmL3s1Px37tGU/x4+gvdZz06wAUfLh+LvJp2rN6eyzix0eq0OFvRCheJHX57OhGJvQKnuxJcoSIa8dNpqu/MR0eqodUJsf3xyVgw2s+YXZgZ7Q0+j8C3J6nCNKfLmtDRrcXXDyfgQSsFUzg42CIR8bF6diTOVrTiyJWBXSQ6XnkcG3I24EDZgQG9riUMk7re5f/tPe36FXwrTKq7Nd240nzFZFuwUzCWRS+Dv6O/zeN7/tjz2F64HZk17Pts/pD9gTdPvWk2mG5QNmB7wXajn2NVixJzN6Xhg6PME+1gp2DsL99vrIbpVmtxx4cn8PLvVJVaA5EukShpLzF5dl9qKgRAIMLNcm8cAMwb6YMxgS54/3CR2aDwfMN5iPlio/n42wcKMG9T+qB5AHJcJ9Ax0MRmgwkewUO0azQCHdmpZvcOtNhm1HqXTg+lhxrABWo3PeaEKsZ7j6cNAoYCsUAMZztnynYRX4SRHiNpe+zojp0eMB0+Dj4WjzXnXTYzcCYeHvkwZbu9wB4vTXgJ47zGWbw+HVpSa1aen24sIc4hSPChBlgCngAB0gA4CCx7oxEEAYlAAiGffYazN7OCZyHZP5my/Vb1UatsVuLJH87ivi+zIe/W4NP7x+Hnxycjzp/6/R0ImL6rc2K98a8FsTh8+Sre2EO/0r0nrwZNnT14YFIopHamJcHNuksICT2HH7IqTJQZz5Q1Y4/sCJYnShDoZupf6CwRI9TDAX9eqDHJxFW1KHG2sgXxgW4YH+zWr9fLwWGJpQmBCHG3x4aDhWazL7biKnYd8Guaw9fBF/YCe6Ngh1qnxh+yPwBYV7L4a9GvWLpnKQ6UH0B6dTrSq9Ph7eCN1ya/1q/facNCDZueMAMRLhGQq+XYW7YX6dXpRnGNus4649h+KfwFb2W/hatKfe/XieImfW/viVI0ynvMjuVY1TEAQE55Kzp7NPgjtwaXa+kFPCJdI9Gl6TL6RlY2K6HkX4ar0I9V/5/hvi/Ni0Ztezd+PFVBe0y9oh5HK4+iW3s9KEstbIRCpcUng+QByHEdg81GWYe+9LFeUW/8rvX+b0bgDOz42w7WVkvuEncsi16G91PeZ225wCN4+E/if/DKpFcw0n3wEiJs4HS5b3LMyfMPNnmNeaiUV2J+2HyLxzKZDupIHco7yuFm52YxWLMX2iMlMIXV2MwFalKRlPYcgiBY18TToSW1tOWg5gRT2nvaodFp4C4xVe4U8oSMMul9UaqVOFl7EiPdR9L2yFmC6eF8q8nzd/Zo8OlxGb7KKAOfILB2ThQeSw6DWDi4GcUI1wjYC+1pg/wVSaGobOnClswyBLnZ45GpocZ9ih4NPjhaAHd3EWbHUD93PsHHCF8p9hd140B+PRaO8YNOR+Lfe/Lh5FaMabFUtTY+wUe0tyMu5Wvw0+lKPDNDP4n87/4rgHwcXr132gC+cg4OeoR8HtbOjcZzP53Hrtwa3DWOKsRkCwvDF+KzC5+xUiAcSHgED3EecUaF5h5NDzbkbND/jbqNYH0dg7Lj+rT1xm2vTnoV9464t1/jmxM8B+cbzluVGTCM5eUTLwMAts/fjpEeI5FZm4l/Z/3beJxEIDE+YzJlTXCxF0LercEnx2X4v79RJ7gzA2cisyYTI1z170uGrAkCHgF7ER8bDhViywrq75Zhovxa5mtYFLEIGbIm6NQuGO1pXZYxMcID0yI98MlxGZZNCISj2PR5bpjEzwycCUAfEFa2KOEhFWHb6Uo8OjUMQe72lOtyDBxxHnHGeeCZ+jN4JeMVyjE7Fu5grfho4LXJr1k9lsWRi60+ZzC4NWZowxhzAckPl3+AVqc1qfUeSGoVtchrymMVqDGh0Wnww+UfMCdoDhL9Ey0e263phlggtrhSYk7B8UrzFah0KopkMkmSOFJ5BKFOoTY1ZjOJtxgCHTqRksMVh1GvqMezY5+1+n4GujRdyKzNhJe9l02BWr2iHmqdmlImcKtk1HQ6Er+fr8E7BwrQIO/BXWP98eJtI+DjfGMEMrzsvcwabL46PwY1bUq8sfcy/F0lmDdSn1H+PK0EjXIV7p8cAQnNAgOf4MPXRYRgd3t8k1mGhWP8sONcNfJr2zAj0QX2Qqqc/mjP0RgxbQQayvPwQ1YFHk8OQ055K/bl1eOFOYmI92W/4s7B0R/mj/LFF+kl2Hi4CPNH+8JO0P8FkyfHPIml0UvhIbnxvZWbZmwylvNJBBL8NP8nONs5WzWWeM94/LHoD3RpuozbBkK98oGYB3BbyG1W2dLEecRh16JdUGr0rynUWb+INDNopknw6S52h0QggU5HIrOkCbNjvCHk87A1uwKPTg2lZPWXRC1BSmCK8TcxU9aEcUGumBnjhf/tL8DpshZMDDXN6ke7RWPXnbuM72+mrAlOyjvx9nTr5yYvzhuBhR9n4MsTZXhhjmnfH0EQSF+WblSZzLzmvfbBvWPx6HdnsOlIETYti6dck2PgeHHCi8Z53VT/qfhp/k+UY4KcLBul/5X4a8/Q/gKI+CL4OvhCxKdOurQ67aAqW/EJPmuFxEPlh3CgnNoXYK50sy/1inq8d/Y9i4o/AOAscsaDMQ8ixCmEsu98w3mcrjtNe97J2pOokldZvD4dTHYIPB4PBAhj83FvmPrlAODLi18iqzbL4n37KyZyrPIYbc9GoGMg1o5fiwDHgVnNvhk5W9GKxZ9mYt2vF+DnIsHOpxOxcVn8DQvSAH1GtKqjCmqdmnY/n0fg/WVjMTrABau3n0duVRuqWpT4Ir0Ui0ZF482UtbQLC3yCDxIkHp4SjHOVbciUNeGdA4WID3REiLsD7fdOxBdBKpLikaQw1Hd0Y19eHf69+xL8XSSYNVpn7DXh4BhseDwCL84bgerWLvyUTe2ztOmaBG9IgjRAr5RoKNvn8/iI84hj3UNjgCAIhLuEI84jzvhf32oMWyAIwibv0DCXMOM47IX6gMtN7GYyPsPi4eW6DrQp1Zga4YHVsyLBIwhsOlxEOxZDkNaqUCG/th1JER54eEoIvJ3s8M6BAtq+uDBn/VgMAeG00Gg4iCy3DvRlVIAz5o/2xVcnStHUSS3PdBW7GudbGbImeDvZITHcHSuTQvFHbg2u1HH+aoOJWCA2ftdcxa4m3zXDf7eapRAXqN3keEg88Pjox42rWb1h6pkaKAyy4myUuWo7a3FVQfUoMYyPlY8agzk0HUK+EGEuYbRljkzm0ARB6L3hbFR9XBa9DLeF3EbZ7ih0xOtTXsdYL6qRsEanYSwtbOpqYmWqORDy/HSBsoAngFQkZV3nPZyoa+/C6u3ncfdnJ1Hf0Y2NS8fg96cSMTboxvauAHoFqy2XtqCjh/mzloj4+OqhBHg62mHVd2fwj98vgk8QeOl25rIpw/dh8ThfSO0EePz7HDR19uCl26MBgj5T2qhsxPHK40gIsUeohwNe+T0PBfVyvHJHDHaV/obzDef7/4I5OFgyLdIDU8Lc8dExGTp7bLNN4bg5yJDpF3kSI9zh4yzGiqQQ7MytQUE98+9eVmkzSBKYGumuF5mZFYWcilYcK2AWmTEGhJG2B7Br50ShR6PDx2b6znQ6EidlTUiK8ABBEEYPwA0HqcrPHByDCReoDWOYApKBQsATgLz2P1vHYk1wZE1AotFpcKn5Em0GwJxtQX8CNVexK22fnbmsprnPiM+jN6KmuwYw8PL8VxVXcazyGDpVlk23hwtdKi0+OFKMmRvSsD+/Hs/NjMCxtSm4a1wAeLyhMaw0BOqWPmtPRzt8s2Ii1FoSmbJmPDMjHOC34Zv8b1CvoNpQjHAbgXuj74WzxA5LEgKgUGmxZHwAYv30ixd0AXhTVxPSa9Kh1Crw8JRgKFRaTAp1wx2jfBgtNjg4BguCIPDibdFoVqiwJcNyJQXHzUumrAnR3o7wctRXKzw13XJgkyFrgtROgNEB+ufqkoQAhHo44J0DzCIzhoAwKdz2zGmYpxRLEwKxNbsCVS300vuX6zrQei1DCFz3ADxa0IAz5S0235uDw1q4p/JNTqeqE5svbqZI9gL60sfBzIaI+CLYC+xZm1WbDY5YiKEYpPbZTBbVOjV2FO0wkUM2oCXpTaYB9sERHeeunkNpG1XWXKPT4M+SP2k91iy9L2xKSw3vna2BGp+gf82NXY04UXPCROFquEKSJP68UItZ76Vi05EizBzhhaMvTMfaudFwsBvajKE1VgwRXlJsWTEB908KwqppYejSdKFSXgm1llo26SHxQLRbNHgED08kh+POeD+8eNsIOImc8PLElzHKg+ov1FuhdElCIO4a54+3FuuP02FwfRk5OOgYG+SKeSO9sTm9lNYTkOPmp1utxemyFhPfRRd7EZ5MCceRK8yBTaasCZPD3CG8ZgWiF5mJQuFVOXbl0vudZcqaEOUthZdT/8rXzZVnGu4DwBioAdc9AN/eT1+eycExGHCB2jCgTlGHTjU16zHKc9Sg+jtM9p2M9RPWszK+1pAaxqBxafRSjPO2LIlvmMiyUSE0l6UwlxnoT0bteNVxXGq+RNnOI3g433DeKFHcm0S/RCT5J9Fez1BaaolAx0C8Nuk1hDiHWD1mQD85p3vN/c3U3SzkVbdjyedZeP6n83CxF+Hnxyfjk/vHUZrYhwpz9g10jA92xVuLR0EsvO5/x+NRv8/tPe0obCmEWqeGj7MY7987Fp6OdiAIAiK+iPbv0fh3o9PBwU6AjUvjEeEl/ct8FziGJ+vmRkOp0isFcgw/zlW0okejo5QjrkwM1Zub0/SdVbUoUdGsxNQI03PuiPNFnL8TNh4uQo/G9DeTLiC0FUvlmRk0AaHBAzCnohVHB9gDkIODCS5Qu8kxN8mb6j+Vti9qKHAXu8PFjl5+P9wlnFWDt4fEA3OC5sDJzsnisebel/tj7sfiCHpZ1TXj12BB2AKL16eDqSeQgL6kji5rGOkayRhMhziFwFNiucGbIAjweXyby9Im+07GXZF3UbYbxjtcy90a5N14cccF/O2TDJQ1KfDfu0Zh93NTMSms/833A0nv4MhazGVTS9tLsb1wu1EJzUCHqgMHyw+iQUmdSDCJ+/RXsIaDoz9Eejvi7nEB+OFUBWrauiyfwHFTYZDYnxhq+tsrEfHx/KxInClvxfFC098jY8Yq0nRuYE5kxhgQDkCgBujLM6U05Zndai3OlNMHhAYPwHcHyQOQg6Mvw3OGdgthFOOgmeSptKpB9VcrbS/FzwU/UyaCdCyNXoq5IXNp95W0laCmk76MoTfuEnck+icapXHNYS44shfaG1WD+tKfoESroy+pNNeHV6+oR3NXM+31FkcutmhZYLjGvtJ9aO9pt37Q0MvDBzsFU7YP1yxKj0aLz9NKMHNDGnaer8GqqaE4vj4FyycGgT9EfWjm8LL3wpKoJTapt5kLoAzb+pbPylVynKo7hdbuVsZz+v7dCHgCPBj7IGLdY60eIwfHQPD3OVEACXxwhL4UjePmJVPWhLFBLpDSlJkvmxCIYHd7vHOgELpegY1BUTHckyoIxiQykyFrAp9HDNhinIu9CE9O15dn5vQqzzxX2YpuNX1AaPAALLwqx58XLM9rODj6Cxeo3eQYJ2M0qn0fnvsQ+8v3D9q9O3o6UNBaAJW2f30De0v3Msrl96ZL04XmrmZW5YDmgqOs2iwUtBTQnpdWlYYz9WcsD5oGcyqbTGP5rfg3HKs6ZtP9DLR0t+DM1TPo1tjWS9agbMDl5suU7f1Vk7zRkCSJQ5fqMXdTOv63vwCTw9xwaM10vDo/Fk5iy+W5Q4VUJEWseyzj4oE57Ph28Jf609pzMCmqGhZ16Eof/R398fLElxHmYuqXxiN4CHMOs2hKz8ExWPi7SPDglGDsOFsNWYN8qIfDwZJ2pRoXa9oZyxENgU1BvRx/XqgFcE1RsaTZqKjYFyaRmUxZE8YG0geEtrIyKQSejnZ4u1d5ZqaFgHD+KF+M9HPCe4eKoNLY1vPOwcEWLlC7yeERPAQ7BsPZzpmyT0tqWfVz2Yq5ILEvW69sRWZNJv11GHqk+nK5+TI+zv2Yth+PjpVxKzHBZwJl+6m6U7TCHgBwpeUKStpKWF2/NyRJmhUGsRfa0+7T6pg/o+0F27GzeKfFexuzKjYGVHlNefi9+HfK9ok+E/HKxFcg5t84TzFbKayX44Gvs/H4D2ch5PPw/SMT8dXDExDqYb2Pzo2mR9uDkrYSm9Q1I1wjsGrUKtq/fyaREnOZUh7Bg4gvomSWVVoV8pvy0dbdZvUYOTgGiqdTwmEvEmDDQS6rNlw4WdKkl9g3U464YJQvYn2d8N7hQqg0Olyp70CLQmX2nL4iM5YCQluxFwmM5ZmphY0AgAxZs9mAkMcj8OJt18ozTw+MByAHBxNcoHaTQxAEVsStwBjPMZR95syUBwLDtdlkuKrl1YyeYKxVH63sk/GX+tNOYM29L/0RE1k9bjUm+01m3Dc7eDZluzl5fqVGCbnK8spxf0sUDa+5bzM3j+BByBcOqml6f2lVqPDPP/Jx+wfpyK/pwP8tjMX+1dOQHGW9eetQ0drdih+v/Giz0ToTTH2a5r4vCrUCB8sPoraz1mS7XCXHb8W/oUJeMaBj5OCwBnepHR6bFoYDl+qRW8UtGgwHMmRNcBDxMSaQORuvD2yiUdXShe1nKo39aZaCrvXz9CIznx6XIav0WkAYOfCG5vdeK898+0ABWhUq5FW3WRxbcqQHJoe54aNjxVBwHoAcgwgXqA1jBttHjamfhQ6LMvQssnKGXhu2AUl+Uz4qOqgTS41OwzwWHrugsS8EQcDZzhkSgcSq8ywFjax81Pop+mH8HPtM6Itai3Cw/KBN1xxs1FodvsksQ8qGVGw7XYkHJwcjdV0KViSFGqWchwuGEkRbFgguNl7EFxe+oC17DZAG4MHYBylCPYb70ClF9mh7cKruFBq7Gk22G76Hg5mh5+Bgw6ppoXB3EHES6MOEvhL7TEyP8sSkUDd8eLQYhy9fRaSXFN4WJPYjvBxxz/gAfJ9VgV9zquEg4iPeTEBoK0I+Dy/MiUJBvRyv/pEHHYuAkCAIvHTbCDR1ch6AHIPL8Jrx3KJ8lfcV0qrSTLaRJGm2Z2ogEPFFcLFzYZVxMeddxlaG3tqM2uGKw8htyKW9jjl5flt81NQ6NdKq0hhFUQ6UHUBWbRZlu9mgkWV2jwQJPsHvV0YNoGZGqzqqbO7XG0zSihpx+wcn8O/dlzHK3xn7V0/DvxfFwdWB2qc1HLDGR60vnepO1Cvraf8G7YX2CHMOgx3fzmR7lGsUXp/8Ovwc/CjnMC2+GIO7YaoAyvHXwcFOgOdmRiCrtBknipuGejgcZqhqUaK8WcmqHFHfd6YPbM6Ut7IuYVw9OwoggKMFDZjEIiC0lYWj/RDj64R9efWsA0JDeeYXnAcgxyDCPZWHAW3dbZCrqSVyyf7JtGp+/aVbrcXm9BJkF/Kxetxq+Dj4mD3eUtA4P2w+5oXMs3hfa8UtmAIdc717dP05bFBpVUitTqWUjBkobS9FdWc1ZfudEXcyWiiw7d0b7z0er01+DVIRVR2LDYbMSl91QA3JHEQOBaWNnXj02zN4eMtpaLQ6fPlQAn54dCKivB2Hemj9gilQZoM5eX6lWon8pnzakmOCIGiDO6bsKheocdxMLJ8UhABXCd45WGCiFMhxc3GyhF5in4nxwa6YE+utP4dloObvIsFDk/XznIHuT+uNoTwTgFUBIecByDHYcHUuwwA+j5oFIggCM4JmDOh9SJLE/vx6/L99V1Dd2gURn4dZMd7wdLQzfx5IBDsGM/qoWQr0DES4REAikBil9y0h4AloA52XJrwEpkssH7Gc1bX7YmkiyyN4tCWV0W7RjNcMcgyCUmPZ+qC/jHQfCX+pPyXzYi7zeCNp71Ljo6PF+C6rHHYCPl6+fQRWJIXATnDzBJH9gUlGnw3mssxtPW34rfg33Bt9L5zcrnsPVnVUIbcxF7OCZlGUJpn62swpRXJw3GjsBHy8MCcKL/xyAfvy67BgNDU7zDH0ZMia4eloh0gv9ouI/5wfC09HO6t6zZ6dGQGFSoO/jRnc70FKlCeemxmBxHD2Y+vtAfjI1FD4u1jXHsHBYYmhn6VxWIROjENH6tCp6oRapx6Qe1yqbce9m0/h6a3nILUT4O27R0GNdrxy9BOLIgg8gocVcSsQ7xVPu7+svYxRhbE3flI/TPCZwFrcgik4EvKFEPIGVq7dXGYDoA8aSZKErFVG62cFAEn+SZgTPMfivQtaCrCzeKdNGRkAcBQ5ItAxkJKp1JLaIZ2Ya3UktmVXYuaGVHydWYa7xwXg+LoUPDE9/C8TpAGAWCDG/SPuR5RrlNXnakgNeODR/k0Yguy+34um7iacazhH+9vAlN3zcvDCqlGr4CflJsQcNweL4v0R7e2I9w4VQa3lJNBvNnQ6EidlTZjKILHPRJC7Pf7f4lEQC9n/xrvYi/Dfu0ZbXDTuLwRBYO3caEwJt86njfMA5BhMuEBtGMAjeJQgQKlW4r2z79H2aFlDU2cPXv49Dws+ykDRVTneuDMOe56bimUTgjAlwhlnagrQ3m29rHhvTtedZuUl1t7TjnpFPevr0pU+anQaHCg/gPL2ctpzztSfwYHyA6zvYcCS8iJd0EiCxNaCrchryrP6fr2pV9TjYtNF1pnGvrR2t+J8w3mKIAVJkkNW+phV0owFH2XglZ15CPeUYvezU/G/uwf/QTwUCHgCRLhG0CqUWsLVzpXiedb7ugBNGaOZRQUhT4jXJ7+ORD9To3WDX5u1YjkcHIMFn0dg/bxolDUp8GsOtaycY2gpqJej2YLE/q0C5wHIMZhwgdowIMw5jFI+2F/JdpVGh69OlGLGu6n4NacKKxJDkLpuBh6cHAzBtdrsZRNC0KXWIq3IfPCkVCvx8fmPkd+UT7ufrnSTjsyaTHx/+XvWr+GeqHuwIGyByTa1To3sumzUK+nHXC2vRlGL9atelrzMHEWOlDIzS1m4A+UH8EnuJxbvrdXp+/9sldGv6azBnyV/UqwAFoYvxOpxq226pq1UtSjx1I9nsfzLU+joUuPj+8bi5ycmI87f+iBmuECSJC43X0ajstHywX0Y5z0O98fcT7vPko8aXVkrU+9aW3cbzl09B6V68EtxOTjYMivGC+ODXfHB0SJ0qWyzVeEYHNhK7N8qcB6AHIMF15AwDLgj7A7KNmuFNwyQJInjhQ14c88VlDYpkBLtidfmxyKCpsY8KcwTTmIh/rxQg6cTScZAQa1To7m7GSqtqeqRrEGOX3Oq4R+kYyWJb62KpavYlXoNC8ERWwGPvnhIPPDihBcZSyqXRC2hbDNYEjB9RlqdFl3qLov37q/oB5OABIAb5qGm6NHg01QZvjxRBj5B4IU5UXg8Ocyq8pfhzK9FvyIlIAXT7acP2DUtKTgylbXuLd2LUOdQxLrHGrfVKeqwu3Q3/KR+lAUHDo6hwiCBvvSLLHyXVY4np4cP9ZA4rpEha0KElxQ+zuYl9m8VDB6Am44UIbeqbVBsBDhuTbiM2jDFWil7QB84PfzNGTzybQ5AAN+smIBvV06kDdIA/UQv2scRxY0dOFdJ32dlMpZrAUm7Uo3/+/MS5r1/Al+klyKtsJlVcGTOi42OwpZC5DWalhXaUqLIBh7Bg0Qgsaqny9JnxFaev7+iH0y9TNl12RTbh4FGpyPx29lqzNiQik+Ol+COOB8cWzcdz8+KvGWCNIIgWHsJ9uVIxRFsyd9Cu89B6IBVo1ZRBMUVkqEAACAASURBVGsIEBDxmNVNLzZeRLXctJSsvxl6Do7BYmKoG2ZEe+LT4zK0KwemJ5ujf/RotDhd1sKVPfbhUc4DkGMQ4AK1YcAvhb9ge8F2k23WmEO3KVXGwOl8ZSv+uSAWB/+ejBkjvMyeJ+AJMDEwBA5CO2zJLGc8zhhs6Aj8kFWOlA3H8X1WOZZNCMTsGC+cLm1Dt9ryA9acF1tfutVanGs4h6w6U+8ycyWK3Wq9bL8tGbWW7hYcrjiMlu4W2v3p1enYXbLbZJulyS+fx2elBCjgCWyW5jecD1AzLyVtJShqHbwyjXOVrVj82Ums/fUCfF0k+P3pRLx/71j4Ot96fVC2+vfJVXJKyaoBAU8Af6k/HIQOJtun+E3By5NeZlxUoOt5tTVDz8FxI1g/bwTkPRp8kV4y1EPhAHC+sg1dai1X9tgHqZ0Az17zAMyQcR6AHAMDV/o4DOjR9lDKCqVCKeYEzYGXPXOwpdHqsO10JTYeLkJHlxrLJwbhhTlRcJeyE2yQiqR4fvwzUFy9gq8yylDb1gU/GulZQ7DxZUY59pzhY3KYG15fMBKxfk44V9mKI5+Xw1ltuWTFnDm0gYpmBd7aewXHCxvw1MIeSMTUCScBwuQ6jfIevHeoEL/kVOHZ+SrYO1hf2tXW3YaTtScR5RoFN7EbZX+DsoEihCIRSPBgzINwl9ArSLE1Ap8TPIeVOiQT5nqZBkOev669C2/vL8AfubXwcrTDe0vGYPFYf/B4N6bM8mbE1kyuuSyzjtQhtyEXflI/1hYYAH0m15YMPQd7CILYAmABgAaSJOOGejzDjVg/Jywa44ctmWV4ODEE3k7syu1IksSP2ZVIifJEoNtfo6S3vEmBrNJmLJ8YNGRjyJQ1gc8jMCmM+iy81blvUhC+zijD2wcKkBTucUs/9zgGBi6jNgygm9BLRVIk+icyBgEZxU2448MTeH3XJcT4OGHv89Pw1uJRrIO03jw4JRgkSeL7rAra/SK+CA4IwL4LbXhoSjB+emwyYv30vk7jglwxxt8PO7I7LBqXTvadjFlBs2j3dfZo8L/9BZizMR0ZsiYIeDyclLVQJpweEg+8PuV1jHQfCZVGh83pJZixIRU7zlbDUSxE2gUvPDf2OavfA4vZMZrJr5AnRJhLGKPan5+DH8Z4jRn0Egl/qT+eGvMURXpdR+oGVJ6/W63Fh0eLMXNDGvbl1+OZGeE4vi4Fd48PuOUfVraWPprr29SROuwu3U3Jil5ovIBdsl3MY6ER97EmQ89hE98CuG2oBzGceWFONDRaEh8dK2Z9TmmTAv/8Ix+v/kEvdDUc+TRVhpd/zzOKeQwFGbImjAlwhpN4YG1w/goYPADzazqwP5+9ijUHBxNcoHYTk1/Trne7J6lBgEqrQnNXM8UrqbxJgce+z8EDX2ejW63D5w+Mx7bHJiHG1wnWotFp8HXe12hSF2HeSB/8dLoSnT3UyaarnStOX4iFi9AXa+dGUwQq7kwQo0J5EWnF5lXvgpyCKP02Oh2JX3OqMGNDKj5PK8GCMb44vi4F900KQl61HB3dKtpr5dd0YN776fh/+wowIcQVB9ck44U5UbhQ1Wa2344Jw8SWKbChEynp0nThcvNldKg6aM+JcY/B38L/ZlHQI7MmE/vL9ls9ZgMivghe9l4Q8UUm2wcqo0aSJPZcrMWs99Kw8XARZozwxNEXpmP9vBFwsOOS9gCwPGY5kvySrD7P3GfE5IlWp6hDQUsB4zXFAjHlmnEecXh6zNOckMggQZJkOgD6umkOVgS52+O+SUHYfroK5U0KVucYgpn0okacLBn+pWgkSSKjWP863jkwNH1QHd1qXKhq4/rTzGDwANxwqJDzAOToNxZnaQRBbCEIooEgCNolKYIgnAmC2E0QxAWCIC4RBLFy4Id5a9Eg78aLOy5g4ccZePdgIfKr5ZQgoFpejY9zP0Z9p37FRt6txn/3X8GcTWk4KWvCi7dF49CaZNwW52Ozsh+P4KG6sxodqg48MT0cnT0aPLftHDR9fnj2XKzD6fIWrJsbDWcJdYUt0LsdTh752JJZZvZ+9Yp6k/LBnPIW3PlpJtbvuIgAVwn+eCYJG5fGw9tJjIenhEBHEsirMZ37NHc1Y2fxLjz/axq6VFp8u3ICvlk5EeGeUtw9PgCOjvV4I20zq96w3hiyIeYmzTqd6fvS1t2GX4t+RV1nnVX36kuVvAoVHfTZTDYo1Upk12WjuavZZLuAEEAs6J9iV35NO5Z9cQrPbjsPJ4kQ2x+fjE/vH/+XKTMaKPyl/rQqpWzOC3UOpd1nECmh81Ezlxl7asxTFFsLiUACT3vPQSmF5eAYKJ6dGQEhn4f3DrPrrc0oboKfsxh+zmK8faBw2As8lDcrUdvejYRgV1yobseBIcjYnCppho7kZPnN0dsDcMdZzgOQo3+weSp/C/MlG88AuEyS5BgAKQDeIwhCZOZ4DgZ6NFp8nlaCmRvSsPN8DVZNDUWklxTZxTxEOEeYHGsIHEgQ+PlMJWZsSMMXaaVYFO+P4+tS8HRKRL9V9XgEDwQIaHQaxAe64I1FcThe2Ih//XnJ+MDrUmnx1sE0+IUexbQY+vuJBAJEeklxouiqWTPIA2UHcLD8IGrauvDcT+dxz+dZaOjowfvL4vH7U4kmcrdB7vaY5jcLV65MRLf6+kRVrpLj1/wTKG9twZt3xiEl+noPn9ROgOQYe1xpKUJNG7sVWQOG/iKmiayTyAluEtN6faM8P8Ok+Uz9Gfwn6z8WvaustS3oi0KtwIHyA5QeuodGPkRrK8CGRnkPXtpxEQs/zoCssRNvLdYbpU8Ooy/FvdUpaClAaXup1eclByRjbshcxv18gk8rz8/jWRdwVcmrcKru1LCfyA53CIJ4nCCIHIIgchobrffd+6vj5SjGo1NDsftCLfJr2s0eq9HqkFXajOQoT/x9tr6a4uClqzdopIODQaDif3ePRoSXFO8eKqQsnA42mbImSIR8jA2yfuHpVsLgAfj+kSKTOQoHh7VYfJqzKNkgATgS+rSN9Nqx1jdj3MKQJImDl+oxd1M6/re/AJPD3HBozXS8Oj8Wj0wNRWmVD1zIBJNzDJOzD4+U4KXf8hDkJsGuZ5KwYckYeLFstGZD7/64+yYF4amUcGzNrsTmdP2k84v0EjQolBgbIgbT3FBACBDhJYVISOAbM+qRGlIDRY8Ot72fjkOX6vH8zAgcWzcdd471p80KPjZ1BNoUfOzKrTFua1F0I6+6HROC3TArhiq0cttIP4AEtmYzj4OO0Z6j8c/J/4S7mD4QmRYwDY/EPWKyzfC+MU2aCRAgQVoUFNGRun6p8RmCS1t6pPrSo9HiizR9399v56rxaFIojq9Lwf2TgsG/xfvQzHG88jhy6nMG/Lq0Co4WMmrHKo/hRPUJk22lbaU4WH5wwMfHYR0kSW4mSTKBJMkET0/PoR7OTcnj08PgYi/EuwcLzR6XV9MOebcGSREeuGucP8I9HbBhCAKbgSSzuAn+LhKEezpg3dxolDYq8Nu5G5uxyZA1YVKYG0QCLvtuDoMH4NWOHnx3snyoh8MxjBmIv7SPAcQAqAWQB2A1SdLPPLnVQiqF9XI88HU2nvjhLER8Hr5/ZCK+engCQj30ktt3xvvDxV5ICXB0pA6tChV+P1eLByYH4benEjFmEAwWBTxTOfv1c6OxcIwf/ru/AF+dKMXnaSWYFuUGLyc7Zu8yHg92Qj4WjvbG7+dqGL1wtDotjl5pQo9Gh73PT8ULc6NhL2LucfJ2b0dIQAW+ySw3ZgK+OVkCtU6H1TNH0AZ3Ps728HeV4JecCqtXuXgEz6oyUjbm2wC9EXXf6/Qno2boq+sbEO4t3YvTdadZXYMkSRy+fBVzN6Xjv/sLMCnUDYfWJOO1BbG05a4cprC1YujL95e+x29FvzHuf3TUo0gOSDbZZse3g6PIkfGcsvYylHeUm2zTkBrwYN33m4NjKHASC/F0SjjSihqRVdLMeJyhPy0x3B0CPg/r50VD1tCJ38/XMJ5zM6PVkThZ0oSpER4gCALzRnojPtAF7x8pvmEZm7r2LpQ0Krj+NJYYPQBTS9DexXkActjGQARq8wDkAvADEA/gY4IgaJUruNXC67QqVHh9Vz5u/yAd+TUd+L+Fsdi3ehqSo0zfF4mIj6TRtTjeuAVVLddL5DQ6Dc5WtMJZYof18+iDkoEg0DHQRLWQxyPw7j2jMSHEFW/uvQKSBB5O1MsEm1NEBID7JgeiS63F1tP0/VZVrQpcrOrAE8lhiPBinmgaKOsoQ0hQBQrq5cgqbcbl2g7sz69FlJcjwr3oxVP0Jt5OaOvqwR9WPLBL20uxp3QPxSbBQG5DLr7O+9qkdIyN+TYAixN4B5EDnETWi8EYMNy/b4lcUWsR6hSW++eKrsrx0JbTeOz7HAj5PHz3yER8vWICwjxt93a71bDVR02pUVIEg3rjIfGg+KjdEXYHJbvbGwFPQBlLf7O2HOYhCOInAFkAogmCqCYI4tGhHtNw5qEpIfB1FuOdg8yCGhmyJsT6OhmVjueN9MGYQBe8f3h4lqLl17Sjo1uDpEh9kGTI2NS1d+MHBkXmgSZTpg+Muf409qyfNwLtXWps5jwAOWxkIAK1lQB+J/XIAJQBGDEA1/1Lotbq8E1mGVI2pGJrdiUemByM1HUpWJEUCiGf/uNIjvIAwdPg+6xy47bLVQLU1sRgzczRg5rRuD/mfkz2nWyyTSzkY/ODCUgIdsU/bh8BD6n+/kz9W6M8RmH12NUYG+CNGdGeeP9IMXLKTatpdToSqUVX4SS2w1Mplj3XAH1JZZC7BK4O+ozjv3dfgtROgPFBXozBkZgvRqyXH6K8HU0ycZa4qriKs1fPggT98XKVHNWd1SbZsQDHADwS9wg87ekXJQQEfaarL0uilmBx5GJW46SDyUfN0uS8TanCv3bl4/YPTuBCVRv+tTAW+1dPw/SoW3uRxRboRD/YoCN1ZgU+chtyUdhivgSsLzyCR1kc6G/WlsM8JEkuJ0nSlyRJIUmSASRJfj3UYxrOiIV8/H12JM5XtuHwZWrfmVKlwbmKNkyNvB5Q6AObaNS2d+PHUzcmsBlIMnplCA1MCXdHcpQnPkmVoaPbuozNlboOKGhUnM2OobgRHlIRor0tL6Ry6In1c8KieD9syShHQ0f3UA+HYxgyEIFaJYBZAEAQhDeAaADWd83fAqQVNeL2D07g37svY3SAM/avnob/LIqDq4N57RUPBwmC3MXYfqYKih4NulRafHz4KqKd43H/JHZBzUDj6iDCjqcSsTIpFE4iJ8S6xzIqCIoFYriIXcAjeNi4NB7+LhI89n0OynpJLO84V42a6hg8N+UOs+WOveERPPB5BJZPCMDhy1eRXdaCdTNm4l9JrzAGRzHuMXh27LNYlTgShVflZktnemOYZFuSSu89GZcIJAh0DIQdn967zl3ijkm+k2AnsN7bzhokAok+UPYaa7KdyWBco9Xhu5PlmP5uKn44VYH7JgYhdf0MrDSzmMBhHrpeMjZoSa1Zr7vM2kzkNeWZbDtaeRSHKw6bHQvFR420bDbPwXEzcfe4AIR5OuDdg4XQ9vHoPFPeCpVWR8n8JIZ7YFqkBz45LoPcysBmqMmUNSHG1wkefbxQX5wXjTalGpvT2E+7OrrVWPRJJl7ZmWf54GuQJInMkmZM4UycreaFOVFQa3X40AoPQA4OA2zk+SklGwRBPEkQxJPXDnkDQCJBEHkAjgJ4iSTJ4W9YMoCUNnbikW/P4OEtp6HR6vDlQwn4/pGJiGK5KsXn8RHt7QB5txq/n6vG5vRS1HS04rm5HiCIwVVp23plKw6VHzJ7TIhzCJZELaGUYBlo6mrCieoTUKgVcHUQ4duVE0AQBFZ+cxotChXk3Wq8c6AQY30i8fDEsbTXoMMwsVw+yR8CHoERPo5YPjGI1bl/i/eDm4MI7x0uQo/G8gSart+sVaHCP//Ix5h/H0JVa7fJcYDeKiC3IRc92h7jNqVKg42HizD6/w7ichWB20Jus1jWuLN4J0X8wRIkSWJXbg2mvXMMb+29AhexC8VHjS5bk35tMeFff15CnL8T9q9Oxht3xsHNwmICh3kWhi/E4gjrs6KWMl10qo/V8mrUyJnLeqVCKSQCicm2WUGz8PiYx60eHwfHUCHg87B+bjSKGzqxs08Ze6asCSI+DxNCqMqEL84bgValGl+mD5/15C6VFjnlrZgaQRWzivN3xoLRvvg6owyN8h6as6lkl7ZApdFhV24tLtWaV880UHS1E43yHkzjyh6tJtjdAcsnWucByMFhgI3qI6VkgyTJz0mS/Pza/lqSJOeSJDmKJMk4kiR/HPxhDw/au9R4c89lzN2UjtNlLXj59hE4uCYZc2K9reop4xE8eEjtMCrACV+kl+KzNBmmxHbidNsvZvtXBoL2nna09bT16xqNykYcqzoGuUovzR/s7oAvH0pAXXs3Vn13Bu8dKkJTZw8enSlBYxd7kRlD2Z67VIivHk7AZw+MR3lHKXYU7UCXpov2nCp5Fb7N/xZydQv+tTAWZyta8Y/f8iyWQGpJLQgQ4BE8k/LVbacr0aXWYt9FfflN70xFlbwKu0p2oUvdBZIk8cf5GszckIYPjxZDrSXx0bFiqLVqi6WPVfIqNHWxX/u4UNWGez7PwurtuWjuVOGHUxXYJzuO8vZyk+OkIinsBXq/s7ImBVZ9dwYPbTkNlVaHzQ+Ox4+PTkK0D1fiMhC4il1t8lEb4T4CQU7Miw98gk9R87RkZL4oYhEeiH3AZJtEIOlXHyQHx1BwW5wPRgc4Y1OfBbeM4iaMC3ahrc4YFeCM+aN98ZUVgc1Qk1PRQpshNLB2bjRUWh0+ZpmxyZQ1QSzkwVliWT3TgKH0MimSC9Rs4blrHoAbWXoAcnAY4OqYBgGtjsS27ErM3JCKrzPLcM/4ABxfl4InpofDTmB9eZGfgx8SfBLwcGIwqlu7QJLAsgkBAJiFKgYKNiII2XXZePv02yaZo94YJo29rzM+2BXvL4vH+ao2fHuyHEvGByC/4zDONZxjPbZx3uPwj4n/gEQgQUq0F0I9HNDc1YxLzZcYAy+VVoUKeQW6Nd1YFO+PtXOisPN8DTZZ+PEkQMCOb4fcqjZK+ep9E4OQVayAi9DH5BxDH1B1azfu/uwk/v5zLjwd7fDrk1Owfl40cutlWHvs/yyaWWtIDSuhh4aObqz79QIWfZKJimYl3rl7NH5/OhE9Gh2+u7AXJe2mzczPjX0OSX5T8faBAszdlIZTpS34x+0jcGhNMuaOtN0onYOKrFWG3IZcq8+7LeQ2Sslqb+jKGG0RBrnUfAln6s9YPT4OjqHEIKhR09aFracqAQDNnT24XNdhVplw7Zwo9Gh0+OS47EYNtV9kyJog5BOYGOpGuz/UwwHLJgRi2+lKVDab9+U0XG9SqDueSglHamEjTpVabgHIlDUh1MMB/i4Si8dyUPFyEuORqSH48wL7LCYHB8AFagNOVkkzFnyUgVd25iHcU4rdz07F/+4eDU9H2/uQIlwjMD9sPv42OhAxvk54YU4UXO31K4WDHqjxLIsgqLQqdGu7Lao+9i3Run2UL/61IBbhng5Yf1s0Y88UE0KeEHZ8O5OAwmgyzTBR7Sus8ezMCCxNCMCHx2T4JaeK8V4zgmbg+fh1eGbrOSh7NCblqysSQ6Du9oW2JQVS0XUlRB2pA0jg1Z2XUNKowDv3jMauZ5IwIcQNSxIC4CAUorBeTnlf+qLTmReU6FZr8clxGWZsSMWu3Bo8MT0Mx9dNx9IJgRjh44SpER4oqldCraXe57dz1fgstQQLR/vh2LrpeNLGxQQO8+Q15SG9On3Ar0un4Gjp7yi7Lhs7i3eabLvUdGlQfN44OAabpAgPTI3wwMfHZejs0eBkiWVlwjBPKZYmBGJrdoWJmvLNSqasCeOCXM32b6+eFQkeQWDTEfOLjvXt3ZA1dGJqhAdWJIbA28kO7xxgVs8E9CJop0qbkURTesnBnseTw63KYnJwAFygNmBUtSjx1I9nsfzLU+joUuOT+8bh5ycmI87f2fLJFiBJvSmykE9g/+ppeGJ6+A3zPeIRPMuBxLWJoi1+YSuSQnF0bQq8HMUWFe76Uq+ox6HyQ1Cor9d8W/Iu66u0SBAE3lo8ClMjPPDK73nIKGYuMdycXoqati5sXBZvUr4a4uGAmdFe2JpdaSL7rCW1KG9W4EKVHK/Nj8HShEBjE7ajWIjb4/xR2aJAYyd9mWbv6xjG3RuSJHEgvw5zNqXh3YOFSIzwwOE10/Hy7TFwFF9XAl2ZFAKlSoeciuuvTa1T46sL3+K/R49gXJAL3ls6Bl6OA2eUzmGKrWIi/zv9PxyrPMa4/56oe7AkaonJNmc7ZxNLjb40djWipM00u6oltZw8P8ewZf28aLQoVPjqRCkyZU1wFAswysKz1xjY3OSlaC0KFS7Vms8QAoC3kxgrk0LxR24NrtR1MB5n8JdLivC4pp4ZhXOVbThypYHxnNyqNihVWs4/rZ84S/QegGyzmBwcABeo9RtFjwbvHizArI1pSC1sxNo5UTi6djrmj/YdsCDqfMN5vHHqDXSorv/4WhvU2EqgYyD8pH5mj7EUNLKRoSdJEjroaAMSJpq7mpFVlwWl+vqKqKWgkcfjGcdsQMjn4dMHxiHcU4qnfjyLwno55byDJSfx+dkdmD/KF5PDqKuKt4/jQy7Zh205+cZtCpUKuVVtGOXvirvHBVDOWZYQDJIE9lysNvs6Pe094WRn2j90pa4D932ZjSd/PAeJkI8fH52ELx9KQIgHVdBlRrQXnMR2SC2sN27T6DT/n73zDm/juNb+u7sACICdBHvvlCiq916tYsmOu3zdFXdfJ07crnOd5H4pTmJLjtyLHLk3RXKT7ahb1SpUI1VIShRFkRR7LyBBlPn+oBYCQQA7C4KgKM4vT57Hws7MjoCFMGfOmffFDwW5aDa04I/LsliZYz/jqERRCkIIusxd4OD8s/FV+kKr1PZ47fbM27E4abHTPo6sApg8P2MwMyouCItHRGLN7mLsKKjBlORuk2tXRAaqce+0RHx9/CIKqpwHNgPN/nP1IITubNgjs1Lg76PAShcZm31FdQj1VSHz0vnjW8bFIlnni5c2F/RSzxTZe7YOPAdMSWaBWl+5hzKLyWCIsEDNTSwWgg1HyjFn5U688dM5LBkRiR1PzcLj89KgVnp2wSPudNsu9LJ12fhF6i88eh9HLEhYgPkJ8122kQoao/2i8fT4p5EQkOC0jZT8vSMc+YMpeSUCVAFOAw8fwQfRvtFQ8T1VDAPUSrx/3wRoVALue/8Qqu38TtbsPwxOVYnnlji2CMyO9UWwfwe+OHze+o9vTn4gmirm4I9Lsx3KGSeE+iE6SIMfT1a4NGBdMWIFpkZPBdB9/uJ3X5/Ata/uQX5VC/50fRZ+/NWMHn5B9vA8hxHRQShpaMPxsm5hmOLaVhRUtWBWejhGxQU57cvwDApeITujRi79z1Wm61T9KRyqPCRrXEfnTs2EBWqMwc2T12Sgw2hGTavB5b+HtjwyKwV+EoGNJzGZLbIX53uL6uDvo8BIiuqcQK0SD89OwfaCGuTYeZUC3Zs/e4vqMDX1ssS+QuDx5DUZOFPdhm+OOVaL3VdUh+zYIARq+8+zdahAm8VkMERYoOYGR0sbccNbP+PJf+ciKkiDrx6ditXLxyAqsH8O2Try6Ir0jUSWLqtf7ieXaL9ol4IHAi9Aq9S6XHDyHI97s+5Fti6b+r6OAtipMVPxm3G/cdpHp9HhgZEPIDEwsde16CAN1t47AU0dRvzywxyrGeih8w3ILa/H2PhQxAZre/UDugPE9Eh/nK1pwaHzDShr0OP9fZX4RfYwjE90fADcV+mLm4bNR1OrBhtzKyT/vp8cuIDZK3fiy5wy3D0lETufmo27pyRK7hwDwEvzn4Kmcxze33e++89b8iFwHO6YlCTZl9F3aEqI7ZEq4wWA/Pp85FT3FAH5ouAL7K/Y77SPo3OnUkqRDMaVTmq4H24ZFwfA9fk0W4K0Kjw8KwXb8mtw2EFg40k6jWZM/tt2vC3D7wzoDpImUWQIRe6bmoRwfx/84z+9MzZFNW3dgazdWbPFIyKRHROIlx3Y1bR2GnGsrMmhNQDDPWiymAyGCPtllkFlcwee+OIYbnzzZ1Q2dWDVLaPw9SNTMTZevuy2HMSFmqgiCHRL3l9sc+6V5Cm+L/4eH5760GWbrNAsLEle4vR6u7Ed20u3o6q9ymkbnuOREJCAIDV9dkcsk5S7AHbFiJhAvPFfY5Ff2YrHPz+GLpMF/2/jKQRqBExIdP5DxXM8kkJ9EaDh8f6+ErzwYz4EVR0WjXfumaJVavHoxOuRHhqLtftKHO60miwmrMlbg0+P78bz35xEdkwgNv16Bv7vuiwEaem9zXS+/rhlfBJ+yKvE+iPl2HWmGlkxgdD5MQUvbzAjZgYeHf2orD40WWZHPmqlraUuLTX8lH4IUYf0eN7uGnYXlmculzU/BuNK4/fLhuP9+yYgJcxPuvElVkxLQpi/D/7Rz6Voh0saUdfWhdd3nEV9G50tQGm9HqUNesyQIYmvUQn41bw0HL7QiJ8Ke2Zs9tqcT7OF5zk8sygDF5s68NnB0h7XDp1vgNlCqINfhjQ0WUwGQ4QFahR0Gs14dftZzF25Cz+erMJjc1Lw01OzcdO4WIclbZ7Gkbz93ot7seHMhn6/t8FksPqfOUPqx63T1Im9F/eiWl/ttI3RbERebR4aOul3NR2VPh6qPISvzn7ltE9bVxveyX0H+fX5TtvMyQzHn67Pwo6CGtzw5j6cqmjBgqwwqBXOyz4EToAgcFgyMgKbT1fhPyersGisGcfqnRtVE0KgN+lx55QY5Fe24OD53n93C7HgYlsF3tuXj5ggDf51zwSkURql23Kw8iAmZrbATAieXp+L0lF1AQAAIABJREFU2GAtpicl9zI+ZvQPWqXWpcCHI3iOx8TIiYj0jXTaxmF2zOI6OzYpahIeHf1oj/JgpaDsZYjOYAw2/HwUmJMRLquPGNjklDRiZyG9j6dc9hbVQcFz6DCa8cZP56Q7ANh3znFgJcVtE+KQGKrFi5sKYbHJ2OwrqkNiqNZhZcj0VB2mpoTi9R3d6pm281Yr+X7fkB5quMpiMhi2sEDNBYQQfJ9XgXmrduHlrWcwOyMM2387C08vzISvD73oRV8J1YRiavRU+CovC0V4q1SJRgThm6Jv8OrRV51eV/DSYiLtxnZ8XfS1pKeYLQkBCfjD5D/0KGOs1lejpKXEZb8qfVUPpUhH3DEpAQ/NSsapihaMTwjGhPiIHu+/PRqlBimBKbhlbDJ4jkNssAazM3SuZfXNnVh5eCXio6sRpFVi9bYzMJl7S62fq21DaX0nnluSCY3KvXNEubW5aDAVY15mBAgB/rBkAh4f+xjSg9PdGo8hj7KWMuwu3y1LUEQlqLA4aTGSAp2XpzoqqXTnvNnei3uRV5snqw+DcbWwfEIcEkK1+Memgh6BjSfZV1SHsQnBuGVcHD45cAHljXR+Z5EBaqSEOf/tcYTyUsamoKoV3+Z2Z2y6JfYbnAZ9HMfhmUWZqG/vwr/2nO8x7wmJIR4/ez/U4fneHoAMhiNYoOaEkxebcds7B/Dfnx2Dv1qBzx+YjLfuHIe4EMdnlPoTnUaHBQkLeuzIW4jFK4f/Fbyih0KiI6TERJz5qNkiZgXk/J04juslGiLlIeUoC+eMZxdm4i+/GIF/3jYaN6bfiDuH3+m0rU6jw53D78TY6BSsvm003rxjLHieuFSxFOepFIDnFmfiQHED/vhdT7PuJr0BeWVNyIwMxLXZUZJzdnUvC7Hg+WuH4S+/GIH5w+TtOjP6RmlrKX4q+0lWmS4hBCaLyWXG2l7BUbTycPUdOF1/GmtPru1hUH+0+iiKmgaH+S+D4WlsA5vvKM4Ly6WxvQsnK5oxPVWHX89PAzhg9bazLvtYLAQ/F9VhWqrOLVXea7OjkBUdgFVbzqDLZEFeeRPaDCaXEvuj44KwKCsSa/YUo77NgJqWTpypbmOy/P3E9DQdpqWGWj0AGQxHsEDNjtpWA/5nQx6Wvb4XRbVteOGGbPzwqxmYkjJwB2ktxIIOU0ePM2re8j0SOAEWi+ssgNQOPk1wJCWr74iWrhZ8X/w9Ktou/7BKLVKtnm4UC2ae53Dn5ATZwfmyUdEYGRsk+RmJ74uJmHDbhHg8MjsFnx4sxbu7Lx82f3PnWRhMFqyYltInCX1xQZ+o88WdkxNQra/Gv078yyvnHBmXnzupTQ9b6jvr8deDf8XJupNO28xPmN9DPIeAINovupedgy3txnaUtZbBaDZaX2Oqj4yhztLsKAyPCsCqrYXoMsmz0pBif/Elif1UHaKDNLhnSgK+OlqOM9XOjxWcrmxBo94o63yaLd3nzjJR3tiBzw+VYu/ZenAcJNcyTy1Mh77LhDd3nnO79JJBzzMLM60egAyGI1igdokukwXv7j6HOSt3Yv2RcqyYloSfnpqN/5oUD8EL59BcUdleiRdzXkRx8+Uvsrd8j6L8opAWnOayjVQZJk1w5I48v8FkwJHqI2jsbOwxjstAzYGCJg2bSzZjV9kup9ebDc145egrOF1/+vJcJM4KiXMRg9Snr8nA0pFR+Nt/CvBDXiWKalrxRU4ZRkamYmS083NKNNifZeo0daK8rRxd5q4+jcugw/6zpsG6eeEi2FfyPc+W8RyP+7Pvx7iIcZJzsX0evOXLyGBcqYiCGmUNHfgix7OlaHuL6uDno8Co2O6qmEdnp8JX5doWQBT+mNoHtcWZaTpMTg7BazvOYlt+NbJjAiVFqFLD/XHzuFh8vP8C1h8pR7BWieFRzjd+GH3D1gOQVmSGMbTw3kGrKxRCCLbl1+CvP5xGSb0eczPD8b/XDpOlGtXfOCodnBU3S7aBrjuMCR/jUnofuBQ0ulhMqngV/nfS/7oMoKyljzKyhLYZKRE/pZ9kqVhiQKLLjIMjSppLJPs0GZrQabrsv7Y4abHLDArHcT1K13iew8pbRqGquRO/WXccaeF+0Cj88NbS3yLUz0fWfO2xP8vkTgaT4T7WZ9VCn1GjkecvbirG2aazuCbhGuqMq3XjxCZQMxOz9SwpgzFUmZUehklJIXh1exFuGhvrsbPo+4rqMNlGYj/YV4UHZyZj1dYzOFra6FCoY19RHTIi/BHur3b7vuK5sxvf/Bl1bV14ZHYKVb9fz0/HN8crsK+oHteOjPKKaNpQ5slrMrD5VBXe+Okc/rBs+EBPh3GFMaS3UM9Ut+LutYfwwEeHoRB4fLhiItbeK0/a1xs42o2P849zaSDtTTJDMjFCN8LpdY7joOAVLheSYZowPJj9IOL846jv60ikZEnyEtyWeZvLudyTdQ9GhY2ivo94D7mZOq1SiwCV6+BubvxcpARe/vFUKwW8e/d4xARpcKqiBb+el9bnIA0Abs+8Hfdn32/9sxhAeqN8luFeRs36Gbl47srbynGg8oD1udMb9Xg7922cqj8lay4so8ZgXA5s6toMWLv3vHQHCsoa9LhQr+/lQ7ZiehJ0fiqHfmedRjMOnXcu/CGHsfHBuGZ4BABQnzWLCdLg7skJsvow3Ef0AKQVmWEMLYbkFmpjexf+ue0MPj1YCl+VgD8uG447JydASWko6W0cnfEqaS6BUlAixi+mX++97+I+7Lm4B89OeNZpoDU+crzkOJtKNiExIBGZIZkOr6sEFaL85Ill0IiUeAoTcS1S4ihLkVebBwuxYHT4aKf9pkZP7fVaiK8KH62YiB9OVGLhKA1eP/Y6liYvdWjSTYv9Ipxl1LxLli4LGSEZUAv0u+PiZ8Tzzv9dEsVqxLYmYkK1vrpHZtcerVKLGL8YcLj8fX52wrMgYMarDMa4hGAsGB6Bd3cX487JCQj27Zttxb5LJYzT7c6a+foo8PjcNPzxu1PYfbYOs9LDrNeOXmiEwWTB9DTPnI3/w7LhSArzxcSkEOo+j8/tPvKwpA8iVgx6fj0/DV8fv4jV285i5S3yNpIZVzdXZmTST5jMFnz4cwlmr9yJTw5cwB2T4rHr6Tm4b1rSFRukAZczR7ZBwKaSTdhT7tyjy1NYiAUGs8Hlma4uc5dkSdeRqiMoay1zer2pswmHqw5LyubbwnM8lHxPb7Pvi7/HppJNLvutyVvj8ryZI2iVLW2FV47XHMexmmMux23qbEJbV1uv1+NCtHh4VgoAE+o762WfqbMntzYXO0p3WP/sI/gg1i+WeWd5CSWvhEahkSUIE6AKwPTo6Qj2ce5fJAZx4vNBUy6ZHJiM+7PvR6jm8iKQ4ziWUWMwLvH0wgy0dZnw1i46vzNX7C2qQ0SAj8NKndsnxiM2WIN//KenLYDouTYxyTOBWmywFs8tHiZrnROoVeL5pcMRqHHuH8rwHLQiM4yhx5D5Zd59phaLX9mDP353CiNiAvCfX8/En64f0efdMm+gVqgxO3Y2onwv72xZiMVrqo+Aa/GNtSfXYv2Z9S7HUfAKl5mvan01fjj/A5oNzdRz0yq1+N2k3/XI6FW1V6G+o95lv2ZDM1qN8v4hDFAFuCxjFDgBw0KGIVh9eVFNo6T3/qn3saNsh9Pr7tgWOKKkuQS5tbnWPycFJuGX2b9EiJp+h5XhPnUdddh2YZus5ztYHYx5CfN6PFP22GeV3XleLMSCjec2oqiRyfMzGACQHuGPG8fE4oOfS1DZ3OH2OBYLwc/n6p1K7KsUPJ68Jh2nK1vw/YlK6+v7iuowJj4Ifl70a2UMPDQiM4yhx1UfqBXXtuGXH+Tg7rWH0GW2YM3d4/HJLychI9J/oKdGjY/gg1lxsxDpe1n5T8ovzFPQKDbSnG+x93uyxx3VR4fjSCgtAt1ZCLlCLPeNuA/zEuY5vS7wAm7NuBXDQoddnguFhYLACR73l3MEjXE5o/9o6mzCvop9aOlqoe5jtBihN+pdfm72GynWjJqL566irQJv575ttWYwW8w4WnMU1fpq6rkxGFc7T8xPAwjwioTfmSvyq1rQ0N7l8pzXdaNikBnpj1VbCmE0W9CsNyLvYjOTxB+CiCIzW05X42hpo3QHxpDgqg3UWjqN+OsPp7Fw9W4cKK7H/yzOxJbfzMSC4RF98qMaCAghaDY09zh34i3fIxoRBBrFOJ7nqXzU5CjPEULw1dmveggn0LwvCs51ds9T0ASN9rL59oglpa7OKdGg4BU9ylNP1Z3CW7lvQW9kB5e9gfj5yQmWzzSewUuHX0JdR53TNmPCx+APk/+AQJ9u2W8Fr0BSQBL8lM4FkcwWM6r11TCYuqWgRdESVvrIYFwmLkSLOybHY93hMhTV9C5Pp0E8n+Yq6BJ4Dk8vzMCFej2+zCnD/uI6EMJEPIYq3SIzPg5FZhhDk6vul9lsIfj8UCnmvLQT7+09jxvGxOCnp2fj4Vkp8FEMTuEEMzFj9dHVyKnKsb7mLZW2MG0YxoSPcXkvGk83+7NkvcZwI3PEcRxO1Z1CVXtVj3GkxuA510GjIz4+/TGOVB9x2Wb1kdXYXrrd+mcppUhxLq4W71qlFqlBqdAoNLLmK3WfdmM7avQ1fRqTQY8o+iFng0Bs6+q7x3Fcj42nUE0o7s66G/EB8U772J9rc2eThMEYCjw2JxUapYCXt7pXira3qB5p4X6ICHAtIjQ3MxwTEoPxyvaz2Hq6Br4qAaPigty6J2Nw4+ujwK/mpeLg+QbsOlM70NNhXAFcVb/MB4vr8f82nsbpyhaMTwjGB8smIvuSweRgxlFW69b0W6FR9m3xTkNCQIKkDYCU4TUAPD7mcddjUCxKHSHwQo/3JUIb0UMkwRHJgcnWDAQt55vPSypsGsyGHgbSK7JXSI6r4BQug8Y4/zjcMewO+ok6Qckre7y3TJ7fuzhSBZXCGkBxzv+ZrmqvQk5VDmbGzqR+pnuVS3qo7JjBuNrQ+fng/hnJeGX7WeSWNckKngwmMw6dr8fyCc43TUREW4Bb3t6PDUfLMS8z/IoWOGP0L8snxGPNnmK8uKkQM9PCmI/dEOeqCNTKGvT423/y8eOJKkQHqvHa7WOwdGTUoCtxdAbHceDB9zBPjgug9xvrK2L63dn7OSVqimRwJEWWLgvxAfHwV8k7O2h/xuvWjFsl+yxJXiLrHhZiAQGRzI7Zn8PzEaT9z6bFTJPMNnqCufFzMTd+rvXP7gbGDPegEeWx57IRuvPPqNnQjKM1RzEuYhwCfQJR2lKKb4q+wc3pNyPaL9r1XC49AxaLBSpexTJqDIYD7p+RhI8PXMCLmwvw6f2TqfsdvdCETqOFuoRxQmII5mWGY3tBDTufNsRRKXg8uSADT3x5HBvzKnD96P61YWJc2QzqVVq7wYSVmwsx7+Vd2FFQg9/MT8f2J2dj2ajoqyZIE7EvXTtRe6JHyV9/UdhQiD8f+LNLoYGpMVOREZLhcpxdZbvwc8XPTq/7CD7QaXTyM2qc0COA7Q+sZZlSwiB22b3d5buRX5/vss/w0OFIC05zev1E7Qm8fORlWSIUNDAfNe8SoY3A7yf/HhnBrr8ntoiBlKuMmn3QZTAb0GhodFlOqxJUSApIsmbkg9RBeG7Sc7JN4BmMoYC/WonH5qRiX1E99p51fl7Unn1FdRB4DpOS6ZV1n1uSiVFxQVg4IlK6MeOq5rpR0ciM9MfLW8/AaGZCYEOZQbuFWv3lEygvOITpZguu91chPkQLnzIB+HSgZ9Y/KLhGmPO3AlgNAoKvuEbMJGpEQtuv9+XQBcK1wVywD84elxZYoAYHFZwHx0VogRocpsJxxqwMJpTBiElQQ3Axjj1+aIYKSmDXWwCAf6EFw6DEVDgvC/0SrSAAljuZiz0WEIBrhFCwG4DzswYC1wQzUQC73wEAHOAaMYKoMAy+Tvs0wgwzAB0cB0yd6EQrpweftxV92Vc5iy6cQBeugy8U4BAEA1JgAF9wyO0xGfRwl/4vhxiYMAdGKAsOOu0twAhwrZe+n0pY0AVwbVAU/Axn39dAAHcDwKEv6SYSmQ0s/rvM2TMYVw93TIrH2r3n8eLmAkxLnUa1Eby3qA6j44Lgr6avmEgN98e3j03ry1QZVwk8z+GZRRlY8cFhfJlThjsnuz6Cwrh6GbQZNX+1AhqlgKzoAKSF+w9aoRBa5hENMtHt+SbqAMkJaNxFcekeFjhWHyIgWM01YR9ce80IAExOxgCAEhixlZPvV/MwAnGNTbBaxZmgd3EfADCASLaxhYAgmgjwl3i/hxMV4mwWxxYQyS/Yj9DjazhXFBML5fr6Ra2HBSe4LutnMAo+uBPOfeEYnqUDFvyIdpTBSN0nBgrMhAZKF8+d+LSJ+61iblnO89IIMzagDZXo38w0gzFYUSsFPDE/DXnlzdh0UrqSpbnDiLzyJlbCyOgTczIui8x0dPW/UjXjymTQZtS016/E8OsHehbeY7zNf5vNRuDQCxDi5wMx/bv7xjeXAKc/hGn43UBgUq/rhFhADvwZQtwcIHam83FOfdRdojjCscCGuWwnUL4L/OQ/AH0oWzXv/xP4mOmAzXkse4T8T2Ew6oGRD1CNqQZA03K+/VwO/BWKqElAgv0Vm7kUfAGzoQkY9bDD65aLPwOlW6GY+BwguG/OLlTlAOd/hHn8U4DSeYaP0T+YulqRc+RlhCddi7jI8dIdAOiNenSZuxDoE+h0B19oq4DP6Y9A0m8BglJgrs0Dir4GP/oxQON4kdhh6sCavDWYGTsTo8NHo621DCdPrsWozDuA4FS3/44MxtXMjWNj8e7uYry0pRALhkdA4ULs40BxPSxMYp/RR2xFZt7/+Twenc3+fR6KDNqM2lCjobMBzYZmAN71PbI/A2OP1WBXSmjD7vxWr3EuyerLPVu46fwm7C7fDcB90Y/+gkYNk+Z9Afr+WYv9xfG2l27Hmrw1fRqTQQ+NH6E9ByoP4NVjr7r8TkT7ReN/Jv4PUoJSAAD+Kn9kBGdALTgv0eU5Ho2GRuhN+h5z6qtXH4NxNSPwHJ5amIHi2nZsOFrusu2+ojpoVQJGM4l9Rh8RRWbe3nkOzXr6igzG1QP7ZR4kfJb/GbZe2ArAu75H/ip/TIqa5FT6mzaQ0Cq0UPHOM0I0XmyOKG0tRXlreY+5yBX9kKKpswnv5r2LosYil+0+PPUhPjn9CQD6oFHB9TSitken0SErNKvPoh/2AXe7sR2txtY+jcmgx115frmfe1JgEpZnLoefyrnhtfhdFb8DtJstDMZQ55rhERgdF4R/bj2LTqPz7/LeojpMSgqBSsGWWIy+89TCDLQaTHhzl+s1COPqhP0rMkgQuMvBhVpQ48HsBzE8dHi/3zdIHYRFiYsQpg1zeF1ceEoFjTek3YC7s+52ep0m++QI2/cFpNsjLdgn2GWfBP8El0qL9nRZulDZXgmDxSDZ1jZw/f3k32NG7AyX7aXMt4eFDsPN6Tf3WcVUJajgp7y8eHc3MGa4h31GkwYTMUluOrR1tWHDmQ240HKBelz7oN0ds3kGYyjCcRyeXZSJqpZOfLS/xGGbiqYOFNe2s/NpDI8xLCoAvxgdgw/2laCquXOgp8PwMixQGyQIvNAjYxTlFwVfL5w1IoTAaDY6LX1U8kpck3AN4vz75us2L34eHhv9mOx+tmWMSkGJu4bfhSxdlss+E6MmYkHCAup70BgPA92LcdvsGM/xksHn2IixWJS4iHou7jI8dDieHP8kgtXdQaw72RqG+wicAIETrJ6ENFgsFsnnx0zMOFl/Eo2djQCAnKocrMxZCYPZ+aYCz/HgwPXYVPBX+jMfNQaDgikpoZiVHoY3fjqH5o7epWj7irol/GekOd7cZDDc4Tfz02EhBK9sPzvQU2F4GclAjeO4tRzH1XAcd9LJ9ac5jjt+6f8nOY4zcxxHbxzCoILneGuw1GHqwOGqw2jobOj3+zYaGvHCoRdwst7hxw+VoMKU6CmI9HXt+5JTlYPvzn3n9LpKULks13KGVEbKE4jBl9Si2dbrzmA24Pvi7yUzHXH+cRgWOszp9a0XtuKfR/4pc8bSiGcCGd6B53g8P/l5yQyrLWZiltwcED9D8Rk1mA1oN7VLPquZIZlWk/qUoBT8dvxvJb/DDAajm6cXZqC5w4h3d5/rdW1vUR10fj5Ij5D/e8ZgOCM+VIv/mhiPdYfLUFzrXCmacfVBk1H7AIDTLX9CyEuEkNGEkNEAngOwixDS/xHEEEPBKawBSYuhBT+c/8ErhtdSYiImiwl1HXXoMne5HKeqvQpnG53vBJ2qP4UDlQdkzy9IHWQt6Ws2NOOVo6/gdP1pl322lGzBqsOrqO9Baw6t4BRWoReD2YAj1UdQ1+HaILWxs9FlMNdl7nL63suhqr0KXxR8gVp9LQAgxi8GyUHJfR6X0X9k6bIwJ36Oyzbunje7NeNWZnDNYLjJiJhALBsVjbV7S1DTerkUjRCCfUV1mJ4a2udydQbDnv+emwYfBY9VW88M9FQYXkQyUCOE7AZAG3jdDuDzPs2I4ZCpMVMxNXoqAO+eKbEGak6yVg2dDXjj+BsoanJ9yFVKaTG/Ph+Hqw7Lnt91Kdfh1oxbAQBGixFNhiaX4hxAty+aVGBpi0pQITEgEVqla3Px9JB0ZOuyAXSXrQHSn9HR6qP4+PTHTq+bidkjanx6kx6FjYVWpb9pMdOwMHFhn8dl0PN98ffIrc2lbp8cmIwx4WNcthHPsIkbBGZiBgdO1nnPc03n8HnB52g3tlP3YTCGOk8uSIfRbMHrOy7/9hVWt6KurYudT2P0C2H+Pvjl9CT8kFeJE+XNAz0dhpfw2Bk1juO06M68bXDR5kGO4w5zHHe4trbWU7ceEqQHp1sFMLwaqEmo1XlKnt9CLJLCCVJYM19Sqo8y5fkjfSNxT9Y9kqVhY8LHYHrMdAD0Fgpi6aazs0tmi3T5Gw1SATej/8mvz8fF1ovU7Rs7G1HfUe+yjcAJ8Ff6Q8krAdCfPXw7921sOr/Jep8zjWfYs8FgyCBR54vbJsThs4OluFDfvcmx92x3BQUL1Bj9xQMzkxGkVeLFzQUDPRWGl/CkmMgyAPtclT0SQt4lhIwnhIwPC2MHbeVQ31FvLXX0pu+R1f/J4jjIEgMSGu8yV5kuk8XkVkCyp3wP1p9Z3z1HStEPMVCTI+xAg4VYYLQYe8yFxirAtr097qph9rqPXQnrp/mfYl3huj6Py6DHVhCIhs0lm63PtjMUvAK/Hf9bTIicAKB7UyE7LFtybIPZgA5TBwD67w2DwejJr+alQSFwePlSKdq+ojokh/kiOkgzwDNjXK0EqJV4bHYq9pytw89Fro9WMK4OPLnSXw5W9thvbC/djq/OfgXg8mLbGwsrBa/AjJgZiPGPcXidNmjUKrROvdgA9wOShs4GlLWWAaAX/RCDIwK6QK2osQivHXtN8rzZj+d/xKtHXwXQ/b4oOAW1GISzQC0xIBFZoa5VLGmwv0+HqcMaVDK8g9RmhT1mYpadZR6hG4HrUq6TbGcrfEPrP8hgMHoSEaDGfdOS8O3xCuSWNeHg+QZMZ9k0Rj9z15QERAWq8Y/NhR7fcGZceXgkUOM4LhDALADfemI8Rm8U/GUxkTj/OPz36P9GlG9Uv9+X53jMjZ+LhIAEh9dpSx+nxkzF42Med3rdXbl42wWnWqHGsJBh8Ff5u+wT7RuNCRETqE2vO82dVAqbtgvxSN9I/O/k/0VGSIbrPnZnjOwZHzleUlCCBqWgRLBPcA+VQKb66F1sn1UaaL3u1hWuw9Hqo7LmYitORGtaz2AwevPwzBQEqBV47LOj0HeZWdkjo99RKwU8MT8NuWVN2HyqeqCnw+hnJFMyHMd9DmA2AB3HceUA/ghACQCEkLcvNbsBwBZCCDuN3k/YGjsrBaVVWtsbtBvbIXAC1Ap1r2uhmlAsTV6KUHXf5nPHsDvc2hmyDWB1Gp1VWMQVqcGpSA1Opb4H7ZlAuQtxAMgIzkCwT7D1jJE9hBCPqIfpNDr8auyvrH+2EGmPLoZn8VX6Qik4/pwdQfsZFTcXI8AnAADw3bnvUNZaJulJaGtr4SP4IEQdwgJ3BsMNArVKPDonFX//TwF4Dpic7L3fZsbQ5aaxsXh3dzFWbinEguEREHimMnq1QqP6eDshJIoQoiSExBJC/kUIedsmSAMh5ANCyPL+nerQxtZHrVZfi58v/gy9Ue+Ve7969FXsLt/t8FqgTyDGRYyT9EDLr8/HR6c+cqq2qOAVshaxIrbvCy2EEJgt9GfUxPGlFs22WYoafQ2+Pvu1ZLlksDoYGSEZTs2GPzr9ET44+QHVPOVgJmZmcOxlVoxYQVWWKGIiJqrPSOAE6xlSo9lItVmQEZKBxIBEAMCEyAl4fMzjLHBnMNzknimJiAjwwei4IARq5P+OMRhyUQg8nl6YgaKaNmw4Wj7Q02H0I+yXeZAgcIK1PK6yvRJbS7daxQD6G1em0nqjHhVtFZLnnVq7WnG+5bzTdnsv7sXxmuOy5xbkE4QI3wgAwNnGs3gx50VJf7mjNUfxl4N/QUtXC9U9xL+71KJZFIsghKDF0IK8ujzJz6ilqwWFDYVOA1hPiYnojXp8eOpDFDYUAug2PHZWzsq4MpgVOwtToqZItrMVKaE1Mp8dNxtToqXHZngOjuMWcRxXyHFcEcdx/zPQ82F4Do1KwJcPTsEry13baTAYnmRhViRGxQZi9dYz6DQy1d6rFRaoDRLGhI/B9SnXA6A3YPYUruTszzWdw5oTa9BscO3pISXzn1ubi7NNzg2xnTEpahJWjFgBoNtHrcPUAQ6uSwCkBDzsCVAFIC0oTTJQiw+Ix4yYGQBsgjsJMZHSllJ8UfiF06DRE7YFQLdwSklLifVzWpCwAOMixvV5XAY9O0p3YHvpdur2acFpVKbktmcjaQM1Ww5WHsRn+Z/J6sNznJNqAAAgAElEQVSQB8dxAoA3ACwGMBzA7RzHDR/YWTE8SaLOF3Ehrr02GQxPwnEcnl2UiYrmTnxy4MJAT4fRT7Dap0FClF8UotAtHmJVN/SCPD/g2gONNiCRkvn3hF+YVdhEIrARAy5aqfSMkAxJURCg26A4OTC5x9g0PmoAnJZvekr0g/moDTzlreVORWMcUdFWAR/BR/I8aqg61Fp6TBvYf1HwBfQmPVaMWIH6jnpcbKP3d2O4xUQARYSQYgDgOO4LANcDOD2gs2IwGIOaqak6zEjT4Y2finDbhDj4q1np7dUGC9QGCaL5bWpwqtd9jwROcBpIWAMSiaDRqjboZKHqbolfbm0uDlQcwIoRK2SJfgDOgyN3MVqMMJgM8FX6UgeNUgGUp0Q/7P3a/nHoHxgbMRYLEhb0eWwGHQIvoMvkuMTVEf8+82/E+8fjhrQbXLa7c/id1v9OC0qjtgAwmrvLkN3JwjFkEwOgzObP5QAmuepQWFiI2bNn93jt1ltvxaOPPgq9Xo8lS5b06nPvvffi3nvvRV1dHW6++eZe1x955BHcdtttKCsrw1133dXr+pNPPolly5ahsLAQDz30UK/rzz//PObPn4/jx4/jiSee6HX9hRdewNSpU/Hzzz/jd7/7Xa/rq1evxujRo7Ft2zb85S9/6XX9nXfeQUZGBjZu3IhVq1b1uv7xxx8jLi4OX375Jd56661e19evXw+dTocPPvgAH3zwQa/rP/74I7RaLd58802sW9fbR3Lnzp0AgJUrV+L777/vcU2j0eA///kPAODPf/4ztm/vmR0PDQ3Fhg0bAADPPfcc9u/f3+N6bGwsPvnkEwDAE088gePHe5b6p6en49133wUAPPjggzhz5kyP66NHj8bq1asBAHfeeSfKy3ueS5oyZQr+9re/AQBuuukm1NfX97g+b948/P73vwcALF68GB0dPcvyly5diqeeegoAej13AHv2ruRnT6ENQOPIh7Bmz3nU7nifPXt2DIZnzxWs9HGQcKLuBD4t+BQWYvG679G0mGnI0jn28qINGrVKLSK0EU6DDndL/DpMHajSV8FETNTvi9zs0r6L+/DykZclxUeO1xzHqiOroDfpwfM8fBW+1JlGZ3MZFTaKKpsnhf19jBajZIkow7O42vBwhDs+ahOjJmJqzFTJdrbnTt25D0M2jr5svf5B4TjuQY7jDnMcd9hoZD6HDAZDmkCNEtdmR+G9PcXQd9FXbTAGB9xAmeWNHz+eHD58eEDuPRjZe3Evtpdux+8m/Q4g3d5efko/j0i394X9Ffux5cIWPDvhWYfy/bSszFmJLF0WFictltUvpyoHP57/EU+NfwrV+mrk1uRicdJil3Op66jD8ZrjmBA5waUJt8j2C9uxv3I/np/8vMt2R6qP4Pvi7/HE2CeoxgW6pdU/Pv0x7s26t9/FPd7JfQfjIsZhXMQ4/PnAnzEjZoZHPNoYdKwrXIe6jjo8OvpRqvYrc1ZiWOgwXJt8rct2PxT/AIEXsChxEcyW7sy01L8LG85sQEV7BR4f83iP/+5POI47QggZ3683uULhOG4KgP8jhCy89OfnAIAQ8jdnfdhvJIPBoOVcbRuu+edu3DU5Af93neONdcaVi6vfR1b6OEiwZkQsZqgVarek7N1FFKBwFHykBafBT+kHlaDq0z2emvCUWz5qYobOZDH1OCPmCp1Gh/kJ86nvYSJ058TkipQAQJRvFO4efjfCteEOrxvMBgic4BEp/YdGPWSdHwFhWRQvE6AKgMFsoG5Pm+mq1ddaA7P3TryHAJ8A3J55u8s+tudOg3yC2NnF/icHQBrHcUkALgJYDuC/BnZKDAbjaiElzA+3jo/Fpwcv4JfTk5iwzVUEK30cJNgGAcVNxdhVtstr915/Zj2+O/edw2s6jQ7ZYdmS56gq2irw3on3UNlW6bSNO9lBd4IjC7FAb9RTn+WhPSdmK1JS0FCALwq+cCq7L6JRaJAUmASNQuPw+itHX8GWki1U86TFen6OnUvyKouSFuGu4b3r451BKyRjW8ZoIRaqPsmBycjWZQMA5iXMozKKZ7gPIcQE4L8BbAaQD2AdIeTUwM6KwWBcTfxqXhp4jsM/t56RbswYNLBAbZAg7qybiAnFzcXYe3Gv1+6t4BVOA6GGzgaUNJdIjmG0GHGx7SI6zL19xQgh+LboW6vHlxwCVAFIDEgEz/HYXb4bfznwF8mgrbK9Ei8dfgnnm89T3YPWHNpWpKS+ox6FjYWS58A6TB04WXfSqb2B2eK580Mfn/4Ye8r3AFy3rUGUX5RHxmX0Dzen34yRupGS7WyzY7TZ35FhIzE3fm6f58ighxDyIyEknRCSQgj560DPh8FgXF1EBWpw79REfH38Igqq6HxiGVc+LFAbJKQGpeLOYXdCo9B4/fA/z/FOs09Hq4/ik/xPqMYAHCstWogFx2uPo1pfLXtuyUHJuCfrHgT6BMJsMcNCLNQ+arTlXtG+0RgWMkyyXbg2HPPj53erPlIKm7R2tWLD2Q0oby13eN2Tiny1+lo0GZqg5JVYlLiIqkyU4TkOVR7C5wWfU7fPCMmwmrm7wlakhFaUhxBiNZ/feG4jNp7bSD0vBoPBYFyZPDI7BX4+CqzcLH/jm3Flws6oDRICfQKtZ8TMFu/KafMc79JHjWYuovqho3FoZfWlECX+pUoo5crzj40YS9VOp9FBF6MDAGvA2JegkRBCXcpGg8B3G5cTQrrL6njBI9L/DDoaDA240EJnSmohFpxrOocwTRiC1EEu24ZqQqHku8+s0n4ft5dux4HKA3h+8vOo66hjZbAMBoNxFRCkVeHhWSl4aXMhDpc0YHxiyEBPidFH2CptkNDS1YLT9afRYerwuu+RglM49z+jLM0T2zgKSPpiN1DaUorXjr2GyrZK6velv8yfjRYjGjobYDQbqdX3XJ2xI5f+56nsKc/xMFvMaDY044VDLyCvNs8j4zLoUHAKeo8zixGfFXyG0w3SfsgLEhbgpvSbAADjI8YjNShVso/t5guT52cwGIyrh/umJSLM3wf/2FTglkgb48qCBWqDhMq2Svz7zL/RbGj2+sJqXMQ4zIyd6fAabXCk4lWI84+DWugtmy8uGN0JPk3EhIbOBhjMBuqyL7kCJOvPrMe/TvxLsl1lWyVeO/YaylrLoFaoEaoOlewjGoU7W8DPjp3tMdl+gevOqIlBN8uieBdXmWl7xGyvXFP7mbEzMSxUukxXwStA0J2xFTcVGAwGgzH40aoU+NW8NOSUNGJnYe1AT4fRR1jp4yDBVoZ+afJSWSqHfSU12PkOPW1pXpA6CCtGrHB4zUzMUAtqa/mWHGxLKuP946nG0Cg1mBM3B5G+kVT3EINAKWyzhtNipmFazDTJPq5KQnmOx6y4WVRzpCHGLwb+Kv/LgTHLongV2+BIKjASs700AdTu8t0433we92TdA71RD6WglPwe2GaVvZ2hZzAYDEb/snxCHN7bU4x/bCrArPQw8PzAeu4y3Idtow4SbIMABa/os2+ZHJoNzahqr3J4bVLUJFyXel2fxg9QBeDZic9idPho2X1t35csXRaVP5qP4IOZsTOpAzVaeX53SirVCjUeyH4AWbreBpUWYkGzoRlGs5F6PFdcn3o95sbPZfL8A4S/yh+R2kiqoN/6GVEE021dbVYhnlWHV3Ure0pge04z2i8aEVpp0RIGg8FgDA6UAo/fLkhHQVUrNuZVDPR0GH2ABWqDBNsg4Ej1Eeyv2O+1e++5uAefnHas7BjpG0mlHthh6sCbx9/0+Lko2/fFZDFRLYIJIWg2NKPD1NsqwBFmi3x5/r0X92LDmQ1UfaL9ouGr9O11rc3YhtVHVyOvzrPvmVj6yMrdvMuY8DF4aNRDVM+SHIEdUZ7fQiywgC7DHesXi+kx0yFwAn6R+guPZm4ZDAaDMfAsGxmNYVEBWLXlDLpM3qvCYngWtlIbJNgGAQUNBThV7z2vVPFskyPKWsuolOw4cKjtqEW7sb3XtabOJqwrXIeLbRdlz00tqJEenA5fhS++OvsV3s59W7KPiZiw+uhqHK0+SnUPUU1SCtugsVZfS/X3IYTgSPURh209nfn6tuhbbDizAf5Kf8yImYEQNVODulLxV/njrmF3ISkwSbKtwAkwWUyyyiXjAuIwL34elIL8cmMGg8FgXPnwPIdnFmWgtEGPL3NKB3o6DDdhgdogIVwbjhVZKxDrH+v1w/8CJzjNVO0u342tF7ZKj8E7F/DQm/TIb8hHW1eb7LkFqYNwe+btiAuI67cSxcyQTKQHp0u281P5YUnSEkT7RXcbD1OUrXEchx+Kf3Bo9u0p2wKRNmMbGg2NCFIHYW78XIRqpMVOGJ6joKEAa/LWONyssEclqJAclAx/lb9kW1GkRM7ZQ5PFBL1RDwuxYE3eGuwq2yX9F2AwGAzGoGJ2ehgmJYXgle1F0HfRqQ4zrixYoDZI8BF8EBcQB41C41FvLRpE/y1H0AaNroIjT/qo0ZYocuCopdKnxUzDpKhJku18BB9MiJwAnUYHi4X+M3KWsfS06Icoz2+0GNFubPeqIA0D6DR1oqK9gurMod6ox6m6U1SbF6GaUCQGJFqfZxqlyPz6fLx0+CU0dDagvrMeHWa6MmAGg8FgDB44jsMzizJR12bA2r3nB3o6DDdggdogwWA24HjNcdR31MNETFQBiacQAwlHfhy0QaOr4EiOcII97cZ2rDq8CsdrjsvKNLrKEtpjIRYqLxILsaCqvQptXW3dGTXaQM1JIOzp0kfx71zcVIyVh1eiur3aI+My6LCWL1Nkcus66rD+7HrU6Gsk244KG4W7s+6GkldibtxcxPrHSs/lki2EKM8v1waAwWAwGIODcQnBWDA8Au/sKkZje9dAT4chExaoDRL0Rj2+PfctylrLQAjxauljZkgmbkq7yeE1OQFJWnCaw3NRffFR48ChzdiGLnOXrEyjqyyhPa8fex3fFH0j2c5oMeKdvHeQV5eHYJ9g6DQ6urlwAiyW3kGjv8of1yRcgzBtGNU4NPcxkctnmZg8v3dxZfpuj5zzZiIqQYUZsTMQ7Rct2VYMzMwWM/UZTAaDwWAMTp5emIG2LhPe2nVuoKfCkAnbRh0k2C7yHhj5gFfd5iN9I51K2dOaTAPA7Zm3O3yd53gEqALcshwQ720iJozQjaBecM6Pn08dANEajIv3thALliQvoRobcB40+qn8MCV6CvU4UkT5RUEpKK2ZOrY49y6uPPPskZNlzqvNw86ynbhvxH0wW8zwVfpKioTY+jISEGbVwGAwGFcx6RH+uHFMLD74uQT3TUtEVKBmoKfEoIQFaoMEcSElLvI4znvmhS1dLajvqEecf1yvksvrUq4Dh77NJTEwEb8Z9xu3+toGR+Mjx1P3k9NW9jk8C72PGgDcM/weqBXqXq93mbvQ0tWCQJ9At8zA7ZkaPRUAcLzmOAC6s0wMz6FVapHgn+BxeX6jxYhGQyNq9bX4OP9j3Jx2s0NfPlvEANBIjMgIzqDO/jIYDAZjcPLE/DRszK3AK9vO4u83jRzo6TAoYVvqgwRxwWaymLD1wlbrYtsbFDYU4qPTH6HT1NnrWqRvJCJ86cxy1+StwZaSLR6dm21wpDfq0WWmq7+u76hHs6GZqq2Z0J3h4TkePHiYiRlfnf0Km0s2U40fqgl16KN2oeUC3jj+hsfPklnL6nj29fcmcf5xuHfEvVRBkZzSR/E70GXpfvZpsnAhPiGYGzcXIT4hWJ65XDKwYzAYDMbgJi5Eizsmx2Pd4TIU1chX2WYMDGylNkiwzaidqDuBstYyr9/bUXne6frT1HNpN7ZDb9L3er24qRif5n+K1q5W2XPjOR7ZumyEacOw9uRabDy3karfZwWfYduFbVRt5Zzh4bnuQK1aX00dCObW5iK/Pr/X62L21FPCMbvKduG1Y68hxi8G8+LnQS30zuIxrgwSAxKxYsQKhKqlLRSsgdqlTQqaZzVIHYQZsTMQpA7q20QZDAaDMWh4bE4qNEoBL2/tbQnEuDJhgdogQcEr8NDIhzA6fLT3fdRciCBsKtmEYzXHqMdxdD6nuasZRU1FsksGRW5MuxHDQ4fLCqhcmXjbMylqEhIDE6naXpdyHUaEjpD1GR2oOIDjtb0zpCbSrZDpqc+6y9KFFkMLIn0jMT1multnAhnuU9VehdePvU5lEK9VahHnH0dlSC1mRsVAjSb7a7KY0NTZhIbOBqzMWYm82jzJPgwGg8EY3Oj8fHD/jGT8eKIKuWVNAz0dBgUsUBskcByHSN9I+Cp9qcUtPIX9+Thb5PqFeVqev8c4Mt4XOfL88+LnURleA0B2WDai/KJkK1A6mounRT/E4FRv1KOxs9GrgjSM7u9PfWe9wxJie2r1tThWc4zKcy1AFYCM4Azrs0/zvDR0NuCVY6+goKEA7SbmqcdgMBhDhftnJCHEV4WXNrOs2mCABWqDiMNVh3Gh5QLMFrN3Da9tzsfZ44ngqC/y/ADwytFXsOn8JnlBI6U8PyEEHaYOanPsi20XUddRJ/t9cTS+tfTRQ6IfAieAgCCnKgevHnsVBCxQ8yauSojtKWkpwXfnvoPBbJBsG+cfh+WZy5EcmIzFiYsRoultgWGPGMyJgSBTAGUwGIyhgb9aicfmpGJvUR32nq0b6OkwJGC/zoOIbaXbUNBQAJWggor3XtlarH8slmcsR5BP7/MsJgu9j1pqUCri/ON6j3GpxM/djJqZmGG0GGUFRzzHU5VaGi1GvJjzIg5VHqIad/2Z9dhTvgcxfjHQqWX4qDkIYGP9Y7E0eSm0Si3VOJL34S+LTnCX/sfwHuL7TyXP74bXXaBPICZGTUSAKkB6Lm4IkDAYDAbj6uCOSfGICdLgxc0FrLrmCkdyq57juLUAlgKoIYSMcNJmNoDVAJQA6gghszw5SUY3YnDx9ISnvXpff5U/MkIyHF6zEAv1bvy8hHkOX9coNAjThLmdURNL+mbGzkSElk6BcnrMdPAU+xRipotWIZHneFiIBbdm3ErVHuheJHeZeqtV6jQ6j8qmh2nCkK3Ltp6f86bFA8N1Ztoe0QCd5jtR3lqOzws+x3Up1yFYHYwQdYikAI01aJdxro3BYDAYVwdqpYAn5qfh6fV52HSyCouzowZ6Sgwn0Pw6fwDgdQAfObrIcVwQgDcBLCKElHIcF+656TFskSOA4Un0Rj3KWssQ6x/bS0b+gZEP9DnjMyZ8DMaEj3G7vxjAyjGHpj1zJrcsU8EpZH9GN6Te4PD1lq4WtHW1IdI30iOlaRkhGcgIycDmks3M4HgAUAkqpAalwl/lL9nWmmWm+JwICPQmPU7Xn0ZeXR4eG/2YZIAvjqvklRipG4lAn0CKvwGDwWAwrhZuHBuLd3cX46UthVgwPAIKgRXZXYlIfiqEkN0AGlw0+S8AXxFCSi+1r/HQ3Bh2CJwAg9mAdYXrcKbxjNfuW99Rjy8Kv3Do5xXpG0lVagUA6wrX4cNTH3p6etbgqLGzkUqoAQDqOupQ1V4l2U4Mumgl8kV5/jePv4kDlQeo+miVWofBbl5tHtacWOPx4NxCLKzUbQDwVfrijmF3ICUoRbKtuEFAE6CL2TCjpfu8GU1wpxJUWJy4GCPDRuKGtBsQ6Rsp2YfBYDAYVw8Cz+GphRkorm3HhqPlAz0dhhM8ET6nAwjmOG4nx3FHOI672wNjMhwg8N2BWn5DPpo6vSerKpb9ibv8IiaLCTlVOVQBD9Ad9DgKpA5VHsJHpxwmbKnI0mUhISABrx57FTlVOVR9dpTuwNdnv5ZsJ8d4GLgkUmIxo7ajljpozK/Px/6K/b3vLapheij7lVebhxcOvoAYvxgsSFjgkTEZ/cOEyAl4ZNQjVOWpYtAtBmo0z6qSV2Ji1EQWoDEYDMYQ5prhERgTH4R/bj2LTqP3K7YY0ngiUFMAGAfgWgALAfye4ziHdWUcxz3IcdxhjuMO19bWeuDWQ4u7h99tXWB71UdNVKuzE9/oMnfhx/M/orSllHocR0IKDYYGVLZXuj2/mbEzMTp8dPc95CgtEumzQmpBjTlxcxCppVvQLkhYgOkx0633oKGwsRCHqnqLlZiJGRw4j37WRosRMX4xfSo1ZbiH0WLEy0dephKm8VX6IlxLV0UuPh+iQiRVuSQhqG6vRm5tLv564K+42HaR6l4MBoPBuHrgOA7PLMxEVUsnPt4v7fHJ8D6eWAGWA9hECGknhNQB2A1glKOGhJB3CSHjCSHjw8LCPHDroUWgT6BV7ZG2FM8TOPNRk51tchIc9dXAmxBilRmnDY5E0Q8ptEptt0iJL51ISUJAAqL9omXNReAEhwqUcrzYaO8DdJd91nUwSV5vw4NHa1crOs3Smdbi5mIcqT5CNa5GocFI3Uj4Kf0A0G9WvJP3DvZX7IeJmJgCKIPBYAxRpqSEYmZ6GN7YWYSWTmnvToZ38USg9i2AGRzHKTiO0wKYBCDfA+My7Dhecxy5tbkAvJtRE+9lf1bKKrQhQxLfobFzHw28Pzr9Ed4/9X73XGhFP3g60Q+TxYRmQ7O1rEyKirYKFDcXA6BXinQWwJqIyaNnycSxtlzYgnWF6zw2LoMO6/eIwhbidP1p7CzbSTWur9IXN6TdgDlxc3B9yvVQ8krJPhzXnamVUy7JYDAYjKuTZxZmoElvxJrdxQM9FYYdNPL8nwOYDUDHcVw5gD+iW4YfhJC3CSH5HMdtApAHwALgPULIyf6b8tDlaM1RtBhaEKAKgI/g47X7BvgE4J7h9/RSkhNlxmmDo6TAJIeKd3018FbwissZNRmljzQL5sq2Sqw9tRZ3DruTSgRid/luVOurkR6cjmCfYKq58LzjAHZ02GjE+8dTjUGD+B4bzUYoldKLeYZn4TjOafmvPe5kmcO0YQjT0lcqKHjFZXl+L2boGQwGg3FlMSImEEtHRuG9Pedx15QEhPurB3pKjEtI/joTQm6naPMSgJc8MiOGUwROQJBPEO4dca9X76vklUgMTOz1ulzpevEcmT3B6mDqjJUjeI6HgldgSdISxPrFUvUZGzGWKvCyGg/LKKlU8krcnin5tbGi4BQOvbUifSM9KvYQ6BOIseFjcaHlAluYDxC0ZyPllL0azAaszFmJcZHjkBWa5dBU3hG2GTVm18BgMBhDm6euycCmk1V4fUcR/nS9Q9tkxgDA6l0GEbSLPE9jsphwovYEavU9BWCC1cF4fMzjSA1OpR6LENLrtdlxs2UZRNsjcAKUvBITIidQZxQifSOdmnjbIjdQc8frblbcLDw74dler9foa1DWWiZrLFeEa8OxLGUZAlQBrNRtgMjSZVEF33LKgXmOh4mYcKjykCz7C4ETEKgKxLiIcV7N0DMYDAbjyiNR54vbJsThs4OlKK3XD/R0GJdgq7VBhMALqGqvwqf5n1JL4nsCMzHjq6KvcLbpbI/XFbwCIeoQ6kXetgvb8MLBFzw+P4ET0GHuQFV7lVX5ToqGzgYUNRZJthMzXdTnzXgBDZ0NWHV4FQobCqn6KHkllELvUsQ95XvwTdE3VGPQQgjpPvvGMigDwnUp12FUmEOtpR7IKQcW2xEQWZ/rosRFWJqyFEuTl/bZtJ7BYDAYg59fzUuDQuDw8la69Quj/2GB2iBCzNYUNRVRe3R56r5Ab9XHZkMz9l3cR+3p5kxMZOO5jVSeZs7ICMlArF8s3sl7Bxda6ORlT9SewKcFn0qeF5Jb3im2azO2UZ1FAoDzzeexqWRTr/JHM+nb2T17Ktsq8acDf0KUb5TVQoBxZbIsZRnuGHYHVVue462qjXIypVm6LMT4xVA/pwwGg8G4uokIUOO+aUn4NrcCpytaBno6DLBAbVBxfer1uDn9ZgD0ohmewJmPWkNnA7aVbkOTgS5QEzgBFlh6LQwbOhvQbGh2e34jdCMwJWoKgO7zXlRzufT+SZUphmvDcU3CNQhQBVCNOyV6ChYmLgRAv2iuaq/CwcqD/R6oifNJCEigOp/H8Dzv5L6Db4u+lWynVWodCu84Q/xs5Zw9rGqvwsZzG/HnA3+2ioowGAwGY2jz8MwU+PsosHILy6pdCbBAbRDhI/hYAxFvlq5xHAcefK+gRgzc5JylAXoHR2bSNx81o8WINmNbj3vQzkUqmxCqCcWU6CnUpWE6jQ4xvjEA6BfN1kDYgf1Bf8jzl7aWMh+1AcJMzOiySAdFx2uOI682j3rc8ZHjoRbUsr5H3xR9g+O1xwEwMREGg8FgdBOoVeKR2anYUVCDQ+cbBno6Qx4WqA0i8uvzrd5K3l5Y8ZyDQE2u0AbvuISyrwHJ9tLtWHdmXY97SCEGvFIS/XqjHrX6WiopfwCobq9Gbl23153c98VRINwfhtcHKw9iV9kuj43LoIfneKpn6Uj1EatnIg2LEhfhruF3YWnyUuo+thsJTFyGwWAwGCL3Tk1EuL8PXtxU4FAEjuE92K/zIKK4uRhV+iqEacKgElRevfeKESswKWpSj9fEwIJ2kRftG43JUZPB2z12JkvfxC1s+8qR0QekSx9P1Z/Cm7lvosPUQTXuqfpTOFJ9BCNCR8BP5UfVx3oG0NIzgJ0bPxfz4+dTjUGD7efEFuYDA60qqBx5frF9hDYCacFp1H3EZ0DgBHAcR92PwWAwGFc3GpWAX89Pw+ELjdhRUDPQ0xnSMDOlQYTAC1ALajw6+lGv3zvKL6rXa2JmjLbELzEw0aEfW4xfDPUZMEeIC9pfpP4CQT5BVH3SgtNwl/ouqBWuTR3FvyNtYCO+Fzek3SCrDJMD18t6IdafzhOOFrVCjclRk3Gg8oBXzzgyLiPwdIbXJmKSdd7s1aOvwkfhg6XJS6l91MTvDSt7ZDAYDIY9t46Pw3t7zuPFTYWYnREOgWcbegMB21YfRAic4NAY2Rvk1eahuLm4x2uZIZl4ctyTCFGHUI1hIRYYzIZeC9VlKcswK26W23MTF5rZumzqs2SBPoFIDvdhhjoAACAASURBVEqGku8ti2+LWKbW1/NmrsjWZeMPU/4AnUbX4/Xi5mJcbLtIPY4UPoIPFiYuhK/Cly3OB4jM4EykBkn7Dpot8s5tCryAGn0NNp3fRN1HfKbtM+UMBoPBYCgFHk9ek47C6lZ8l+u5tQhDHixQG0SIhtdrT66lLsXzFD+V/YTcmp5nZhS8An4qP+oF5cm6k/j7ob+jsbPRo3MTs0MlLSUwWoxUfVq6WnC6/rTk+yi3vFNs98LBF6gFO5yVnW0+vxn7Lu6jGoMGQggMZgM6zZ0sozZATI2ZiinRUyTbyS19tGbHZHyuM2Nm4p7h92Bu/FzqPgwGg8EYOiwZEYURMQFYteUMDCb6DWiG52CB2iBCXIyVtZZ5/d6OPNDKWsuwo3QHtbS3s2zTmrw12F663e25JfgnINgnGB+f/hh6o56qT0VbBf595t+StgCyBVNs2tEGdzX6Gnx37js0dPZUV/K0MbWFWPD3Q39HlG8UxoSN8di4DHnQHMx+eNTDuDb5Wuox3SljjAuIQ5RfFLVJPIPBYDCGFjzP4ZmFmShv7MBnB0sHejoOOVbaiP+38RTMFnrRk9J6PZ5dn4d2A32VWnOHEU/9OxdVzd7zMQZYoDaomBE7A3Pjune/vV26puAUvQKsi20XsefiHuoyP2eqj42GRhhM7i8W4wLirFkKuQGV1NwzgjNwXcp11GILw0OHY3zEeFlzaetqw7GaY2jrauvxuoVYPCr6IY6VHJiMCN8Ij43LoGdd4Tq8nfu2ZDuVoJIlGCR+t+Q8L1XtVXjj+Bt4J/cd6j4MBoPBGFrMSNNhSnIoXt9RhDYZgY23+ODnEry/r0RWeea/j5Thy8NleG/Peeo+W05VYf2Rcry4ucCdaboNC9QGETzHg6B7x+BKkOcXVQr7Ghz1VZ6/y9xlzUbRLlSdmXjbE+UXhTHh9NknP5UfwrXhPe4hOZdLf3d7MRGzxSxLUEIKjuMgcAIKGgp6Ze8Y3sHR98gRO0p3oLCB3mx0VNgoAPL+XdhfsR+tXa2sDLaf4TjuFo7jTnEcZ+E4bvxAz4fBYDDkwHEcnlmUgfr2LqzdSx/YeANCCPYVdR8zWbXlDLpM0mJdALD3Up81e4pR30aXKBDv8/WxiyisanVjtu7BArVBxIWWC/ip7CcA3pdXd6RWJwYWsgM1u+Cor/L8p+tP40DlAQD0oh/i+2cfHNnT2NmIyrZK6rk0djYipyqnxz1o52Ivz28mnvVRE6npqMGpulMeH5chjcDRqT4eqDyACy0XqMedEDkBK0aswJy4OfRz4Znqo5c4CeBGALsHeiIMBoPhDmPig7EwKwLv7i5GQzvdcRdvUFjdirq2LiwdGYXyxg58fki6PLOl04jcsiYsyY6EvsuEN3eek+xDCMHeonrMSg+Dn48CL22m30jtKyxQG0TU6msBAEE+QV73Pbol/RYsS1nW4zW50vXB6mDMip3VQ4qfENLnEj93/MGsZZgW14vmfRX78Gn+p9RzqWivQG1HLWL9YqEUXCtKiljNt+0yLcszl/ebIh/LogwMAi9Ibg4A8rPMXeYu6DQ6hzYazrD1UWP0H4SQfEKI937VGQwGox946pqM7sDmp6KBnoqVvWe7s1zPLRmGyckheG3HWclzZwfO1cNCgLunJOLmcbH4eP8FXGxyLSx3proNdW0GXDsyCg/PSsG2/GocueCdyiQWqA0ixIXbPcPv8fq9A30Ce3mdmS1mWWa5wepgzI6bjSB1T6+zzJBMRGjdPzMlLjTnxM2hXnSGa8OxYsQKxPjHuGxnIRbwPP3XRAy6liQtkZT+FxF4AT6CT6/X4/zjEKoJpb43DZOjJnffky3OBwSe4yU3BwghsrOpG85uwIs5L6KirYK6j/issqCdwWAwGFKkRfjjprGx+OiAdGDjLfYV1SFZ54uYIA2eWZSJujbp8sx9RXXQ/P/27js+6vp+4Pjrkz1JwhIwQBhCWEmABFkyBdQWtyJFS0RFcCBoVVqso9jWQWul9OdGqqIiqGi1KiJSIaAMCZgQNhGQQBICmSTc5T6/P26QeblL7nJ35P18PPKAfO873pe75H3v72cF+jOwSzRzL+8FCv7x9T67x1i7So7o2ZbbR8TRNiKYZ7/Y69DkYE0lhZoPacwaXa6SdSqL9Nz0atvGdhnLIymPOHyOSlMlxeeKq02hr5Ti5t43069tv0bHZv2g2Suml8NFY7B/MJ0jOxMaENpgzNYPtI5wtEtlVe3D2jN/yHx6t+5dbfvOvJ2cKD3h8HkcYW2hk0LNM3pE9SC5g/1hSs7ONFp1320ntzl+jOX3ZlD7QQ4fI+qmlFqrlMqo4+saJ88zUym1TSm1LS8vz13hCiFEo8yd0As0vLjWfmHTHM4ZTfxwuIARPc1r0A5ysHvmxgP5DOnWmuAAfzpFhzJ9WFc+/PEY+0/WP+6sakEYFhTAA+N7siW7gPX73P93Wgo1H2L9MLYsc1mzX3tn3k5+yPmh2jY/5efUzHR5Z/P4+/a/c+C0a5vNrT+X/af3O3xMRWUF6bnpnDp7yu5+ldr5hYcBlmYsdfiYupi0idUHVjs1oYQjis+Z/xBJK4pn9GnThzGdx9jdx9qluDGFmjPv1YHtB/Lbvr8lqX2Sw8eIummtL9da96/j6xMnz/Oq1jpZa53crl07d4UrhBCNcnF0KLcN68qq7fYLm+aQfvQMZecqbYUamLtnltrpnplTeJaDeaWMrHLMPWN6Eh5U/7gzQ6WJ7w+dqnadKSld6NI6jOe+3IvJiWUBGkMKNR9inSijxFDSwJ6uV9dsdRn5GXx75FuHz2GNv+p5ygxlPLvlWXbk7mh0bO1CzR9o1h1d5/AxZYYyPjn4SYNr0jV24WFnlBnKWLVvFYfOHLJts7WquLigWrVvFeEB4fSI7uHS8wrHGE3GBhdZD/IP4vGhjzO001CHz2st0Jxp/W0b2pY2oW0cXntQCCGEuHdsT8LsFDbNZeOBfPwUDOtxfohIQ90z0w6Yb85XLbpiwoOYOao7a3af5Mcjp2sdU1dBGBTgx0MTe5GVU8R/djk+5KAxpFDzIb1b9yahbQIxwTHNfm1/5V+rUDt45iDpeen1HFH3OaB6oWbURsoryx2aCa8+0SHRDL5oMOEB4Q4fY/1g21A30mEdhzGh6wSHz9spvBM9o3s6VbBpNJmnMjlVfr51rzGtKo4I8g+ic2TnWuMNRfPY+MtGntv6XIP92pVSTrWOWW+COHNM/tl8Xtj+Ap8cdKrRRzhJKXWdUuoYMAz4XCn1ladjEkKIxmpdpbDZUUdh01zSDuSTEBtNVGj1+QDsdc9MO5BPm/Ag4jtEVts+Y2Q32kYE8ewXe2rl5437LQVh9+pzBkxO6ESfjq1Yk3nSRc+obq5bpMkFDAYDx44do7y8eVf99iWdDZ252P9isrKymvW6cYY4Yv1iq1031hBLh4AODsdi0iYmhk6Ek5CVn1VtW0BeAFkFWYSEhBAbG0tgoGMTcQAYTAZOlJ5walyY9YNtQwVi51adHT4nQKB/IFHBUYT4hzh8TF1Fo3UJA1cXaucqz7Hn9B6KzhVJseYBVW9W1Nf6VWYo45sj35DUPonOkY69/+Jbx/Nj7o9OtcDuKzAnsabcJBEN01p/DHzsinNJjhSNyZFCuNodI7vx703ZPPvlHt67a2izz0ReXG4g/egZZo+u3TvI2j3zzbTDzBzVnZ7tzUWZeYr9fIb3bIufX/V4w4MDuH/cJTzxaSbf7c9ndK/zXc/TDuQzIDaaqLDqv3N+foq3ZgyhbYTjQ4Aaw6sKtWPHjhEZGUlcXFyzv+i+wGAy2Kbo7xTRqVmvfab8DOWV5XQI72DbVlBegNFktC3w3JBKUyUny04SFRxFeKC59ctoMpJblkt0cDShAaGcOnWKY8eO0a1bN4djyyvL45cSx1ekB8db1H4p+QU//Bye9rzMUMb2k9udisU2Pb+pektj1ThdpbCiEIATpSekUPMAa6FmrziqqKzgx9wf6dKqi8OF2iUxl3DngDudalWWcYq+R3Jky6a1blSOFMLVzIVNT578z2427M9nVK/mHVP7w6ECKk26WnfEqu4Z04MVW4+y6Kt9vHzbYAD255aQV1zByJ51z6Y9dUgXXttwiOe+3MNllmKuuNzAjqNnmDW6e53HtIusPWO3q3lV18fy8nLatGkjCage1uZYT8zY1yq4lW0s2PmAnDuHUopWQa0I8jt/98H6nJRSKKVo06aN03eLG/PzqG/x7Zq+yv6KtUfWOnzeMqN5vE+tn5UddRWN4QHh3J1wN33b9HX4PI6w/m45M5ZJuI61ODKa6m/9bcysj2eNZwkLCKu19IXdWGTmT58jObJla2yOFMIdpl7ahdiYUJ77ao/bJ9SoaeOBfEIC/RjUte6c1yYimLsu686XmSdIP3rGfMz+81Ps18U67izzeBGf/5QDwJbD9gvC5uBVhRogCcgBUcFRzX5NP+VX5x14heOvl5/yIyIootpC0EopQgNCbR8aG/P6W+Ma0mGIw8cE+gUyO3E2A9sPtLufs4txWwug4Z2GO3yMn/IjMiiy2rpr/n7+dAjvQFhgmMPncYT1+bq6pU44xpEWNWsR50whtfGXjSzesZjcslzHY5EWNZ8kObJlk9dfeIvgAH8enNCLjF+K+G9GTrNeO+1APkO6tSE4oP48dsdl3WgTfn7cWdqBfOLahBEbU//nqqsTLya+QyR/W7MXQ6XpfEHYpfnnhrCST2s1DB/u+Afs5rBs2TLuu+8+4HxRpGs0Za1fv55Nmza5NY4KY4Vtaner1qGtaRdmbjl68sknWbRokd1zaK0xmAxUmir5y1/+ApjHisWExDg1zX9N1g+0HcMd654I5mTXPqx9g4WQ0WR06gOzdXHsisoKp2J5cPCDDOs0zLatzFDG1hNbOV3u2oG6vWPMa7VJa4pndIroxJjYMdVuVtRkLeKcKaatrXCHCg81sOd51vPHt453+BghvDlH1qc5cmRDHMmRVVlzpBDe7Jqki+l9USR/W7MPQ2XzjHc+WVTO/tySerswWkUEB3DfuJ5sPnSK9Xvzak2xXxd/P8XDk3qTfaqMFVuPknYgn5S41oQEeu4zkxRqNXj6j7ldlhtpNT+8N0uhVlm7ULMyGh2fxCOvLI8yY5lLk5D1A+fBMwedOm7ria38XPSz3X1M2uRUy4O1APoy+0unYqmp6FwR/z38X6daSBxxpsLcBUBaUzyjU0QnRnceTbB//f3aTdpEoF9gtRZWd+gZ3ZM7B9xJQrsEt15HXFi8OkfWw9OFmjM50koKNeELrIXN4fxSVm471izXTDtgvwtjVb+5tAsXR4fy0MqdlJ6rrLZ+Wn3GxbcnuWsMf1uzl30nSxw6xp2kUKshIiICMP9hHzNmDDfeeCPx8fFMmzbNNp5q69atDB8+nMTERIYMGUJxcTHl5eXcfvvtDBgwgIEDB/Ltt+b1xZYtW8a1117L5MmT6datG0uWLOHvf/87AwcOZOjQoRQUFAAwZswY5s6dy/Dhw+nfvz9btmypFVt+Xj53TbuLq0ZfRUpKCmlpaWRnZ/Pyyy/zwgsvkJSUxIYNG8jLy+OGG24gJSXFtl9Njsb12muvkZKSwoiUEdw17S5KS0sBSE1N5b4H7mPUmFE8+uij1c792muvceWVV3L27FneeecdhgwZQlJSErNmzaKyspLHFzzO2bNnSUpK4papt3C85LhTLVA1hQWYW8Wyi7KdOm7tz2vZU7DH7j72ZuerS2Nbqj7c9yFbT2ytdl1wfRdF6/NtG+rZPzwtlcFkoOhckd0xarGRsfzh0j/QPbruwcuuEh4YTqBfIOcqz7n1OuLC4s05sq7c11w5MjExkRtuuIGyMvM45dTUVB588EHGjh3rcI68++67qaysZP78+bYcOW3aNBe9ckK4x/g+5sLmxW/2cfac/XH/rrDxQD6tw4Po06HhCdGs3TMLSs+haqy5Vh+lFI9eGc/pMgPgWEHoTl47o8BT/8lk9/Eil56zb6dWPDG5n8P779ixg8zMTDp16sSIESNIS0tjyJAhTJkyhRUrVpCSkkJRURGhoaG8+OKLAPz000/s2bOHiRMnsm+fefrrjIwMduzYQXl5OT179uTZZ59lx44dzJs3j7feeou5c+cCUFpayqZNm/juu++YMWMGGRkZ1eJ5aN5DzLp/FiNGjqAkt4RJkyaRlZXFrFmziIiI4He/+x0Av/nNb5g3bx4jR47kyJEjtv1qciSu66+/nrvuuouScyUseGwBb7zxBnPmzAFg3759rPpsFe0j2vPkk08CsGTJEtasWcPq1as5dOgQK1asIC0tjcDAQO655x4+XvExTz79JK+99Brp6emUG8spKC9waqxbTYH+gXSO7Ox0C4Sf8mtwavKre1xtt/WjpmD/YNqEtHHqGDAXmVW7f7prev7wwHBigpvW1VQ03oHTB/hg3wfcnXB3tRlUPaGwopCXdr7E4IsG8+vuv/ZoLMJ5kiNr58gHHnigztzXHDkS4LHHHuONN97g/vvvB8w5cu3atfj7+zucI5cvX84zzzzDkiVLSE93fJ1SITxFKcUjV8Rz8yubWbYpm9ljak+Z7yrWsWbDerSpNcV+fa4deDGvbThEeHAA0WGOffZJiWvN5X0uYtexM/Tt6NkZsr22UPMGQ4YMITY2FoCkpCSys7OJioqiY8eOpKSkANCqlfkF3Lhxo+2Pc3x8PF27drUlobFjxxIZGUlkZCRRUVFMnjwZgAEDBrBr1y7b9aZOnQrAqFGjKCoq4syZM9XiWbt2LbsydqGUwl/5U1RURHFx7e6Ia9euZffu3bbvrftFRlZf4M+RuDIyMnjssccoOF1AcUkxV0660nb85OsmE+B//i309ttvExsby+rVqwkMDOSbb75h+/bttp/V2bNnCY0OdeAn7xytNUeLj3JR2EVOHRfgF2C3ZQOga6uuTp1TKUVYYFiTi0bbzH8u7qJ4uuI0pytOU1FZ4XQxKZrO+nraWxYipySHzTmbGdt5LDEhjg1g7hzRmR/4wan1+06UngDOL9kghLO8MUfWlftqckeOPHPmDCUl5huoVjfddBP+/uf/hjuSI9u3d2y5GyG8yZBurRkX356X1h/gN0O61FpzzFUO5JZwsqiCy5xo5fL3U7w/cyjOTky5eGoSRWeNDheE7uK1hZozd/XcJTj4/AdZf39/jEYjWus6Z12quZJ5fefx8/Ozfe/n51et73rN89b83mQy8ck3nxAWFmZ34gyTycTmzZsJDbVfFDkSV2pqKqtXr6Znn568uvRV0jefv8MXFh5G1Yaw/v37k56eblvjRWvN9OnT+etf/2rb50TpiWqToVj/35QWNWuBc7LMudXhHWlR21uwl6jgKKdaP44WH3W6Jcxf+Vcv1Ezu6fr4S7F5vblyY7kUah5gm/XRVP/7rvBcIT/l/+TUzKG9W/dmduJsIoMiG95ZXBAkR9adIx3Jfe7IkYmJiSxbtoz169fbjgkPr76uoSM5Ughf9fCk3ly1eAOvfHeQR65wzyRVG50Yn1aVoy1pVYUFBRAW5PkyqcFPgUqppUqpXKVURj2Pj1FKFSql0i1fj7s+TO8RHx/P8ePH2brVPJ6ouLgYo9HIqFGjWL58OWDu7nDkyBF69+7t1LlXrFgBmO88RkVFERVVfRr+CRMnsOyVZfhZXjZrt4jIyMhqdw0nTpzIkiVLbN83pftEcXExHTt2JJBAPv/w82qJUWtdrcAaOHAgr7zyCldffTXHjx9n/PjxrFq1itxc84QYBQUFnMk5Q2hAKIGBgRgMhvPJuwk3LBpbzNQsjury8YGP2Zm30+lzRwRGOLV/gF+AbZFrgK5RXZkzcI7busfJrI+eYf25V32ta2pMt1ejyYhJmwjw83xSES2bJ3NkfbmvOXKkwWCwPb/6OJIjf/7ZPMGVNUcK4Sv6dGzFNYmdWJp2mNwi96z1l3Ygn65twujc2rVLF3kzRz7hLgOuaGCfDVrrJMvXn5oelvcKCgpixYoV3H///SQmJjJhwgTKy8u55557qKysZMCAAUyZMoVly5ZVuxvniJiYGIYPH86sWbN44403aj2++MXF7Nyxk/FDx9O3b19efvllACZPnszHH39sGyi9ePFitm3bRkJCQrX9GmPhwoVceumlTJw4kT7xfao9ppSqVSSNHDmSRYsW8atf/Yr27dvz9NNPM3HiRBISEpgwYQJn8s8Q7B/MzJkzSUhI4I7pdxAeGG4rPhvDWjz2ad2ngT2rm95vOpPiJtndx9np+QGC/ILo08a5WFqHtK5W3AX6BRITEuPymf+sccmsj57hyDpqjZlIZkfuDl7Z9Qo/F9qfxVQId/Nojqwn9zVHjpwwYQLx8Q23IjSUI3NyzOtRWXOkTCYifMm8Cb0wVmoWr9vv8nMbKk18f6jA45N7NDdlrzuCbSel4oDPtNb963hsDPA7rbVTo9GTk5P1tm3bqm3LysqiTx/nPuBeKMaMGcOiRYtITk6udx+tNTmlOUQGRTZ7FydDpYEyYxkRgRFN+pBvqDSglLJ7578x74O//vBXBl00qMHCyxlaaxZ+v5DLLr6MsV3GOnzcU5ufIqFtAtddcl2jr51blsv+0/sZ2H6gSxe93vTLJr4+8jW/H/J7mVDEA4rPFZORn0Gf1n2IDomuc58duTv49OCnzB001+HF7b/M/pIfcn5gUtwkhnYc6tAxR4uPsjRjKeM6j+Oy2Mscfg6NpZTarrWu/w+cqEZyZHWO5MiWoiW/D4T3++PqDN7bcoS1D44mrm14wwc4aPvPBdzw0mb+b9ogrhrg+Lq5vsBefnRVP5lhSqmdwHHMRVumi84rqrC2HBWfK272Qs2ojZQaSqmorLB1dwwPDHe6iDhdcbrWlPetgloRHNC08VLnTOc4VuzcGh7puels/GUjoQHVxync2vdWgv2D2XZyGxrdqMJ0V/4upwu1/x76Lzml5ruppYZSTlecpm+bvi4t1IoN5u4/rh77JhwTGRTJsE7D2JKzhZ/yf6r1+Iz+M/BX/uYbIs4stG5pkXamZbpDeAfuSbyHVsGendFKCCHEheP+cT1Ztf0Yf/96H4unDnTZeTfuP2WeYr97w1PsX0hcUaj9CHTVWpcopa4CVgOX1LWjUmomMBOgS5cuLrj0haPqAGR7IoMiPTIJRJBfECH+IdUmAqlrwHhDwgPCKa+s0XfZBRPqTOgygU4RnZw6xmgyEh1cd6sGmLup9YzuySXRdb6d6zUpbhLtw5yfuSvQP9D22gb7B9M5srPDLSqOSmyXSKBfoIxR8zB/P/96f48T2iU4vQj1ZbGXUVFZwcD2jifFQL9A2oW1c+o6QniKozlSCOFZ7VuFMGNkHP/69iB3j+5Ov06u+RyTdiCf/p2iiAlvWb2Bmtz1sY59s4FkrXW+vf2kW4eoj7wPhLjwSNdH50iOFPWR94HwdoVnDYx67luSOkfz7xlDmny+0gojiU+t4c7LujP/SvfMKOlJ9vJjk/s/KaU6KEvTilJqiOWcp5p6XiGEEEIIIYRviQoN5J4xPfjfvjy+P9T0kmDL4QKMJs3IFjaRCDg2Pf97wGagt1LqmFLqDqXULKXULMsuNwIZljFqi4FbtCPNdEIIIYQQQogLzvThcXRoFcKzX+6xu46iIzYeyCcowI/kuBgXRec7GhyjprWe2sDjS4Al9vYRQgghhBBCtAwhgf7MvfwS5n/0E1/vPsnEfo1fFzbtQD4pcTGEBLa88fUy9ZsHpaamsmrVKrv7LFu2jOPHjzdTRHUbM2YMNcdK1Cc7O5t3333XzREJIYS40EmOFMK33Tg4lu5tw3n+q71UmhrXqpZbXM6eE8Utbv00KynUvJynk1BlZaVT+0sSEkII0VwkRwrhvQL8/fjdpN7szy3h4x2/NOocmw+ax7i1xPFpIIVaLW+99RYJCQkkJiZy2223AfDzzz8zfvx4EhISGD9+PEeOHAHMd/tmz57N2LFj6d69O//73/+YMWMGffr0ITU11XbOiIgIHnroIQYNGsT48ePJy8urdd3t27czevRoBg8ezKRJk8jJyWHVqlVs27aNadOmkZSUxNmzZ+vcryZH45o9ezbJycn069ePJ554wrY9Li6OP/3pT4wcOZKVK1fatptMJqZPn85jjz1GZWUlDz/8MCkpKSQkJPDKK68AMH/+fDZs2EBSUhIvvPBCk14LIYQQ3kVypORIIZxxZf8ODLg4ihe+3keF0bkbGwAb9+cTFRrosmn+fY2rFrx2vS/mw4naC8I2SYcBcOUz9T6cmZnJn//8Z9LS0mjbti0FBQUA3Hffffz2t79l+vTpLF26lDlz5rB69WoATp8+zbp16/j000+ZPHkyaWlpvP7666SkpJCenk5SUhKlpaUMGjSIv/3tb/zpT3/iqaeeYsmS88P6DAYD999/P5988gnt2rVjxYoVLFiwgKVLl7JkyRIWLVpEcnKy3f1qciSuP//5z7Ru3ZrKykrGjx/Prl27SEgwr98UEhLCxo0bAXj55ZcxGo1MmzaN/v37s2DBAl599VWioqLYunUrFRUVjBgxgokTJ/LMM8+waNEiPvvsM5e9bEIIIWqQHCk5UggfoJTi0SviufWNH1j+/RFmjOzm8LFaa9IO5DO8Rxv8/Vyw6K4P8t5CzQPWrVvHjTfeSNu25ubV1q1bA7B582Y++ugjAG677TYeeeQR2zGTJ09GKcWAAQO46KKLGDBgAAD9+vUjOzubpKQk/Pz8mDJlCgC33nor119/fbXr7t27l4yMDCZMmACYu1J07NixVnyO7udoXB988AGvvvoqRqORnJwcdu/ebUtC1nit7r77bm6++WYWLFgAwJo1a9i1a5dt/EBhYSH79+8nKKhlLUQohBAtheRIyZFCNMbIS9oyomcblnx7gJtTOhMR7Fj5cTi/lOOF5dwztmV2ewRvLtTs3NVzF601liXh8c3DOQAAFNhJREFU7Kq6T3BwMAB+fn62/1u/NxqNDR5vvW6/fv3YvHlzg/E5sp8jcR0+fJhFixaxdetWYmJiSE1Npby83LZfeHh4tfMNHz6cb7/9loceeoiQkBC01vzzn/9k0qRJ1fZbv359g7EJIYRoIsmRdcYnOVII7/TIpHiu+Vcar284xNzLezl0TNqBfIAWO5EIyBi1asaPH88HH3zAqVPmgYvWbh3Dhw/n/fffB2D58uWMHDnSqfOaTCbbXbV333231vG9e/cmLy/PllwMBgOZmZkAREZGUlxc3OB+zioqKiI8PJyoqChOnjzJF198YXf/O+64g6uuuoqbbroJo9HIpEmTeOmllzAYDADs27eP0tLSavEKIYS4cEiOrJ/kSCHsS+wczZX9O/Dad4c4VVLh0DEbD+RzcXQocW3C3Byd9/LeFjUP6NevHwsWLGD06NH4+/szcOBAli1bxuLFi5kxYwbPP/887dq1480333TqvOHh4WRmZjJ48GCioqJYsWJFtceDgoJYtWoVc+bMobCwEKPRyNy5c+nXrx+pqanMmjWL0NBQNm/eXO9+zkpMTGTgwIH069eP7t27M2LEiAaPefDBByksLOS2225j+fLlZGdnM2jQILTWtGvXjtWrV5OQkEBAQACJiYmkpqYyb948p2MTQgjhfSRH2ic5Ugj7fjepN2t2n+Rf3x7k8cl97e5badJsOniKq/p3dKgl/0KlmrpaeGMlJyfrmuuOZGVl0adPH4/E404RERGUlJR4OgyfcaG+D4RoyZRS27XWyZ6Ow1dIjhT1uVDfB6JlmP/hLj768RfW/W40sTH1t5TtOHKa6/5vE4unDuTqxE7NGGHzs5cfpeujEEIIIYQQwu0euPwSUPDC1/vt7mcbn9ajTXOE5bWkUGsGcqdQCCGEqJvkSCFajo5RoaQOj+OjHcfYe6L+8ZobD+TTt2Mr2kQE17tPSyCFmhBCCCGEEKJZzB7dg4igABat2Vvn42XnjPz48xlGXtJyZ3u0kkJNCCGEEEII0SxiwoO4e3R3vt59ku0/n671+Nbs05yrNLXoafmtpFATQgghhBBCNJsZI7vRNiKYZ7/cQ82JDdMO5BPk70dKXIyHovMeUqgJIYQQQgghmk1YUABzxvdky+EC/rcvr9pjG/fnM6hrNGFBsoqYFGpu8o9//IOysjJPh2FXamqqbZHRO++8k927dwPwl7/8xZNhCSGEuMBJjhRC3JLShc6tQ3nuy72YTOZWtVMlFezOKWKkdHsEpFBzG19IQlW9/vrr9O1rXnywMUnIaDS6OiQhhBAXKMmRQoigAD8emtCb3TlFfPZTDgCbDp4CkPFpFlKo1bBw4ULi4+OZMGECU6dOZdGiRQCkp6czdOhQEhISuO666zh9+jRZWVkMGTLEdmx2djYJCQksXryY48ePM3bsWMaOHVvrGtu3b2f06NEMHjyYSZMmkZOTQ2FhIb1792bvXvMMOFOnTuW1114DzIuBPvTQQwwaNIjx48eTl2duIj548CBXXHEFgwcP5rLLLmPPnj2A+S7gnDlzGD58ON27d7fdEdRac99999G3b19+9atfkZuba4tpzJgxbNu2jfnz53P27FmSkpKYNm0a2dnZ9O/f37bfokWLePLJJ23H/OEPf2D06NG8+OKLdT4vgMWLF9O3b18SEhK45ZZbXPI6CSGEaH6SIyVHCuFKVyd2Ir5DJH9bsxdDpYm0A/lEhgQw4OIoT4fmHbTWHvkaPHiwrmn37t3Vvl+WsazW15acLVprrc8Zz9X5+I6TO7TWWpeeK631WEO2bt2qExMTdVlZmS4qKtI9e/bUzz//vNZa6wEDBuj169drrbX+4x//qB944AGttdaJiYn64MGDWmutn3nmGb1w4UKttdZdu3bVeXl5ta5x7tw5PWzYMJ2bm6u11vr999/Xt99+u9Za6zVr1uihQ4fq9957T0+aNMl2DKDfeecdrbXWTz31lL733nu11lqPGzdO79u3T2ut9ffff6/Hjh2rtdZ6+vTp+sYbb9SVlZU6MzNT9+jRQ2ut9Ycffqgvv/xybTQa9S+//KKjoqL0ypUrtdZajx49Wm/dulVrrXV4eLjt2ocPH9b9+vWzff/888/rJ554wnbM7NmzG3xeHTt21OXl5VprrU+fPt3g61DzfSCE8H3ANu2hfOOLX47kyNQvUmt9vZf1ntZa6zJDWZ2Pf7z/Y6211gVnC2o91hDJkZIjhXCHdVkndddHP9Nvbc7Ww//6jb7r31s9HVKzspcfZZReFRs3buSaa64hNDQUgMmTJwNQWFjImTNnGD16NADTp0/npptuAuDmm2/mgw8+YP78+axYsYIVK1bYvcbevXvJyMhgwoQJAFRWVtKxY0cAJkyYwMqVK7n33nvZuXOn7Rg/Pz+mTJkCwK233sr1119PSUkJmzZtssUBUFFRYfv/tddei5+fH3379uXkyZMAfPfdd0ydOhV/f386derEuHHjGv/DsrDGZe95JSQkMG3aNK699lquvfbaJl9TCCFE85Mc6TzJkUI0bEzvdgyJa81zX+6huNzI3aO7ezokr+HVhdr0ftPrfSzQP9Du42GBYXYfr4uuMT2oI6ZMmcJNN93E9ddfj1KKSy65pMFr9OvXj82bN9d6zGQykZWVRWhoKAUFBcTGxtZ5DqUUJpOJ6Oho0tPT69wnOPj8Su5Vn5dSypGnZRMQEIDJZLJ9X15eXu3x8PBw2zXqe16ff/453333HZ9++ikLFy4kMzOTgACvfusJIYTXe/OKN+t9LDQg1O7jMSExdh+vi+TI2iRHCtF0SikeuaI3N75s/v2Q8WnnyRi1KkaOHMl//vMfysvLKSkp4fPPPwcgKiqKmJgYNmzYAMDbb79tu3PYo0cP/P39Wbhwoe3OGUBkZCTFxcW1rtG7d2/y8vJsf6wNBgOZmZkAvPDCC/Tp04f33nuPGTNmYDAYAHNysvahf/fddxk5ciStWrWiW7durFy5EjAngap3GOsyatQo3n//fSorK8nJyeHbb7+tc7/AwEDbtS+66CJyc3M5deoUFRUVfPbZZ3UeU9/zMplMHD16lLFjx/Lcc89x5swZSkpK7MYphBDC+0iONJMcKYTrJce1ZmLfi4hrE0b3tuGeDsdryC2bKlJSUrj66qtJTEyka9euJCcnExVlHsz473//m1mzZlFWVkb37t15883zdyKnTJnCww8/zOHDh23bZs6cyZVXXknHjh2r/bEPCgpi1apVzJkzh8LCQoxGI3PnziUwMJDXX3+dLVu2EBkZyahRo3j66ad56qmnCA8PJzMzk8GDBxMVFWXrOrJ8+XJmz57N008/jcFg4JZbbiExMbHe53fdddexbt06BgwYQK9evWyJtKaZM2eSkJDAoEGDWL58OY8//jiXXnop3bp1Iz4+vs5j6ntevXr14tZbb6WwsBCtNfPmzSM6OtrxF0UIIYRXkBx5PnbJkUK43uKpA6kwmJxu2b6QqcZ0ZXCF5ORkvW3btmrbsrKy6NOnj0fisSopKSEiIoKysjJGjRrFq6++yqBBgzwaU0RERIu6w+YN7wMhhGsppbZrrZM9HYevkBzpOMmRQghfZi8/SotaDTNnzmT37t2Ul5czffp0jycgIYQQvksp9TwwGTgHHARu11qf8WxUjSc5Ugghmo8UajW8++67ng6hlpZ0p1AIIS4wXwO/11oblVLPAr8HHvVwTI0mOVIIIZqPTCYihBBCuInWeo3W2mj59nug7qkKhRBCiBq8rlDz1Jg54R3k9RdCXMBmAF805QTyN7Jlk9dfiJbFqwq1kJAQTp06JX+IWiitNadOnSIkJMTToQghhMOUUmuVUhl1fF1TZZ8FgBFYbuc8M5VS25RS2/Ly8mo9LjmyZZMcKUTL41Vj1GJjYzl27Bh1JSjRMoSEhNS7iKkQQngjrfXl9h5XSk0Hfg2M13aqLK31q8CrYJ71sebjkiOF5EghWpYGCzWl1FLMCSZXa93fzn4pmPvfT9Far2pMMIGBgXTr1q0xhwohhBBeRyl1BebJQ0Zrrcuaci7JkUII0bI40vVxGXCFvR2UUv7As8BXLohJCCGEuFAsASKBr5VS6Uqplz0dkBBCCN/QYIua1vo7pVRcA7vdD3wIpLggJiGEEOKCoLXu6ekYhBBC+KYmTyailLoYuA6Qu4RCCCGEEEII4QKumEzkH8CjWutKpZTdHZVSM4GZlm9LlFJ7m3jttkB+E8/RnCRe95J43ceXYgWJ190aE29XdwRyodq+fXu+UurnJp6mJbyvPMmX4vWlWEHidTeJ131cmh+VI9P8Wro+flbXZCJKqcOAtUJrC5QBM7XWq50M0mlKqW1a62R3X8dVJF73knjdx5diBYnX3Xwt3pbK114nidd9fClWkHjdTeJ1H1fH2uQWNa21bQoqpdQyzAWd24s0IYQQQgghhLhQOTI9/3vAGKCtUuoY8AQQCKC1lnFpQgghhBBCCOFijsz6ONXRk2mtU5sUjfNebebrNZXE614Sr/v4Uqwg8bqbr8XbUvna6yTxuo8vxQoSr7tJvO7j0lgdGqMmhBBCCCGEEKL5NHl6fiGEEEIIIYQQruWzhZpS6gql1F6l1AGl1HxPx1OTUmqpUipXKZVRZVtrpdTXSqn9ln9jPBmjlVKqs1LqW6VUllIqUyn1gGW7t8YbopTaopTaaYn3Kct2r4zXSinlr5TaoZT6zPK918arlMpWSv2klEpXSm2zbPPmeKOVUquUUnss7+Nh3hivUqq35Wdq/SpSSs31xlitlFLzLL9nGUqp9yy/f14br/D+/AiSI93JF3Ok5Ef38ZX8CJIj6+KThZpSyh/4F3Al0BeYqpTq69moalkGXFFj23zgG631JcA3lu+9gRF4SGvdBxgK3Gv5eXprvBXAOK11IpAEXKGUGor3xmv1AJBV5Xtvj3es1jqpyjSz3hzvi8CXWut4IBHzz9nr4tVa77X8TJOAwZiXM/kYL4wVQCl1MTAHSLYsz+IP3IKXxit8Jj+C5Eh38sUcKfnRfXwiP4LkyDpprX3uCxgGfFXl+98Dv/d0XHXEGQdkVPl+L9DR8v+OwF5Px1hP3J8AE3whXiAM+BG41JvjBWItv6zjMC9h4dXvByAbaFtjm1fGC7QCDmMZc+vt8VaJbyKQ5s2xAhcDR4HWmCef+swSt1fGK1++kx8tsUmOdH+sXp8jJT+6NVafzI+WuCRHau2bLWqc/8FYHbNs83YXaa1zACz/tvdwPLUo8+LmA4Ef8OJ4Ld0k0oFc4GuttVfHC/wDeAQwVdnmzfFqYI1SartSaqZlm7fG2x3IA960dJ15XSkVjvfGa3UL8J7l/14Zq9b6F2ARcATIAQq11mvw0ngF4Lv5EXzgfSU50i0kP7qPr+ZHkBwJ+GjXR0DVsU2mr2wipVQE8CEwV2td5Ol47NFaV2pz03gsMEQp1d/TMdVHKfVrIFdrvd3TsThhhNZ6EObuU/cqpUZ5OiA7AoBBwEta64FAKV7SLaI+Sqkg4GpgpadjscfSr/4aoBvQCQhXSt3q2ahEAyQ/uonkSNeT/Oh2PpcfQXJkVb5aqB0DOlf5PhY47qFYnHFSKdURwPJvrofjsVFKBWJOQMu11h9ZNnttvFZa6zPAesxjHbw13hHA1UqpbOB9YJxS6h28N1601sct/+Zi7h8+BO+N9xhwzHLHGGAV5sTkrfGCOcH/qLU+afneW2O9HDistc7TWhuAj4DheG+8wnfzI3jx+0pypNtIfnQvX8yPIDnSxlcLta3AJUqpbpaq+xbgUw/H5IhPgemW/0/H3M/d45RSCngDyNJa/73KQ94abzulVLTl/6GYf1H24KXxaq1/r7WO1VrHYX6vrtNa34qXxquUCldKRVr/j7m/dQZeGq/W+gRwVCnV27JpPLAbL43XYirnu3SA98Z6BBiqlAqz/J0Yj3kgurfGK3w3P4KXvq8kR7qP5Ef38tH8CJIjz/P0QLzGfgFXAfuAg8ACT8dTR3zvYe6vasB8R+MOoA3mAbP7Lf+29nScllhHYu4aswtIt3xd5cXxJgA7LPFmAI9btntlvDViH8P5wdJeGS/mPu07LV+Z1t8vb43XElsSsM3ynlgNxHhrvJgH958Coqps88pYLbE9hflDXgbwNhDszfHKl/fnR0uMkiPdF69P5kjJj26L2WfyoyVeyZFVvpTlIkIIIYQQQgghvISvdn0UQgghhBBCiAuWFGpCCCGEEEII4WWkUBNCCCGEEEIILyOFmhBCCCGEEEJ4GSnUhBBCCCGEEMLLSKEmhIOUUpVKqXSlVIZSaqVSKsyJYzsppVY5eb31Sqlk5yMVQgghmpfkSCFcTwo1IRx3VmudpLXuD5wDZjlykFIqQGt9XGt9o3vDE0IIITxGcqQQLiaFmhCNswHoqZQKV0otVUptVUrtUEpdA6CUSrXcUfwPsEYpFaeUyrA8FqKUelMp9ZPlmLGW7aFKqfeVUruUUiuAUMt2f6XUMstdyp+UUvM89JyFEEIIR0iOFMIFAjwdgBC+RikVAFwJfAksANZprWcopaKBLUqptZZdhwEJWusCpVRclVPcC6C1HqCUisecpHoBs4EyrXWCUioB+NGyfxJwseUuJZbrCCGEEF5HcqQQriMtakI4LlQplQ5sA44AbwATgfmW7euBEKCLZf+vtdYFdZxnJPA2gNZ6D/Az0AsYBbxj2b4L2GXZ/xDQXSn1T6XUFUCR65+aEEII0SSSI4VwMWlRE8JxZ7XWSVU3KKUUcIPWem+N7ZcCpfWcR9m5hq61QevTSqlEYBLmO403AzOcCVwIIYRwM8mRQriYtKgJ0TRfAfdbkhFKqYEOHPMdMM2yfy/Mdxf31tjeH0iw/L8t4Ke1/hD4IzDIxc9BCCGEcAfJkUI0gbSoCdE0C4F/ALssiSgb+HUDx/wf8LJS6ifACKRqrSuUUi8BbyqldgHpwBbL/hdbtltvrPzexc9BCCGEcAfJkUI0gdK6ViuyEEIIIYQQQggPkq6PQgghhBBCCOFlpFATQgghhBBCCC8jhZoQQgghhBBCeBkp1IQQQgghhBDCy0ihJoQQQgghhBBeRgo1IYQQQgghhPAyUqgJIYQQQgghhJeRQk0IIYQQQgghvMz/A9+jqqoSm+YAAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_9_0.png" }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(1, 2, figsize=(15, 5))\n", "\n", "ax[0].set_title('Tax collection paths')\n", "ax[0].plot(np.arange(N_simul), c_path, label='incomplete market')\n", "ax[0].plot(np.arange(N_simul), c_bar * np.ones(N_simul), label='complete market')\n", "ax[0].plot(np.arange(N_simul), y_path, label='govt expenditures', alpha=.6, ls='--')\n", "ax[0].legend()\n", "ax[0].set_xlabel('Periods')\n", "ax[0].set_ylim([1.4, 2.1])\n", "\n", "ax[1].set_title('Government assets paths')\n", "ax[1].plot(np.arange(N_simul), debt_path, label='incomplete market')\n", "ax[1].plot(np.arange(N_simul), debt_complete[s_path], label='complete market')\n", "ax[1].plot(np.arange(N_simul), y_path, label='govt expenditures', ls='--')\n", "ax[1].legend()\n", "ax[1].axhline(0, color='k', ls='--')\n", "ax[1].set_xlabel('Periods')\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tax Smoothing with Complete Markets\n", "\n", "It is instructive to focus on a simple tax-smoothing example with complete markets.\n", "\n", "This example illustrates how, in a complete markets model like that of Lucas and Stokey {cite}`LucasStokey1983`, the government purchases\n", "insurance from the private sector.\n", "\n", "Payouts from the insurance it had purchased allows the government to avoid raising taxes when emergencies make government expenditures surge.\n", "\n", "We assume that government expenditures take one of two values $G_1 < G_2$, where Markov state $1$ means \"peace\" and Markov state $2$ means \"war\".\n", "\n", "The government budget constraint in Markov state $i$ is\n", "\n", "$$\n", "T_i + b_i = G_i + \\sum_j Q_{ij} b_j\n", "$$\n", "\n", "where\n", "\n", "$$\n", "Q_{ij} = \\beta P_{ij}\n", "$$\n", "\n", "is the price today of one unit of goods in Markov state $j$ tomorrow when\n", "the Markov state is $i$ today.\n", "\n", "$b_i$ is the government's level of *assets* when it arrives in Markov state $i$.\n", "\n", "That is, $b_i$ equals one-period state-contingent claims *owed to the government* that fall due at time $t$ when the Markov state is $i$.\n", "\n", "Thus, if $b_i < 0$, it means the government **is owed** $b_i$ or **owes** $-b_i$ when the economy arrives in Markov state $i$ at time\n", "$t$.\n", "\n", "In our examples below, this happens when in a previous war-time period the government has sold an Arrow securities paying off $- b_i$\n", "in peacetime Markov state $i$\n", "\n", "It can be enlightening to express the government's budget constraint in Markov state $i$ as\n", "\n", "$$\n", "T_i = G_i + \\left(\\sum_j Q_{ij} b_j - b_i\\right)\n", "$$\n", "\n", "in which the term $(\\sum_j Q_{ij} b_j - b_i)$ equals the net amount that the government spends to purchase one-period Arrow securities\n", "that will pay off next period in Markov states $j = 1, \\ldots, N$ after it has received payments $b_i$ this period.\n", "\n", "## Returns on State-Contingent Debt\n", "\n", "Notice that $\\sum_{j'=1}^N Q_{ij'} b(j')$ is the amount that the government spends in Markov state $i$ at time $t$ to purchase\n", "one-period state-contingent claims that will pay off in Markov state $j'$ at time $t+1$.\n", "\n", "Then the *ex post* one-period gross return on the portfolio of government assets held from state $i$ at time $t$\n", "to state $j$ at time $t+1$ is\n", "\n", "$$\n", "R(j | i) = \\frac{b(j) }{ \\sum_{j'=1}^N Q_{ij'} b(j') }\n", "$$\n", "\n", "The cumulative return earned from putting $1$ unit of time $t$ goods into the government portfolio of state-contingent securities at\n", "time $t$ and then rolling over the proceeds into the government portfolio each period thereafter is\n", "\n", "$$\n", "R^T(s_{t+T}, s_{t+T-1}, \\ldots, s_t) \\equiv R(s_{t+1} | s_t) R (s_{t+2} | s_{t+1} )\n", "\\cdots R(s_{t+T} | s_{t+T-1} )\n", "$$\n", "\n", "Here is some code that computes one-period and cumulative returns on the government portfolio in the finite-state Markov version of our complete\n", "markets model.\n", "\n", "**Convention:** In this code, when $P_{ij}=0$, we arbitrarily set $R(j | i)$ to be $0$." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "def ex_post_gross_return(b, cp):\n", " \"\"\"\n", " calculate the ex post one-period gross return on the portfolio\n", " of government assets, given b and Q.\n", " \"\"\"\n", " Q = cp.β * cp.P\n", "\n", " values = Q @ b\n", "\n", " n = len(b)\n", " R = np.zeros((n, n))\n", "\n", " for i in range(n):\n", " ind = cp.P[i, :] != 0\n", " R[i, ind] = b[ind] / values[i]\n", "\n", " return R\n", "\n", "def cumulative_return(s_path, R):\n", " \"\"\"\n", " compute cumulative return from holding 1 unit market portfolio\n", " of government bonds, given some simulated state path.\n", " \"\"\"\n", " T = len(s_path)\n", "\n", " RT_path = np.empty(T)\n", " RT_path[0] = 1\n", " RT_path[1:] = np.cumprod([R[s_path[t], s_path[t+1]] for t in range(T-1)])\n", "\n", " return RT_path" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### An Example of Tax Smoothing\n", "\n", "We'll study a tax-smoothing model with two Markov states.\n", "\n", "In Markov state $1$, there is peace and government expenditures are low.\n", "\n", "In Markov state $2$, there is war and government expenditures are high.\n", "\n", "We'll compute optimal policies in both complete and incomplete markets settings.\n", "\n", "Then we'll feed in a **particular** assumed path of Markov states and study outcomes.\n", "\n", "* We'll assume that the initial Markov state is state $1$, which means we start from a state of peace.\n", "* The government then experiences 3 time periods of war and come back to peace again.\n", "* The history of Markov states is therefore $\\{ peace, war, war, war, peace \\}$.\n", "\n", "In addition, as indicated above, to simplify our example, we'll set the government's initial\n", "asset level to $1$, so that $b_1 = 1$.\n", "\n", "Here's code that itinitializes government assets to be unity in an initial peace time Markov state." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "P \n", " [[0.8 0.2]\n", " [0.4 0.6]]\n", "Q \n", " [[0.768 0.192]\n", " [0.384 0.576]]\n", "Govt expenditures in peace and war = [1, 2]\n", "Constant tax collections = 1.2716883116883118\n", "Govt debts in two states = [-1. -2.62337662]\n", "\n", "Now let's check the government's budget constraint in peace and war.\n", "Our assumptions imply that the government always purchases 0 units of the\n", "Arrow peace security.\n", "\n", "Spending on Arrow security in peace = 1.2716883116883118\n", "Spending on Arrow security in war = 1.895064935064935\n", "\n", "Government tax collections minus debt levels in peace and war\n", "T+b in peace = 2.2716883116883118\n", "T+b in war = 3.895064935064935\n", "\n", "Total government spending in peace and war\n", "Peace = 2.2716883116883118\n", "War = 3.895064935064935\n", "\n", "Let's see ex-post and ex-ante returns on Arrow securities\n", "Ex-post returns to purchase of Arrow securities = \n", " [[1.30208333 5.20833333]\n", " [2.60416667 1.73611111]]\n", "Ex-ante returns to purchase of Arrow securities \n", " [[1.04166667 1.04166667]\n", " [1.04166667 1.04166667]]\n", "\n", "The Ex-post one-period gross return on the portfolio of government assets\n", "[[0.78635621 2.0629085 ]\n", " [0.5276864 1.38432018]]\n", "\n", "The cumulative return earned from holding 1 unit market portfolio of government bonds\n", "2.0860704239993675\n" ] } ], "source": [ "# Parameters\n", "β = .96\n", "\n", "# change notation y to g in the tax-smoothing example\n", "g = [1, 2]\n", "b0 = 1\n", "P = np.array([[.8, .2],\n", " [.4, .6]])\n", "\n", "cp = ConsumptionProblem(β, g, b0, P)\n", "Q = β * P\n", "\n", "# change notation c_bar to T_bar in the tax-smoothing example\n", "T_bar, b = consumption_complete(cp)\n", "R = ex_post_gross_return(b, cp)\n", "s_path = [0, 1, 1, 1, 0]\n", "RT_path = cumulative_return(s_path, R)\n", "\n", "print(f\"P \\n {P}\")\n", "print(f\"Q \\n {Q}\")\n", "print(f\"Govt expenditures in peace and war = {g}\")\n", "print(f\"Constant tax collections = {T_bar}\")\n", "print(f\"Govt debts in two states = {-b}\")\n", "\n", "msg = \"\"\"\n", "Now let's check the government's budget constraint in peace and war.\n", "Our assumptions imply that the government always purchases 0 units of the\n", "Arrow peace security.\n", "\"\"\"\n", "print(msg)\n", "\n", "AS1 = Q[0, :] @ b\n", "# spending on Arrow security\n", "# since the spending on Arrow peace security is not 0 anymore after we change b0 to 1\n", "print(f\"Spending on Arrow security in peace = {AS1}\")\n", "AS2 = Q[1, :] @ b\n", "print(f\"Spending on Arrow security in war = {AS2}\")\n", "\n", "print(\"\")\n", "# tax collections minus debt levels\n", "print(\"Government tax collections minus debt levels in peace and war\")\n", "TB1 = T_bar + b[0]\n", "print(f\"T+b in peace = {TB1}\")\n", "TB2 = T_bar + b[1]\n", "print(f\"T+b in war = {TB2}\")\n", "\n", "print(\"\")\n", "print(\"Total government spending in peace and war\")\n", "G1 = g[0] + AS1\n", "G2 = g[1] + AS2\n", "print(f\"Peace = {G1}\")\n", "print(f\"War = {G2}\")\n", "\n", "print(\"\")\n", "print(\"Let's see ex-post and ex-ante returns on Arrow securities\")\n", "\n", "Π = np.reciprocal(Q)\n", "exret = Π\n", "print(f\"Ex-post returns to purchase of Arrow securities = \\n {exret}\")\n", "exant = Π * P\n", "print(f\"Ex-ante returns to purchase of Arrow securities \\n {exant}\")\n", "\n", "print(\"\")\n", "print(\"The Ex-post one-period gross return on the portfolio of government assets\")\n", "print(R)\n", "\n", "print(\"\")\n", "print(\"The cumulative return earned from holding 1 unit market portfolio of government bonds\")\n", "print(RT_path[-1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Explanation\n", "\n", "In this example, the government always purchase $1$ units of the\n", "Arrow security that pays off in peace time (Markov state $1$).\n", "\n", "And it purchases a higher amount of the security that pays off in war\n", "time (Markov state $2$).\n", "\n", "Thus, this is an example in which\n", "\n", "* during peacetime, the government purchases *insurance* against the possibility that war breaks out next period\n", "* during wartime, the government purchases *insurance* against the possibility that war continues another period\n", "* so long as peace continues, the ex post return on insurance against war is low\n", "* when war breaks out or continues, the ex post return on insurance against war is high\n", "* given the history of states that we assumed, the value of one unit of the portfolio of government assets eventually doubles in the end because of high returns during wartime.\n", "\n", "We recommend plugging the quantities computed above into the government\n", "budget constraints in the two Markov states and staring.\n", "\n", "*Exercise:* try changing the Markov transition matrix so that\n", "\n", "$$\n", "P = \\begin{bmatrix}\n", " 1 & 0 \\\\\n", " .2 & .8\n", " \\end{bmatrix}\n", "$$\n", "\n", "Also, start the system in Markov state $2$ (war) with initial\n", "government assets $- 10$, so that the government starts the\n", "war in debt and $b_2 = -10$.\n", "\n", "## More Finite Markov Chain Tax-Smoothing Examples\n", "\n", "To interpret some episodes in the fiscal history of the United States, we find it interesting to study a few more examples.\n", "\n", "We compute examples in an $N$ state Markov setting under both complete and incomplete markets.\n", "\n", "These examples differ in how Markov states are jumping between peace and war.\n", "\n", "To wrap procedures for solving models, relabeling graphs so that we record government *debt* rather than government *assets*,\n", "and displaying results, we construct a Python class." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "class TaxSmoothingExample:\n", " \"\"\"\n", " construct a tax-smoothing example, by relabeling consumption problem class.\n", " \"\"\"\n", " def __init__(self, g, P, b0, states, β=.96,\n", " init=0, s_path=None, N_simul=80, random_state=1):\n", "\n", " self.states = states # state names\n", "\n", " # if the path of states is not specified\n", " if s_path is None:\n", " self.cp = ConsumptionProblem(β, g, b0, P, init=init)\n", " self.s_path = self.cp.simulate(N_simul=N_simul, random_state=random_state)\n", " # if the path of states is specified\n", " else:\n", " self.cp = ConsumptionProblem(β, g, b0, P, init=s_path[0])\n", " self.s_path = s_path\n", "\n", " # solve for complete market case\n", " self.T_bar, self.b = consumption_complete(self.cp)\n", " self.debt_value = - (β * P @ self.b).T\n", "\n", " # solve for incomplete market case\n", " self.T_path, self.asset_path, self.g_path = \\\n", " consumption_incomplete(self.cp, self.s_path)\n", "\n", " # calculate returns on state-contingent debt\n", " self.R = ex_post_gross_return(self.b, self.cp)\n", " self.RT_path = cumulative_return(self.s_path, self.R)\n", "\n", " def display(self):\n", "\n", " # plot graphs\n", " N = len(self.T_path)\n", "\n", " plt.figure()\n", " plt.title('Tax collection paths')\n", " plt.plot(np.arange(N), self.T_path, label='incomplete market')\n", " plt.plot(np.arange(N), self.T_bar * np.ones(N), label='complete market')\n", " plt.plot(np.arange(N), self.g_path, label='govt expenditures', alpha=.6, ls='--')\n", " plt.legend()\n", " plt.xlabel('Periods')\n", " plt.show()\n", "\n", " plt.title('Government debt paths')\n", " plt.plot(np.arange(N), -self.asset_path, label='incomplete market')\n", " plt.plot(np.arange(N), -self.b[self.s_path], label='complete market')\n", " plt.plot(np.arange(N), self.g_path, label='govt expenditures', ls='--')\n", " plt.plot(np.arange(N), self.debt_value[self.s_path], label=\"value of debts today\")\n", " plt.legend()\n", " plt.axhline(0, color='k', ls='--')\n", " plt.xlabel('Periods')\n", " plt.show()\n", "\n", " fig, ax = plt.subplots()\n", " ax.set_title('Cumulative return path (complete markets)')\n", " line1 = ax.plot(np.arange(N), self.RT_path)[0]\n", " c1 = line1.get_color()\n", " ax.set_xlabel('Periods')\n", " ax.set_ylabel('Cumulative return', color=c1)\n", "\n", " ax_ = ax.twinx()\n", " ax_._get_lines.prop_cycler = ax._get_lines.prop_cycler\n", " line2 = ax_.plot(np.arange(N), self.g_path, ls='--')[0]\n", " c2 = line2.get_color()\n", " ax_.set_ylabel('Government expenditures', color=c2)\n", "\n", " plt.show()\n", "\n", " # plot detailed information\n", " Q = self.cp.β * self.cp.P\n", "\n", " print(f\"P \\n {self.cp.P}\")\n", " print(f\"Q \\n {Q}\")\n", " print(f\"Govt expenditures in {', '.join(self.states)} = {self.cp.y.flatten()}\")\n", " print(f\"Constant tax collections = {self.T_bar}\")\n", " print(f\"Govt debt in {len(self.states)} states = {-self.b}\")\n", "\n", " print(\"\")\n", " print(f\"Government tax collections minus debt levels in {', '.join(self.states)}\")\n", " for i in range(len(self.states)):\n", " TB = self.T_bar + self.b[i]\n", " print(f\" T+b in {self.states[i]} = {TB}\")\n", "\n", " print(\"\")\n", " print(f\"Total government spending in {', '.join(self.states)}\")\n", " for i in range(len(self.states)):\n", " G = self.cp.y[i, 0] + Q[i, :] @ self.b\n", " print(f\" {self.states[i]} = {G}\")\n", "\n", " print(\"\")\n", " print(\"Let's see ex-post and ex-ante returns on Arrow securities \\n\")\n", "\n", " print(f\"Ex-post returns to purchase of Arrow securities:\")\n", " for i in range(len(self.states)):\n", " for j in range(len(self.states)):\n", " if Q[i, j] != 0.:\n", " print(f\" π({self.states[j]}|{self.states[i]}) = {1/Q[i, j]}\")\n", "\n", " print(\"\")\n", " exant = 1 / self.cp.β\n", " print(f\"Ex-ante returns to purchase of Arrow securities = {exant}\")\n", "\n", " print(\"\")\n", " print(\"The Ex-post one-period gross return on the portfolio of government assets\")\n", " print(self.R)\n", "\n", " print(\"\")\n", " print(\"The cumulative return earned from holding 1 unit market portfolio of government bonds\")\n", " print(self.RT_path[-1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Parameters" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "γ = .1\n", "λ = .1\n", "ϕ = .1\n", "θ = .1\n", "ψ = .1\n", "g_L = .5\n", "g_M = .8\n", "g_H = 1.2\n", "β = .96" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1\n", "\n", "This example is designed to produce some stylized versions of tax, debt, and deficit paths followed by the United States during and\n", "after the Civil War and also during and after World War I.\n", "\n", "We set the Markov chain to have three states\n", "\n", "$$\n", "P =\n", "\\begin{bmatrix}\n", " 1 - \\lambda & \\lambda & 0 \\cr\n", " 0 & 1 - \\phi & \\phi \\cr\n", " 0 & 0 & 1\n", "\\end{bmatrix}\n", "$$\n", "\n", "where the government expenditure vector $g = \\begin{bmatrix} g_L & g_H & g_M \\end{bmatrix}$ where $g_L < g_M < g_H$.\n", "\n", "We set $b_0 = 1$ and assume that the initial Markov state is state $1$ so that the system starts off in peace.\n", "\n", "These parameters have government expenditure beginning at a low level, surging during the war, then decreasing after the war to a level\n", "that exceeds its prewar level.\n", "\n", "(This type of pattern occurred in the US Civil War and World War I experiences.)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "g_ex1 = [g_L, g_H, g_M]\n", "P_ex1 = np.array([[1-λ, λ, 0],\n", " [0, 1-ϕ, ϕ],\n", " [0, 0, 1]])\n", "b0_ex1 = 1\n", "states_ex1 = ['peace', 'war', 'postwar']" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEWCAYAAAB2X2wCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxU1fnH8c+TjSQkhLAvYZVNliRAWIzKIiKodUeBogVREdRal7ZSa1v9af1Zta21VnHHBWVTqVp/SmvFDZRFkB1EQAj7HkLINvP8/phJzDLJTGCSO5M879crLzJz7tz5TpJ5OHPuueeKqmKMMSb8RTgdwBhjTHBYQTfGmDrCCroxxtQRVtCNMaaOsIJujDF1hBV0Y4ypI6ygm7AmIsNEJKvU7e0icn4NPM86ERkW7P0GW029fhMerKCbgIhITqkvt4icLHV7gtP5gklEZorIQ6XvU9VeqrrIoUg++cpp6rcopwOY8KCqCcXfi8h24EZV/Y9ziYwx5VkP3ZwWERkoIktE5KiI7BGRp0QkxtuWKSIHRaSd93aad7seleyrl4j8W0QOi8g+EbnXe38DEXlCRHZ7v54QkQYBZIsQkeki8r2IHBKRuSLSpFT7OSKy2Jtpp4hMEpEpwATg195PH+95ty0ZyqgqT/EQkIjcLSL7vT+T66vIuEhE/ldElorIMRH5Z7mM80Rkr7ftMxHp5b3fZ06vdBFZ7X3MHBGJ9T6mmYi87329h0XkcxGxGlCH2C/TnC4XcCfQDDgLGAHcAqCqi4FngVdEJA54DbhPVTeW34mIJAL/AT4E2gBdgI+9zb8FBgPpQBowELgvgGy3A5cDQ737PAL8w/t87YH/A/4ONPfue5WqPgfMAh5V1QRVvcTHfv3laQUkAW2BG4B/iEhyFTl/Bkz2ZiwCnizV9n9AV6AF8I03G35yXgOMBjoBqcAk7/13A1ne19sSuBewtT/qElW1L/uq1hewHTi/krY7gHdK3Y4GVgBr8BRrqeRx44GVlbR9D1xU6vYoYLv3+2FAlq9swAZgRKm21kAhnqHG35TOWe75ZgIPVfaaA8hzEogq1b4fGFzJcy0CHil1uydQAET62LYxngKc5CfntaVuPwrM8H7/P8A/gS5O/w3ZV818WQ/dnBYR6eb9GL9XRLKBh/H01gFQ1UI8hac38Gf1VhYf2uEplL60AX4odfsH733+dADe8Q4xHMVT4F14eqdVPZ8//vIcUtWiUrdzgQQqt7PcvqKBZiISKSKPeIeMsvEUayj1863E3kqe+zFgC7BQRLaKyHQ/+zFhxgq6OV3PABuBrqraCM/HeCluFJG2wB+Al4E/VzH2vRM4o5K23XiKc7H23vv82QlcqKqNS33FquouP8/nbxjiVPNUpl25fRUCB4GfApcB5+MZwuno3ab451ut4RJVPa6qd6tqZ+AS4C4RGXEauU2IsYJuTlcikA3keA92TituEBHB0zt/Ec9Y8h7gwUr28z7QSkTu8B50TBSRQd62N4H7RKS5iDQDfg+8HkC2GcAfRaSDN09zEbnM2zYLOF9ErhGRKBFpKiLp3rZ9QOcq9nuqeSpzrYj0FJF4PMMi81XVhednmw8cAuLxfPopzV/OMkTkJyLSxft7ycbzacV1GrlNiLGCbk7XL/H0JI8DzwNzSrXdjmd443feoZbrgetF5NzyO1HV48BIPD3HvcB3wHBv80PAcmA1nrH4b7z3+fM34F08QwzHga+AQd7n2wFchOdA4WFgFZ4DnOD5D6ind6hmgY/9nmqeyryG5z++vUAsnp8bwKt4hmB2Aeu9+Uvzl7O8rngOPOcAS4CnNcTm1pvTI5UPaRpjapqILAJeV9UXnM5iwp/10I0xpo6wgm6MMXWEDbkYY0wdYT10Y4ypIxxbnKtZs2basWNHp57eGGPC0ooVKw6qanNfbY4V9I4dO7J8+XKnnt4YY8KSiPxQWZsNuRhjTB1hBd0YY+oIK+jGGFNH2BWLjAlBhYWFZGVlkZeX53QU45DY2FhSUlKIjo4O+DFW0I0JQVlZWSQmJtKxY0c8a2mZ+kRVOXToEFlZWXTq1Cngx/kdchGRl7yX0lpbSfsE7+WuVnsv55XmaztjTODy8vJo2rSpFfN6SkRo2rRptT+hBTKGPhPP5awqsw0YqqqpeJZGfa5aCYwxPlkxr99O5ffvd8hFVT8TkY5VtC8udfMrIKXaKYzjDp48yJoDayrc37dFXxrHNmbvib1sOLShQnv/Vv1pFNOIXTm72Hx4c4X2Qa0HER8dz87snWw5uqVCe2bbTBpENmDrsa38cKzi9NpzU84lKsJGBo0JRLDfKTfguaitT94rlU8BaN++fZCf2pyOQycP8fmuzyvc3ympE41jG7M/d7/P9h5NetAophF7cvb4bE9tnuop6Md3+mwf0GoADSIbsCN7h8/2s9uefYqvyJyuzMxMFi9e7H/DWjJz5kyWL1/OU089Vek2ixYtIiYmhszMzFpMVtb9999PQkICv/zlLwPa/uGHH+bee+8NynMHraCLyHA8Bf2cyrZRz5XKnwPIyMiwVcFCSPcm3fn9Wb+vtD21eSqpzVMrbc9olUFGq4xK2zPbZpLZtvI32bB2wxjWbliF+93qxuV2ERkRWeljTc0IpWIeqEWLFpGQkOBYQS8qKvK/UTnBLOhBmYcuIqnAC8BlqnooGPs0teej7R/x0tqXnI7h08NfP8wnOz9xOka9lJDgubb0okWLGDZsGGPGjKFHjx5MmDCB4lValy1bRmZmJmlpaQwcOJDjx4+Tl5fH9ddfT58+fejbty+ffOL5/c2cOZPLL7+cSy65hE6dOvHUU0/xl7/8hb59+zJ48GAOHz4MwLBhw7jjjjvIzMykd+/eLF26tEK2AwcOcNVVVzFgwAAGDBjAl19+yfbt25kxYwZ//etfSU9P5/PPP/e5XXmB5nr++ecZMGAAaWlpXHXVVeTm5gIwadIk7rrrLoYPH84999xTZt/PP/88F154ISdPnuT1119n4MCBpKenc/PNN+NyuZg+fTonT54kPT2dCRMmnPbv7LR76CLSHngbuE5VKw6impCXW5hLTkGO0zF8io6Ipshd/V5PXfLAe+tYvzs7qPvs2aYRf7ikV8Dbr1y5knXr1tGmTRvOPvtsvvzySwYOHMjYsWOZM2cOAwYMIDs7m7i4OP72t78BsGbNGjZu3MgFF1zA5s2e0rB27VpWrlxJXl4eXbp04U9/+hMrV67kzjvv5NVXX+WOO+4A4MSJEyxevJjPPvuMyZMns3Zt2Ul2v/jFL7jzzjs555xz2LFjB6NGjWLDhg1MnTq1zHDHT3/6U5/blRdIriuvvJKbbroJgPvuu48XX3yRn//85wBs3ryZ//znP0RGRnL//fcD8NRTT7Fw4UIWLFjA1q1bmTNnDl9++SXR0dHccsstzJo1i0ceeYSnnnqKVatWVeO3Vzm/BV1E3gSGAc1EJAvPFdyjAVR1Bp4L5DYFnvYelS1S1co/e5uQ41IXERKaJw1HRURR6C50Oka9N3DgQFJSPPMd0tPT2b59O0lJSbRu3ZoBAwYA0KhRIwC++OKLkkLXo0cPOnToUFLQhw8fTmJiIomJiSQlJXHJJZcA0KdPH1avXl3yfOPHjwdgyJAhZGdnc/To0TJ5/vOf/7B+/fqS29nZ2Rw/frxC7sq2S0xMLLNdILnWrl3Lfffdx9GjR8nJyWHUqFElj7/66quJjPxxWPC1114jJSWFBQsWEB0dzccff8yKFStKflYnT56kRYsWVf3IT0kgs1zG+2m/EbgxaIlMrXOrm0gJzTHqqIioet9Dr05PuqY0aNCg5PvIyEiKiopQVZ9T66q6aE7p/URERJTcjoiIKDP+XH6/5W+73W6WLFlCXFxclbkD3S6QXJMmTWLBggWkpaUxc+ZMFi1aVPKYhg0bltlf7969WbVqVcmJQarKxIkT+d///d8qc5yu0OyWmVoVyj306Iho66GHqB49erB7926WLVsGwPHjxykqKmLIkCHMmjUL8AxF7Nixg+7du1dr33PmzAE8vf2kpCSSkpLKtF9wwQVlZrsUD1kkJiaW6alXtt2pOH78OK1bt6awsLDk9VWmb9++PPvss1x66aXs3r2bESNGMH/+fPbv3w/A4cOH+eEHzzTd6OhoCguD8zcemu9iU6tSElI4o/EZTsfwqV/LfvRo0sPpGMaHmJgY5syZw89//nPS0tIYOXIkeXl53HLLLbhcLvr06cPYsWOZOXNmmR5wIJKTk8nMzGTq1Km8+OKLFdqffPJJli9fTmpqKj179mTGjBkAXHLJJbzzzjslB0Ur2+5UPPjggwwaNIiRI0fSo4f/v8lzzjmHxx9/nIsvvpgWLVrw0EMPccEFF5CamsrIkSPZs2cPAFOmTCE1NTUoB0Udu6ZoRkaG2gUujPFtw4YNnHnmmU7HcMSwYcN4/PHHyciwQ3G+/g5EZEVlxymth25CWoGrgNzCXKdjGBMW7Jxqw2vrX6NBZAOu6X6N01EqeOu7t8jOz+bmtJudjmJqSemDjaZ6rKAb8oryQvagaFREFEVav2e5GBOo0HwXm1rlUlfoTlsUm7ZoTKCsoBvc6g7pHnqhy6YtGhOI0HwXm1oVyj306MhoG3IxJkBW0A09mvSgY1JHp2P41C25G0PaDnE6hqlhkyZNYv78+VVuM3PmTHbv3l1LiXwbNmwYgU633r59O2+88UYNJyrLCrphZIeR9G/Z3+kYPnVO6lzlsrum/nC6oLtcrmptbwXdmHLyXfkczjuMW91OR6l3Xn31VVJTU0lLS+O6664D4IcffmDEiBGkpqYyYsQIduzYAXh62NOmTWP48OF07tyZTz/9lMmTJ3PmmWcyadKkkn0mJCRw9913069fP0aMGMGBAwcqPO+KFSsYOnQo/fv3Z9SoUezZs4f58+ezfPlyJkyYQHp6OidPnvS5XXmB5po2bRoZGRn06tWLP/zhDyX3d+zYkf/5n//hnHPOYd68eSX3u91uJk6cyH333YfL5eJXv/oVAwYMIDU1lWeffRaA6dOn8/nnn5Oens5f//rX0/pdBExVHfnq37+/mtDw6NJH9cNtHzodw6evd3+t9y++X3MKcpyOUqvWr1//440P7lF96aLgfn1wT5XPv3btWu3WrZseOHBAVVUPHTqkqqo/+clPdObMmaqq+uKLL+pll12mqqoTJ07UsWPHqtvt1gULFmhiYqKuXr1aXS6X9uvXT1euXKmqqoC+/vrrqqr6wAMP6K233lry+Hnz5mlBQYGeddZZun//flVVnT17tl5//fWqqjp06FBdtmyZqmqV25UWaK7i11dUVKRDhw7Vb7/9VlVVO3TooH/6059K9jd06FBdsmSJjhs3Th966CFVVX322Wf1wQcfVFXVvLw87d+/v27dulU/+eQTvfjii6v8OftT5u/AC1iuldRVm4duQnpaYPH1REM5Y1303//+lzFjxtCsWTMAmjRpAsCSJUt4++23Abjuuuv49a9/XfKYSy65BBGhT58+tGzZkj59+gDQq1cvtm/fTnp6OhEREYwdOxaAa6+9liuvvLLM827atIm1a9cycuRIwDPM0bp16wr5At0u0Fxz587lueeeo6ioiD179rB+/XpSUz1X6CrOW+zmm2/mmmuu4be//S0ACxcuZPXq1SXHAI4dO8Z3331HTEyM/x90kFlBNyE9y6W4oNfrFRcvfKTWn1IrWRq3vNLblF5ytvxytJVdmq38c6gqvXr1YsmSJX7zBbJdILm2bdvG448/zrJly0hOTmbSpEnk5eWVbFd+adzMzEw++eQT7r77bmJjY1FV/v73v5dZHx2cOePVxtBNSM9Dj46IBqyHXttGjBjB3LlzOXTIc0XJ4suwZWZmMnv2bABmzZrFOedUeglhn9xud0lP9o033qjw+O7du3PgwIGSQl1YWMi6deuAskvjVrVddWVnZ9OwYUOSkpLYt28f//d/lV7nHoAbbriBiy66iKuvvpqioiJGjRrFM888U7IE7ubNmzlx4kSFpXxrg/XQ6zm3ulHUeuimjF69evHb3/6WoUOHEhkZSd++fZk5cyZPPvkkkydP5rHHHqN58+a8/PLL1dpvw4YNWbduHf379ycpKalk3fNiMTExzJ8/n9tvv51jx45RVFTEHXfcQa9evZg0aRJTp04lLi6OJUuWVLpddaWlpdG3b1969epF586dOfvss/0+5q677uLYsWNcd911zJo1i+3bt9OvXz9UlebNm7NgwQJSU1OJiooiLS2NSZMmceedd1Y7W3XZ8rn1nFvdLNy+kC6Nu9AluYvTcSo4ln+MzUc206NJDxJjEv0/oI6oq8vnJiQkkJMTmtevDUXVXT7Xeuj1XIREMLrTaKdjVCqpQRIDWg1wOoYxYcHvwKmIvCQi+0VkbSXtPURkiYjki8gvgx/R1CRVpdBdGLLzvIvcRew9sdfWRK8jrHdeswI5EjYTqKoLdxi4HXg8GIFM7TpReIKHv36YFftWOB3Fp6P5R3l29bNsObrF6SjGhDy/BV1VP8NTtCtr36+qywA7ahWGXOo5ndlmuRgT/mr1XSwiU0RkuYgs93XKr6l9xUMtoT7LxQq6Mf7VakFX1edUNUNVM5o3b16bT20qYT10Y+qO0HwXm1oTLj10m4cevp544glyc0P7oHbp5XtvvPFG1q9fD8DDDz/sZKxqs4Jez8VHxXNu23NpHh+an5giJILLzriM7k26Ox3FnKJwKOilvfDCC/Ts2RM4tYJe2TIHtSGQaYtvAkuA7iKSJSI3iMhUEZnqbW8lIlnAXcB93m0a1WxsEywJMQmc1/48WsS3cDpKpdJbpNOqYSunY9Q7Dz74ID169GDkyJGMHz+exx/3TGRbtWoVgwcPJjU1lSuuuIIjR46wYcMGBg4cWPLY7du3k5qaypNPPsnu3bsZPnw4w4cPr/AcvpbAPXbsGN27d2fTpk0AjB8/nueffx6ofPnd77//ntGjR9O/f3/OPfdcNm7cCHh63rfffjuZmZl07ty5pBeuqtx222307NmTiy++mP3795dkKr6IxfTp0zl58iTp6elMmDCB7du307t375LtHn/8ce6///6Sx9x7770MHTqUv/3tb5Uu7fvkk0/Ss2dPUlNTGTduXFB+T2VUtgxjTX/Z8rmhodBVqDkFOVrkKnI6SqV2Hd+lB3IPOB2jVpVfNnXm2pkVvpbuWaqqqgVFBT7bV+7zLA17ouBEhTZ/li1bpmlpaZqbm6vZ2dnapUsXfeyxx1RVtU+fPrpo0SJVVf3d736nv/jFL1RVNS0tTb///ntVVX3kkUdKlpTt0KFDyTK8pVW1BO7ChQt18ODB+uabb+qoUaNKHkMly++ed955unnzZlVV/eqrr3T48OGq6lk+d8yYMepyuXTdunV6xhlnqKrqW2+9peeff74WFRXprl27NCkpSefNm6eqZZfpbdiwYclzb9u2TXv16lVy+7HHHtM//OEPJY+ZNm2a39fVunVrzcvLU1XVI0eO+P092PK5plqyjmfxyvpXuK7ndXRO6ux0HJ/mbZ5H+8T2XNH1Cqej1BtffPEFl112GXFxcYBnCVrwLA179OhRhg4dCsDEiRO5+uqrAbjmmmuYO3cu06dPZ86cORXWaSmvqiVwR44cybx587j11lv59ttvSx7ja/ndnJwcFi9eXJIDID8/v+T7yy+/nIiICHr27Mm+ffsA+Oyzzxg/fjyRkZG0adOG884779R/WF7Fuap6XampqUyYMIHLL7+cyy+//LSfszwr6PVcqB8UBc+B0eLZOPXVxF4TK22Ljoyusj0+Or7Kdl/0FNZ4Gjt2LFdffTVXXnklIkLXrl39PkdlS+C63W42bNhAXFwchw8fJiUlxec+RAS3203jxo1ZtWqVz21KL5lb+nUFsjxwaVFRUbjdP55RXXqJXfhxmd2qXte//vUvPvvsM959910efPBB1q1bR1RU8MqwHRSt50J92iJAlETZLJdads455/Dee++Rl5dHTk4O//rXvwBISkoiOTmZzz//HIDXXnutpLd+xhlnEBkZyYMPPljmohCVLSNb1RK4f/3rXznzzDN58803mTx5csnStL6W323UqBGdOnUquUScqpbp1fsyZMgQZs+ejcvlYs+ePXzyySc+t4uOji557pYtW7J//34OHTpEfn4+77//vs/HVPa63G43O3fuZPjw4Tz66KMcPXo06EshWA+9nguXHrrNQ69dAwYM4NJLLyUtLY0OHTqQkZFBUlISAK+88gpTp04lNzeXzp07l1lCd+zYsfzqV79i27ZtJfdNmTKFCy+8kNatW5cpnJUtlRsdHc0LL7zA0qVLSUxMZMiQITz00EM88MADlS6/O2vWLKZNm8ZDDz1EYWEh48aNIy0trdLXd8UVV/Df//6XPn360K1bt5L/lMqbMmUKqamp9OvXj1mzZvH73/+eQYMG0alTJ3r06OHzMZW9rm7dunHttddy7NgxVJU777yTxo0bB/5LCYAtn1vPrT+0nnmb53Fz6s0hO5Pk1XWvUqRFTO492ekotSYUls/NyckhISGB3NxchgwZwnPPPUe/fv0czVTflt+15XNNtbSIb8GI9iNCeq3x4e2GozjT8ajPpkyZwvr168nLy2PixImOF3PjnxX0eq5ZXDPOaVu9y4jVtnaN2jkdoV564403nI5QQX3qnZ+K0D0SZmpFXlEeR/KOhOx66AD7Tuxj69GtTseodU4Nh5rQcCq/fyvo9dzag2t5cuWT5BSGbs9n6d6lvLPlHadj1KrY2FgOHTpkRb2eUlUOHTpEbGxstR5nQy71XDjMcomOiK53s1xSUlLIysrClpmuv2JjYyudf18ZK+j1XFjMQ4+of/PQo6Oj6dSpk9MxTJgJ3XexqRXh0EMvPlM0lMf5jQkFVtDruXDooRdf5MLlrt+n/xvjjw251HNdGnchLioupHvovZr2om1CWyIjQjejMaHACno91yahDW0S2jgdo0qNYxvTODa4p0gbUxeF7udsUyuO5R9jf+5+/xs66Fj+MdYcWENeUZ7/jY2px6yg13NL9izhpbUvOR2jSrtydvH2lrc5ln/M6SjGhDQr6PWc2+0O6QOi8OOFoou0fs1FN6a6QvudbGqcS10hfUAUfizoha76NRfdmOoK5CLRL4nIfhFZW0m7iMiTIrJFRFaLiC3JFkbcGvo99OJpi/XtbFFjqiuQd/JMYHQV7RcCXb1fU4BnTj+WqS1udYd8D72koNuQizFV8jttUVU/E5GOVWxyGfCq92rUX4lIYxFprap7gpTR1KD+LfvTo4nvK6+EiqaxTbmpz00kxyY7HcWYkBaMeehtgZ2lbmd576tQ0EVkCp5ePO3btw/CU5vT1b5R6P8eoiOjQ36uvDGhIBiDp74une1zzU9VfU5VM1Q1o3nz5kF4anO69ufuZ++JvU7HqFKRu4gV+1aEfE5jnBaMgp4FlL6kTAqwOwj7NbXg3z/8m/e3+r56eahwqYv3t77P1mP17yIXxlRHMAr6u8DPvLNdBgPHbPw8fLjcrpCf5RIl3nnoNsvFmCr5HUMXkTeBYUAzEckC/gBEA6jqDOAD4CJgC5ALXF9TYU3whcMsl8iISCKIqHdrohtTXYHMchnvp12BW4OWyNQql7qIiYhxOoZfURFR1kM3xo/Q/qxtalw4nFgEVtCNCYQtn1vPjewwMizWGZ/cezKxUdW7YK4x9Y0V9HquY1JHpyMEpGlcU6cjGBPyQv+ztqlR245tC4v53asPrGbdoXVOxzAmpFlBr+fe/f5dluxe4nQMv5buXco3+75xOoYxIc0Kej3nUldYjKFHR0TbRaKN8cMKej0XDhe4AM8sF5uHbkzVQv+dbGpUOFzgAjw9dJu2aEzVrKDXc+EyDz06Itp66Mb4YdMW67nxPcaTEJPgdAy/RncajeekZGNMZayg13PhMg89LirO6QjGhLzQ/6xtaoyqsvbgWg7kHnA6il9bj23lkx2fOB3DmJBmBb0ec6mLt757i42HNzodxa8d2Tv4bNdnNuxiTBWsoNdjbnUDhMUsl6gI75rodqFoYyplBb0ec6nnRJ2IiND/Mygp6DZ10ZhKhf472dSYsOqhe69aZFMXjamcFfR6rKSHHg7z0COjAez0f2OqYNMW67H4qHhu7HMjjRs0djqKX72a9qJn054lPXVjTEX27qjHoiKiaJvQ1ukYASkeQzfGVC6gz9oiMlpENonIFhGZ7qM9WUTeEZHVIrJURHoHP6oJttzCXFbsW8GRvCNOR/Hr0MlDfLjtQw6dPOR0FGNClt+CLiKRwD+AC4GewHgR6Vlus3uBVaqaCvwM+Fuwg5rgyy7I5v2t74fFBS5yC3P5eu/XHM0/6nQUY0JWID30gcAWVd2qqgXAbOCyctv0BD4GUNWNQEcRaRnUpCbowumgqE1bNMa/QN7JbYGdpW5nee8r7VvgSgARGQh0AFKCEdDUHLc7jKYtWkE3xq9ACrr4uK/8+dePAMkisgr4ObASqPDOE5EpIrJcRJYfOBD664fUdeF4YpHNQzemcoFMHcgC2pW6nQLsLr2BqmYD1wOIiADbvF+U2+454DmAjIwMW5TDYeF0YlF0RDSClPwnZIypSPwtdiQiUcBmYASwC1gG/FRV15XapjGQq6oFInITcK6q/qyq/WZkZOjy5ctPN785DQWuArILskmKSSo5cSdUFf+devoLxtRfIrJCVTN8tfntoatqkYjcBnwERAIvqeo6EZnqbZ8BnAm8KiIuYD1wQ9DSmxoTExlDs7hmTscIiBVyY/wL6GwNVf0A+KDcfTNKfb8E6BrcaKamHTx5kO+OfEda8zTio+OdjuPXe9+/R+fGnenVtJfTUYwJSaF/NMzUmL0n9rLwh4WcKDzhdJSArDm4hl3Hdzkdw5iQZQW9Hguneejgmeli0xaNqVx4vJNNjQinWS7gKeg2bdGYyllBr8eKl6INh3no4Jm6aD10YyoXHu9kUyPCrYfeMLph2AwPGeMEW5O0HktvkU73Jt2Ji4pzOkpAJvee7HQEY0KaFfR6LCYyhpjIGKdjGGOCxD6/1mPbj23n052flgy9hLrPsz5n4faFTscwJmRZQa/HtmdvZ7w9OCIAAB9RSURBVFHWIsTn+muhZ3fObr4/9r3TMYwJWVbQ6zGXuoggImxOq7d56MZUzQp6PeZWd1jNGomOjLZ56MZUIXzezSboXOoiMiI8piwCRIn10I2pihX0esztDq8eekJMAonRiU7HMCZk+V0PvabYeujOK3QX4nK7iI2KdTqKMSZAp7Ueuqm7oiOiiY4I7QtbGGMCFz6ft03QrT6wmi92feF0jIBtOryJV9e9Sr4r3+koxoQkK+j12OYjm1m1f5XTMQJ2vOA427K3UeAqcDqKMSHJCno95lZ32CzMBZ556IDNdDGmElbQ6zGXusJqlkvxeL8VdGN8C593swk6t7rDax66t4duJxcZ41tABV1ERovIJhHZIiLTfbQnich7IvKtiKwTkeuDH9UEm8sdXj30+Kh4Wsa3DKvMxtQmv/PQRSQS2AyMBLKAZcB4VV1fapt7gSRVvUdEmgObgFaqWunRK5uHHhpUNWzWcinma5ZLhESUDMlU1a6qFLgr/ln6a4+USKIiovy2u9Xt8xOEv/YoiSIyIrLS9uiIaCIkApfbRZFWHHIqbi9yF5VcK7Y67TERMYiI3/ZCd6HP1Tn9tTeIbADgv91ViJvK2wtcBShla5YgJctAn267z78dIoiO9P+35a+9+G+n9POditOdhz4Q2KKqW707mw1cBqwvtY0CieKpDAnAYcAGOsNAuBVzgCe/eZLcotwy96U2S+WKrlcA8NiyxyoUpQEtB3BR54twq5tHlj5SYZ9ntzmb8zucT54rj0eXPVqhfXi74QxJGUJ2QTZPfPNEhfZRHUcxuPVgDp48yDPfPlOh/dIzLqVvi77sytnFS2tfqtA+ptsYejXtxfZj23ltw2sV2if0mECX5C5sPrKZuZvnVmif3Gsy7Rq1Y92hdSzYsqBC+82pN9OqYStW7l/JB9s+qNB+e9/bSY5N5qs9X/Hxjo8rtP8y45c0jG7IZ1mf+Zzqeu+ge4mWaD7+4WO+3vt1mbYIIvjdWb8D4IOtH7DqQNmZVbGRsdwz8B4A3tnyDhsObyjT3iimEXf2vxOAeZvnseXoljLtzeOac0v6LQC8vuF1dh7fWaa9bUJbbuxzIwAvrX2Jfbn7yrR3TurMdT2vA+DZb5/lSP6RMu09knswtsdYIDh/e6XzBFsgBb0tUPonlAUMKrfNU8C7wG4gERirWvG/YRGZAkwBaN++/ankNUH0WdZnxEXFMaDVAKejVMuwdsMqHBhtFtes5PvzO5xP+U+eLRu2BDz/gV3Q4YIK+2yT0AbwjNP7am+X2A6A2KhYn+0dEjsAkBCd4LO9bUJbABo3aOyzvWW8J1+T2CY+25vGNQWgRXwLn+1JsUme19Gwjc/2xJjEktfhq734bOFOSZ18tsdEeHqUXRt3JT4qvkJ78Wyp7k26k9QgqUxb6U5Dr6a9aBHfokx78bERgLTmaSU/65LnLtWb7deiH52TOpdpL33FrYGtBnJmkzPLtCdEJ5R8f1abs8gtLFuQS+c9N+Vc8oryyrQ3iW1S8n0w/vZK5wm2QIZcrgZGqeqN3tvXAQNV9eelthkDnA3cBZwB/BtIU9XsyvZrQy7Om/HtDBo3aMy4HuOcjmKMCVBVQy6BHF3KAkr/l5mCpyde2vXA2+qxBdgG9DiVsKb2hNvyucaYqgXybl4GdBWRTiISA4zDM7xS2g5gBICItAS6A1uDGdQEn0tdYXVikTGman7H0FW1SERuAz4CIoGXVHWdiEz1ts8AHgRmisgaQIB7VPVgDeY2QWA9dGPqloBWW1TVD4APyt03o9T3u4GKR1JMSIuKiDqt6VPGmNBiy+fWY7em3+p0BGNMENnnbWOMqSOsoNdjC7YsYM2BNU7HMMYEiRX0emztwbUVzpozxoQvK+j1mM1yMaZuCbuDokX/+jWHtqygRaMGCOG3DkmoUBSVI0RuXAT82ek4xtQvrfrAhRXXFDpdYdc923rgBNsOneD7Aydw+1m2wFSuePmgsPsDMMZUKux66F0nPsU/PtnC4ws3c27TZjwzoT8JDcLuZThOXYUkrvw7sSnnQpgtzmWM8c3v4lw15XQX55q7bCe/eWcNZ7ZO5OVJA2me2CCI6YwxJjSd7uJcIemaAe14/mf9+X7/Ca56ZjHbD55wOpIxxjgqbAs6wHk9WvLGTYM4nlfIlc8s5tudR52OFDZyC3OZtWEW3x/93ukoxpggCeuCDtC3fTJvTcskPiaScc99xaJN+52OFBYKXAVsObqF4wXHnY5ijAmSsC/oAJ2bJ/D2tEw6NWvIja8sZ/6KLKcjhbziy2TZPHRj6o46825u0SiWOTcPZlDnJvxy3rf845MtFS4FZX5UfKFeWw/dmLqjzhR0gMTYaF6eNJBL09rw2EebuP/ddbjcVtR9CYce+oofDjPiz4v4xIbRjAlInZvAHRMVwRNj02nZqAHPf76NAzn5/OWadGKjrSdaWoRE0DS2KQ2iQnO657vf7uaX876loMjNF98dZHj3Fv4fZEw9V+cKOkBEhPDbi3vSslEsD/1rAwdzlvL8zzJIiot2OlrIaBHfgtv63uZ0jApUteTEsQEdk9mbnceOw7n+H2iMqVtDLuXdeG5n/jYunZU7jnDNjCXsPZbndCRThYIiN7+ev5rHF27m8vQ2vH7jILq1SGSnFXRjAlKnCzrAZeltmXn9QHYdPcmVT3/Jd/tsmh7A7pzdzFw7k70n9jodBYBjuYVMfGkp81ZkcfuIrvx1bDoNoiJp1ySerCMn7QC3MQEIqKCLyGgR2SQiW0Rkuo/2X4nIKu/XWhFxiUiT4Mc9NWd3acacmwdT6FbGzFjC8u2HnY7kuNzCXH44/gOF7kKno7DjUC5XPvMly384zF+uSeOukd0Q8aykmZIcR05+EUdznc9pTKjzW9BFJBL4B3Ah0BMYLyI9S2+jqo+parqqpgO/AT5V1ZCqmr3aJPH2tEyaNIxhwgtf89G60OiZOqV4lovT0xa/2XGEK57+koM5Bbx2wyCu7JdSpr1dk3gAdh6xYRdj/Amkhz4Q2KKqW1W1AJgNXFbF9uOBN4MRLtjaNYnnrWmZnNm6EdNeX8HrX/3gdCTHFM9Dd3La4vurdzPuua9IiI3i7VsyGdy5aYVt2iV7C/rhk7Udz5iwE8i7uS2ws9TtLO99FYhIPDAaeKuS9ikislxElh84cKC6WYOiScMY3rhpEEO7Nee+BWv5y8JN9XJ81skTi1SVpxdt4bY3VpLaNol3bjmbM5on+Ny2XZM4wHroxgQikILu67JAlVXAS4AvKxtuUdXnVDVDVTOaN28eaMagi4+J4vmfZXBNRgpP/ncL099aQ5HL7VgeJ8RExtC6YWtiImNq9XkLXW6mv7WGRz/cxKVpnpksTRpWniExNprk+Gib6WJMAAKZh54FtCt1OwXYXcm24wjR4ZbyoiIj+NNVqbRsFMvf/7uFgzn5PPXTfsTF1I8TkLomd6Vrctdafc5jJwu5ZdYKvtxyiNvP68KdpQ5+VqVdk3ibi25MAALpoS8DuopIJxGJwVO03y2/kYgkAUOBfwY3Ys0REe6+oDsPXd6bTzbt56cvfMXhEwVOx6qTdh7O5apnFrN022EeG5PKXRd0D6iYg2ccPeuIjaEb44/fgq6qRcBtwEfABmCuqq4TkakiMrXUplcAC1U17K40ce3gDjw9oT/rdmcz5pnF9eLj/dqDa3n222c5WVTzhXKldybL/uw8Xpk8kKsz2vl/UCkpTeLYdeQkbluXx5gqBTTFQVU/UNVuqnqGqv7Re98MVZ1RapuZqjqupoLWtNG9WzHrxkEczMnnymcWs273Macj1ajjBcfZm1vzUzc/WLOHcc99RXxMFG/fcjaZZzSr9j7aJcdT4HKz77id6WtMVer8maLVMaBjE96alkl0hDD22a9YvOWg05FqTE3PclFVZnz6PbfM+oZebRrxzi2ZdGnheyaLPyVz0W3qojFVsoJeTteWibx1SyZtG8cx8eWlvPttZcd/w1tNLp9b6HJz7ztreOT/NvKT1Na8cdNgmiac+qqO7ZK9UxfrwVCYMafDCroPrZPimDv1LPq2T+b2N1fywudbnY4UdDXVQ8/OK2TyzGW8uXQntw4/gyfH9T3tpYvbJschYnPRjfHHCnolkuKieXXyQC7s3YqH/rWBP/5rfZ06KNe4QWM6NuoY8EyTQGQdyWXMM4tZ8v0hHr0qlV+N6kFExOnvv0FUJC0TY23IxRg/6uR66MESGx3JUz/txwPvreP5z7ex/3g+j41JIyYq/P8fTG+RTnqL9KDt79udR7nhleXkF7l4ZfJAzu5S/YOfVWnfJN566Mb4YQXdj8gI4YFLe9GyUSyPfbSJQzkFPHNtPxJj7WIZxT5cu5c75qykWUID3rxpEF1bJgb9OVKaxLHk+0NB368xdUn4dzVrgYhw6/AuPDYmlSVbDzHuua/YH+ZT6BbtXMQLa144rX2oKs9/tpVps1ZwZutGLLj17Bop5uCZurg3O4/8IleN7N+YusAKejVcndGOFyZmsPXACa56ZjFbD+Q4HemUHS84zrH8U59rX+Ryc9+Ctfzxgw1c2LsVb940mGanMZPFn3ZN4lGF3UfD+z9SY2qSFfRqGt69BbOnDCY338WYGUtYtfOo05FOiVvdpzxl8XheIZNfWc6sr3cwbdgZPDW+X41fhNumLhrjnxX0U5DWrjHzp2XSsEEk45/7ik827nc6UrW51X1KUxZ3HT3J1TOWsHjLQf50VR/uGR2cmSz+2IUujPHPCvop6tSsIW9PO5szWjTkxleXM2/5Tv8PCiEudVW7h74m6xiX/+NLdh05yczrBzJ2QPsaSldRy0axREeKTV00pgpW0E9D88QGzJ5yFplnNOVX81fz1H+/C5uLZbRu2JpOSZ0C3n7hur1c8+wSYiIjeOuWTM7pGtxpif5ERghtG8dZD92YKti0xdOU0CCKFycO4Nfzv+XxhZvZl53P/Zf2IrIWhiFOx9ltzw5oO1XlxS+28ccPNpCa0pgXfpZB88SaO/hZlXZN4smyMXRjKmUFPQhioiL4yzXptGwUy7OfbeXA8XyeGJde4wcKa1qRy80D763nta9+YHSvVvx1bLqjFwBp1ySeD9fW74t7G1MVG3IJkogI4TcXncnvftKTD9ft5WcvLuVYbqHTsSo1d9NcZm+cXWl7Tn4RN766nNe++oGbh3Tm6QnOX82pXXI8h08UkJNf5GgOY0KV9dCD7IZzOtEisQF3z/2Wq59dzCuTB9I6Kc7pWBXkFuZWuo7LnmMnuf7lZXy3P4eHr+jDTwfV3sHPqhRfMPrjDftKZr0YE45aNoqlbePg1wUr6DXgkrQ2NE2I4eZXV3Dl056i3q2GzqA8VS51ERNR8eLMa3cd44ZXlnEi38XLkwYwpJtzF/Mur3g99V/MXuVwEmNOz9ShZzD9wh5B368V9BqSeUYz5tx8FpNeXsqYZxbzwsQBDOzUxOlYJXydWPSf9fv4+ZsradIwhvnTBtKjVSOH0vnWo1Uj3pqWyfG80B3KMiYQNfUJ0wp6DerZxlOAJr68lGtf/Jonx6Uzundrp2MBFU8sevnLbfzP++vp0zaJF36WQYtGsQ6mq1z/DslORzAmZAV0UFRERovIJhHZIiLTK9lmmIisEpF1IvJpcGOGr3ZN4pk/NZNebRoxbdY3vLZku9ORAOjSuAsdGnUAYNbXP/DAe+sZeWZLZk8ZHLLF3BhTNb89dBGJBP4BjASygGUi8q6qri+1TWPgaWC0qu4QkRY1FTgcNWkYwxs3Dua2N77hd/9cx77sfO6+oFtQLy5RXSM6jCj5fvGWQ6Qkx/HMtf1Dfv68MaZygfTQBwJbVHWrqhYAs4HLym3zU+BtVd0BoKrht7hJDYuLieTZ6/ozbkA7nvpkC/e8tZpCl9vpWABkHT1Jp2YNrZgbE+YCKehtgdILlWR57yutG5AsIotEZIWI/MzXjkRkiogsF5HlBw4cOLXEYSwqMoL/vbIPt4/oytzlWUx5dTm5Bc7Mqf77yr/zwdYPANh1JJeU5NCbWmmMqZ5ACrqvblv5BUuigP7AxcAo4Hci0q3Cg1SfU9UMVc1o3jx0psPVJhHhrpHd+OMVvfl08wHGP/81h3Lyaz1HgasAN25OFrg4mFNQI3NijTG1K5CCngW0K3U7BdjtY5sPVfWEqh4EPgPSghOxbpowqAMzru3Pxj3ZjJmxpNbX+Xapi0iJZNdRz+qFKcl2oo4x4S6Qgr4M6CoinUQkBhgHvFtum38C54pIlIjEA4OADcGNWvdc0KsVb9w0iMMnCrji6cWs3XXqVxCqruJ56Fne1QttyMWY8Oe3oKtqEXAb8BGeIj1XVdeJyFQRmerdZgPwIbAaWAq8oKpray523dG/QxPemnYWDaIiGPfcV3zx3cFaed4idxGREknWEeuhG1NXBDQPXVU/UNVuqnqGqv7Re98MVZ1RapvHVLWnqvZW1SdqKnBd1KVFIm9NyyQlOY7rZy7ln6t21fhz9mvRj5TEFLKOnCQ6Umjh0JK4xpjgsdUWQ0SrpFjm3HwW/don84vZq3j+s601+nwXdb6IHk16sOvoSdo0jquVy8gZY2qWFfQQkhQXzSuTB3JRn1b88YMNPPj+etzu4F8BSVVxqxtVJcumLBpTZ1hBDzGx0ZH8fXw/JmV25MUvtnHHnFXkF7mC+hyF7kIe/OpBluxeQtaRk6Q0tvFzY+oCW5wrBEVGCH+4pCctG8Xypw83cjAnn2ev609ibHRQ9u9Sz38QRW44cDyfttZDN6ZOsB56iBIRpg07gz9fncbSbYcZ++xX7M/OC8q+3epZcuDICc9ZqjbkYkzdYAU9xF3VP4UXJmaw/dAJrnxmMd8fyDntfRb30A/leNYVtymLxtQNVtDDwLDuLZg9ZTAnC1yMeWYxK3ccOa39ud2eHvrB48UF3XroxtQFVtDDRGpKY96alkmjuGjGP/8V/92475T3FRMZQ2abTHJyGxIVIbS09c+NqROsoIeRjs0aMn9qJl1bJHLTqyuYu2yn/wf5EB8dz8gOIzl2PIHWjWNt2Vxj6ggr6GGmeWIDZk8ZzNldmvHrt1bz94+/Q7V6c9Xd6uZk0Ul2HjlhUxaNqUOsoIehhg2ieHFiBlf2bcuf/72Z3/1zLa5qnIC098ReHl32KDuPb7Upi8bUITYPPUxFR0bw52vSaNEolhmffs/B4wU8MS6d2OhIv491qQuXWzmUU2QHRI2pQ6yHHsZEhOkX9uAPl/Tko/V7ue7FrzmWW+j3cW51k1vgAsSmLBpTh1hBrwOuP7sTT43vx7c7j3H1s4vZ7b1oRWVc6uJEfhGqEdZDN6YOsYJeR1yc2ppXJg9kz9E8rnx6MZv2Hq90W7fbzYn8IkDs0nPG1CFW0OuQs85oytypZ+FW5eoZi/l66yGf2yXHJtNE+hKhDWmdZHPQjakrrKDXMWe2bsTbt2TSPLEB1720lP9bs6fCNk3jmiIne9IqIZmoSPsTMKausHdzHZSSHM/8qZn0btOIW974hleXbC/TXuAq4IcjB2ibbFcpMqYusYJeRyU3jGHWjYMZ0aMlv//nOh77aGPJCUgbD29km3seLRoXOZzSGBNMARV0ERktIptEZIuITPfRPkxEjonIKu/X74Mf1VRXXEwkM67tx/iB7fjHJ9/z6/mrKXS5yS8q4mSBizaNE5yOaIwJIr8nFolIJPAPYCSQBSwTkXdVdX25TT9X1Z/UQEZzGqIiI3j4ij60bBTLE//5jgM5+Vw6KA8FO+3fmDomkDNFBwJbVHUrgIjMBi4Dyhf0WrN0z1K+O/pdmfsiJILxPcYDsHjXYrZlbyvT3iCyAWO6jQHg052fkpWTVaa9YXRDLu9yOQAf//Axe3P3lmlPapDETzp7/r/6cPuHHDpZdgZJs7hmjOo4CoD3vn+P7ILsMu2tGrZiRPsRALzz3TvkFuWWaW+X2I4hKUMAmLtpLoXusicIdU7qzFltzgJg1oZZFX4m3ZK7MaDVAIrcRczZNKdC+7DUXrRI7MN9/1zBqpwvAUhp3LDCdsaY8BVIQW8LlF7WLwsY5GO7s0TkW2A38EtVXVd+AxGZAkwBaN++ffXTehW5izhZVPbkmSj58aUUugsrtJfmqz064sfLuxW4Cyq0x0f92JstcFVsL3AVVNleukDnu/L9tue78qtsL77qULEi94/j4b5ee5G7iJ8Oak9SvPLLhUtwF7alc9MmFbYzxoQv8bdSn4hcDYxS1Ru9t68DBqrqz0tt0whwq2qOiFwE/E1Vu1a134yMDF2+fPlpvwBTfd/sOMJHa/dyz+geRNjSucaEFRFZoaoZvtoC6aFnAe1K3U7B0wsvoarZpb7/QESeFpFmqnrwVAKbmtWvfTL92ic7HcMYE2SBzHJZBnQVkU4iEgOMA94tvYGItBIR8X4/0Ltf36cpGmOMqRF+e+iqWiQitwEfAZHAS6q6TkSmettnAGOAaSJSBJwExml1r7pgjDHmtPgdQ68pNoZujDHVV9UYup0paowxdYQVdGOMqSOsoBtjTB1hBd0YY+oIK+jGGFNHODbLRUQOAD+c4sObAaF60lKoZgvVXGDZTkWo5oLQzRaquaB62TqoanNfDY4V9NMhIssrm7bjtFDNFqq5wLKdilDNBaGbLVRzQfCy2ZCLMcbUEVbQjTGmjgjXgv6c0wGqEKrZQjUXWLZTEaq5IHSzhWouCFK2sBxDN8YYU1G49tCNMcaUYwXdGGPqiLAr6CIyWkQ2icgWEZnucJaXRGS/iKwtdV8TEfm3iHzn/bfWryQhIu1E5BMR2SAi60TkF6GQTURiRWSpiHzrzfVAKOQqlzFSRFaKyPuhkk1EtovIGhFZJSLLQyWXN0djEZkvIhu9f29nhUI2Eenu/XkVf2WLyB0hku1O79//WhF50/u+CEqusCroIhIJ/AO4EOgJjBeRng5GmgmMLnffdOBj7yX4Pvberm1FwN2qeiYwGLjV+3NyOls+cJ6qpgHpwGgRGRwCuUr7BbCh1O1QyTZcVdNLzVUOlVx/Az5U1R5AGp6fnePZVHWT9+eVDvQHcoF3nM4mIm2B24EMVe2N5xoT44KWS1XD5gs4C/io1O3fAL9xOFNHYG2p25uA1t7vWwObQuDn9k9gZChlA+KBb/BccDwkcuG5vOLHwHnA+6Hy+wS2A83K3RcKuRoB2/BOrgilbOXyXAB8GQrZgLbATqAJngsMve/NF5RcYdVD58cfRrEs732hpKWq7gHw/tvCyTAi0hHoC3xNCGTzDmmsAvYD/1bVkMjl9QTwa8Bd6r5QyKbAQhFZISJTQihXZ+AA8LJ3mOoFEWkYItlKGwe86f3e0Wyqugt4HNgB7AGOqerCYOUKt4Lu6xL1Nu+yEiKSALwF3KGlLuTtJFV1qedjcAowUER6O50JQER+AuxX1RVOZ/HhbFXth2eo8VYRGeJ0IK8ooB/wjKr2BU7g7HBZBd7rIF8KzHM6C4B3bPwyoBPQBmgoItcGa//hVtCzgHalbqcAux3KUpl9ItIawPvvfidCiEg0nmI+S1XfDqVsAKp6FFiE5xhEKOQ6G7hURLYDs4HzROT1UMimqru9/+7HMw48MBRy4Xk/Znk/ZQHMx1PgQyFbsQuBb1R1n/e209nOB7ap6gFVLQTeBjKDlSvcCvoyoKuIdPL+zzsOeNfhTOW9C0z0fj8Rz/h1rRIRAV4ENqjqX0Ilm4g0F5HG3u/j8Pxxb3Q6F4Cq/kZVU1S1I56/q/+q6rVOZxORhiKSWPw9nvHWtU7nAlDVvcBOEenuvWsEsD4UspUynh+HW8D5bDuAwSIS732fjsBzIDk4uZw8WHGKBxUuAjYD3wO/dTjLm3jGwQrx9FZuAJriObD2nfffJg7kOgfPUNRqYJX36yKnswGpwEpvrrXA7733O/4zK5dzGD8eFHX6Z9YZ+Nb7ta74b97pXKXypQPLvb/TBUByCGWLBw4BSaXuczwb8ACejsxa4DWgQbBy2an/xhhTR4TbkIsxxphKWEE3xpg6wgq6McbUEVbQjTGmjrCCbowxdYQVdFOniIjLu7reWhGZJyLx1XhsGxGZX83nWyQiIXnhYVP/WEE3dc1J9ayy1xsoAKYG8iARiVLV3ao6pmbjGVNzrKCbuuxzoIv3bMuXRGSZdxGpywBEZJK3F/8ensWvOop3bXvvGtUve9chXykiw733x4nIbBFZLSJzgDjv/ZEiMtP7yWCNiNzp0Gs29ViU0wGMqQkiEoVnHY8Pgd/iOZV/snfpgaUi8h/vpmcBqap62LsyZbFbAVS1j4j0wFPwuwHTgFxVTRWRVDxLAIPnjMm23k8GFC9xYExtsh66qWvivMvzLsezbsaLeNY/me69fxEQC7T3bv9vVT3sYz/n4DktG1XdCPwAdAOGAK9771+N55R3gK1AZxH5u4iMBkJidUtTv1gP3dQ1J9WzPG8J7yJIV6nqpnL3D8Kz5KsvvpZqLlZhvQxVPSIiacAoPL37a4DJ1QluzOmyHrqpDz4Cfu4t7IhI3wAe8xkwwbt9Nzw9+k3l7u+NZ8ExRKQZEKGqbwG/w7OMrDG1ynropj54EM/ViFZ7i/p24Cd+HvM0MENE1uC5RuskVc0XkWfwXKGneCXLpd7t23rvL+4k/SbIr8EYv2y1RWOMqSNsyMUYY+oIK+jGGFNHWEE3xpg6wgq6McbUEVbQjTGmjrCCbowxdYQVdGOMqSP+H7b4nhowDSLXAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_20_0.png" }, "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEWCAYAAAB7QRxFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3gUVdvH8e/JpkMIkIQaSKgBAiEgRZBeRJHiqwgoIIgKWFCwYgcpovJYsCE+Ko9IFRQFLEgJSJMEiZRQpHcIkEJ6sjnvH7uJCemkzG5yf64rF7t7ZnZ/uwl3JjNn7lFaa4QQQtgvB6MDCCGEKB4p5EIIYeekkAshhJ2TQi6EEHZOCrkQQtg5KeRCCGHnpJALUQxKqZNKqT6FWM5fKaWVUo5lkaswrHkaG51DFJ8U8gpKKTVcKfWnUipeKXXZevtxpZQyOptRlFIhSqlHDHrtqUqpb0vx+Q17b6L0SSGvgJRSzwIfAu8CtYCawATgNsC5DHPYzNapEHZNay1fFegL8ATigXsLsdw3QCRwCngVyy9+FyAaaJllWR8gEahhvT8ACLcutx0IyrLsSeBFYC+QDDQGNDAaOA1cAV7JsvxU4DvgW+A6sA9oCrwEXAbOALffkPtL4AJwDpgBmKxjY4CtwBwgCjgB3GkdmwmYgSQgDvg4j89llPXzuAq8Yn0/faxjDsAU4Jh1fDlQ3Trmb32f44Dz1nzPWsfuAFKAVOtr/53Ha5+0vu8Ia/6vAVfrWDVgjfX7FWW97Zvfe7PmmQD8Y13nE0BZxxoDm4EY6/dkmdE/u/KVz/9XowPIVxl/wy1FIw1wLGC5b4AfAQ9rEToCPGwd+wqYmWXZJ4BfrbfbWgtsR8BkLdAnARfr+EksRb4e4JalwH1hvd8aS4Fvbl1+qrUA9QMcrblOWIuoE/AocCJLllXA50AloAawCxhvHRtjLZaPWrM9Zi2qGcUrBHgkn8+khbUQdsPyC+0962eZUcgnATsBX+v458AS61jG+1xizdbKWnT7ZHmf3xbwPTkJ7Ld+dtWBbcAM65gXcC/gbv2efQesyrJujvdmzbMGqArUt+a5wzq2xPoZOwCuQBejf3blK5+fDaMDyFcZf8NhJHDxhse2Y9l6TrQWKZO1mLbIssx4IMR6uw9wPMvYNuBB6+3PgOk3PP9hoLv19klgbJaxjALnm+WxXcBw6+2pwO9ZxgZai2nGVraHdf2qWHYRJQNuWZa/H9hkvT0GOJplzN26bi3r/YIK+evA0iz3K2HZks4oxgeB3lnGa2P5xeGY5X02yzL+DvBllvdZmEI+Icv9/sCxPJYNBqKy3M+rkHfJcn85MMV6+xtgftbvi3zZ7pfsI694rgLeWfdPa607a62rWsccAG8s+8pPZVnvFFDXensj4KaU6qiU8sNSNH6wjvkBzyqlojO+sGxB1snyXGdyyXUxy+0EoHKW+5ey3E4ErmitzVnuY13eD8tW+oUsr/05li3zHK+jtU7Ism5h1MmaXWsdj+Uzy+AH/JDltQ9i2aVRM8syWd/7KbJ/LoWR6/pKKXel1OdKqVNKqVhgC1BVKWUq4Pny+txfABSwSyl1QCk1tog5RRmSQl7x7MCy1To4n2WuYNmS9MvyWH0s+5zRWqdj2Xq7H3gAWKO1vm5d7gyW3S5Vs3y5a62XZHmu0mq5eQbLe/PO8tpVtNaBhVy/oFwXsPxSAizFE8sujayvf+cN791Va30uyzL1styuj2XXTmFeu6D1nwUCgI5a6ypY/rICSzEuyvNbFtb6otb6Ua11HSx/jX0qUxVtlxTyCkZrHQ1Mw/Ifc4hSqrJSykEpFYxlVwHWrd3lwEyllId1q/sZLAccMywGhgEjrLczfAFMsG6tK6VUJaXUXUopjzJ4bxeAdcB/lFJVrO+rkVKqeyGf4hLQMJ/xFcAApVQXpZQz8CbZ/w/Nw/KZ+QEopXyUUjf+wnzNuvUcCDwELMvy2v5KqYL+Tz6hlPJVSlUHXs6yvgeWv06irWNvFPG9ZaOUuk8p5Wu9G4XlF4E5n1WEgaSQV0Ba63ewFOYXsByYvIRlF8SLWPaXA0zEMrvlOJaZHouxHOTMeI4/reN1gF+yPB6G5WDix1gKwFEs+6bLyoNYdgtlzOxYgWVfdWF8CAxRSkUppebeOKi1PoDlwO5iLFvnUcDZG9b/CVinlLqO5cBnxxueZjOWz2QDMEdrvc76+HfWf68qpf7KJ+NiLL+sjlu/Zlgf/wDLweIr1tf9tSjvLRftgT+VUnHW9/S01vpEIdYTBsg4Wi+EsHFKqZNYDliuNzqLsC2yRS6EEHZOCrkQQtg52bUihBB2TrbIhRDCzhnStMjb21v7+/sb8dJCCGG3du/efUVr7XPj44YUcn9/f8LCwox4aSGEsFtKqVO5PS67VoQQws5JIRdCCDsnhVwIIeycFHIhhLBzUsiFEMLOSSEXQgg7J4VcCCHsnFzFvILbdm4bey7vyfbYuKBxOJuc2XpuK+GXw3Os82SbJwHYeHojEVcjso05OTgxvvV4AH47+Rv/RP2TbbySUyUeavkQAKuPreZUbPZpsVVdqjKyxcjM9XvV64WTyakY71CI8k8KeQWmteblrS9zLekaKvNCMjC25VicTc7sPL+TbyK+ybFeRiH/49wfrDyyMtuYu5N7ZiHfcHoDv57I3hbbx80ns5D/dvI3tpzdkm3cr4ofI1uMJCE1gXl/zyMhNYH/a/J/xX+zQpRjhjTNateunZYzO42XkJrA26Fv07VuV/r49TE6TjZaa4asHgLAioErUEoVsIYQ5Z9SarfWut2Nj8s+8grM3cmdaZ2n2VwRB1BKMbL5SI5EHSH0YqjRcYSwaVLIK7BL8Zew5TbG/Rv2p5pLNRYeXGh0FCFsmhTyCkprzdA1Q5m2Y5rRUfLkYnJhaMBQNp/ZzKX4S0bHEcJmycHOCupEzAmuJV2jlXcro6Pk6/5m99PXry81K9U0OooQNksKeQUVdslysLl9rfYGJ8mfl5sXXm5eRscQwqbJrpUKKvRiKDXca1DPo57RUQqUYk5hyh9TWHJoidFRhLBJskVeAWmtCb0Yyq11brWLaX3OJmcuxF1gx/kd/HnhTwAcHRyZ030OAN9GfJv5F0aGSk6VmNllJgBf7vuSfVf2ZRv3cvXitU6vAfBp+KcciTqSbbx2pdq82OFFAN7f/X6OE5caeDbg6bZPAzB712wuxl/MNh5QPYDHWj8GwNTtU4lOjs423tqndeZ8+pf+eInEtMRs4x1qdeCB5g8A8EzIM6Tr9Gzj3Xy7cU+Te0g1p/L8lue5UR+/PgxoOIDrKdd5bdtrOcYHNBxAH78+XEm8woydM3KM39vkXrr6duVc3DneDX03x/iI5iNoX6s9x6OPM3fP3BzjD7V8iNY+rTl49SCf7/08x/hjrR8joHoA4ZfDWXBgQY7xp9s+TQPPBuy8sJOlh5bmGH+x/YvUrlybzWc288PRH3KMv97pdaq7VmfdyXX8fOLnHOOzuszC3cmd1cdWs+H0hhzjc7rPwdHBke+OfMe2c9uyjRXnZ693/d4MbDQwx+sVlxTyCihdp/NGpzeo5lrN6CiF9kTwE7wb9i6nr58GLGeQZriWdC3z8QxVnKtk3r6SeCXHeJI5KfP25YTLOcYd1L9/rF6Mv5hj3N3RPfP2hbgLnIk7k23cy/Xf3UHn485zJelKtvG6letm3j57/SzxafHZxhtXbZxtPE2nZRuPSooCQKNzZAOISY4BLN/r3MZjU2IBSEtPy3U8LjUOsPw1lOt4imU82Zyc63jGL6bEtMR8xxNSE3IdTzGnABCfEp/reGp6aub7yG3cnG7OdzzjF2N0cnSu4xrLbK6opKgc48X52bvxF3pJkROChBDCTsgJQSLThtMbcvRIEULYLynkFYzWmhk7Z+TaQ0UIYZ+kkFcwJ2NPciXxCu1r2va0QyFE4dndwc6E1IQcR/AdlAPuTpaDT/Gp8TlOOzc5mHBzdAP+PUiTlaODI66OrnmOO5mccDG5oLUmPjU+z/F0nU5CakKOcWeTM84m5zzHXUwuOJmcMKebc8xeyDqelp5GUlpSznFHF5wc8h53dXTF0cGR1PRUtp/fDtj+/HEhROHZXSF/YO0DHIs5lu2x2+rcxry+8wC4+8e7c0wF6+vXl/d6vAfA7Stv53rK9Wzjdze+m+m3TQeg69KuOWYIjGg+gikdppCSnkKnJZ1yZHq01aM81fYpopOj6b6se47xp9s+zSOtHuFc3Dn6f98/x/jLHV/m/mb3czT6aGbHv6xmdpnJoEaD2HdlHw/+8mCO8Q96fEBvv97svLCTx9Y/lmP8876f07lOZzae3sjsXbPtZv64EKJw7K6QP9TyoRxTeLJO5RofND7HVrNfFb/M2xPbTMyc2pQh61SvZ9rlnLPbvHpzAEzKxHPtnsuRKeM0dzdHt1zH29ZoC4Cni2eu421qtAHAx90n1/FAr0AA6lSqk+t442qW/P5V/HMd96/iD0BAtQCea/ccQT5BdjF/XAhRODL9UAgh7IRMPxRCiHJKCrkQQtg5KeRCCGHnpJALIYSdk0IuhBB2Tgq5EELYuRIp5EqpO5RSh5VSR5VSU0riOYUQQhROsQu5UsoEfALcCbQA7ldKtSju8wohhCickjizswNwVGt9HEAptRQYDOTZJ/Xw4cP06NEj22NDhw7l8ccfJyEhgf79c57GPmbMGMaMGcOVK1cYMiTnaeyPPfYYw4YN48yZM4waNSrH+LPPPsvAgQM5fPgw48ePzzH+6quv0qdPH8LDw5k0aVKO8VmzZtG5c2e2b9/Oyy+/nGP8gw8+IDg4mPXr1zNjRs4rrnz++ecEBASwevVq/vOf/+QYX7hwIfXq1WPZsmV89tlnOcZXrFiBt7c3CxYsYMGCBTnGf/75Z9zd3fn0009Zvnx5jvGQkBAA5syZw5o1a7KNubm58csvvwAwffp0NmzIfsUULy8vVq5cCcBLL73Ejh07so37+vry7bffAjBp0iTCw8OzjTdt2pT58+cDMG7cOI4cyX41nuDgYD744AMARo4cydmzZ7ONd+rUibfeeguAe++9l6tXr2Yb7927N6+9ZrkKzp133kliYvZ+NQMGDOC55yxnvN74cwfysyc/e/b7s5ehJHat1AWyXh7lrPWxbJRS45RSYUqpsNTU1BJ4WSGEEFACp+grpe4D+mmtH7HeHwV00FpPzGsdOUVfCCGKrjRP0T8LZG2l5wucL4HnFUIIUQglUchDgSZKqQZKKWdgOPBTCTyvEEKIQij2wU6tdZpS6kngN8AEfKW1PlDsZEIIIQqlRPqRa61/Bn4uiecSQghRNHJmpxBC2Dkp5EIIYeekkAshhJ2TQi6EEHZOCrkQQtg5KeRCCGHnpJALIYSdk0IuhBB2Tgq5EELYOSnkQghh56SQCyGEnZNCLoQQdk4KuRBC2Dkp5EIIYefsrpDHJsn1PoUQIqsS6UdeVnZ+Op6gy6vQzo4oo8PYs+aD4P9yXi1dCGGf7KqQuze+jUXnY+lU34uWdT2NjmOfjq6HU9uMTnFTzDExaLPZ6BhCFIupcmWUs3OJPqddFfJWfUfx9ummfHwmls3De1DVvWQ/jAohLQn2f290iiKLWbuW888+Z3QMIYqt3rxPqNyjV4k+p10VcqUUr97Vgrvm/sGHG/7hjYGBRkeyPy5VIDkWtAZlPzuoUnasATQ128Yg+9WEPXNxulLiz2lXhRygee0qDGtfn4U7TjHyVj8a+VQ2OpJ9cfGA9DTLlrmTm9FpCs185SIOTprqk940OooQxdO0U4k/pV0V8qSICFLOnOVJUyqXLx7gu/+c5PGejY2OZV+OXcT1ugnnpFj7KuTX4zG5AB0eNTqKEDbHrgp59IoVRC1eAkDG3tJzq4zLY69cqlWjYfJ18KhpdJRCM8clYHK1u9myQpQJuyrkXuPHU3XYcABSzWYe/WY3Lo4OfDqiLSYH+U9eGFfeeZ2E3X9BcozRUYrEHJ+Eyc1kdAwhbJJdFXKnmjVxqmnZinQFxoysyoRv/+KHGDdG3upnbDg74Vy3Dte3h6OTYu3qmGF6QgrOPjJLSYjc2PVmbL/AWnRsUJ33fj9CTKKc8VkYpupeoBXpUZFGRykSc2IaDpVcjY4hhE2y60KulOK1AS2ISkjhk01HjY5jF0xePgCYr142OEnhaa0xJ2lMHu5GRxHCJtl1IQdoWdeTIW19+XrbCU5eiTc6js0zeVt2TZmvlfxc1tKSHh8PGkyVKxkdRQibZPeFHOD5fgE4mRyY9fNBo6PYPJNXbQDMUdcMTlJ45mjLgVmTZxWDkwhhm8pFIa9RxZUnejZmXcQlth+zny1NI5i8vAAwR0cbnKTw0q9Z9uebPKW/jhC5KReFHODhLg2oW9WN6WsOYk7XRsexWaaqVQEwx8QanKTwzFcuAOBQrbrBSYSwTeWmkLs6mZhyZzMOXohlxe4zRsexWRlbtebYOIOTFF7GgVlTdR+Dkwhhm8pNIQcYEFSbW/yq8e5vR4hLTjM6jk1Sjo44uCjM1xOMjlJomYW8mhRyIXJTrgp5xnTEK3HJfCrTEfNkcnPEHJ9kdIxCM0dfBf6dcSOEyK5cFXKA4HpV+b82dfnv1hOcuWY/W51lyeTuhDk+xegYhZYeHYVy0Kgq3kZHEcImlbtCDvDCHQE4KJj96yGjo9gkU2VXzIn2c6Udc0wMDs7pKDeZtSJEbopVyJVS7yqlDiml9iqlflBKVS2pYMVR29ON8d0asXbvBcJO2s986bJi8nDHnJhudIxCM8fGYXJOB1cp5ELkprhb5L8DLbXWQcAR4KXiRyoZ47s3pFYVV95cE0G6TEfMxuRRGXMykG4fW+Xm63GYnDU4exgdRQibVKxCrrVep7XOmB6yE/AtfqSS4e7syAt3BLD3bAyrws8ZHcemmDw9SE91QCfYx0lB5vhESy9yaVUsRK5K8n/GWOCXvAaVUuOUUmFKqbDIyLLpvHd3cF2CfD15+9dDJKTIdMQMmScFXbaPX3Dm+GRMbnbVcVmIMlVgIVdKrVdK7c/la3CWZV4B0oBFeT2P1nq+1rqd1rqdj0/ZzAd2cFC8PqAFl2KT+Xzz8TJ5TXtgsp4haY68aHCSwklPSMVUycXoGELYrAI3c7TWffIbV0qNBgYAvbXWNrczup1/de4Kqs3nW44xvEM9anvaz3UqS4upmrXfyrVLBicpmE5NJT0lHYfK0otciLwUd9bKHcCLwCCttc1O2p5yRzPSNbzz62Gjo9gEk1cNAMxXbf/iEuZYS08YU2XpRS5EXoq7j/xjwAP4XSkVrpSaVwKZSly96u480qUBP+w5x57TUUbHMZzJx9rK1g56kmc09zJVkRkrQuSluLNWGmut62mtg61fE0oqWEl7vGdjvCu7MGPtQWxwD1CZyizkUbb/S80cY5lZY/KQXuRC5KXCzOeq7OLI8/2asvtUFGv2XjA6jqEcqtcCpTHHxBgdpUDp1oymajZxrpkQNqnCFHKAIbfUo0XtKsz+5RBJqfZxMkxpUC6VMbmk20VP8ozdPxkHaIUQOVWoQm5ysHRHPBedyJdbTxgdxzhKYbKTVrbmq5aZNQ5SyIXIU4Uq5ACdGnnRL7Amn2w6yuVY+2nlWtJMbg6Y4+ygkEdZt8ir1zA4iRC2q8IVcoCX+zcn1ZzOnHUVdzqiyd0Jc1yy0TEKZL52DQendJR7NaOjCGGzKmQh9/OqxEO3NeC73WfZf872D/iVBlMlZ8wJqUbHKFB6TJS186HMWhEiLxWykAM82asx1d2dmb4mokJORzRVdsOcaLb5926OicVBWtgKka8KW8iruDoxuW9T/jxxjd8O2EfPkZJk8nBHm0EnJhodJV/m69ctLWxdZItciLxU2EIOMLx9PQJqejDr50Mkp1Ws6YgZZ0qao227la05LkF2rQhRgApdyB1NDrw6oDmnryWwYNtJo+OUKZOnpTDa+klB5rgk60UlKhsdRQibVaELOUDXJj70blaDjzYeJfK67c/iKCmZPcltuHGW1hpzQjImd0dQyug4QtisCl/IAV6+qzlJqWbe+/2I0VHKjKm65Yr0ttyTXCckgFljcpcWtkLkRwo50MinMqM6+bEs9DQHL9j+aeslweRlubhHxpmTtiijha1DZekhL0R+pJBbPd27CR6uTsxYWzGmIzraQU/yjP33Jo9KBicRwrZJIbeq6u7M5D5N2Hb0KhsOXjY6TqlTlavj4JiOOeqa0VHyZI7OKOTSi1yI/Eghz2LErX408qnEzJ8PkpKWbnSc0uXigYNzema/b1tkjrUW8qoy9VCI/Eghz8LJ5MCrd7XgxJV4Fu48ZXSc0uVaxdLKNtp2jwlk7lqpWt3gJELYNinkN+gR4EPXJt58uP4IUfEpRscpPS5VcHTWmGPjjE6Sp3Qp5EIUihTyGyhl6Vkel5zGB+vL8XREFw/LFvn1eKOT5Ml87QoojfKUQi5EfqSQ56JpTQ8e6Fifb/88zT+Xrhsdp3Q4ulguLhFnuz3ZzdeuYHJOR0nDLCHyJYU8D5P7NMXd2cTMnw8aHaXUmCo5YU5MQZtts8+MOSYKk4v0WRGiIFLI8+BV2YWnejUh5HAkIYfL53REUyUX0P+eeGNrzNHRmJy0tLAVogBSyPMxurM//l7uzFh7kDRz+ZuOaLKeMZluo42z0mNjLVvkLlLIhciPFPJ8ODs68FL/5hy9HMfiXaeNjlPiTFUsHQVttZWtOTYOByfZtSJEQaSQF+D2FjXp1NCL938/QowdXBqtKDJa2abZaiGPS7BukUshFyI/UsgLoJTi1QHNiU5MZe7Gf4yOU6JMnpZdFra4Ra7T0khPTJGLSghRCFLICyGwjifD2tXjf9tPcjzSdk+gKSpTNcuV6W2xkJuvW6Z9mlwUOLkbnEYI2yaFvJCeub0pLo4OzPr5kNFRSoxDVS9QGnOU7RXyzLM6K7nIRSWEKIAU8kKq4eHKE70as/7gJbYdvWJ0nBKh3KpgckrHHGV77yejz4pDZdkaF6IgjkYHsCdjb2vA4j9PM31NBGuf6orJwc63FF2qYHJNJ3r5SqKXrzQ6Ta4cpRe5EAWSQl4Erk4mXrqzOU8s/ovlYWe4v0N9oyMVj4sHtdrGkOD/OLh7G50mB4eDS3D1q2Z0DCFsnhTyIurfqhbt/avxn3WHGRBUGw9XJ6Mj3TxXTyrVSqHSiAFQr73RaXL6dAm4VzU6hRA2T/aRF1FGd8QrcSl8sumY0XGKJ2N+drJtntlJUozMIReiEKSQ34Qg36rc29aXr7ae4PTVBKPj3DwX6yXUkm20w2NyrMwhF6IQpJDfpBfuCMDkoHjrFzvujphRJJNssGlWerrlF4xskQtRoBIp5Eqp55RSWille0fMSknNKq5M6N6IX/Zf5M/jV42Oc3NseYs85TqgZYtciEIodiFXStUD+gLlr6tUAcZ1a0htT1emr40gPV0bHafonDMKuQ1ukWf8lSAtbIUoUElskb8PvADYYSUrHjdnEy/e0Yz952JZ+ddZo+MUnYODpZjb4hZ5kvUArOxaEaJAxZp+qJQaBJzTWv+tCjiNWik1DhgHUL++nc+/zmJQ6zos2H6Sd387TP9WtankYmczOl2rQPRpuGxj+/ov7bf8K7tWhChQgVVHKbUeqJXL0CvAy8DthXkhrfV8YD5Au3btys3Wu4ODZTrivZ9tZ97mYzx7e4DRkYqmkjccWmP5skWVfIxOIITNK7CQa6375Pa4UqoV0ADI2Br3Bf5SSnXQWl8s0ZQ27ha/agxqXYf5W44zvEN96lZ1MzpS4d37FVzaZ3SK3LlUgZotjU4hhM276f0AWut9QI2M+0qpk0A7rbXtdWAqAy/e2YzfDlzknV8P8eHwNkbHKTzvxpYvIYTdknnkJaRuVTfGdWvIj+Hn+et0lNFxhBAVSIkVcq21f0XdGs8woXsjani48ObqCLQuN4cBhBA2TrbIS1AlF0ee7xdA+Jlofvr7vNFxhBAVhBTyEnZvW19a1q3C278cIjHFbHQcIUQFIIW8hDk4KF4fEMj5mCS++OO40XGEEBWAFPJS0KFBdfq3qsVnIce4FJtkdBwhRDlnZ6ch2o8pdzRnfcRl3vn1MP8Z2troOHYvPV0Tfjaa1LR0o6MIUSwBtTyo6u5cos8phbyU1PdyZ2yXBszbfIwxnf1p5SvNn4pj5s8H+XLrCaNjCFFsCx5qT4+AGgUvWARSyEvREz0bsWL3Gd5cc4Dl4ztRUD8akbtDF2NZsP0kdwfXYWi7ekbHEaJYmtcu+f5BUshLkYerE8/eHsBL3+/j530XuSuottGR7I7Wmjd+PICHqyNvDAykWqWS/ZNUiPJADnaWsqHt6tGslgdv/XKQpFSZjlhUq/de4M8T13i+X4AUcSHyIIW8lJkcFK8PaMHZqES+2ib7eIsiPjmNmWsjaFm3CsPbl5/Wx0KUNCnkZaBzY2/6tqjJp5uOcfm6TEcsrI82HuVSbDLTBrXE5CDHF4TIixTyMvJy/+Ykp5l5b90Ro6PYhWORcXy59ThDbvHlFr9qRscRwqZJIS8jDbwrMbqTP8vCznDgfIzRcWya1pppqyNwdbRcSk8IkT8p5GVoYu8mVHVzYvoa6Y6Yn98jLrHlSCST+jbFx8PF6DhC2Dwp5GXI082JZ/o2Zefxa6yLuGR0HJuUlGrmzTURBNT0YHQnP6PjCGEXpJCXsfs71KdJjcrM+vkgyWkyHfFG8zYf42xUIlMHBeJokh9PIQpD/qeUMUeTA68OaMGpqwl8s/2U0XFsyplrCXwWcoyBrevQqZGX0XGEsBtSyA3QvakPPQJ8mLvxH67GJRsdx2ZMXxOByUHxcn85wClEUUghN8irdzUnIcXM++tlOiJAyOHLrIu4xMReTajt6WZ0HCHsivRaMUjjGh6M7FifhTtPMepWfwJqeRgdyTDJaWamrY6ggXclxnbxNzpOqUpNTeXs2bMkJcmJYSJvrq6u+Pr64uTkVKjlpZAbaFKfpvyw5xwz1kbwzdgOFbY74ldbT3LiSjxfP9QeF0eT0XFK1dmzZ/Hw8MDf37/Cfr9F/rTWXL16lbNnz9KgQYNCrSO7VgxUrZIzT/dpyh//XCHkcKTRcTkD5z0AACAASURBVAxxMSaJjzb+Q98WNelZwj2abVFSUhJeXl5SxEWelFJ4eXkV6a82KeQGG3WrHw28KzF9bQSp5op39ZtZPx8kLV3z+oAWRkcpM1LERUGK+jMihdxgzo4OvNK/Occj41m0s2JNR9x5/Co//X2ex7o3ol51d6PjCGG3pJDbgN7Na9ClsTfvr/+H6IQUo+OUiTRzOm/8eADfam481qOR0XEqlM6dOxsdIZsFCxbw5JNP5rtMSEgI27dvL6NEuZs6dSpz5swp9PKzZs0qxTTZSSG3AUopXh3QnOtJqXy44R+j45SJhTtPcfjSdV4b0AJXp/J9gNPWGF0Qb4bRhTwtLa3I65RlIZdZKzaiWa0qDO9Qn4U7TjHyVj8a+VQ2OlKpibyezHvrjtCtqQ+3t6hpdBzDTFt9gIjzsSX6nC3qVOGNgYH5LlO5cmXi4uIICQlh6tSpeHt7s3//fm655Ra+/fZblFKEhoby9NNPEx8fj4uLCxs2bMDJyYnHHnuMsLAwHB0dee+99+jZsycLFixg1apVmM1m9u/fz7PPPktKSgoLFy7ExcWFn3/+merVq9OjRw+Cg4PZtWsXsbGxfPXVV3To0CFbtsjISCZMmMDp06cB+OCDD6hbty7z5s3DZDLx7bff8tFHH9GsWbMcy912223Znquwub744gvmz59PSkoKjRs3ZuHChbi7uzNmzBiqV6/Onj17aNu2LR4e/04R/uKLL/j+++/5/vvvWblyJXPnziUlJYWOHTvy6aef8sorr5CYmEhwcDCBgYEsWrSoJL69eZItchvyTN+muDmZmLX2oNFRStU7vx4iKc3MGwNbyIE/g+3Zs4cPPviAiIgIjh8/zrZt20hJSWHYsGF8+OGH/P3336xfvx43Nzc++eQTAPbt28eSJUsYPXp05syK/fv3s3jxYnbt2sUrr7yCu7s7e/bsoVOnTnzzzTeZrxcfH8/27dv59NNPGTt2bI48Tz/9NJMnTyY0NJSVK1fyyCOP4O/vz4QJE5g8eTLh4eF07do11+VyU5hc99xzD6Ghofz99980b96cL7/8MnP9I0eOsH79ev7zn/9kPvbxxx+zevVqVq1axcmTJ1m2bBnbtm0jPDwck8nEokWLmD17Nm5uboSHh5d6EQfZIrcp3pVdeLJXY9765RB//BNJ1yY+RkcqcX+djuK73WcZ361huf6rozAK2nIuCx06dMDX1xeA4OBgTp48iaenJ7Vr16Z9+/YAVKliuer71q1bmThxIgDNmjXDz8+PI0csZyb37NkTDw8PPDw88PT0ZODAgQC0atWKvXv3Zr7e/fffD0C3bt2IjY0lOjo6W57169cTERGReT82Npbr16/nyJ3Xclm3mguba//+/bz66qtER0cTFxdHv379Mte/7777MJn+3fW3cOFCfH19WbVqFU5OTmzYsIHdu3dnflaJiYnUqFH202ilkNuYMbf5s+jP08xYc5C1T3mVqw6A5nTNGz8eoGYVFyb2bmJ0HAG4uPzb791kMpGWlobWOte/lPLroZ/1eRwcHDLvOzg4ZNu/fOPz3ng/PT2dHTt24OaWf5uGwi5XmFxjxoxh1apVtG7dmgULFhASEpK5TqVKlbI9X8uWLQkPD888WUdrzejRo3nrrbfyzVHayk+VKCdcHE283L8Zhy9dZ2noGaPjlKhloWfYdy6Gl/s3p7KLbEPYqmbNmnH+/HlCQ0MBuH79OmlpaXTr1i1zN8GRI0c4ffo0AQEBRXruZcuWAZate09PTzw9PbON33777Xz88ceZ98PDwwHw8PDItmWe13I34/r169SuXZvU1NQCd4O0adOGzz//nEGDBnH+/Hl69+7NihUruHz5MgDXrl3j1CnLNGInJydSU1NvOldRSCG3Qf0Ca9GxQXXe+/0IsUll84NQ2qLiU3j3t0N0aFCdQa3rGB1H5MPZ2Zlly5YxceJEWrduTd++fUlKSuLxxx/HbDbTqlUrhg0bxoIFC7Jt8RZGtWrV6Ny5MxMmTMi2LzrD3LlzCQsLIygoiBYtWjBv3jwABg4cyA8//EBwcDB//PFHnsvdjOnTp9OxY0f69u1Ls2YFd97s0qULc+bM4a677qJGjRrMmDGD22+/naCgIPr27cuFCxcAGDduHEFBQYwYMeKmsxWWMuKSY+3atdNhYWFl/rr2ZP+5GAZ+vJVHuzbk5f7NjY5TbK+u2seSXWdYM7ELzWtXMTqOYQ4ePEjz5vb//bwZPXr0YM6cObRr187oKHYht58VpdRurXWOD1C2yG1Uy7qeDGnry9fbTnDySrzRcYpl/7kYFv15mlG3+lXoIi5EaZFCbsOe7xeAk8mBt36x3+mI6ema13/cT3V3Zyb3bWp0HGGgkJAQ2RovJcUu5EqpiUqpw0qpA0qpd0oilLCoUcWVx3s04rcDl9hx7KrRcW7KD3vO8dfpaF68sxmeboXrrSyEKJpiFXKlVE9gMBCktQ4ECt+IQBTKI10bUreqG9PXRGBOL/vjGcURm5TKW78cIrheVYa09TU6jhDlVnG3yB8DZmutkwG01peLH0lk5epk4sU7mxFxIZYVu+1rOuKH6//hanwybw4OxMFBzuAUorQUt5A3Bboqpf5USm1WSrXPa0Gl1DilVJhSKiwysmJeROFmDQyqTdv6VXn3tyPEJRe9eY8Rjly6zoLtJxnevj5BvlWNjiNEuVZgIVdKrVdK7c/lazCWM0OrAbcCzwPLVR7NM7TW87XW7bTW7Xx8yt+p56VJKcXrAwO5EpfMp5uOGh2nQFprpv50gMoujjzfr2gnjIjyZcyYMaxYsSLfZRYsWMD58+fLKFHuevToQWGnRJ88eZLFixeXcqKiKbCQa637aK1b5vL1I3AW+F5b7ALSAe/SDl0RBderyv+1qct/t57gzLUEo+Pk6+d9F9l+7CrP3d6U6pWcjY4jbJzRhdxsNhdpeVss5MU9T3oV0AsIUUo1BZyBK8VOJXL1wh0B/LL/ArN/PcQnD7Q1Ok6uElLSmLE2gha1q/BARz+j49i2X6bAxX0l+5y1WsGds/Nd5JtvvmHOnDkopQgKCmLhwoWcOnWKsWPHEhkZiY+PD19//TX169dnzJgxuLm5cejQIU6dOsXXX3/N//73P3bs2EHHjh1ZsGABYGmNO378eDZt2kS1atVYunQpN/7lvXv3bp555hni4uLw9vZmwYIFbNu2jbCwMEaMGIGbmxs7duwgIiIix3K1a9fO9lyFzfXYY48RGhpKYmIiQ4YMYdq0aQD4+/szduxY1q1bl+2iFunp6Tz00EPUq1ePadOmMWXKFEJCQkhOTuaJJ55g/PjxTJkyhYMHDxIcHMzo0aOZPHlyMb9pxVfcfeRfAQ2VUvuBpcBobcSpohVEbU83xndrxNq9Fwg7ec3oOLn6ZNNRLsQk8ebgQExygNPmHDhwgJkzZ7Jx40b+/vtvPvzwQwCefPJJHnzwQfbu3cuIESN46qmnMteJiopi48aNvP/++wwcOJDJkydz4MAB9u3bl9njJD4+nrZt2/LXX3/RvXv3zIKZITU1lYkTJ7JixQp2797N2LFjeeWVVxgyZAjt2rVj0aJFhIeH4+jomOtyuSlMrpkzZxIWFsbevXvZvHlztk6Mrq6ubN26leHDhwOWi0eMGDGCpk2bMmPGDL788ks8PT0JDQ0lNDSUL774ghMnTjB79my6du1KeHi4TRRxKOYWudY6BRhZQllEIYzv3pBloWd4c00Eqx6/zaZmg5y4Es8XW05wT9u6tPOvbnQc21fAlnNp2LhxI0OGDMHb27IHtHp1y/dpx44dfP/99wCMGjWKF154IXOdgQMHopSiVatW1KxZk1atWgEQGBjIyZMnCQ4OxsHBgWHDhgEwcuRI7rnnnmyve/jwYfbv30/fvn0By+6MG7eyi7JcYXMtX76c+fPnk5aWxoULF4iIiCAoKAggM2+G8ePHM3To0MxfHOvWrWPv3r2Z+/hjYmL4559/cHa2vd2F0oLOzrg7O/LCHQE8s/xvVoWf4x4bmZ+ttWba6gM4Ozow5c6CGw8JY+TVovZGWZfJ2vr1xraweV0C7cbX0FoTGBjIjh07CsxXmOUKk+vEiRPMmTOH0NBQqlWrxpgxYzIvhAE5W9R27tyZTZs28eyzz+Lq6orWmo8++ihbf3IgW5tbWyGn6Nuhu4PrEuTrydu/HiIhxTamI244eJmQw5FM6tOEGh6uRscReejduzfLly/n6lXLmcLXrll20XXu3JmlS5cCsGjRIrp06VKk501PT8/ccl28eHGO9QMCAoiMjMws0KmpqRw4cADI3qI2v+WKKjY2lkqVKuHp6cmlS5f45Zdf8l3+4Ycfpn///tx3332kpaXRr18/Pvvss8xWtEeOHCE+Pj5HS11bIFvkdsjBQfHagBbcN28Hn28+bngPk6RUM9PWHKBJjcqM7uxvaBaRv8DAQF555RW6d++OyWSiTZs2LFiwgLlz5zJ27FjefffdzIOdRVGpUiUOHDjALbfcgqenZ2bf8QzOzs6sWLGCp556ipiYGNLS0pg0aRKBgYGMGTOGCRMmZB7szGu5omrdujVt2rQhMDCQhg0b5rimZ26eeeYZYmJiGDVqFIsWLeLkyZO0bdsWrTU+Pj6sWrWKoKAgHB0dad26NWPGjLGJ/eTSxtaOPbH4LzYcvMSm53pQ2zP/K6WUprkb/uG934+w+JGOdG4ss0/zU17b2GZc0FmUHGljW0FMuaMZ6Rre+fWwYRnOXEvgk01H6d+qlhRxIQwihdyO1avuziNdGvDDnnPsOR1lSIaZaw/ioBSv3NXCkNcXtkG2xo0lhdzOPd6zMd6VXZi+JiLfi+OWhj/+ieTXAxd5sldj6lY1bteOEBWdFHI7Z+ln0pS/Tkezeu+FMnvdlLR03vjpAH5e7jzcpUGZva4QIicp5OXAkFvq0aJ2Fd7+5RBJqUXrG3Gzvt52guOR8UwdGIirk6lMXlMIkTsp5OWAyTod8Vx0Iv/943ipv97FmCTmbviHPs1r0LNZjVJ/PSFE/qSQlxOdGnnRL7Amn4Yc41JsUsErFMNbvxwkNV3z2gA5wFmRffDBByQk2HYnzqxtdB955BEiIiIAmDVrlpGxSpwU8nLkpTubk2pOZ85vpTcd8c/jV/kx/DwTujXEz6tSwSuIcsseCnlW//3vf2nRwrLxcTOFPK92BLZAzuwsR/y9K/HQbQ344o/jjO7sT8u6niX6/GlmywHOulXdeKxH4xJ97orqoV8fyvFYP/9+DG82nMS0RB5f/3iO8cGNB3N347uJSorimZBnso19fUfBZ2ROnz6dRYsWUa9ePby9vbnlllt47rnnCA8PZ8KECSQkJNCoUSO++uorLl68yOjRo9m1axdg6cU9aNAgHnnkEc6fP0/Pnj3x9vZm06ZN2V4jt5a17u7udOjQgZ9++omAgADuv/9+evXqxaOPPppnG9xjx47xxBNPEBkZibu7O1988QXNmjVjzJgxVKlShbCwMC5evMg777zDkCFD0FozceJENm7cSIMGDbLN5OrRowdz5sxhxYoVJCYmEhwcTGBgIDNnzmTAgAHs378fgDlz5hAXF8fUqVPp0aMHnTt3Ztu2bQwaNIgePXrk2mJ37ty5zJs3D0dHR1q0aJHZ7qCsyBZ5OfNkr8ZUd3fmzVKYjrjoz9Mcunid1wY0x81ZDnDao7CwMFauXMmePXv4/vvvs10V58EHH+Ttt99m7969tGrVimnTptG8eXNSUlI4ftxy7GXZsmUMHTqUp556ijp16rBp06YcRTyvlrWenp58/PHHjBkzhqVLlxIVFcWjjz4K5N0Gd9y4cXz00Ufs3r2bOXPm8Pjj//5iu3DhAlu3bmXNmjVMmTIFgB9++IHDhw+zb98+vvjiC7Zv357jM5g9ezZubm6Eh4ezaNGiAj+z6OhoNm/ezFNPPZVni93Zs2ezZ88e9u7dy7x584ryLSkRskVezlRxdWJy36a8umo/v+6/yJ2tcm8BWlRX4pL5z7rDdG3iTb/AWiXynCL/LWg3R7d8x6u5VivUFnhWW7duZfDgwbi5Web9Dxw4ELC0aI2OjqZ79+4AjB49mvvuuw+AoUOHsnz5cqZMmcKyZcty9FG5UX6taPv27ct3333HE088wd9//525Tm5tcOPi4ti+fXtmDoDk5OTM23fffTcODg60aNGCS5cuAbBlyxbuv/9+TCYTderUoVevXkX6fHKTkSu/9xUUFMSIESO4++67ufvuu4v9mkUlhbwcGt6+Hgt3nGLWLwfp1bwGLo7F33p+99fDJKSYeWNgYKHaoArbdDN/pQ0bNoz77ruPe+65B6UUTZo0KfA18mpFm56ezsGDB3Fzc+PatWv4+ubehlkpRXp6OlWrVs28SMSNsrauzfq+ivrz6ejoSHp6eub9rK1u4d92t/m9r7Vr17JlyxZ++uknpk+fzoEDB3B0LLvyKrtWyiFHkwOvDmjOmWuJfL3tZLGfL/xMNMvCzvBwlwY0rlG5+AGFYbp06cLq1atJSkoiLi6OtWvXAuDp6Um1atX4448/AFi4cGHm1nmjRo0wmUxMnz4928UY8mrnml8r2vfff5/mzZuzZMkSxo4dm9kiNrc2uFWqVKFBgwZ89913gKWQZt2Kz023bt1YunQpZrOZCxcu5Njtk8HJySnztWvWrMnly5e5evUqycnJrFmzJtd18npf6enpnDlzhp49e/LOO+8QHR1d5i0LZIu8nOraxIfezWrw8caj3NvWFx8Pl4JXykV6uub1H/dTw8OFib3z3xITtq99+/YMGjSI1q1b4+fnR7t27fD0tBwU/9///pd5sLNhw4bZWtkOGzaM559/nhMnTmQ+Nm7cOO68805q166drWDm1bLWycmJ//73v+zatQsPDw+6devGjBkzmDZtWp5tcBctWsRjjz3GjBkzSE1NZfjw4bRu3TrP9/d///d/bNy4kVatWtG0adPMX0Y3GjduHEFBQbRt25ZFixbx+uuv07FjRxo0aECzZrlfGCWv99W0aVNGjhxJTEwMWmsmT55M1apVC/9NKQHSxrYcOxYZR7/3t3Bfu3q8dU+rm3qOpbtOM+X7fXw4PJjBwXVLOGHFYwttbOPi4qhcuTIJCQl069aN+fPn07atsRfzlja4OUkbWwFAI5/KjOrkx7LQ0xy8EFvk9aMTUnj710N08K/OoNZ1SiGhMMK4ceMIDg6mbdu23HvvvYYXcVF8smulnHu6dxO+/+scM9ZG8O3DHYt0IOi9348Qk5jK1EFygLM8Wbx4sdERcpCt8eKRLfJyrqq7M5P7NGHb0atsOHi50OtFnI/l252nGHWrHy3qVCnFhEKI4pJCXgGMuNWPRj6VmPXzQVLS0gtcXmvNGz/tp6q7M8/0DSiDhEKI4pBCXgE4mRx49a4WHL8Sz8Kdpwpc/sfw84SejOKFfgF4ujuVQUIhRHFIIa8gegT40LWJNx+uP0JUfEqey11PSmXmzwdp7evJ0Hb1yjChEOJmSSGvIJSy9CyPS07jg/VH8lzuo41HuRKXzJuDW+LgIAc4hWVqYGmKjIykY8eOtGnTJvOEpNyEhIQwYMCAfJ9rwYIFPPnkkzkej46O5tNPPy1Srpvp7pjX65c2KeQVSNOaHjzQsT7f/nmao5dznpF39PJ1vtp6gmHt6tG6Xtme0CAqrg0bNtCsWTP27NlD165dS+U1yqqQG0WmH1Ywk/s05cfw88xYe5AFD3XIfFxrzdSfInB3NvF8PznAWRYuzppF8sFDJfqcLs2bUevll/Mcf/HFF/Hz88vsIjh16lQ8PDwYP348gwcPJioqitTUVGbMmMHgwYOzrRsSEsKcOXMyT2F/8sknadeuHWPGjMm1bW1GQ6kMp06dYuzYsURGRuLj48PXX3/NtWvXeOGFFzLbyu7YsSOzoRfAr7/+yqRJk/D29s423z0+Pp6JEyeyb98+0tLSmDp1ambeM2fOcMcdd3DixAkeeOAB3njjDaZMmcKxY8cIDg6mb9++PPPMMwwbNozY2FjS0tL47LPPsv0SmTt3bo42vUuWLGHWrFlorbnrrrt4++23Afj666956623qF27Nk2bNs3sAbN69WpmzJhBSkoKXl5eLFq0CB8fHwICAti+fTs+Pj6kp6fTtGlTdu7cibe3d5G/3xlki7yC8arswtO9mxByOJKQw/9OR/x1/0W2Hr3Cc/0C8Kp8c6fzC9s3fPjwbN0Lly9fzn333Yerqys//PADf/31F5s2beLZZ58tdIOtvNrW3ujJJ5/kwQcfZO/evYwYMYKnnnqK4OBg3nzzTYYNG0Z4eHi2Ip6UlMSjjz7K6tWr+eOPP7h48WLm2MyZM+nVqxehoaFs2rSJ559/nvj4eAB27drFokWLCA8P57vvviMsLIzZs2fTqFEjwsPDeffdd1m8eDH9+vUjPDycv//+m+Dg4GxZb2zTe/78eV588UU2btxIeHg4oaGhrFq1igsXLvDGG2+wbds2fv/998wrEIGlr83OnTvZs2cPw4cP55133sHBwYGRI0dmts9dv349rVu3LlYRB9kir5Ae7OTPtztPMXPtQbo09ibVrJm+JoJmtTx4oEN9o+NVGPltOZeWNm3acPnyZc6fP09kZCTVqlWjfv36pKam8vLLL7NlyxYcHBw4d+4cly5dolatglsW59feNasdO3bw/fffAzBq1CheeOGFfJ/30KFDNGjQILPb4siRI5k/fz4A69at46effmLOnDmApeifPn0asLTK9fLyAuCee+5h69atOVrLtm/fPrNp1913352jkN8oNDSUHj164OPjA8CIESPYsmULQLbHhw0bxpEjlmNQZ8+eZdiwYVy4cIGUlBQaNGgAwNixYxk8eDCTJk3iq6++4qGHcl5cpKikkFdAzo4OvNy/OeMW7mbJrtNcvp7M+ZgkPry/DY4m+SOtvBsyZAgrVqzg4sWLDB8+HLA0p4qMjGT37t04OTnh7++fo51rXu1e82vvmp/CnC2c1zJaa1auXElAQPbdgH/++WeOdXJ7jm7durFlyxbWrl3LqFGjeP7553nwwQfzzJHfXyd5ZZw4cSLPPPMMgwYNIiQkhKlTpwJQr149atasycaNG/nzzz8LdXGLgsj/2gqqb4uadGroxZx1R/h883HuDq5De//qRscSZWD48OEsXbqUFStWMGTIEMByYYkaNWrg5OTEpk2bOHUq5/kGfn5+REREkJycTExMDBs2bADyb1ubVefOnTMvgbZo0SK6dOmSb85mzZpx4sQJjh07BsCSJUsyx/r168dHH32UWWD37NmTOfb7779z7do1EhMTWbVqFbfddluOlrunTp2iRo0aPProozz88MP89ddfOV4/6zodO3Zk8+bNXLlyBbPZzJIlS+jevTsdO3YkJCSEq1evkpqamtlyN+MzrVvX0mjuf//7X7bnfuSRRxg5ciRDhw7FZCr+9QJki7yCypiOeNdHf+DuZOKl/sZ25BNlJzAwkOvXr1O3bt3MXSAjRoxg4MCBtGvXjuDg4FxbudarV4+hQ4cSFBREkyZNaNOmDZB3e9fAwMBs68+dO5exY8fy7rvvZh7szI+rqyvz58/nrrvuwtvbmy5dumReV/O1115j0qRJBAUFobXG398/8yBsly5dGDVqFEePHuWBBx6gXTtLs8DbbruNli1bcuedd9KyZUveffddnJycqFy5Mt98802O17+xTe9bb71Fz5490VrTv3//zIOrU6dOpVOnTtSuXZu2bdtiNpszH7/vvvuoW7cut956a7YWwIMGDeKhhx4qkd0qIG1sK7zloWfw9nCmV7OaRkepEGyhja0wXlhYGJMnT8533nxR2tjKFnkFN7S9nL0pRFmaPXs2n332WYnsG89QrH3kSqlgpdROpVS4UipMKdWh4LWEEKLimjJlCqdOnSrwGEFRFPdg5zvANK11MPC69b4QIh9G7M4U9qWoPyPFLeQayGhW7QmcL+bzCVGuubq6cvXqVSnmIk9aa65evYqrq2uh1ynuPvJJwG9KqTlYfil0zmtBpdQ4YBxA/fpy0omomHx9fTl79iyRkZFGRxE2zNXVFV9f30IvX+CsFaXUeiC307teAXoDm7XWK5VSQ4FxWus+Bb2ozFoRQoiiu+lZK/kVZqXUN8DT1rvfAf+96YRCCCFuSnH3kZ8Hultv9wL+KebzCSGEKKLi7iN/FPhQKeUIJGHdBy6EEKLsGHJmp1IqEij44pG58waulGCckmSr2Ww1F9huNlvNBbabzVZzge1mK2ouP621z40PGlLIi0MpFZbbzn5bYKvZbDUX2G42W80FtpvNVnOB7WYrqVzS/VAIIeycFHIhhLBz9ljI5xsdIB+2ms1Wc4HtZrPVXGC72Ww1F9huthLJZXf7yIUQQmRnj1vkQgghspBCLoQQds6uCrlS6g6l1GGl1FGl1BQDc3yllLqslNqf5bHqSqnflVL/WP+tZlC2ekqpTUqpg0qpA0qpp20hn1LKVSm1Syn1tzXXNFvIlSWfSSm1Rym1xsZynVRK7cvo+W9j2aoqpVYopQ5Zf946GZ1NKRVg/awyvmKVUpOMzpUl32Trz/9+pdQS6/+LYmezm0KulDIBnwB3Ai2A+5VSLQyKswC444bHpgAbtNZNgA3W+0ZIA57VWjcHbgWesH5ORudLBnpprVsDwcAdSqlbbSBXhqeBg1nu20ougJ5a6+As841tJduHwK9a62ZAayyfn6HZtNaHrZ9VMHALkAD8YHQuAKVUXeApoJ3WuiVgAoaXSDattV18AZ2A37Lcfwl4ycA8/sD+LPcPA7Wtt2sDh43+zKxZfgT62lI+wB34C+hoC7kAX+t/oF7AGlv6fgInAe8bHjM8G5brEJzAOmHClrJlyXI7sM1WcgF1gTNAdSztUdZYMxY7m91skfPvh5DhrPUxW1FTa30BwPpvDYPzoJTyB9oAf2ID+ay7L8KBcgMDSQAABFxJREFUy8DvWmubyAV8ALwApGd5zBZygeXiLeuUUrutPf1tJVtDIBL42rpL6r9KqUo2ki3DcGCJ9bbhubTW54A5wGngAhCjtV5XEtnsqZCrXB6TuZN5UEpVBlYCk7TWsUbnAdBam7XlT15foINSqqXRmZRSA4DLWuvdRmfJw21a67ZYdik+oZTqZnQgK0egLfCZ1roNEI+xu5+yUUo5A4OwtNe2CdZ934OBBkAdoJJSamRJPLc9FfKzQNZLvvtiW5eWu6SUqg1g/feyUUGUUk5YivgirfX3tpZPax0NhGA5zmB0rtuAQUqpk8BSoJdS6lsbyAWA1vq89d/LWPb1drCRbGeBs9a/qgBWYCnstpANLL/4/tJaX7Let4VcfYATWutIrXUq8D2Wq6oVO5s9FfJQoIlSqoH1t+1w4CeDM2X1EzDaens0ln3TZU4ppYAvgYNa6/eyDBmaTynlo5Sqar3thuWH+pDRubTWL2mtfbXW/lh+pjZqrUcanQtAKVVJKeWRcRvL/tT9tpBNa30ROKOUCrA+1BuIsIVsVvfz724VsI1cp4FblVLu1v+nvbEcIC5+NqMORNzkwYL+wBHgGPCKgTmWYNnHlYply+RhwAvLAbN/rP9WNyhbFyy7nPYC4dav/kbnA4KAPdZc+4HXrY/bxOdmzdKDfw92Gp4Ly37ov61fBzJ+5m0hmzVHMBBm/Z6uAqrZQjYsB9OvAp5ZHjM8lzXHNCwbMPuBhYBLSWSTU/SFEMLO2dOuFSGEELmQQi6EEHZOCrkQQtg5KeRCCGHnpJALIYSdk0Iuyg2llNna8W6/Uuo7pZR7Edato5RaUcTXC1FK2dwFfUXFI4VclCeJ2tL5riWQAkwozEpKKUet9Xmt9ZDSjSdE6ZBCLsqrP4DG1rMjv1JKhVqbOw0GUEqNsW61r8bSlMpfWfvLW3tEf23tA75HKdXT+ribUmqpUmqvUmoZ4GZ93KSUWmD9S2CfUmqyQe9ZVFCORgcQoqQppRyx9Nr4FXgFy2n3Y60tAnYppdZbF+0EBGmtr1k7RWZ4AkBr3Uop1QxLoW8KPAYkaK2DlFJBWFrxguUMx7rWvwTIaEUgRFmRLXJRnrhZ2+SGYelr8SWW/iRTrI+HAK5Afevyv2utr+XyPF2wnD6N1voQcApoCnQDvrU+vhfLqekAx4GGSqmPlFJ3ADbRbVJUHLJFLsqTRG1pk5vJ2pzoXq314Rse74il9WpucmuZnCFHTwutdZRSqjXQD8vW/FBgbFGCC1EcskUuyrvfgInWgo5Sqk0h1tkCjLAu3xTLFvzhGx5viaURGEopb8BBa70SeA1LO1chyoxskYvybjqWKwDttRbzk8CAAtb5FJinlNqH5RqoY/T/t3eHNgCDUBRF+XMwaSfpTt0IRUXBVmFeco4kGMwNQXzmHFV1t+9HnD1Z8ln7+1rfF6Pr8Bngl+mHAOE8rQCEE3KAcEIOEE7IAcIJOUA4IQcIJ+QA4V6OayI9G0wkBQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_20_1.png" }, "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAacAAAEWCAYAAADCeVhIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3gc1dX/P0e9WFpJlmRLcpG7LQOmuFBjOgbREiChBH4QagIhJG+Kkvd9k0lCgvKmEAhJCCGEQEIPNTKB0Htxxb3Lvcht1ay69/fHjOS1vJJGZTW72vN5nn00M3fuzJnd0Xzn3nvuOWKMQVEURVEiiTivDVAURVGUjqg4KYqiKBGHipOiKIoScag4KYqiKBGHipOiKIoScag4KYqiKBGHitMgQ0QsEfl7H+ovE5FT+9GkmKQ3v4OIPC4iF4fLpp4iIqeKyBav7egPBuJaRGSYiKwQkeRwnidWUHHqJ0TkShGZJyK1IrJdRF4WkZO9tqsrRORhEbkzeJsxZqox5i2PTGpHRIyIjPfaDjf0x4NPRI4CpgEv9I9VA0tfX4oilZ78tsaYncCbwE3htSo2UHHqB0TkW8BvgZ8Dw4BRwB+Ai7y0K1IRkYQBOEd8uM/Rz9wM/MPorPh+ZyDutyD+gf1bKn3FGKOfPnwAH1ALXNbFPg8DdwatnwpsCVqvBL4DfAbUAX/BFrmXgRrgNSA7VN2g+mc6yxbw96Cyp4EdgB94B5jqbL8JaAaaHPtfCj4WUAgcAHKCjnUMsBtIdNa/AqwA9gGvAKM7uf5iwADXA5uAd7qq79hpnO+iFvgScC3wXofjGmB80Hf8R2CuU+9M51q+7XyvfuBJIKUTG68F3gd+5+y7EjgjqPw6x9YaYD1ws7M93fmeAo6ttc53ZwFPAY84dZYB07u4R9YDJ3fYdmPQOZcDxzrbpwBvAfud417Y4V77A/a9U+tc03Dsl6d9znUd0+He+b5z/H3AX9u+Iw6/TwuBfwJVwAbgdmf7HOz7qNk55+Kg/42/ANuBrcCdQHwn129h36t/d653CTDRsW0XsBk4u7vfI9hu4HvY9/6jIa7ldueaRwDJwK+w782dwP1Aahe/7UxgHlDt7P+boOMmAPV08r+gnx48W702INo/zj9mC5DQxT4P0704fYQtSEXOP+MCbDFIBt4AfhSqblD9zsTpK0CGc5zfAos6syvEsd4Abgwq+yVwv7N8MbAW+0GZAPwP8EEn11+MLSSPOP/wqd3VJ0h4nPVr6V6c/MBJ2D0CKc61fOI8UHKwH2a3dGLjtc7v+E0gEVsQ/TjiDJQC4wABZjsPoDaxCPWbWEADcB4QD9wFfNTJudOda8kL2nYZ9gN9hnPO8cBox7a1wA+AJOB07Af0pKDvYTdwnPMdvIEtJNc4dtwJvNnh914KjHS+o/fb7ong63K+0/nAD53zjsUWhXNC3XfOtueBPznXl+/8Fjd38h20fV/nOPfDI47d/+1c843AhqD9u/s9WoBfYN/3qR2u5X+x/7/ynPXfAi86158BvATc1cVv+yFwtbM8BDi+Q/lnBL0w6Kd3H+3W6ztDgd3GmJY+Hud3xpidxpitwLvAx8aYhcaYRuA5bKHqMcaYh4wxNc5xLGCaiPhcVn8MuAJARAS43NkGdtfFXcaYFc61/xw4WkRGd3E8yxhTZ4w50Mv63fGCMeZ9Y0zAGNPgbLvXGLPNGLMX+6FzdBf1dwG/NcY0G2OeBFZhPwQxxlQYY9YZm7eBV4FTurHnPWPMXGNMK/bb+7RO9sty/tYEbbsB+D9jzKfOOdcaYzYCx2M/EMuNMU3GmDeAf+H8Tg7PGWPmO9/Bc0CDMeYRx44nOfxeus8Ys9n5jn7W4VhtzMB+mP/EOe964M/Y98RhiMgw4FzgDuc33wXc3dn+Du8aY15x7oengTznOpuBJ4BiEckCV79HAPuFrtG53xyz5DfYAniaMabKua9vBL5pjNlrjKnBvhe7srMZGC8iucaYWmPMRx3Kazj4myq9RMWp7+wBcvuhX3tn0PKBEOtDenpAEYkXkXIRWSci1dhvyQC5Lg/xDHCCiBQCn8N+u3/XKRsN3CMi+0VkP7AX+y22qIvjbQ5a7k397tgcYtuOoOV6uv4etxpjgsd8NmK3uhCRc0XkIxHZ69h7Ht1/jx3PndLJfbLf+ZsRtG0ksC7EvoXAZmNMoIOdwd9bT++l4O+t/Zo7MBoobPu9nO/gB9it/VC0tfK2B+3/J+wWVGd0tHO3I6ht67TZ7uL3qAp6QWkjC7s7+y5jjN/ZlgekAfOD7Py3s70zrsfuclwpIp+KyPkdyjM4+JsqvWQgBwoHKx9id0dcjP0wD0Ud9j9AG8P7cL5DjuUM/Hf2j3QltlNG2/iLD3tcQZzyLgffjTH7ReRV4IvY3W+PBz28NwM/M8b8owe2B5+vp/U7Xneo77CvzgRFIiJB1zgKeNFxDf4ndtfYC8aYZhF5HpffY3cYY+pEZB32A6/K2bwZu9uqI9uAkSISFyRQo4DVfTBhZNDyKOccHdmM3a02oZNjdPwONgONQG4/9CocgovfI5Q9YN/7XwaeEpHPG2Pex+4CPYA9Frs1RJ3DjmOMWQNcISJxwBeAZ0RkqPM7JmB3wS7uwyUqaMupzzhvYD8Efi8iF4tImogkOm92/+fstgg4T0RynIfqHX045WrsN/BSEUnEHqvpbF5FBvYDYg/2g/3nHcp3Yo8ddMVj2A+BSzjYpQf2oPH3RWQqgIj4ROSyHlxHd/U72rYYmCoiR4tICnYXZX+TD9zu/H6XYQvyXOwxlmRs4WgRkXOBszvYOrQH3aWhmIs9dtLGg8C3ReQ4sRnvdHl+jC3U33XsPBW4ALvbq7fcKiIjRCQHuzX0ZIh9PgGqReR7IpLqtMqPEJEZTvlO7G63OABjzHbsrrZfi0imiMSJyDgRmR3i2D2lu9+jU4w9TeIq4DkRmeUI/J+Bu0UkH0BEikTknKDrOuS3FZEvi0ieU7ethdTWwpsJVDpdsEofUHHqB4wxvwG+hS0UVdhvjbdhDwiDPd6wGLv18iqh//ndnssPfA374bUV+0HV2TyMR7C7abZieyZ17Bv/C1DidGc837Gyw4vABGCnMab9bdAY8xz2gPMTTpfhUuwxBrfX0V19C/ibY9sXjTGrgZ9gey6uAd5ze64e8DH2te7GHnu51BizxxmHuB3b+24fdov0xaBrWQk8Dqx37A3VLdYdDwBXOWMgGGOedmx4DHsM43ls54wm4ELs72o3tmfeNY4NveUx7PtyvfO5s+MOTvfaBdhjdhuccz+I3RoHe4wIYI+ILHCWr8EWkjZPwGeAgj7Y2WZLl7+Hi/r/wfb2e1FEjsP26lsLfOTci68Bk5x9Q/22c4BlIlIL3ANcHtSFeBX2i5fSR+TQLnZFiU1E5FrgBmOMZxOnReQx4CljTGcvCuE4ZyX2db82UOccrDgtr7exXfU7jncpPUTHnBQlQjDGXOm1DUrvcTwSp3htx2BBu/UURVGUiEO79RRFUZSIQ1tOiqIoSsQRdWNOcXFxJjU11WszFEVRoor6+npjjImaBknUiVNqaip1dXVem6EoihJViMiB7veKHKJGRRVFUZTYQcVJURRFiThUnBRFUZSIQ8VJURRFiThUnBRFUZSII2ziJCIPicguEVnaSbmIyL0islZEPhORY8Nli6IoitI1Lp7ZVznP6s9E5AMR6Sx5Zr8QzpbTw9jRezvjXOwI0BOwE4D9MYy2KIqiKF3zMF0/szcAs40xRwE/xY6kHzbCNs/JGPOOiBR3sctFwCNOYrePRCRLRAqcPDD9zsod1by0eBs3njKWrLSkcJwi9ti9FpY8BR1DYJVcCMOPhP2bYMGjh9c78lLIm2TX/yxE9pCjr4CcsbBzGSwLEaD7uGvBVwTbFsLKuYeXz7oZ0t0m+1UUBbp/ZhtjPgha/QgYEU57vJyEW8Sh6aG3ONsOEycRuQm7dUVSUu+EZeOeen7/5jrOPaJAxam/2PEZfPog1O89dPvQ8bY4+bfAO788vF7BNFuc9q4PXV58ki1OVStDl0+cY4vT9s9Clx95qYqTohxOgojMC1p/wBjT29bP9cDL/WBTp4Q18Kujwv8yxhwRoqwCuMsY856z/jrwXWPM/K6OmZ6ebnoTIWLBpn184Q8f8NdrZ3Da5Pwe11eiiEAA7i6BWbfAyX1JOqwogwcRqTfGpHezTzGdPLOD9jkNO8nlycaYPf1qZBBetpy2ACOD1kcA28J1svwMO5P5rhrNAdZvGAN24tbIIi4O6vfAgX1eW6IogwoROQo7A/K54RQm8NaV/EXgGsdr73jAH67xJoDcIbY4VdU0husUscezN8G9x3htRWgSUqFFX0QUpb8QkVHAs8DVxpjV4T5f2FpOIvI4cCqQKyJbgB8BiQDGmPuBucB5wFqgHrguXLYApCTGk5mSoOLUnwSaQSJ0qlxCsoqTovQAF8/sHwJDgT+I3WPSYoyZHi57wumtd0U35Qa4NVznD0V+Zgq7VJz6j9ZmiI9Q55LEFGhWcVIUt7h4Zt8A3DBA5kRfyoy+kDckWVtO/UmgBeIi9BaafAHkjPHaCkVRekmEPlnCQ15GMou37PfajMFDazPEJ3ptRWjm/NxrCxRF6QMxJU75Gcnsqm7EGINEopdZtDHlfO06UxQlLMSUOOVlJHOguZW6plaGJMfUpYeH6V/x2oLOefwKaKyBa//ltSWKovSCCHW1Cg95GepO3q801UNLhH6XJgANfq+tUBSll8SUOOVnpACwq1q7ovqFv54LT37ZaytCk5CiruSKEsXElDi1t5xqI/RtP9oItEBchDpEJKgruaJEMzElTvnarde/tDZDfISO3SVqy0lRopkIfbKEB19qIonxohNx+4tAc+S2nIpPgaQhXluhKEoviSlxiosTcnUibv/R2hK585yOvNT+KIoSlcSUOIEz10nFqX+YdTNkj/baitAYczCChc5pU5SoI6bGnMB2itCWUz9x4m0w5QKvrQjNB/fCT3Ohud5rSxRF6QUqTkrvqdlpT3SNRBLsaQPqsaco0UkMilMKe+oaaWkNeG1K9HPvMfBWuddWhKZNnFoOeGuHoii9IgbFKRljYG9dk9emRD+B5siNSt4uTtpKVpRoJPbEaUhbunZ9aPWZSI5KntjWractJ0WJRmJOnPIzdSJuvxAIACZyW065E+Gkb0BajteWKIrSCyL0yRI+2lpOKk59JNBs/41UccqfAmf9xGsrFEXpJTHXctL4ev2ExMFZP4Uxs722JDSBVjiwT8ecFCVKiTlxSkmMJzMlQSOT95X4RDjpdhg5w2tLQrNzGfyiGNa86rUlihIViMhDIrJLRJZ2Uj5ZRD4UkUYR+Xa47Yk5cQJnrpO2nPpGawvsXhO5OZMSU+2/Os9JUdzyMDCni/K9wO3ArwbCmNgVJx1z6ht1u+C+6bD0Wa8tCU27K7mKk6K4wRjzDrYAdVa+yxjzKdA8EPbEpDjlZ6SoK3lfaXXuz0h1JVdxUpSOJIjIvKDPTV4b1BUR6moVXrTl1A8EWuy/kZoyQ+c5KUpHWowx0702wi0x2XLKy0imvqmV2sYWr02JXtpbThH6fpOYBqf9N4w63mtLFEXpBRH6ZAkvwRlxhyTH5FfQd9rnOUVoyykuHmZ/12srFEXpJTH5ZM4LEqcxuekeWxOlZBTC+XdDwVFeW9I51dsgPhnSh3ptiaJEPCLyOHAqkCsiW4AfAYkAxpj7RWQ4MA/IBAIicgdQYoypDoc9MS1Ou2p0sLzXpA+F6V/x2oquuf9kKLnIFlFFUbrEGHNFN+U7gBEDZE5sjjnlZ9iD5eoU0QcaqmHbQmis9dqSzklI1QgRihKlxKQ4ZaUmkhAnKk59Yet8eOBU2L7Ya0s6JzFFvfUUJRKwfHFYvsyeVIlJcYqLE3KHJOtcp77Q5koen+StHV2RkKrznBTFKyzfY1i+TCxfOrAcWIXl+47b6mEVJxGZIyKrRGStiJSFKPeJyEsislhElonIdeG0J5j8TJ3r1Cci3ZUctOWkKN5SguWvBi4G5gKjgKvdVg6bOIlIPPB74FygBLhCREo67HYrsNwYMw3bS+TXIjIgr+J5Q1Sc+kSku5IDnHArzLjBaysUJVZJxPIlYovTC1j+ZsC4rRzOltNMYK0xZr0xpgl4Ariowz4GyBARAYZgx3UakJmxeRnardcnIj18EcDUz8OU8722QlFilT8BlUA68A6WbzTg2u08nH0yRcDmoPUtwKwO+9wHvAhsAzKALxljAh0P5MSAugkgKal/Glb5GcnsqWukpTVAQnxMDr31jZEz4Qt/howCry3pnOpttjdh3kSvLVGU2MPy3wvcG7RlI5bvNLfVw/lUlhDbOjbpzgEWAYXA0cB9InKYR4cx5gFjzHRjzPSEhP7R0+G+VIyBndp66h1Zo+CoL0JKjxxwBpb//Ageu8xrKxQlNrF8w7B8f8HyveyslwD/z231cIrTFmBk0PoI7BZSMNcBzxqbtcAGYHIYbWqnKNvO97Ntvw6Y9wr/VtjwLrQ0eW1J5yQkaz4nRfGOh4FXsBsfAKuBO9xWDqc4fQpMEJExjpPD5dhdeMFsAs4AEJFhwCRgfRhtaqcoy56Iu3WfilOvWFkBfzsfGsMSuaR/SFRXckXxkFws/1OAPVRj+VuAVreVwzbmZIxpEZHbsJUzHnjIGLNMRG5xyu8Hfgo8LCJLsLsBv2eM2R0um4IpzLJbTlu15dQ72r31ItiVPCFFxUlRvKMOyzeUtuEcy3c84Dp1dlifLMaYudj+7cHb7g9a3gacHU4bOiMtKYGc9CQVp97Sns8pCsTJGJBQQ6CKooSRb2H3lo3D8r0P5AGXuq0cwU+W8FOYlaLder0lGlzJp1wAQ8epOCnKQGP54oHZzmcSds/YKmeukytiWpyKslJZX1XntRnRSaRnwgU7nUckp/RQlMGK5W/F8l2E5b8bWNabQ8S0OBVmpfLumt0YYxB9s+4ZR1wKw4+CuAieI1a3G3avhsJjD6ZtVxRloHgfy3cf8CRwsBVg+Re4qRzT4lSUlUp9Uyv+A81kpUVwANNIJHe8/Ylk1rwKz38Vbl8EOWO8tkZRYo0Tnb8/CdpmgNPdVI55cQLYsu+AilNP2bkMqrfDhDO9tqRzEpzWknrsKcrAY/ldR4MIRWyLU/ZBd/IjinweWxNlzH8YPnsKyjZ6bUnnJNq/r0YmVxQPsHw/DL3d/5OQ2zsQ2+KUpVEiek1rc2R76kFQy0lDVCmKBwR7m6UA5wMr3FaOaXHKSU8iJTFO3cl7Q6A5sj314GDLqUV/X0UZcCz/rw9d9/2Kw6MEdUoEu1qFHxGhMCuVbX59ePWY1pbITjQIkDsRvvgoDDvCa0sUJeIRkYdEZJeILO2kXETkXid57GcicmwPT5EGjHW7c4Q/XcJPUVaqtpx6QzS0nNJyoORCr61QlGjhYew0Ro90Un4uMMH5zAL+yOFpkA5i+ZZwMBNFPHaEiJ+6NaZbcSouqzgJsIDRzv4CmMryUtcKGMkUZaWyYnuN12ZEH7O/B40R/r01N0Dle5A3CbJGdr+/osQwxph3RKS4i10uAh4xxhjgIxHJEpECY8z2TvYPzvTZAux0gr+6wk3L6S/AN4H59CCibLRQmJXK7tpGGppbSUmM99qc6CFvktcWdE+DH/5xCZT+BmZc77U1iuI1CSIyL2j9AWPMAz2oHyqBbBHQmTjdieW/+pAtlu/Rw7Z1ZqyLffyV5aUvuzlYNBLssTc2b4jH1kQR69+2QxiNP8NrSzonIdn+q/OcFAWgxRgzvQ/13SSQDWbqIWuWLwE4zu3J3IjTm8VlFb8EngXafXIry0tdhaCIdA4mHWxQceoJ7/0GmuojW5x0npOi9CduEsiC5fs+8AMgFcvXlvBNgCbAdUvNjTi1DXgFK67rEBSRTlF7Xqd6jy2JMlpbIn+eU3wSINpyUpT+4UXgNhF5AlsX/CHHmyz/XcBdWL67sPzf7+3JuhSn4rKKeODFyvLSu3t7gkhnuC8FEdi6Xx9gPSLQfHCSa6QiogkHFcUlIvI4cCqQKyJbgB8BidCeh28ucB6wFqgHrgt5IMs3Gcu/Engay3e4u3l/BH6tLC9tLS6ruBAYtOKUGB/HsAzN69RjWpshOcNrK7rnyifBN8JrKxQl4jHGXNFNuQFudXGo/wJuBH4doqxfA79+UFxWcVjY88Ey5gT2uJN26/WQ1iiY5wQwdrbXFihKbGH5b3T+hj3wa5/CnkcDhVmpLN6832szootL/xLZKdrbWPsaJKbD6BO8tkRRYgPL94Wuy/3PujlMt0+XyvLSPqlfNFCUlcq/l24nEDDExWnSQVdEwzwngFf/F3LGqjgpysBxgfM3H7tx84azfhrwFrbnd7e4iRARMux5ZXmpq7Dn0UBRdirNrYaq2kaGZUb4IH+ksPhJyCyEMad4bUnXqEOEogwslt92lLB8/wJKsPzbnfUC4PduD+Mm8Gtd0KcVO75ScY+MjXCKsmxB2qJOEe55/cew+AmvreiexFQ7jJGiKANNcbsw2ewEJrqt7KZb7xCPi+Kyih6FPY8GirLSADtKxHGjsz22JkpobY78qORgR4loqO5+P0VR+pu3sHyvAI9j+ylcDrzptnJvUmb0KOx5NFDotJy2atJB90RDVHKAhFTt1lMUL7D8twF/AqYBRwMPYPm/7ra6mzGnPoU9jwYyUhLJTEnQuU49IRoiRACc9RNbSBVFGXhszzxXDhAdcdMvc1jY88ryUtdhz6OFwqxUTdfeEwLN0eFKnjveawsUJTaxXcp/ge21J87HYPkz3VR383S5s7K89JAQ58VlFY923BbtjMhOVYeInvDVDyDF57UV3bP5U9i9Co75steWKEqs8X/ABVj+Fb2p7GbM6ZCw58VlFT0Kex4tjMxJY+OeeuwIHUq3DB0H6bleW9E9y5+Hud/12gpFiUV29laYoIuWU3FZRXvY8+KyimoO5vLoUdjzaGFsbjoHmlvZWd3IcJ/OdeqS1hb48D4oPgVGRPh7SkIKtBwAY+xAsIqiDBTzsHxPAs8TlG6pzxEiKstL7wLuKi6ruKuyvLTXYc+jhbZcTuuralWcuqO1EV77EZz54+gQJxOwXd8Tkry2RlFiiUzs6OVnB20z9FeECOC/i8sqvgyMqSwv/WlxWcVIoKCyvPSTHpsawYzJTQdg/e46ThwfBd1VXtLqeL9Fg7deovOi0XJAxUlRBpK2SBG9xM2Y0++BE4ArnfVaXIagEJE5IrJKRNaKSFkn+5wqIotEZJmIvO3K6jAwPDOFlMQ4Nuyu637nWCfgOGtGxTynNnFq7Ho/RVH6F8s3Ecv3OpZvqbN+FJbvf9xWdyNOsyrLS28FGgAqy0v3Ad2+gopIPLaInQuUAFeISEmHfbKAPwAXGmOmApe5Nby/iYsTxuQOYX1VrVcmRA/tLacocCU/4hK4bT6k5nhtiaLEGn8Gvg/YDwzL/xl2lAhXuBGnZicjrgEoLqvIAwIu6s0E1hpj1htjmoAngIs67HMl8KwxZhOAMWaXW8PDwdjcdG05uaFtUms0tJzScuy5TtEgpIoyuEjD8ncc/nE9R9aNON0LPAfkF5dV/Ax4D/i5i3pFwOag9S3OtmAmAtki8paIzBeRa0IdSERuEpF5IjKvpSV883/H5qWzed8BmlrcaG8Mk1kE/7Uajug6bUtEsK8S3r8XanZ4bYmixBq7sXzjaIswZPkuBbZ3WSOILl8ni8sq4oANwHeBM7DdyS+uLC9147seym+34ySitjlTZwCpwIci8pExZvUhlYx5AMd9PT09PWwTkcbkptMaMGzaW8/4/CHhOk30ExcPGcO8tsIde9bCf/4XRs6CjOFeW6MoscSt2M/tyVi+rdhacpXbyl2KU2V5aaC4rOLXleWlJwAre2jYFmBk0PoIYFuIfXYbY+qAOhF5BztI4Go8oM1jb8PuOhWnrqjZAZ8+CEdeFvlJBxNS7b8tGv1DUbpDROYA92DHUX3QGFPeoTwbeAgYh+2H8BVjzNKQB7P864EzsXzpQByWv6Yntrjp1nu1uKzikuKyip7OYPwUmCAiY0QkCXsgrGOqjReAU0QkQUTSgFlAr2cU95WxubYgbditThFdUrMd3vkl7FnntSXd0+atpzmdFKVL3DixYQdmWGSMOQq4BlvIQmP5hmL57gXexU6fcQ+Wb6hbe9yMEn8LSAdaissqGnCC91WWl3YZvM8Y0yIitwGvYKvwQ8aYZSJyi1N+vzFmhYj8G/gM28niwU5VeADwpSUyND2J9VXqFNElrc64X1TNc1JxUpRuaHdiAxCRNie25UH7lAB3ARhjVopIsYgMM8bsDHG8J4B3gEuc9auAJ4Ez3RjjJtlghpsDhcIYMxeY22Hb/R3Wfwn8srfn6G/G5qWzXj32uqbdWy8KPOASVJwUxSFBROYFrT/gjOe3EcqJbVaHYywGvgC8JyIzgdHYQzahxCkHyx+cXulOLN/Fro11u2OsMCY3nTdXVXltRmQTTREiskbDt1ZCqmY4VmKeFmPM9C7K3TixlQP3iMgiYAmwkM7dw9/E8l0OPOWsXwpUuDW2N5lwBzVjcodQVdNITYMmqOuUaJrnFJ8AmQUHu/cURemMbp3YjDHVxpjrjDFHY4855WF74YXiZuAx7KCvjdjdfN/C8tVg+aq7M0ZbTh0Ym3fQY++oEVkeWxOhjD0NfrAN4pO9tqR7Wlvg3V9B8cn2R1GUzmh3YgO2YjuxXRm8gxPVp94JrHAD8I4xJrTQWP5eDwmBy5ZTcVnFycVlFdc5y3nFZRVj+nLSSGZskDu50glx8ZCUHh1RFyQO3roLNrzrtSWKEtEYY1qANie2FcBTbU5sbY5swBRgmYisxPbq+0anB7R813dYj8fy/citPd0+XYrLKn4ETAcmAX8FEoG/Aye5PUk0MWpoGnEC69Rjr3O2LYLPnoSTvwlD8r22pmvi4uwWnjpEKEq3dOfEZoz5EJjg8nBnYPkuAa4HcrHnR7kO7u2m5fR54EKgDqCyvHQb0KfmWiSTnBDPiOw0bTl1xe7V8NEfoKHbbuPIICFFxUlRBhrLfyXwN2zHiQrgDiz/t91WdyNOTZXlpQBHyRAAACAASURBVIaDgV/Te2NnNDEmN10n4nZFNEUlB9sZolkjRCjKgGL5JmB3+/0TqASuxvKlua3uRpyeKi6r+BOQVVxWcSPwGnYo9EHL2Lx0NlTVYUzYwvhFN9HkrQdOy0nzOSnKAPMS8EMs/83AbGANttOFK9xMwv1VcVnFWUA19rjTDyvLS//TS2OjgrG56dQ1tbKrppFhmeqCfBjRNM8J4KsfQEIUeBYqyuBiJpbf7vu3/Ab4NZavYwi7TnHjEPFN4OnBLkjBjM2zY+ytr6pTcQpFW4syGiJEACRrEF9F8YBULN/dQBGWfw6WrwQ7q/oaN5XddOtlAq8Ul1W8W1xWcWtxWUWU5EroPW3RydfruFNoZt0EP9ofPVEXPvkzfPwnr61QlFjjYWy39AJnfTVwh9vK3YpTZXnpjyvLS6di5+YoBN4uLqt4red2Rg/DM1NISYxjg7qTd46I/YkGVv4Llv7TaysUJdbIxfI/RVvmdMvfArS6rdyT8EW7gB3AHiDCJ7f0jbg4YUzuENZVacspJCvnwotfh0CUZAxOSFVvPUUZeOqcFBltmXCPB/xuK7sZc/oq8CXsGErPADdWlpcu77pW9DN5eAYfrd/jtRmRybYFsOBRuOBery1xR4JOwlUUD/gWdg6/cVi+97E15FK3ld2MaI8G7qgsL13UO/uik5KCTJ5buJW9dU3kpCd5bU5k0dpse+pFS7deYqomG1SUgcbyL8Dyzcb28hZgFZbfdUTtTsWpuKwis7K8tBr4P2c9J7i8srx0b+8sjg5KCu1ciiu2V3PS+FyPrYkwAi3RM8cJ7HlOAY0yrygDjj3OtKw3VbtqOT0GnA/Mx+4zDH5NNsDY3pwwWphSYIvT8m0qTofR2hw90SEAzr8b5LdeW6EoSg/o9AlTWV56vvN30EYg74qc9CQKfCks3x4l8eMGkvhESImidCLR0v2oKEo73XrrFZdVvO5m22CkpCCTZdtcO5fEDuf8DO74zGsr3LP6VXj+axBw7cWqKEpfsXyH60SobZ3Q1ZhTCpAG5BaXVWRzsFsvE3u+06CnpDCTt1ZX0dDcSkpivNfmKL2lagUs+gec+38aLUJRwo3la9cOLF+vtaOrgYObsWfzFmKPO7WdoBr4fU/tjUZKCjJpDRhW76zRrLjBfPgH8G+GOXd5bYk7EpwQVC2NKk6KEn76RTu6GnO6B7inuKzi65Xlpb/rg6FRS5vH3vJt1SpOwWz+CHat9NoK97SLk07EVZSwY/nvAe7B8n0dy99r7XATlfx3xWUVRwAlQErQ9kd6e9JoYWR2GhnJCeoU0ZHWluiJSA72PCfQuU6KMpBY/t9h+U4EignWGsvvSjvcpmk/FVuc5mLnjX8PGPTiFBcnTCnIZPk2FadDCDRHT0RygKR0SPHZ87MURRkYLN+jwDhgEQdj6hlcaoebJ8ylwDRgYWV56XVOVPIHe2FqVFJSmMnT8zYTCBji4tQlGTgYISJamFwKZZu8tkJRIh4RmQPcA8QDDxpjyjuU+4C/A6Ow9eNXxpi/dnK46UCJk8upx7gJ/Hqgsrw0ALQUl1VkYgeAHdQTcIMpKcikrqmVjXvrvTYlckjNhiGDPnOKosQUIhKP7bBwLnZP2RUiUtJht1uB5caYadg9ar8Wkc7iuy0FhvfWHjctp3nFZRVZ2KnZ5wO1wCe9PWG0EewU0ZbnKea5rLMXpQhlzzp44Va7K7Jg2sHtM66HnLGwbSEseebweifcCpmFsOljWBEigefJ34L0obDhHVj9yuHlp5ZBcgaseQ3Wv3l4+Rk/tIPSrqyAjR8cXn7Oz+y/S5+FrfMPLUtItusDLHocdi49tDw5E079nr08/2+we/Wh5em5cPI37eVP/gz7Kg8tzyyCE75mL3/wO6jZcWh5zhiYcYO9/M6v4MC+Q8vzJsOxV9vLb/4cmjqknymYBkd90V5+zTqYXbmNETNg6sV25Pv//C+HUXwyTDrXjjb/xp2Hl487HcafAQf2wzu/PLx80rn2MWp3wfv3HF5ecjGMnAH7N8PH9x9eftSXoOAo+96a99Dh5cdcDfmTYedyexpDR3pz7/lGwPFfPXzf/mMmsNYYsx5ARJ4ALgKCA30bIENEBBgC7AU66y/PBZZj+T4BGtu3Wv4L3RjjxiHCuUO5v7is4t9AZmV5aRTNwOwb4/OHkBAnLN/up/Sogu4rKJFHcibs3wT1e+yHQRtTLrAfEHvWwfyHD6837XL7AVG1MnT5jOttcdqxNHT5SXfY4rRtYejy034AJMPmT0KUy0Fx2vg+LH6iwzVlHBSnDW/DipcOLc8YflCc1r4G6944tHzouIPitGqubUMwBdMOitOKl2Bnh/Boo088KE7Lnjtc3CacdVCcFj9hf/fBTP38QXFa+PfDU5oEWm1xgtDfXUKKLTCtTaHL04ba4tRcH7o8a7QtTg3+0OXDptriVL87dPnImbY41WwPXT72NFuc/JtDl/fm3is8pq/ilCAi84LWHzDGPBC0XgRsDlrfAszqcIz7sCONbwMygC8ZYzrLnWP1xVgxJnR3YHFZxbFdVawsL13QlxP3lvT0dFNXN7BJAOf89h0KfCn89bqZA3reiKXivyA9/+DDT1GUiEdE6o0xnXb/iMhlwDnGmBuc9auBmcaYrwftcylwEnY6jHHAf4BpxpjQXmOWbzQwAcv/GpYvDYjH8te4sberltOvuygzwOluTjAYKCnI5P11u702I3LY+IH91qcoymBiCzAyaH0EdgspmOuAcmO3ataKyAZgMqGGeizfjcBNQA62kBUB9wNnuDGmq0m4p7k5QCxQUpjJswu3sru2kdwhyV6b4z3R5q2nKIobPgUmiMgYYCtwOXBlh302YYvLuyIyDDtX0/pOjncr9jjWxwBY/jVYPtdZ1N3Mc7om1HY3k3C7c0sM2m8G8BF2/2WI0UFvKSk4mNvplAl5HlsTAQSaoyufk6Io3WKMaRGR24BXsJ/ZDxljlonILU75/cBPgYdFZAl2WKLvGWM661ZqxPI3YfnsNcuXQFvKdhe48dabEbScgq2aC+hmIlWQW+JZ2M3FT0XkRWPM8hD7/QL7C4lI2jz2lm1TcQLswepomoSrKIorjDFzsYMtBG+7P2h5G3C2y8O9jeX7AZCK5TsL+BrwUjd12nHjrff14PXisgof8KiLY7txSwT4OvBPDhXBiCIrLYkR2aks3rzfa1Mig+xi25NIURSlc8qA64El2MFg59KDAA69ef2tBya42K9bt0QRKQI+j+1c0ak4ichN2ANrJCV1Nt8rvMwozuHdNbsxxiCxnrzu2n95bYGiKJGO5Q9gz4/9c2+quxlzeomD/YRx2DOHn3Jx7FBP8I79jb/F7rNs7eqB7/jiPwC2K7mLc/c704uzeW7hVjbuqadYJ+MqiqJ0jeU7H3uMajS21ghgsPyZbqq7aTn9Kmi5BdhYWV66xUU9N26J04EnHGHKBc4TkRZjzPMujj+gzCzOAeCTyr0qTn+7AEouOjgJU1EU5XB+C3wBWNKb+HrdxtarLC99u7K89G1gIbACqC8uq8hxcex2t0Qn9tLl2DOL2zHGjDHGFBtjioFngK9FojABjMsbQlZaIvMq93ptivds/BD8bt5PFEWJYTYDS3sb+NVNt95N2E2zA0CAtqZZN8FfXbolRg1xccL00dl8Wrmv+50HM8aoK7miKG74LjAXy/c2h8bW+42bym669b4DTK0sL+1xiITu3BI7bL+2p8cfaGYU5/Dail1U1TSSlxGjk3HbciLpJFxFUbrmZ9iBwlOAHnuyuRGnddgeejHPdGfcaf7Gvcw5IkaDwLZFj9Z5ToqidE0Olt/tnKjDcPOE+T7wQXFZxccENc0qy0tv7+1Jo5Uji3wkJ8TxyYZ9sStOGCiabqdUUBRF6ZzXsHxnY/lf7U1lN+L0J+AN7IlUnYVGjwmSEuI4emQW8zbGsFNEUjrc+LrXViiKEvncCnwXy9cINBMGV/KWyvLSb/XBwEHFzDE5/OGtddQ1tpCerF1biqIoIbH8GX2p7ubp+qbjsfcSh3brxWTzYXpxDq2BtSzctJ+TJ+R6bc7AU7MDHv2CnShvyvleW6MoSiRj+Yo4OAnX2eZ/x01VN+LUFjL9+0HbunUlH6wcOyqLOIFPK/fGpjg118OuZdDoKl+YoiixiuX7BfAl7Hiqrc5WA/SPOFWWl47ptXGDkIyURKYUZPJprE7GbVVXckVRXHExMAnL39jtniEIaz6nwcqM4hye/HQzza0BEuO7DbIxuAioK7miKK5YDyQSPAG3B4Qtn9NgZkZxDg9/UMnybdVMG5nltTkDS9s8J205KYrSNfXAIizf6xwaIcLVNKRw5nMatMwozgbgw/V7Yk+cktJhzGxId51tWVGU2ORFOsRT7QnhzOc0aMnPTGFKQSZvrtzFLbPHeW3OwJI7Af5fr+83RVFiAcsXD1yN5T+zt4cIZz6nQc3pk/O4/+31+Oub8aVpF5eiKEo7lr8Vy1eP5fNh+f29OUQ48zkNak6fPIzfv7mOt9dUceG0GEpZvvEDeO4W+OLfoPAYr61RFKUfEZE5wD3YmSQeNMaUdyj/DnCVs5oATAHyjDGh3JcbgCVYvv8Ade1b+zrmVFxWMR4Y5uRyCt5+SnFZRXJleek6NycYrBw9Mouc9CTeWLEztsSpsRb2b4RATEeyUpRBh4jEA78HzsJOFvupiLxojFneto8x5pfAL539LwC+2YkwAVQ4n17RVcvpt8APQmw/4JRd0NuTDgbi44RTJ+XxxspdtAYM8XGdp5kfVLS5kserK7miDDJmAmuNMesBROQJ4CLsSbShuAJ4vNOjWf6/YflSgVFY/lU9NaarSTrFleWln3XcWFleOg8o7umJBiNnTB7G/vpmFm6KoQSEmjJDUaKVBBGZF/S5qUN5EXb22ja2ONsOQ0TSgDnAPzs9m+W7AFgE/NtZPxrL59qbqitxSumiLNXtCQYzp0zMJSFOeH3lLq9NGTjakg1qJlxFiTZajDHTgz4PdCgP1f3TWYr1C4D3u+jSA7CwW2P77TX/IsB1xKGuxOnT4rKKGztuLC6ruB6Y7/YEg5nMlERmFOfwxooYEqeMAph8PqS4inqvKEr0sAUYGbQ+AtjWyb6X01WXnk1LCE+9zsTuMLrqm7kDeK64rOIqDorRdOx0u593e4LBzhlT8rmzYgVb9tUzIjvNa3PCT/FJ9kdRlMHGp8AEERkDbMUWoCs77iQiPmA28OVujrcUy3clEI/lmwDcDnzg1phOW06V5aU7K8tLTwR+DFQ6nx9XlpeeUFleusPtCQY7p0+2IyW8GUtde4qiDDqMMS3AbcArwArgKWPMMhG5RURuCdr188Crxpi6UMcJ4uvAVOzQRY8BfuxGjyvEGNetrIggPT3d1NV1950MLKf96i1GD03j4etmem1K+Jn/MLz+E7htHqTleG2NoiguEZF6Y0z6gJ3Q8h2D5V/Y2+rqctUPnD45n0c/2kh9UwtpSYP8K22shfo9EBfvtSWKokQ2v8HyFQBPA09g+Zf1pHKM5XsID2dMzqepJcDbq6q8NiX8tKfMUG89RVG6wPKfBpwKVAEPYPmWYPn+x211Fad+YNbYoeRnJPPPBVu9NiX8aLJBRVHcYvl3YPnvBW7BnvP0Q7dVB3kf1MAQHyd8/pgi/vLeBvbUNjJ0SLLXJoUPTTaoKIobLN8U7DTtlwG7gSeA/3JbXVtO/cQlx42gJWB4YVFn0wIGCcOmwrQrQGIkXJOiKL3lr8A+4Cws/2ws/x+x/K7dmtVbrx+54HfvETCGittP8doURVGUQxhwbz0Ay5cETHTWVmH5m91W1ZZTP3LJsUUs21bNyh3VXpuiKIriLZZvNrAGO9L5H4DVWL7Pua2u4tSPXHh0EYnxwj/nD+J0V3O/C78p8doKRVEin98AZztdep8DzgHudltZxakfyUlP4rRJ+Ty3cBstrYM031FLw8Hgr4qiKJ2TeEiqDMu/GnDt5qsuV/3MJceN4NXlO3l3zW5Oc0IbDSoCLTrHSVEUN8zD8v0FeNRZD47T2i1hbTmJyBwRWSUia0WkLET5VSLymfP5QESmhdOegeC0SflkpyXyzIJB2rXX2qyJBhVFccNXgWXYAV+/gZ208JYuawQRtqeMm5S/wAZgtjFmn4icCzwAzAqXTQNBUkIcFx1dxGOfbGJfXRPZ6Ulem9S/BJohfpBdk6Io/Y/lb8Qed/pNb6qHs+XUnvLXGNOEPQHrouAdjDEfGGPa0sh+hJ0/JOq5YuYomloCPPrRRq9N6X/GnQ5HftFrKxRFiVQs30VYvluD1j/G8q13Ppe5PUw4xcl1yl+H64GXQxWIyE1tqYVbWiJ/MH7S8AxOn5zPwx9UcqCp1Wtz+pdjr4HZ3/HaCkVRIpfvAsHp2JOBGdhx9lx364VTnFyn/BWR07DF6Xuhyo0xD7SlFk5IiI7xjq+eOo69dU08NW9z9ztHEy1NEBhkgqsoSn+ShOUPfvC9h+Xfg+XfBLieBBxOcXKV8ldEjgIeBC4yxuwJoz0DyoziHI4bnc2f310/uNzK/3EJPFzqtRWKEpMEAlER0Sf7kDXLf1vQWp7bg4RTnNpT/opIEnbK3+CmHiIyCngWuNoYszqMtnjCLbPHsWXfASqWbPfalP6jtUWDvirKALKvrom/fVDJRfe9x98+rPTaHDd8jOW78bCtlu9m4BO3BwnbU8YY0yIibSl/44GH2lL+OuX3Y4dPHwr8QexAoi3GmOnhsmmgOWNyPhPyh/DHt9Zx4bRCZDAESw00Q8IgjrquKBFAU0uAt1bt4p8LtvDGyl00txqmFGRGS8aDbwLPY/muBBY4247DHnu62O1BNPBrmHlm/ha+/fRi/nrdDE6bNAgm5f5pNgzJh6ue9toSRRlUBAKGTyv38vyibcxdsh3/gWZyhyRx0dFFXHLsCEoKM/t0fA/StJ8OTHXWlmH53+hJde2fCTMXTivk16+u4o9vruPUiXnR33rSCBGK0m8YY/hsi5+XFm+jYsl2tvsbSEuK5+ySYVx0TBEnj88lMT5Ko8zZYtQjQQpGxSnMJCXEcfPnxmK9tJw3Vu7ijCnDvDapbxzzZUjN7n4/RVFCYoxhyVY/c5fsYO6S7WzaW09ivDB7Yh5l507mrJJhpCV582gWkTnAPdhDMQ8aY8pD7HMq8FvsOHm7jTGzw2KLduuFn+bWAOfe8y7NrQFe/ebnSE6I99okRVEGkEDAsHDzPv69dAdzl+xg6/4DJMQJJ47P5fyjCjinZDi+tPD2SHTXredE9VlNUFQf4IrgqD4ikgV8AMwxxmwSkXxjjOsEgj1BW04DQGJ8HD+6oISr//IJD71XyVdPHee1Sb2nfq/tEJE0sDnLFCXaaGxp5cN1e3hl2U7+s3wnu2sbSYwXTpmQxx1nTuCskmFkpUVUKLD2qD4AItIW1Sc45NyVwLPGmE0A4RImUHEaME6ZkMdZJcP43Rtr+MKxRQzLTPHapN7xxxNh/Jlw0X1eW6IoEcee2kbeWLmL11fs4t01VdQ1tZKeFM+pk/M5u2QYp03OJzPFszHbBBGZF7T+gDHmgaD1UFF9OsY6nQgkishbQAZwjzHmkbAYG46DKqH539ISzrz7bcpfXsndXzraa3N6R2szxKtDhKKA3V23bFs1b6zcxZurdrF4y36MgeGZKVx8TBFnThnGCeOGkpIYEV353U3VcRPVJwHbLfwMIBX4UEQ+Csc8VRWnAWTU0DRuOmUs9725li8fP4rjRud4bVLPCTSrt54S0+ypbeTdNbt5Z3UV76zZze7aRkRg2ogs7jhjImdMyWdqYWY0eua6ieqzBdsJog6oE5F3gGnYY1X9iorTAPO108bxzPwt/M/zy3j+1hOjzzmitUVbTkpM0dDcyrzKfby3djfvra1i2bZqjLEzX588PpfZE/OYPSmP3OiYINsV7VF9gK3YUX2u7LDPC8B9IpIAJGF3+7lOvd4TVJwGmLSkBO68+AhueGQev3h5FT+8oMRrk3pGoFnDFymDmubWAJ9t8fPhut18uH4P8yr30dgSIDFeOGZUNt86cyKzJ+VxRKGPuLioax11ipuoPsaYFSLyb+AzIIDtbr40HPaoK7lHWC8u4+EPKnnwmumcWRJFc5/euxuKjoMxn/PaEkXpF5pbAyzZ6uej9Xv4eP1e5lXupc5JdTN5eAYnjsvllAm5zByTQ3py9L6YDXiEiD6i4uQRjS2tfOEPH7Bt/wHmfuMUCnypXpukKDFBXWMLizbv55MNe5m3cS8LN+2n3hGjCflDmDU2hxPH5TJrTE60xLJzhYpTmBks4gSwvqqW83/3HkcU+Xj8xuOJj/QugkAA/JsgNQdS+hbnS1EGAmMM2/wNzN+4jwUb9zF/4z6Wb6+mNWAQgSnDM5lRnM3xY4cyc5CJUUdUnMLMYBIngGcXbOFbTy3m1tPG8Z1zJnttTtc01sBdI+Csn8JJt3ttjaIcRl1jC0u2+lm0eT8LN+1j4ab97KppBCA1MZ6jR2Zx7OgsZhTncOzobC/nHA040SZO0duBOkj4wrEj+GTDXn7/5jqGZ6Zw9QnFXpvUOa3N9l/11lMigIbmVlbuqGHJVj+fbd7P4i37WburlrZ8fMVD0zhpfC5Hj8ziuNHZTB6eQUK0BlGNQVScIoA7Lz6C3bVN/PDFZfjSkrhwWqHXJoUm0GL/VW89ZYCpb2phxfZqlm2rZtnWapZs9bN6Zw0tjhLlpCcxbYSP844sYNqILKaNzCInPaJCAyk9RJ8yEUBCfBz3XXkM1zz0Cd96chGZKQmcGom5n6Kk5bR2Vw2Pf7KZK2aOZHx+htfmKD3AGMOO6gZWbq9h+fZqlm+vZsX2aip317W3iLLTEjmiyMdNk8Zy1AgfRxT5KMpKjcZJr0oXqDhFCCmJ8Tz4/6Zz+Z8+4qt/X8Aj189kRnGERZAIOOIUoREiVu+s4d7X11CxZDvGgP9AM7+6bJrXZimd4K9vZvWuGlbtqGH1zhpW7qhh5fZqqhta2vcZmZPKlOGZXDitkKmFPqYWZlLgS1EhigHUISLCqKpp5Et/+pAt+w9w9xePpvSoAq9NOkiDHxY/CWNnQ94kr61pZ8GmfTz47npeXrqDtMR4rjmxmHW7avmkci/z/vtMHWfwEGMMe+uaWFdVx5pdNazZWcvaXbWs2VXDzurG9v3Sk+KZNDyDyQWZTBmewaThmUwuyIgph4VwE20OESpOEcjeuiZuemQe8zbuo+zcydz8ubH6ptiBltYAryzbyYPvrWfhpv1kpCRwzQmjueHksWSnJ/HKsh3c/Oh8HrthFieOz/Xa3EFPU0uATXvrWFdVx4bddayvqmVdVR3rqmrZX9/cvl9aUjwT8ocwLn8Ik4ZlMHFYBhOHZ1CoraGwE23ipN16EUhOehJ/v2EW3356MeUvr2TT3np+fOFU79M1N9XD3vWQPRqSvRnL2bKvnqc+3cxT87awo7qB0UPT+PGFU7n0uBGHzN7/3IQ8UhLj+PeyHSpO/URDcytb9tVTubuejXvrqdxdR+Ue+7N134H2MSGAvIxkxuSmc96RBYzLG8K4vHQmDMugIDNlUIX8UcKHtpwimEDA8MtXV/HHt9YxbWQWd39xGmPzhnhn0NYF8OfT4IonYdKcATvtgaZWXl+5k6fnbeGdNVWALT5XzhrFmVOGdTp5+ZZH57Nw8z4+LDtDH4guCAQMVbWNbN5bz+Z99WzZe4BNe20h2ry3nh3VDQQ/LjKSEyjOTWdMbrrzN42xuUMYk5eu3XERiLaclH4jLk743pzJTC3M5L+fW8p5977LD86bwpdnjfbmYdvmSh4f/tumuTXA+2t38+KibbyybAd1Ta0Mz0zh66eN54szRjIiO63bY8w5Yjj/XraDRVv2c+yo7LDbHOk0twbY4W9g6/4DbHM+W/cfYMs++7N1/wGaWgKH1BmWmcyonDROGDeUUTlpjB6axuih6RQPTSc7LVG74pSwoeIUBZx/VCEzinP47jOf8cMXlvGf5Tv5yUVHMCZ3gF+CWpvsv2Hy1qtrbOHt1VW8umwHb6zcRXVDC5kpCVwwrZALjy5k1pihPQrxdNrkfBLihFeW7Rj04tTQ3EpVTSM7qhvY7m9gh/8AO/yNbPcfYJu/ge37D1BV20jHjpLcIUkUZadRUpjJ2SXDGJGdyoicNEZmpzEiOzVSkuQpMYiKU5QwLDOFh6+bwT8+3sTP567grN+8zVWzRnH7GRMGLh5YP89zMsawZlctb6+q4p01VXy8YS9NLQGy0xI5Z+pwzp46nM9NzO11zitfaiInjs/llaU7KJszOSrf8ttEZ1dNI1U1jVTVNLCzupFdzt+d1Q3srG5gX5DTQRtpSfEM96VQ6Etl4sQ8CrJSKcpKoSgrjcKsFAqzVHyUyEXFKYoQEb58/GjOnjqMe15bw98/3sQ/F2zlltljufqEYnypYe7nb48Q0bvzGGPYuKeej9bvcT572VHdANjRoK8+fjRnlQxj+ujsfnP/njN1OD94bgmrdtYwebj3wWqNMdQ1tbKntpE9dU3sqW1id20je2ob2e0sV9U0UlXbyO6axkPm/LQRJ7bDwbDMFEZkp3Lc6GyGZ6YwLDOFYb4UCnwpDPelkJGcEJWCrCigDhFRzdpdtfzi3yv5z/KdpCXFc+lxI7j2xOLwOU34t8L6t2DiOZDevQdcQ3MrS7f6WbBpHws27mfBpn3tQThzhyQza2wOp4zP5XMT8yjMCk/KkKqaRmb+/DW+ccYE7jhzYr8fv6G5lf31zeyrb7I/dc5yXRN7nb976prY63z21DUdNq7TRkZKAnlDkhk6JIn8jBRyhySROySZ/Mxk8jNSyMtIJj8jmaFDkiM/gr0ScUSbQ4SK0yBg2TY/f32/khcXbaOpNcDsiXl8/pgizioZNmDJ0fz1zazaWcPybX6WbK1m2TY/a3bV0ur4F4/KIxyIxAAAC8hJREFUSeOYUXY06OPHDmVcXvqAvdVfdv8H1Da28vI3TglZ3twaoPpAM9UNLfgPNFN9oBl/0KdtfX99M/sPNLG/3l7fV99EQ3NooQHbmy07PYnstERy0pPISbeFJyfdFp2h6UkMHZLEUGdZu9iUcKLiFGZUnDqnqqaRv3+0kafnbWabv4GUxDjOnDKM0iMLOHF8bt+7/Wqr7HlOBUdBYirvrK7iofc3sGpHDdv9De275Q5J4ogiH0cU+jhqhI9jRmWTl+FdnpwH313PnRUrOO/I4dQ1tlLd0ExNQws1Dc1UH2jhQHNrl/WTEuLwpSaSnZZIVmoSmW3LaYlkpSWRlZZIdlqS/Uk/uJyUoJEplMhBxSnMqDh1TyBgmL9pHy8s2srcJTvYW9dEfJxwzMgsPjcxjxPGDeXIIl/P39QXPwHP3QxfX8ArO9K57bEF5GekMKM42w43MzyDKQWZDMtMjqixjp3VDVz5548wxu46y0hJJCMlgcyURDJT7b8ZKQn40hKdbYn4gj7aolEGAypOYUbFqWe0tAZYuHl/u0fckq1+jIGEOKGkMJNjR2UztTCTycMzmTBsSNcP4gWPwou38eac17nxxV0cUeTjketn6oRLRYkC3IiTiMwB7gHigQeNMeUdyk8FXgA2OJueNcb8JAzmhlecXFyoOOXnAfXAtcaYBV0dU8Wpb+ypbWTBJts5YeGmfSze7G/v1ooTKB6azti8dGeiZRqjhqZTlJVCgS+V9CWPwL++yQlNv6dw5Fgevm4GGSpMihIVdCdOIhIPrAbOArYAnwJXGGOWB+1zKvBtY8z5YTY3fK7kzoX+nqALFZEXgy8UOBeY4HxmAX90/oaHt38JS585dFt8Itzynr38mgWrXj60PCULrn/FXp77Xdjw9qHlmYVw9XP28gu3wZZPDy0fOh4u/4e9/MxXYOeyQ8uHHwWX/Nlefuxy2Lfh0PKRs+DCe+3lv10AtbsOLR93Osy5y15+8Ew7lXowk8+HM/7XXv7jSQwNtHAW9o8CEDjri2yYcjNrtu5h+isX0dQYoHljgKb1BmMMj7eezl9bz8VHLa+l/Jg8oGREDvd8ZSZDBsjZQlGUAWEmsNYYsx5ARJ4ALgKWd1krTITz6eLmQi8CHjF28+0jEckSkQJjzPawWDQk//BUD8FzdjIKDi8PDnDqKzq8PD3v4HLWKGisPrTcNzKofPTBuULBddrIGQMJHbJ3ZgXVHzoeUjtEOsgMypo7dAI0d2hVZgw/uJw7Ecyhg/9xGcPswJzZSbD6qPbtBmhsDnDV8OkcPfRodu+uYufSY1iXPIx7rztrwLwAFUXpNxJEZF7Q+gPGmAeC1ouAzUHrWwjdWDhBRBYD27BbUctC7NNnwtatJyKXAnOMMTc461cDs4wxtwXt8y+g3BjznrP+OvA9Y8y8UMcE7dZTFEXpDS669S4DzunwzJ5p/n97dxsjV1XHcfz7s4uyrfJQ8aG0mLaxBUntA25KK4RI8aE0BF5IzBKJICakpiIQE9OGaEKM74wBnyBEComYghSUSgylVhuNL2wXWtqt7YpKhVplCagN2iBL/744Z+hku0u7LbfnLPP7JDczc3Kn/c3dmfzn3HPnnIgb2vY5BTgYES9LWgbcHhGzmsjb5LWuI12uNbwSHs0+SLpeUp+kvqGhw38xb2Zmx20v0Haqhmmk3tHrImJ/RLyc7/8COElSI2vSNFmcjvhCj3IfIuKuiOiJiJ6uLp9OMjNrwBZglqQZkt4O9ALr2neQ9P58IRuSFpJqyItNhGmyOB3xhebHn1OyCPh3Y+NNZmY2qogYAr4ErAd2AT+JiJ2Slktanne7EujPY07fAXqjobGhpi8lXwbcRrqUfHVEfLP1IiPizlyBvwcsJV1K/vk3Gm8CjzmZmR0L/wi3YS5OZmZjN96Kkyf/MjOz6rg4mZlZdVyczMysOuNuzEnSQeDAMT69C6j1h1K1Zqs1Fzjbsag1F9SbrdZcMLZs3RExbjok4644HQ9JfRHRUzrHSGrNVmsucLZjUWsuqDdbrbmg7mzHa9xUUTMz6xwuTmZmVp1OK053HXmXYmrNVmsucLZjUWsuqDdbrbmg7mzHpaPGnMzMbHzotJ6TmZmNAy5OZmZWnY4pTpKWShqQ9CdJKwtnWS1pUFJ/W9tkSRskPZ1vT3+jf6OhXGdJ+rWkXZJ2SrqxhmySTpa0WdJTOdetNeQalnGCpK15Ac0qsknaI2mHpG2tFVBryJVznCZpraTd+f22uIZsks7Ox6u17Zd0UyXZbs7v/35Ja/LnoniupnREcZI0Afg+cClwLnCVpHMLRrqXNBN7u5XAxryq5Mb8+EQbAr4SER8CFgEr8nEqne0VYElEzAPmA0vzEiulc7W7kbTMQEst2S6OiPltv4WpJdftwGMRcQ4wj3TsimeLiIF8vOYDHyGtlvDT0tkkTQW+DPRExBzSSg+9pXM1KiLe8huwGFjf9ngVsKpwpulAf9vjAWBKvj8FGKjguD0CfKKmbMBE4Eng/FpykRbJ3AgsAR6t5e8J7AHOGNZWQ65TgGfIF2TVlG1Ynk8Cv6shGzAVeA6YTJoV4tGcr6pj9mZuHdFz4tAftmVvbqvJ+yIvtJhv31syjKTpwALg91SQLZ822wYMAhsioopc2W3AV4GDbW01ZAvgcUlPSLq+olwzgReAe/Kp0B9KmlRJtna9wJp8v2i2iPgb8C3gWeDvpIVZHy+dq0mdUpw0QpuvoR+FpHcCDwE3RcT+0nkAIuK1SKdapgELJc0pnQlA0mXAYEQ8UTrLCC6IiPNIp7NXSLqodKCsCzgPuCMiFgD/obLTUXn17suBB0tnAchjSVcAM4AzgUmSri6bqlmdUpz2Ame1PZ4G7CuUZTTPS5oCkG8HS4SQdBKpMP04Ih6uKRtARPwL2EQas6sh1wXA5ZL2APcDSyTdV0O2iNiXbwdJ4yYLa8hF+jzuzb1fgLWkYlVDtpZLgScj4vn8uHS2jwPPRMQLEfEq8DDw0QpyNaZTitMWYJakGfkbUS+wrnCm4dYB1+T715DGe04oSQLuBnZFxLdrySbpPZJOy/e7SR/U3aVzAUTEqoiYFhHTSe+rX0XE1aWzSZok6V2t+6Txif7SuQAi4h/Ac5LOzk2XAH+oIVubqzh0Sg/KZ3sWWCRpYv6cXkK6iKR0ruaUHvQ6URuwDPgj8GfglsJZ1pDOG79K+hb5BeDdpEH1p/Pt5AK5LiSd7twObMvbstLZgLnA1pyrH/h6bi9+zIbl/BiHLogofcxmAk/lbWfrPV86V1u++UBf/pv+DDi9omwTgReBU9vaimcDbiV9KesHfgS8o4ZcTW2evsjMzKrTKaf1zMxsHHFxMjOz6rg4mZlZdVyczMysOi5OZmZWHRcnM0DSa3kW6n5JD0qaOIbnnilp7Rj/v02Seo68p1lncnEySw5Emo16DvA/YPnRPElSV0Tsi4grm41n1llcnMwO91vgg3mWhdWStuQJSq8AkHRt7l39nDSx6nTltbnyGjv35HWUtkq6OLd3S7pf0nZJDwDduX2CpHtzj22HpJsLvWazqnSVDmBWE0ldpHnVHgNuIU1HdF2ePmmzpF/mXRcDcyPipTyDe8sKgIj4sKRzSMVrNvBF4L8RMVfSXNKyH5BmSpiae2y0pmky63TuOZkl3XlJjj7SPGZ3k+ajW5nbNwEnAx/I+2+IiJdG+HcuJE0tQ0TsBv4KzAYuAu7L7dtJ0/YA/AWYKem7kpYCVcwCb1aae05myYFIS3K8Lk+w+emIGBjWfj5pmYeRjLQ8S8thc4VFxD8lzQM+Rep1fQa4bizBzd6K3HMyG9164IZcpJC04Cie8xvgs3n/2aSe1sCw9jmkyWyRdAbwtoh4CPgaaekIs47nnpPZ6L5BWuV2ey5Qe4DLjvCcHwB3StoBDAHXRsQrku4grfzamvF9c95/am5vfVFc9Sa/BrNxybOSm5lZdXxaz8zMquPiZGZm1XFxMjOz6rg4mZlZdVyczMysOi5OZmZWHRcnMzOrzv8BgL1VYBjcCOUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_20_2.png" }, "needs_background": "light" }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "P \n", " [[0.9 0.1 0. ]\n", " [0. 0.9 0.1]\n", " [0. 0. 1. ]]\n", "Q \n", " [[0.864 0.096 0. ]\n", " [0. 0.864 0.096]\n", " [0. 0. 0.96 ]]\n", "Govt expenditures in peace, war, postwar = [0.5 1.2 0.8]\n", "Constant tax collections = 0.7548096885813149\n", "Govt debt in 3 states = [-1. -4.07093426 -1.12975779]\n", "\n", "Government tax collections minus debt levels in peace, war, postwar\n", " T+b in peace = 1.754809688581315\n", " T+b in war = 4.825743944636679\n", " T+b in postwar = 1.8845674740484437\n", "\n", "Total government spending in peace, war, postwar\n", " peace = 1.754809688581315\n", " war = 4.825743944636679\n", " postwar = 1.8845674740484437\n", "\n", "Let's see ex-post and ex-ante returns on Arrow securities \n", "\n", "Ex-post returns to purchase of Arrow securities:\n", " π(peace|peace) = 1.1574074074074074\n", " π(war|peace) = 10.416666666666666\n", " π(war|war) = 1.1574074074074074\n", " π(postwar|war) = 10.416666666666666\n", " π(postwar|postwar) = 1.0416666666666667\n", "\n", "Ex-ante returns to purchase of Arrow securities = 1.0416666666666667\n", "\n", "The Ex-post one-period gross return on the portfolio of government assets\n", "[[0.7969336 3.24426428 0. ]\n", " [0. 1.12278592 0.31159337]\n", " [0. 0. 1.04166667]]\n", "\n", "The cumulative return earned from holding 1 unit market portfolio of government bonds\n", "0.17908622141460384\n" ] } ], "source": [ "ts_ex1 = TaxSmoothingExample(g_ex1, P_ex1, b0_ex1, states_ex1, random_state=1)\n", "ts_ex1.display()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEWCAYAAAB2X2wCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXhU5dn48e+dyR6yQRIIJOzIngQhgLgAIoJFFFegYEXbUmzVurTv61vt21ptX3+tXbS2tdQqVRFwaQG3ulQRRBACCUjYd0KAhCQkZM/MPL8/ZojZMyHLmUzuz3XlYs48z5xz52S455nnnHMfMcaglFKq8/OzOgCllFJtQxO6Ukr5CE3oSinlIzShK6WUj9CErpRSPkITulJK+QhN6KpTE5EpIpJVY/moiFzTDtvJFJEpbb3ettZev7/qHDShK4+ISHGNH6eIlNVYXmB1fG1JRJaJyJM1nzPGjDTGrLMopAY1FKfq2vytDkB1DsaYbhcei8hR4DvGmI+ti0gpVZeO0FWriMh4EdkkIudE5JSIPCcige62SSJyVkQS3cvJ7n7DGlnXSBH5SETyReSMiPzE/XyQiPxBRLLdP38QkSAPYvMTkUdE5JCI5InI6yLSvUb7FSLyhTumEyKySEQWAwuA/3J/+3jb3bd6KqOpeC5MAYnIwyKS494ndzUR4zoR+T8R2SIihSKypk6Mb4jIaXfbehEZ6X6+wTjdUkRkp/s1q0Qk2P2aGBF5x/375ovIBhHRHOBD9I+pWssBPAjEAJcB04DvAxhjvgD+CvxDREKAV4DHjDF7665ERMKBj4F/A72BwcB/3M2PAhOBFCAZGA885kFs9wNzgMnudRYAf3Jvry/wPvBHINa97gxjzFJgOfBrY0w3Y8zsBtbbXDy9gEigD/Bt4E8iEt1EnN8C7nbHaAeerdH2PjAEiAO2u2OjmThvB2YCA4AkYJH7+YeBLPfv2xP4CaC1P3yJMUZ/9KdFP8BR4JpG2h4A/lVjOQDYBnyFK1lLI6+bD6Q30nYI+EaN5RnAUffjKUBWQ7EBe4BpNdrigSpcU43/UzPOOttbBjzZ2O/sQTxlgH+N9hxgYiPbWgc8VWN5BFAJ2BroG4UrAUc2E+fCGsu/Bp53P/4FsAYYbPV7SH/a50dH6KpVROQS99f40yJSBPwK12gdAGNMFa7EMwr4rXFnlgYk4kqUDekNHKuxfMz9XHP6Af9yTzGcw5XgHbhGp01trznNxZNnjLHXWC4FutG4E3XWFQDEiIhNRJ5yTxkV4UrWUGP/NuJ0I9v+DXAQ+FBEDovII82sR3UymtBVa/0F2AsMMcZE4PoaLxcaRaQP8DPgJeC3Tcx9nwAGNdKWjSs5X9DX/VxzTgDXGWOiavwEG2NONrO95qYhLjaexiTWWVcVcBb4JnAjcA2uKZz+7j4X9m+LpkuMMeeNMQ8bYwYCs4GHRGRaK+JWXkYTumqtcKAIKHYf7LznQoOICK7R+d9xzSWfAp5oZD3vAL1E5AH3QcdwEZngblsBPCYisSISA/wv8KoHsT0P/FJE+rnjiRWRG91ty4FrROR2EfEXkR4ikuJuOwMMbGK9FxtPYxaKyAgRCcU1LfKmMcaBa99WAHlAKK5vPzU1F2ctInK9iAx2/12KcH1bcbQibuVlNKGr1voRrpHkeeBvwKoabffjmt74qXuq5S7gLhG5su5KjDHngem4Ro6ngQPAVHfzk0AasBPXXPx293PNeQZYi2uK4TywGZjg3t5x4Bu4DhTmAxm4DnCC6wNohHuqZnUD673YeBrzCq4PvtNAMK79BvAyrimYk8Bud/w1NRdnXUNwHXguBjYBfzZedm69ah1pfEpTKdXeRGQd8Kox5gWrY1Gdn47QlVLKR2hCV0opH6FTLkop5SN0hK6UUj7CsuJcMTExpn///lZtXimlOqVt27adNcbENtRmWULv378/aWlpVm1eKaU6JRE51libTrkopZSP0ISulFI+QhO6Ukr5CK+6Y1FVVRVZWVmUl5dbHYqySHBwMAkJCQQEBFgdilKdjlcl9KysLMLDw+nfvz+u+kGqKzHGkJeXR1ZWFgMGDLA6HKU6nWanXETkRfettHY10r7Afburne7beSU31M8T5eXl9OjRQ5N5FyUi9OjRQ7+hKXWRPJlDX4brdlaNOQJMNsYk4SqNurQ1AWky79r076/UxWt2ysUYs15E+jfR/kWNxc1AQuvDUsoaTuNky+ktlFWVVT83OGowiRGJlFaV8uWpL+u9Zmj3ofTu1puiyiK2nd5Wr314j+H0CutFQXkBGTkZ9dpHx44mJiSGs2Vn+Sr3q3rtY+LGEBUcxemS0+zJ21OvfWyvsUQERnCy+CT78/fXa58QP4HQgFBOFJ3g4LmD9don9ZlEkC2Iw4WHOVZY/xTnKxOuxN/PnwMFB8g6n1WvfWrfqfWeU9Zo6zn0b+O6qW2D3HcqXwzQt2/fNt5025g0aRJffPFF8x07yLJly0hLS+O5555rtM+6desIDAxk0qRJHRhZbT//+c/p1q0bP/rRjzzq/6tf/Yqf/OQn7RxVyx0oOMAHRz8AQNw3Bgr2D3YldHspG05uqPeaiKAIenfrTXFlcYPtsaGx9ArrxbmKcw229+7Wm5iQGPLK8hpsHxA5gKjgKHJLcxtsH9Z9GBGBEZwqPtVg++jY0a6Efv5Eg+3jeo0jyBbE8aLjDbZf3udyAA4XHm7wA00TuvfwqDiXe4T+jjFmVBN9pgJ/Bq4wxuQ1t85x48aZuleK7tmzh+HDhzcbT1fiSUJvaTJta3a7nSeffLJFMXTr1o3i4uIG26x8H2w+tZktp7Zw75h78RM9q9dTRwqPUFhRSEpcSvOdVauIyDZjzLiG2trkHSsiScALwI2eJHNv1q2b636669atY8qUKdx6660MGzaMBQsWXLiLOlu3bmXSpEkkJyczfvx4zp8/T3l5OXfddRejR49mzJgxfPrpp4ArIc+ZM4fZs2czYMAAnnvuOX73u98xZswYJk6cSH5+PgBTpkzhgQceYNKkSYwaNYotW7bUiy03N5dbbrmF1NRUUlNT2bhxI0ePHuX555/n97//PSkpKWzYsKHBfnV5Gtff/vY3UlNTSU5O5pZbbqG0tBSARYsW8dBDDzF16lT++7//u9a6//a3v3HddddRVlbGq6++yvjx40lJSeF73/seDoeDRx55hLKyMlJSUliwYEEb/eXaxsT4iZrML8KXp77k3cPvcrbsrNWhdGmtnnIRkb7AP4E7jDH1J/Au0uNvZ7I7u6itVgfAiN4R/Gz2SI/7p6enk5mZSe/evbn88svZuHEj48ePZ+7cuaxatYrU1FSKiooICQnhmWeeAeCrr75i7969XHvttezf79odu3btIj09nfLycgYPHsz/+3//j/T0dB588EFefvllHnjgAQBKSkr44osvWL9+PXfffTe7dtU+seiHP/whDz74IFdccQXHjx9nxowZ7NmzhyVLltQaHX/zm99ssF9dnsR18803893vfheAxx57jL///e/cd999AOzfv5+PP/4Ym83Gz3/+cwCee+45PvzwQ1avXs3hw4dZtWoVGzduJCAggO9///ssX76cp556iueee46MjPrzyVYqt5cT7B+syfwizBo4iz9n/Jk1B9dw16i7dB9apNmELiIrgClAjIhk4bqDewCAMeZ5XDfI7QH82X2Ggr2xrwOdzfjx40lIcB3jTUlJ4ejRo0RGRhIfH09qaioAERERAHz++efViW7YsGH069evOqFPnTqV8PBwwsPDiYyMZPbs2QCMHj2anTt3Vm9v/vz5AFx11VUUFRVx7ty5WvF8/PHH7N69u3q5qKiI8+fP14u7sX7h4eG1+nkS165du3jsscc4d+4cxcXFzJgxo/r1t912GzabrXr5lVdeISEhgdWrVxMQEMB//vMftm3bVr2vysrKiIuLa2qXW8YYwwtfvUD/yP5cP/B6q8PpdMIDw5k1cBZvHXiLTdmbqufdVcfy5CyX+c20fwf4TptF5NaSkXR7CQoKqn5ss9mw2+0YYxo8ta6pYxE11+Pn51e97Ofnh91ur26ru966y06nk02bNhESEtJk3J728ySuRYsWsXr1apKTk1m2bBnr1q2rfk1YWFit9Y0aNYqMjIzqC4OMMdx555383//9X5NxeIOs81nkledxRZ8rrA6l0xrZYyS783bz6YlPGdZ9GD1CelgdUpej34taaNiwYWRnZ7N161YAzp8/j91u56qrrmL58uWAayri+PHjDB06tEXrXrVqFeAa7UdGRhIZGVmr/dprr611cPTClEV4eHitkXpj/S7G+fPniY+Pp6qqqvr3a8yYMWP461//yg033EB2djbTpk3jzTffJCcnB4D8/HyOHXOdFhcQEEBVVdVFx9XW0nPTCfQLZESPEVaH0mmJCLMGzmJG/xl0D+5udThdkib0FgoMDGTVqlXcd999JCcnM336dMrLy/n+97+Pw+Fg9OjRzJ07l2XLltUaAXsiOjqaSZMmsWTJEv7+97/Xa3/22WdJS0sjKSmJESNG8PzzzwMwe/Zs/vWvf1UfFG2s38V44oknmDBhAtOnT2fYsGHN9r/iiit4+umnmTVrFnFxcTz55JNce+21JCUlMX36dE6dOgXA4sWLSUpK8oqDohWOCjLPZjIyZiSBtkCrw+nUwgLCSO2ViohQ5fSeD+yuwrJ7iuppi7VNmTKFp59+mnHjfOLwQ6t09PsgPSedtYfWcvfIu0mMSOyw7fqyY0XHeHP/mywYvoBeYb2sDsentPtpi0p1ZiN6jODmwTeTEK4XObeV2BDXHdLWHFyD3WlvprdqK5rQvcS6det0dG6RIFsQo2NHax2ZNhQaEMr1A6/ndOlpPj/5udXhdBma0FWXtvX0VtJO671t28PQ7kNJikliQ9YGThWfsjqcLkETuuqyHE4H67PWc+jcIatD8VkzB8wkLDCMPfn1L2xTbc+rbnChVEc6eO4gxVXFWn+kHYX4h/C9pO8RFhDWfGfVajpCV11Wek463QK6MSR6iNWh+LQLyTynNIfTJactjsa3aUK30KJFi3jzzTeb7LNs2TKys7M7KKKGTZkyhbqnmDbm6NGjvPbaa+0cUeudrzzPgYIDJMcma92RDuA0TlbtW8VbB97S89Pbkb6TvZzVCd3hcLSof2dJ6KVVpSSGJ+p0SwfxEz9mDZjF2bKzrDuxzupwfJYm9DpefvllkpKSSE5O5o477gDg2LFjTJs2jaSkJKZNm8bx48cB1wj7nnvuYerUqQwcOJDPPvuMu+++m+HDh7No0aLqdXbr1o2HH36YSy+9lGnTppGbm1tvu9u2bWPy5MmMHTuWGTNmcOrUKd58803S0tJYsGABKSkplJWVNdivLk/juueeexg3bhwjR47kZz/7WfXz/fv35xe/+AVXXHEFb7zxRvXzTqeTO++8k8ceewyHw8GPf/xjUlNTSUpK4q9//SsAjzzyCBs2bCAlJYXf//73rfpbtKeeYT1ZNGoRMSExVofSZQyMGsjYnmPZlL2JE0UnrA7HJ3nvQdH3H4HT9W/H1Sq9RsN1TzXanJmZyS9/+Us2btxITExMdU3we++9l29961vceeedvPjii9x///2sXr0agIKCAj755BPWrl3L7Nmz2bhxIy+88AKpqalkZGSQkpJCSUkJl156Kb/97W/5xS9+weOPP16r1kpVVRX33Xcfa9asITY2llWrVvHoo4/y4osv8txzz1VfQdpUv7o8ieuXv/wl3bt3x+FwMG3aNHbu3ElSUhIAwcHBfP656/zh559/HrvdzoIFCxg1ahSPPvooS5cuJTIykq1bt1JRUcHll1/Otddey1NPPcXTTz/NO++802Z/trZWWFGIv5+/HqizwPR+0zl07hCrD61mSdISAmwBVofkU7w3oVvgk08+4dZbbyUmxjVq697dVWBo06ZN/POf/wTgjjvu4L/+67+qXzN79mxEhNGjR9OzZ09Gjx4NwMiRIzl69CgpKSn4+fkxd+5cABYuXMjNN99ca7v79u1j165dTJ8+HXBNc8THx9eLz9N+nsb1+uuvs3TpUux2O6dOnWL37t3VCf1CvBd873vf4/bbb+fRRx8F4MMPP2Tnzp3VxwAKCws5cOAAgYHeXwtl3Yl17CvYx8NjH8bmZ2v+BarNBNmCuHHQjRw4dwD0Oq42570JvYmRdHtprDRuXTX71Cw5W7ccbc3SuI29/sJ2R44cyaZNm5qNz5N+nsR15MgRnn76abZu3Up0dDSLFi2ivLy8ul/d0riTJk3i008/5eGHHyY4OBhjDH/84x9r1UcHapXX9UYVjgoy8zIZHTNak7lF+kf2p39kf6vD8Ek6h17DtGnTeP3118nLc91F78KUy6RJk1i5ciUAy5cv54orWlYz2+l0Vo9kX3vttXqvHzp0KLm5udWJuqqqiszMTKB2adym+rVUUVERYWFhREZGcubMGd5/v9F7ewPw7W9/m2984xvcdttt2O12ZsyYwV/+8pfqErj79++npKSkXilfb5N5NpMqZ5UeDPUCJ4pO8I/Mf1DpqLQ6FJ/hvSN0C4wcOZJHH32UyZMnY7PZGDNmDMuWLePZZ5/l7rvv5je/+Q2xsbG89NJLLVpvWFgYmZmZjB07lsjIyOq65xcEBgby5ptvcv/991NYWIjdbueBBx5g5MiRLFq0iCVLlhASEsKmTZsa7ddSycnJjBkzhpEjRzJw4EAuv7z5O8w89NBDFBYWcscdd7B8+XKOHj3KpZdeijGG2NhYVq9eTVJSEv7+/iQnJ7No0SIefPDBFsfWntJz0okNiSWhmxbisprBcKzoGB8d+4hZA2dZHY5P0PK5HaCpO9yr+trrfXCu/BzPpj/LNf2uYVLvSW2+ftVyHxz9gM2nNnPH8DsYGDXQ6nA6BS2fqxQQFRzFfWPuY0zcGKtDUW5X972aHsE9WHtoLRWOCqvD6fSaTegi8qKI5IjIrkbah4nIJhGpEJEftX2InZ+Ozr1HdHA0If5N32tVdZwAvwDmDJ5DUWUR205vszqcTs+TEfoyYGYT7fnA/cDTbRGQUu1hX/4+VuxdQUlVidWhqDoSwhO4a9RdXNb7MqtD6fSaTejGmPW4knZj7TnGmK2AFmhQXmt7znZOFZ/S0bmXSgxPREQoqiyizF5mdTidVofOoYvIYhFJE5G0hi5/V6o9FFUWaSGuTqDCUcHSHUv595F/Wx1Kp9Wh725jzFJjzDhjzLjY2NiO3LTqwnbm7sRg9NxzLxdkC2Jsz7HsPLuTffn7rA6nU9LhSjv5wx/+QGlpqdVhNKlm+d7vfOc77N69G4Bf/epXVobVpowxpOek0y+8Hz1CelgdjmrGlQlX0jO0J+8cfofSKu/+/+ONNKG3k86Q0Gt64YUXGDFiBHBxCb2xMgdWcxgHybHJTOw90epQlAf8/fyZM3gOZfYy3j/S9NXLqj5PTltcAWwChopIloh8W0SWiMgSd3svEckCHgIec/eJaN+w288TTzzBsGHDmD59OvPnz+fpp10n72RkZDBx4kSSkpK46aabKCgoYM+ePYwfP776tUePHiUpKYlnn32W7Oxspk6dytSpU+tto6ESuIWFhQwdOpR9+1xfNefPn8/f/vY3oPHyu4cOHWLmzJmMHTuWK6+8kr179wKukff999/PpEmTGDhwYPUo3BjDvffey4gRI5g1axY5OTnVMV24icUjjzxCWVkZKSkpLFiwgKNHjzJq1Kjqfk8//TQ///nPq1/zk5/8hMmTJ/PMM880Wtr32WefZcSIESQlJTFv3rw2+Tt5yt/Pn6sSrmJY92Edul118XqF9eKqhKvwEz8czpbV4+/yjDGW/IwdO9bUtXv37lrLy3Ytq/ez5dQWY4wxlfbKBtvTz6QbY4wpqSyp19acrVu3muTkZFNaWmqKiorM4MGDzW9+8xtjjDGjR48269atM8YY89Of/tT88Ic/NMYYk5ycbA4dOmSMMeapp54yTzzxhDHGmH79+pnc3Nx626isrDSXXXaZycnJMcYYs3LlSnPXXXcZY4z58MMPzcSJE82KFSvMjBkzql8DmFdffdUYY8zjjz9ufvCDHxhjjLn66qvN/v37jTHGbN682UydOtUYY8ydd95pbr31VuNwOExmZqYZNGiQMcaYt956y1xzzTXGbrebkydPmsjISPPGG28YY4yZPHmy2bp1qzHGmLCwsOptHzlyxIwcObJ6+Te/+Y352c9+Vv2ae+65p9nfKz4+3pSXlxtjjCkoKGj271D3fXCxyu3lZtfZXabKUdUm61Mdx+l0Wh2C1wLSTCN5VWu51PD5559z4403EhLiOrVt9uzZgKs07Llz55g8eTIAd955J7fddhsAt99+O6+//jqPPPIIq1atqlenpa6mSuBOnz6dN954gx/84Afs2LGj+jUNld8tLi7miy++qI4DoKLi6yvt5syZg5+fHyNGjODMmTMArF+/nvnz52Oz2ejduzdXX331xe8stwtxNfV7JSUlsWDBAubMmcOcOXNavU1PZZ7N5O3Db3P3qLtJDE/ssO2q1rtQkTSnNIddZ3cxNXGqR5VQuzqvTuh3jryz0bYAW0CT7aEBoU22N8RcRF2buXPnctttt3HzzTcjIgwZ0vQNh00TJXCdTid79uwhJCSE/Px8EhIaLiAlIjidTqKiosjIyGiwT82SuTV/r5b+p/D398fpdFYv1yyxC1+X2W3q93r33XdZv349a9eu5YknniAzMxN///Z/62khrs7vQMEBNpzcQFxoHKNiRjX/gi5OD4rWcMUVV/D2229TXl5OcXEx7777LgCRkZFER0ezYcMGAF555ZXq0fqgQYOw2Ww88cQTtW4K0VgZ2aZK4P7+979n+PDhrFixgrvvvru6NG1D5XcjIiIYMGBA9S3ijDG1RvUNueqqq1i5ciUOh4NTp07x6aefNtgvICCgets9e/YkJyeHvLw8KioqGr0TUWO/l9Pp5MSJE0ydOpVf//rXnDt3rkNKIeSW5pJVnEVKXIqO7Dqxy3pfRp9ufXjvyHsUV2oJjeZ49Qi9o6WmpnLDDTeQnJxMv379GDduHJGRkQD84x//YMmSJZSWljJw4MBaJXTnzp3Lj3/8Y44cOVL93OLFi7nuuuuIj4+vlTgbK5UbEBDACy+8wJYtWwgPD+eqq67iySef5PHHH2+0/O7y5cu55557ePLJJ6mqqmLevHkkJyc3+vvddNNNfPLJJ4wePZpLLrmk+kOprsWLF5OUlMSll17K8uXL+d///V8mTJjAgAEDGDas4YOLjf1el1xyCQsXLqSwsBBjDA8++CBRUVGe/1EuUnpOOn74kRzb+P5Q3s9P/JgzeA5/3fFX3jn8DnOHztUP6CZo+dw6iouL6datG6WlpVx11VUsXbqUSy+91NKYulr53bZ4H7y06yXCAsK4fejtbRSVstKm7E18eOxDbrvkNkb0GGF1OJZqqnyujtDrWLx4Mbt376a8vJw777zT8mSuLs6ikYu0HKsPmRA/AX8/f4ZEN32MqqvThF7Ha6+9ZnUI9XSl0XlbcBonfuJHsH+w1aGoNuInfqT2SgWg0lFJgF+ATr00wOsOilo1BaS8Q2v//kWVRTyd9rTWAvFRhRWF/GXHX8jIbfjsrq7OqxJ6cHAweXl5mtS7KGMMeXl5BAdf/Mh6R84OyuxlxITEtGFkyltEBEYQFRTFB0c/oLCi0OpwvI5XTbkkJCSQlZWFltbtuoKDgxs9/745xhgycjPoH9FfC3H5KBHhhkE38PyO51l7aC0Lhy/UqZcavCqhBwQEMGDAAKvDUJ3U8fPHyS/P56qEq6wORbWj6OBopvebzrtH3mXbmW2M69XgCR9dkldNuSjVGtvPbCfIFsSI7l37tLauYGzPsQyMHMiBcwd0irYGrxqhK9UaE+InMChqEAG2AKtDUe1MRLjtktsIsgXplEsNOkJXPqN3t94kxSZZHYbqIMH+wdX3IdWzmlw0oSufsCFrA6dLTlsdhrLAR0c/4s39b5JXlmd1KJbThK46vZzSHD458QlHCo8031n5nOn9p+Pv58+aQ2twGmfzL/BhmtBVp5eek45NbDrd0kVFBEZw3YDrOHH+BJtPbbY6HEtpQledmt1pZ2fuTi6JvoSwgDCrw1EWGR0zmqHRQ/nk+Cfklnbd61g0oatO7UDBAUrtpYyJG2N1KMpCIsL1A68nJS6lS3+w62mLqlMrqSohLiSOQVGDrA5FWaxbYDeuH3g94LpquCueztjsCF1EXhSRHBHZ1Ui7iMizInJQRHaKiNabVR1mXK9xLElegp/ol03lkl+ez0uZL3Gm5IzVoXQ4T/4XLANmNtF+HTDE/bMY+Evrw1KqeUWVRV12JKYaF2QLIr8snzWH1uBwOqwOp0M1m9CNMeuB/Ca63Ai8bFw2A1EiEt9WASrVEGMMy3YtY/XB1VaHorxMWEAYswbO4lTJKT4/+bnV4XSotvie2gc4UWM5y/1cPSKyWETSRCRNKyqq1jhWdIyCigIGRg20OhTlhYb3GM7omNGsz1rfpS44a4uE3tD33Qar5RhjlhpjxhljxsXGxrbBplVXlZ6TroW4VJNm9p9JaEBolxqlt8VZLllAYo3lBCC7DdarVIPK7eXszttNclyyFuJSjQoNCOWOEXcQHRxtdSgdpi1G6GuBb7nPdpkIFBpjTrXBepVq0O683diNXc89V82KC40jwC+ACkdFl6j10uwIXURWAFOAGBHJAn4GBAAYY54H3gO+ARwESoG72itYpQCSYpMIDwynd1hvq0NRnYAxhtf2vEaZvYzvJn2XAD/f/VbXbEI3xsxvpt0AP2iziJRqhr+fP0Oih1gdhuokRIQr+1zJ8r3L+ezEZ1zT7xqrQ2o3ejWG6lQ2ntzIxpMbrQ5DdTKDowdzadylfJH9BSfOn2j+BZ2UJnTVadiddjZmb+Rk8UmrQ1Gd0LX9ryUiMII1B9dQ5ayyOpx2oQlddRr7C/ZTZi/j0jitLqFaLsgWxA2DbiA8MJwKe4XV4bQLLc6lOo30nHQiAiP0YiJ10QZGDWRA5ACfLRehI3TVKRRWFHLo3CGSY5O1EJdqlQv3IX370NtUOiqtDqdN6f8M1fMmAOcAACAASURBVClUOau4JPoSUuJSrA5F+YCC8gK252znP8f/Y3UobUoTuuoUYkJimDdsHt2Du1sdivIB/SL6MSF+AltOb/Gpe9FqQldeL68sj4LyAqvDUD5mWuI0ugd3Z+2htVQ4fOMgqSZ05fXWZ61n6c6l2J12q0NRPiTAFsCcQXMorChkfdZ6q8NpE3qWi/JqNQtx+fvp21W1rcSIRG4ecjMDI33jzCn9H6K82q6zu7Abu557rtrNqJhRADicDhzGQaAt0OKILp5OuSivlpGbQVxoHPFhehMs1X4cTgcvZb7E+0fetzqUVtGErrxWYUUhp0tOMyZujM9eCKK8g83PxoDIAWTkZrC/YL/V4Vw0TejKa0UGRfLg2Ae17rnqEJMTJhMXEsc7h96htKrU6nAuiiZ05ZVcVZldN/wNsgVZHI3qCvz9/JkzeA4lVSV8cPQDq8O5KJrQlVfak7+Hl3a9xPnK81aHorqQ+G7xXJlwJadKTlFuL7c6nBbTs1yUV0rPSedcxTnCAsKsDkV1MVf2uZLL+1zeKe9spCN05XUuFOJKiU3RQlyqw9n8bNX3Id1+ZrvV4bSI/m9RXmdH7g4MRgtxKUul56Tz9uG3yczLtDoUj3mU0EVkpojsE5GDIvJIA+3RIvIvEdkpIltEZFTbh6q6AmMMGTkZDIgYQHRwtNXhqC5sfK/x9A7rzbuH36W4stjqcDzSbEIXERvwJ+A6YAQwX0RG1On2EyDDGJMEfAt4pq0DVV2Dwzi4rPdlTOo9yepQVBfnJ37MGTyHSkcl7x15r/rMK2/myQh9PHDQGHPYGFMJrARurNNnBPAfAGPMXqC/iPRs00hVl+Dv509qr1QGRw+2OhSliA2NZWriVPbk7+Grs19ZHU6zPEnofYCat8nOcj9X0w7gZgARGQ/0AxLqrkhEFotImoik5ebmXlzEymeV2ctIO53mM6VMlW+4rPdlTIifQGJ4otWhNMuThN7QNdd1v3s8BUSLSAZwH5AO1Kt1aoxZaowZZ4wZFxsb2+JglW/bdXYX7x55l7yyPKtDUaqan/gxs/9MooOjMcZ49dSLJ+ehZwE1P5oSgOyaHYwxRcBdAOIqunHE/aOUxzJyMugZ2lMLcSmvVG4v560DbzGyx0ivPQPLkxH6VmCIiAwQkUBgHrC2ZgcRiXK3AXwHWO9O8kp55HTJabJLsrUQl/JaQbYgqhxVfHD0AworCq0Op0HNJnRjjB24F/gA2AO8bozJFJElIrLE3W04kCkie3GdDfPD9gpY+aaMnAxsYmN0zGirQ1GqQSLCDYNvwGEcvH3oba+cevHo0n9jzHvAe3Wee77G403AkLYNTXUleeV5DOs+jNCAUKtDUapR3YO7M73fdN478h7bc7YztudYq0OqRWu5KK+wYPgCvWeo6hTG9RzH7rzdbMrexJi4MV5VnkITurJcpaOSQFug3jNUdQoiwk1DbsJf/L0qmYPWclEWK6wo5Om0pztVvQylIgIjCA0IxeF0kF2c3fwLOogOiZSlduTuoMpZRe+w3laH0mUYY6h0OCmrdFBa/WOntNJR4zk7ZVUOSioclLnbSqsutNtrvM5Bhd3BhAHdmZfal6SEyC51ltJHxz9i+5ntLEleQvfg7laHowldWccYQ3pOuhbiakSl3Z10q+zuxOpOplW1E++FxFpWIymX1EnQZVXuvhWuxOxwen6GhgiEBNgIDbQREmgjLNCfkEDXcnSo62zl1enZrNhyguHxEcxLTWROSh8iQztfPfGWuiz+MjJyMlh7cC13jrzT8g8zTejKMkeKjnCu4hxXJ15tdSgXrcrhrJVEa41wG0q6VTWWKy6MehtOxPYWJF34OumGBtkIDfg66UaFBhAS6E+YOyGHBtoIDfSv0d+f0BoJOzTQ393H9Tg4wK/ZRFVUXsXbO7JZueUEP1ubya/e28M3RsczLzWR8QO6W57o2ktkUCQz+89kzaE1fHn6SybGT7Q0Hk3oyjIZORkE24IZ1mOY1aFUO5hTzNs7sskvqayVoC+MlKsTsXtKosrRsqQbHOBXK2GGBLqSaa+IgHqj3+r2Gsk1tGZSDvB3Je9AG8H+Nvz8rEuaEcEBLJjQjwUT+rHrZCGrtp5gdfpJ/pV+koExYcxNTeSWsQnEdPO9+8MmxyazJ38P/zn2HwZHDSYmJMayWMSqk+PHjRtn0tLSLNm28g5ny85ytuwsw7pbm9CrHE4+zDzDK5uPsvlwPn4CkSEBdRKve1QbaCOsxuPQgK/bwoJs7lFv7aRcnYgDrE26Ha2s0sG7X51i1dbjbD1agL+fMH1ET+aN78sVg2Ow+dC+OF95nrf2v8XMATPpFdarXbclItuMMeMabNOErrqq7HNlrNhynJVbT5B7voKE6BC+OaEvt49L9MmRpJUO5pxn1dYTvLX9JPkllfSJCuH2cYncnppAfGSI1eF1KprQldf56NhHDI0eSt+Ivh26XafTsP5ALq9uPs4ne89ggKuHxrFwYj+uuiTWp0aN3qjC7uCj3WdYtfUEGw6cxU9g8iWxzBvfl6uHxRFg69xnUlc4Kvj42MeM7zWe2ND2qSjbVELXOXTV4U6XnOaL7C+IDIzssISeV1zBG9uyeO3L4xzPLyWmWyD3TBnE/PF9SYjWcgMdJcjfxvVJvbk+qTcn8kt5Pe0Er6ed4HuvbCM2PIhbxyYwd1wi/WPCrA71olQ5qsjMyyS7OJtvj/52h194pCN01eH+feTfpJ1J46GxD7Vr7RZjDNuOFfDq5mO899VpKh1Oxg/ozsKJ/Zg5sheB/p17NOgr7A4n6/blsnLrCT7dl4PDabhsYA/mjU9kxsheBAfYrA6xRTLPZvLmgTe5OvFqrky4ss3XryN05TXsTjs7z+5s10JcxRV2/pV+kuWbj7H39HnCg/yZPz6RBRP7cUnP8HbZprp4/jY/rhnRk2tG9ORMUTlvbsti5dbj/HBlBlGhAdw0pg/zUvsytFfn+NuNjBnJnvw9fJb1GUOih7T7QdKadISuOtSF0csdw+9gYNTANl33nlNFvLr5GKvTT1JS6WBk7wgWTuzHDcm9CQvSsUtn4nQaNh3OY8WW43yYeYZKh5MxfaOYl5rI9Une//csrSrlzxl/JiYkhkWjFrXpuvWgqPIaO3N3su3MNhaNXNQmF5uUVzl4f9cpXt18nG3HCgjy9+P6pN4snNiXlMQon72gpSvJL6nkn9uzWLn1BAdzigkLtHFDSh/mpSZ6damBY0XHiAiMaPOroDWhK59zLK+E1748zhvbssgvqWRATBgLJvTl1rEJRIUGNr8C1ekYY9h+vIAVW07wzs5syqucnaLUgDGGMntZm00xakJXXiGvLI+ooChsfhd3kMvucPLJ3hxe/fI46/fnYvMTpg/vycKJ/Zg0qEeXuminqysqr2JtRjYrtx5n18kigvz9mDU6nrleWGpg7aG1nDx/ku8mfbdNSkRrQleWM8bwbPqzxIfFc/vQ21v02pzz5azacoIVW46TXVhOz4gg5o/vy7zUvvSKDG6niFVnsetkISu3HmdNejbnK+xeV2pgf8F+VuxdwRV9rmBa32mtXp8mdGW5w+cO88qeV7hlyC2MihnVbH9jXAfFlm8+zgeZp7E7DVcOiWHBhH5cMzwO/05+AYpqe6WVdt776jQrtxwn7VjtUgNXDo6x9BvcmoNr2JG7g2+P/jZ9uvVp1bpafdqiiMwEngFswAvGmKfqtEcCrwJ93et82hjzUquiVj4lPSedYFswQ7sPbbJfYVkVb23LYvmXxziUW0JkSAB3Xd6fb07ox4BOerGJ6hihgf7cOjaBW8cmcODMhVIDWby/67TlpQZm9J/B4cLDrD64msVJiwnwa5/5/mZH6CJiA/YD04EsYCsw3xizu0afnwCRxpj/FpFYYB/QyxhT2dh6dYTedZTZy/ht2m8Z23Ms1w24rsE+O7PO8ermY6zd4TrYlZIYxcKJ/bg+Kb7TXViivMeFUgMrt5zg84PWlho4dO4Qaw6tYeHwhcSFxl30elo7Qh8PHDTGHHavbCVwI7C7Rh8DhIvrSEQ3IB/QO/4qAPbm78VhHIyJG1Pr+bJKB2/vyObVL4+xM6uQkAAbN43pw4IJ/RjVJ9KiaJUvqVlq4Hieq9TAG9tqlxqYl5pIvx7t/+1vUNQg7htzX7uNzsGzEfqtwExjzHfcy3cAE4wx99boEw6sBYYB4cBcY8y7DaxrMbAYoG/fvmOPHTvWVr+H8mLGGLKKs0gMTwRcNceXf3mMt7ZlUVRuZ0hcNxZO7MdNl/YhItg7Tz1TvuPrUgPH+WRvDk5Dpyo10NoRekNHEup+CswAMoCrgUHARyKywRhTVOtFxiwFloJrysWDbSsfICL0Cu3DuztP8ermY2w6nEeATZg5Kp6FE/p63WlmyrfVLDVwurCcN7edYFXaiVqlBuaP79spy0R4ktCzgMQaywlA3dtc3wU8ZVzD/YMicgTXaH1Lm0SpOq1/7v2QdftPs+mr3uSer6BPVAg/njGU28clEhtu/SllqmvrFRnMvVcP4ftTBvPFoTxWbD3Oq5uP8dLGo4zpG8X81L7MSor3+lIDF3gy5eKP66DoNOAkroOi3zTGZNbo8xfgjDHm5yLSE9gOJBtjzja2Xj0o6rsu1Bx/efNhvshfhqOiJ1f2up6FE/sy+ZI4rTmuvFpecQX/Sj/Jii3HOZRbQrcgf2Yn92b++ERG97G+1ECrz0MXkW8Af8B12uKLxphfisgSAGPM8yLSG1gGxOOaonnKGPNqU+vUhO578ksqeT3tRHXN8e7dT9O//y4envAdLu830urwlGqRC+WXV2w5wbtffV1qYP74RG5M6UNkiDXHe/TCItVumqo5nm/7mMLKAu4fc7/loxqlWqOovIo1Gdms3HKczOyvSw3MG9+X1P7RHfr+1nroqs01V3P8XPk5nk0/yuSEyZrMVacXERzAHRP7ccfEfuw6WciKLcdZk5HNP9NPMjA2jHmpidx8qfWlBnSErlqkbs3xEfER3HFZ/ZrjBeUFfJb1GVMSphAVHGVhxEq1j9JKO+/uPMXKrSfYdqyAAJu71EBqX65ox1IDOuWiWqVuzfFAfz+uT4pn4cR+jNGa40px4Mx5Vm49wT+3Z1FQWkWfqBDmpiZy27i2LzWgCV1dlLo1x/v3CGXBhH7cOjaB6LDGa47nlObgcDqI7xbfgdEqZb0Ku4MPM8+wcutxNh7Mw09gytA45qUmMrWNSg3oHLrymMNpXDXHNx/jM3fN8WuGx7FwYj8uH+TZ18gNWRs4eO4gD497uE3qPyvVWQT525id3JvZya5SA6vSjvNGWhaL9+YQGx7EbWMTmNuOpQZ0hK6AhmuOz0vty/zxLas5XlpVyu+2/a7JQlxKdSV2h5NP9+WycstxPt3nKjVw79TB/GhG05VHG+NTI/TslT8k7+A2bH7gJ4LNT6r//fpx/bbafcDmJ0iDVQ26DoOhqNzOmaJyCkoqSQWuCQ6gZ0IQUWGB+GWJ6zrhFthFOQ4pZcyeDbDuuXaJW6nOxB9XqdrpQOUgJznny5H8JFwVydt+W52KCPjbBKfTUOl04qwChzE4nQZHC79tiIBNGkr6jX8gXPgw8PMTbI20efsHhd3pJPd8BWfOV1Be5cDmJ/SKCCYuIpiQVhYmSqeCXsZGr8731lKq3QXa/EiICoWo9qnJ3un+18XPfYbGDrUZY6iwOymtdFBSYaesyvVv7WUHpZXu5yrtlFY4KK10PVdS6aCs0l6rz4V+LfmsCPL3IzTQRmigP2FBNkIC/QlzL4cG2ggL+vpxdZ8AG2FBXz/n6ndh2fVcay+Zb++a40WVRRRk/Nl1m61eqa1en1KqZTpdQm+KiBAcYCM4wEb3Js7CaKkLHxQXPhxqfxh8/eFQVtnIB0aVg9IKOwWlZa4PjErXcmmVo8UfFHWTvOvDwL/Wh0RYoI3QGh8OZZV23tiW1e41xyMCI3ho7ENe/w1FKV/lUwm9vdT8oOjRhus1xlBe5fz6w8D97eDC4+pvCRUXlt0fFrWWHeQVl9b79lHXkLhuPH7DyHarOX7h4Hqgre0+SJVSLaMJ3UIiQkigjZDAti2o73Qayu2O6g8Hu9PJgJiwdr0AKDMvk/VZ61k4YiERgRHtth2lVOM0ofsgPz9xT7903J83PSedKmcV4QGd76YASvmKjrtDqvJZ58rPcbjwMCmxKVoGQCkLaUJXrZaRm4EgpMSlWB2KUl2aJnTVKk7jJCMng4GRA4kMatuzZpRSLaNz6KrVrul3Dd0CulkdhlJdniZ01Sp+4seomFFWh6GUQqdcVCuUVpWy8eRGSqtKrQ5FKYWHCV1EZorIPhE5KCKPNND+YxHJcP/sEhGHiHRv+3CVN9l1dhcfH/+Yosoiq0NRSuFBQhcRG/An4DpgBDBfREbU7GOM+Y0xJsUYkwL8D/CZMSa/PQJW3iM9J53eYb3pFdbL6lCUUng2Qh8PHDTGHDbGVAIrgRub6D8fWNEWwSnvdar4FKdLT+upikp5EU8Seh/gRI3lLPdz9YhIKDATeKuR9sUikiYiabm5uS2NVXmR9Jx0/MVfD4gq5UU8SegNXfrXWI3A2cDGxqZbjDFLjTHjjDHjYmNjPY1ReaEyexkjeowgxL996jorpVrOk9MWs4DEGssJQHYjfeeh0y1dwi2X3IJVty9USjXMkxH6VmCIiAwQkUBcSXtt3U4iEglMBta0bYjK25RUlQBo3RalvEyzCd0YYwfuBT4A9gCvG2MyRWSJiCyp0fUm4ENjTEn7hKq8QUF5Ab9L+x07c3daHYpSqg6PrhQ1xrwHvFfnuefrLC8DlrVVYMo7ZeRkYDD0i+hndShKqTr0SlHlMadxkpGbwaCoQVqISykvpAldeezwucMUVRaREqvnnivljTShK49l5GYQ4h/C0O5DrQ5FKdUArbaoPDaj/wxyS3Px99O3jVLeSP9nKo+FB4YTHqj3DFXKW+mUi2qWMYa3D73NwYKDVoeilGqCJnTVrFMlp9ies52CigKrQ1FKNUETumqWFuJSqnPQhK6aVOWsYtfZXVqIS6lOQBO6atKevD2UO8q17rlSnYAmdNWkAL8AhkQNoX9Ef6tDUUo1Q09bVE0a3mM4w3sMtzoMpZQHdISuGnW65DSVjkqrw1BKeUgTumqQ0zhZsXcF/zrwL6tDUUp5SBO6atCFQlyjYvVURaU6C03oqkHpuemuQlzRWohLqc5CE7qqp7SqlH35+0iKTdJCXEp1IprQVT0Hzh3AYRyMiR1jdShKqRbQ4ZeqJzk2md5hvYkNjbU6FKVUC+gIXTVIk7lSnY9HCV1EZorIPhE5KCKPNNJniohkiEimiHzWtmGqjvLh0Q955/A7VoehlLoIzSZ0EbEBfwKuA0YA80VkRJ0+UcCfgRuMMSOB29ohVtXOqhxVbM/ZTpWjyupQlFIXwZMR+njgoDHmsDGmElgJ3FinzzeBfxpjjgMYY3LaNkzVEfbk76HCUcGYOD0YqlRn5ElC7wOcqLGc5X6upkuAaBFZJyLbRORbDa1IRBaLSJqIpOXm5l5cxKrdpOekEx0UTb+IflaHopS6CJ4kdGngOVNn2R8YC8wCZgA/FZFL6r3ImKXGmHHGmHGxsXrQzZvkl+dztOgoKXEpiDT0J1dKeTtPTlvMAhJrLCcA2Q30OWuMKQFKRGQ9kAzsb5MoVbvz9/NnYvxEkmOTrQ5FKXWRPBmhbwWGiMgAEQkE5gFr6/RZA1wpIv4iEgpMAPa0baiqPUUERjCj/wwigyKtDkUpdZGaHaEbY+wici/wAWADXjTGZIrIEnf788aYPSLyb2An4AReMMbsas/AVds5XXKaUnspAyIG6HSLUp2YGFN3OrxjjBs3zqSlpVmybVXb6/te51jRMR4c+6DWblHKy4nINmPMuIba9ErRLq6kqoT9Bfu1EJdSPkATehf31dmvXIW49NxzpTo9TehdmDGG9DPp9OnWh7jQOKvDUUq1kib0Lqy4qphSe6mOzpXyETpp2oWFB4bz4NgHcRqn1aEopdqAJvQuyuF0ICL4iR9+ol/UlPIF+j+5i9qVt4tntj9DYUWh1aEopdqIJvQuKiMnA5vYiAiMsDoUpVQb0YTeBV0oxDUmboxeGaqUD9GE3gVl5GQgCMlxWohLKV+iCb2LcRonGbkZDIoapNMtSvkYPculixGEGwbeQJB/kNWhKKXamCb0LkZEGBw92OowlFLtQKdcupCSqhI+PvYxRZVFVoeilGoHmtC7kJ25O9mYvZFye7nVoSil2oEm9C7CGENGToYW4lLKh2lC7yKyS7LJKcvRQlxK+TBN6F3E9jPbCfALYFTMKKtDUUq1E03oXYSIkBSbRJBNT1dUyld5lNBFZKaI7BORgyLySAPtU0SkUEQy3D//2/ahqta4fuD1zBowy+owlFLtqNnz0EXEBvwJmA5kAVtFZK0xZnedrhuMMde3Q4yqlQrKC4gOjta6LUr5OE8uLBoPHDTGHAYQkZXAjUDdhN5h1metZ9fZXbWes4mN7yV/D4D/HPsP+wr21WoP9g/m7lF3A/D+kfc5UnikVntEYAQLRywEYO2htWSdz6rVHhMSw+1Dbwfgrf1vcab0TK32+LB4bhpyEwAr9q6goLygVntieCKzB80G4OXMlymuKq7VPjBqIDP7zwTg71/9nQpHRa32Yd2HcXXfqwF4fsfz9W5KMTpmNFcmXIndaWfpzqW12nLLcrlh0A16QFQpH+dJQu8DnKixnAVMaKDfZSKyA8gGfmSMyazbQUQWA4sB+vbt2/Jo3boFdCMmJKbWczaxVT8ODwyv1x7sH1z9ODIwsl57t4Bu1Y+jgqLqnasdFRT19ePgKBzGUas9Miiy+nF0cHSteOq2dw/pXiseoFZdlR4hPah0VNZqDw8Mr34cExJTL6HXba8pPiyeodFDUUr5NjHGNN1B5DZghjHmO+7lO4Dxxpj7avSJAJzGmGIR+QbwjDFmSFPrHTdunElLS2v1L6CUUl2JiGwzxoxrqM2Tg6JZQGKN5QRco/BqxpgiY0yx+/F7QICI1B4mKqWUaleeJPStwBARGSAigcA8YG3NDiLSS9xH3ERkvHu9eW0drFJKqcY1O4dujLGLyL3AB4ANeNEYkykiS9ztzwO3AveIiB0oA+aZ5uZylFJKtalm59Dbi86hK6VUy7V2Dl0ppVQnoAldKaV8hCZ0pZTyEZrQlVLKR1h2UFREcoFjF/nyGOBsG4bTVrw1LvDe2DSultG4WsYX4+pnjIltqMGyhN4aIpLW2FFeK3lrXOC9sWlcLaNxtUxXi0unXJRSykdoQldKKR/RWRP60ua7WMJb4wLvjU3jahmNq2W6VFydcg5dKaVUfZ11hK6UUqoOTehKKeUjvDqhe3BzahGRZ93tO0XkUi+Jy5KbZovIiyKSIyK7Gmm3an81F1eH7y8RSRSRT0Vkj4hkisgPG+jT4fvLw7is2F/BIrJFRHa443q8gT5W7C9P4rLsJvYiYhORdBF5p4G2tt9fxhiv/MFVqvcQMBAIBHYAI+r0+QbwPiDAROBLL4lrCvCOBfvsKuBSYFcj7R2+vzyMq8P3FxAPXOp+HA7s95L3lydxWbG/BOjmfhwAfAlM9IL95Ulclvx/dG/7IeC1hrbfHvvLm0fo1TenNsZUAhduTl3TjcDLxmUzECUi8V4QlyWMMeuB/Ca6WLG/PImrwxljThljtrsfnwf24Lp/bk0dvr88jKvDuffBhTubB7h/6p5RYcX+8iQuS4hIAjALeKGRLm2+v7w5oTd0c+q6b2xP+lgRF7hvmi0i74vIyHaOyVNW7C9PWba/RKQ/MAbX6K4mS/dXE3GBBfvLPX2QAeQAHxljvGJ/eRAXWPP++gPwX4CzkfY231/enNClgefqfvJ60qetebLN7bjqLSQDfwRWt3NMnrJif3nCsv0lIt2At4AHjDFFdZsbeEmH7K9m4rJkfxljHMaYFFz3FR4vIqPqdLFkf3kQV4fvLxG5HsgxxmxrqlsDz7Vqf3lzQm/25tQe9unwuIz33jTbiv3VLKv2l4gE4Eqay40x/2ygiyX7q7m4rH5/GWPOAeuAmXWaLH1/NRaXRfvrcuAGETmKa1r2ahF5tU6fNt9f3pzQm705tXv5W+6jxROBQmPMKavjEu+9abYV+6tZVuwv9/b+DuwxxvyukW4dvr88icui/RUrIlHuxyHANcDeOt2s2F/NxmXF/jLG/I8xJsEY0x9XjvjEGLOwTrc231/N3iTaKsazm1O/h+tI8UGgFLjLS+Ky5KbZIrIC1xH9GBHJAn6G6yCRZfvLw7is2F+XA3cAX7nnXwF+AvStEZcV+8uTuKzYX/HAP0TEhishvm6Mecfq/48exuU1N7Fv7/2ll/4rpZSP8OYpF6WUUi2gCV0ppXyEJnSllPIRmtCVUspHaEJXSikfoQld+RQRcYirot4uEXlDREJb8NreIvJmC7e3TkS87ibEqmvShK58TZkxJsUYMwqoBJZ48iIR8TfGZBtjbm3f8JRqP5rQlS/bAAwWkTBx1WTfKq7a1DcCiMgi9yj+beBDEekv7prt4qqz/ZKIfOV+zVT38yEislJc9atXASHu520issz9zeArEXnQot9ZdWFee6WoUq0hIv7AdcC/gUdxXXp9t/sy8S0i8rG762VAkjEmX1zVDS/4AYAxZrSIDMOV8C8B7gFKjTFJIpKEq/ATQArQx/3NgAuXoyvVkXSErnxNiPuS+TTgOK66KNcCj7ifXwcE476UHle51YZqtV8BvAJgjNkLHAMuwXWzjlfdz+8Edrr7HwYGisgfRWQmULdColLtTkfoyteUuUupVnMXZrrFGLOvzvMTgJJG1tNQadML6tXLMMYUiEgyMAPX6P524O6WBK5Ua+kIXXUFHwD31ai4N8aD16wHFrj7X4JrRL+vzvOjgCT34xjAzxjzFvBTXLfcU6pDWvlhyAAAAHNJREFU6QhddQVP4Lp7zE53Uj8KXN/Ma/4MPC8iXwF2YJExpkJE/gK8JCI7gQxgi7t/H/fzFwZJ/9PGv4NSzdJqi0op5SN0ykUppXyEJnSllPIRmtCVUspHaEJXSikfoQldKaV8hCZ0pZTyEZrQlVLKR/x/UTfuzKQa5tgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_21_0.png" }, "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEWCAYAAAB7QRxFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3wURf/A8c+kXMqlFyAhFSKdgIDy0AQEBFQUFUR+WBCRXkQsKDYEBBUVEZDyqFhAUURUVERAVAQVkNCLjyQhBUgP6bmyvz/2ctyRQiCXXI7M+/W6F3c3s7vfDcn35mZnZoWiKEiSJEmOy8neAUiSJEk1IxO5JEmSg5OJXJIkycHJRC5JkuTgZCKXJElycDKRS5IkOTiZyCWpBoQQCUKI/tWoFyWEUIQQLnURV3WY4omxdxxSzclE3kAJIe4TQvwphCgQQqSZnk8SQgh7x2YvQoidQoixdjr2S0KIT2px/3Y7N6n2yUTeAAkhZgJvA68DTYDGwASgB6CpwzjqTetUkhyaoijy0YAegC9QANxTjXofAelAIvAc6ge/G5ADtLOoGwwUAY1Mr28H4kz1dgOxFnUTgKeBQ0AJEAMowEPAGSADmG1R/yXgC+ATIA84DLQAngHSgCTglkvifg84C6QA8wBnU9loYBewCMgG4oHBprL5gAEoBvKBpZX8XB4w/Twygdmm8+lvKnMCZgH/mso/BwJMZVGm8xwHpJrim2kqGwSUAjrTsQ9WcuwE03kfM8X/AeBuKvMHNpv+v7JNz8OqOjdTPBOAf0zbLAOEqSwG+AXINf2frLf37658VPH3au8A5KOO/8PVpKEHXC5T7yPga8DblIROAY+Yyt4H5lvUnQxsMT3vZEqwXQFnU4JOANxM5QmoST4c8LBIcKtNrzugJvjWpvovmRLQQMDFFFe8KYm6Ao8C8RaxbAJWAlqgEfAXMN5UNtqULB81xTbRlFTLktdOYGwVP5M2pkR4E+oH2pumn2VZIn8M+AMIM5WvBD41lZWd56em2Nqbkm5/i/P85DL/JwnAEdPPLgD4HZhnKgsE7gE8Tf9nXwCbLLYtd26meDYDfkCEKZ5BprJPTT9jJ8Ad6Gnv3135qOJ3w94ByEcd/4fD/cC5S97bjdp6LjIlKWdTMm1jUWc8sNP0vD9w2qLsd+BB0/N3gbmX7P8k0Nv0PAEYY1FWluDCLN77C7jP9Pwl4CeLsiGmZFrWyvY2be+H2kVUAnhY1B8J/Gx6Phr4n0WZp2nbJqbXl0vkLwCfWbzWoraky5LxcaCfRXkI6geHi8V5trIofw14z+I8q5PIJ1i8vhX4t5K6HYFsi9eVJfKeFq8/B2aZnn8ErLL8f5GP+vuQfeQNTyYQZNk/rShKd0VR/ExlTkAQal95osV2iUBT0/MdgIcQoqsQIhI1aXxlKosEZgohcsoeqC3IUIt9JVUQ1zmL54WAl8Xr8xbPi4AMRVEMFq8x1Y9EbaWftTj2StSWebnjKIpSaLFtdYRaxq4oSgHqz6xMJPCVxbGPo3ZpNLaoY3nuiVj/XKqjwu2FEJ5CiJVCiEQhxAXgV8BPCOF8mf1V9nN/ChDAX0KIo0KIMVcYp1SHZCJvePagtlrvrKJOBmpLMtLivQjUPmcURTGitt5GAv8HbFYUJc9ULwm128XP4uGpKMqnFvuqrSU3k1DPLcji2D6KorSt5vaXi+ss6ocSoCZP1C4Ny+MPvuTc3RVFSbGoE27xPAK1a6c6x77c9jOBlkBXRVF8UL9ZgZqMr2T/amVFOacoyqOKooSifhtbLocq1l8ykTcwiqLkAHNQ/zCHCSG8hBBOQoiOqF0FmFq7nwPzhRDeplb346gXHMusA0YAo0zPy6wGJpha60IIoRVC3CaE8K6DczsLbAXeEEL4mM6ruRCidzV3cR5oVkX5BuB2IURPIYQGeBnrv6EVqD+zSAAhRLAQ4tIPzOdNree2wMPAeotjRwkhLvc3OVkIESaECACetdjeG/XbSY6p7MUrPDcrQojhQogw08ts1A8CQxWbSHYkE3kDpCjKa6iJ+SnUC5PnUbsgnkbtLweYijq65TTqSI91qBc5y/bxp6k8FPjB4v19qBcTl6ImgP+h9k3XlQdRu4XKRnZsQO2rro63gWFCiGwhxJJLCxVFOYp6YXcdaus8G0i+ZPtvgK1CiDzUC59dL9nNL6g/k+3AIkVRtpre/8L0b6YQ4u8qYlyH+mF12vSYZ3p/MerF4gzTcbdcyblV4AbgTyFEvumcpiuKEl+N7SQ7KLtaL0lSPSeESEC9YLnN3rFI9YtskUuSJDk4mcglSZIcnOxakSRJcnCyRS5JkuTg7LJoUVBQkBIVFWWPQ0uSJDms/fv3ZyiKEnzp+3ZJ5FFRUezbt88eh5YkSXJYQojEit6XXSuSJEkOTiZySZIkBycTuSRJkoOTiVySJMnByUQuSZLk4GQilyRJcnAykUuSJDk4eRdzSQIMRgP7zu/D392fFv4tSM1PZeM/G8vVGxw9mOZ+zUm8kMi3/35brvzO5ncS7hPOP9n/8GPCj+XKh7UYRhNtE45lHmPHmR3lyke2GkmgRyBxaXHsStlVrvzBtg/io/Fh77m9/Hn2z3LlY9uPxd3Fnd0pu/k7rfxquBM7TMTZyZlfkn7hcMZhqzJnJ2cmdpgIwE+JP3Ey66RVubuLO2PbjwXg+9Pfczr3NK5OrsT4xdAmsA1NtE0QQiDVPZnIpQZLURQOph/kh/gf2Jq4lYyiDOb1mEcL/xacKzjHqkOrym3TOqA1zf2ak5SXVGF558adCfcJ53Tu6QrLe4X1oom2CSezTlZYPihqEIEegRzJOFJh+T3X3YOPxoe/z/9dYfkDbR7A3cWdv879xftH3i9XPqHDBAB2pexi/cn1VmUaZ405ke9M2lnug8rf3d+cyLcmbmXHmR0oFjceahXQii+GqMuqx6XFEegRSJhXmEzudcAui2Z16dJFkTM7JXsqNZQy9OuhJOUloXHScFPYTQyOHkyvsF54uHjYOzyHUawv5lT2KY5nHseIkZGtRgIw6MtBpOSn4K3xpk1AG1oHtqZ7aHe6hXazc8SOTQixX1GULpe+L1vkUoNwOvc0W+K3kFaYxkvdX0LjrGFw9GCifKLoG94XL011778sWXJ3cSc2OJbY4Fir99/o8wbHMo9xLPMYxzOPs/b4Wgp1hXQL7YbBaGDitonE+MfQOqA1bQPbEukTibPT5e4TLVVGJnLpmnWu4Bzfnf6OLQlbOJF1AoGga0hX9EY9Lk4uTL1+qr1DvGa1DWxL28CL97zWGXQU6gsByCnJoUBXwOcnP6fEUAKAh4sHs26cxd3X3U2RvoikvCSa+TbDxUmmqOqQPyXpmpJemI6XxgsPFw9+TPiRxX8vJjY4lqdveJpbom6hkWcje4fYILk6u+Lr7AtAoEcga29bi96o53TuaY5nHud41nGifaMBOJx+mEe2PoKbsxst/VvSOrA1bQLb0DusN4EegfY8jXrLJn3kQoj3gduBNEVR2l2uvuwjl2wppziHbWe2sSV+C3vP72Vej3kMaT6EnOIc8nX5hHmHXX4nUr2RWZTJnrN7zN0yx7OOU6Ar4NPbPqVdUDt2p+xma+JW2gS2oW1gW2L8Y3BzdrN32HWitvvI16DeNf0jG+1Pki6rUFfIE788wZ7UPegVPZE+kYyLHUfHRh0B8HP3w8/dz85RSlcq0COQ25vdzu3NbgfAqBhJyksiVBsKQFJeElsTt/LlP18C4CJciPGP4f2B7+Ot8SajKAMvVy/cXdztdg51zSaJXFGUX4UQUbbYlyRVplhfzG8pv5FWmMao1qPwdPUE1CF3g6MH0yqglRzqdg1yEk5E+kSaX49oNYJ7W95LSn6K2mrPOk7ihUS8XNUL1q/vfZ0fE34k2jeaNoFtzC33sg/4a5HNhh+aEvnmyrpWhBDjgHEAERERnRMTK1wfXZKs6Iw69qTuYUv8FnYk7aBAV0C4dzib79qMk5ATk6Xy/jz7J3+d+4vjmcc5lnmMzOJMWvi34Ms71Bb8fw//F42ThtaBrWkd0NqhRizZffihoiirgFWg9pHX1XElx2MwGhBC4CSceDfuXVYfXo23xpuBUQMZHD2YLo27yCQuVaprSFe6hnQF1Elf6UXpZBVnmcu/j/+ef7L/Mb+O9IlkaMxQ82Sn/NJ8h0ruIEetSPVE2SzLLQlb+DHhR17p+QrdQrtxZ8yddAjuQPfQ7rg6u9o7TMnBCCFo5NnIarTSxjs2klGUwYmsE+YLqq5O6u9Woa6Qnp/1pIm2iblbpnVAa9oFtcPXzddep3FZMpFLdlWoK2TloZVsid9CakEqGicNvcJ6mfs7I30irfpHJckWgjyC6Nm0Jz2b9rR636AYmHL9FHO3zE+JPwHw9A1Pc3+b+0kvTOfLf740J/kgjyB7hF+OTRK5EOJToA8QJIRIBl5UFOU9W+xbuvYk5CaQmp9K96bdcXN247vT3xHjH8Pk6yfTN7wv3hpve4coNVDeGm9zFwtAbkkuJ7JOEOEdAcDJ7JMsi1tmLm/k0Yg2gW2Y3mk6Mf4xGIwGnIRTnV90l2utSHUiNT+VLQlb2BK/heNZxwnRhvDjPT8ihKDUUIrGWWPvECWpWvJL8y92y2SpLfd3bn6HCJ8IPjvxGSsOrjBPYmoT0MamK0Pa/WKn1HC9G/cuyw8uB6B9UHueuuEpbom8xfyLLZO45Ei8NF50adKFLk3K5VOifaPp2bQnx7OOsyd1DwbFAMCekXvw0niRUZRRK90xMpFLNpVbksu2xG38kPADT9/wNNf5X8eNITfi4uTCoOhBhHuH2ztESao1liNmivXF/JP9DwkXEsyjYDKLMmUil+qnEkMJPyX+xJb4Lfye+jt6o54I7wgyijK4zv86OjfuTOfGne0dpiTVKXcXd9oHt6d9cHvzey0DWtbKsWQil65KiaGE8wXnifCJQG/U89Lul/Bz8+P+1vczKHoQbQLayFmWklRHZCKXqk1n1PFH6h9sSdjC9jPbifSJZP3t69G6avliyBdE+kTKiTqSZAcykUvVsu74Ot49+C45JTl4u3pzS+QtDIoehKIoCCHMS5BKklT3ZCKXylEUhSMZR/gh4QfGtBtDkEcQvm6+dAvtxuCowfRo2kOONJGkekQmcglQk/ep7FNsSdjCD/E/kJKfgquTK12bdKV3eG9ua3YbtzW7zd5hSpJUAZnIG7gSQwluzm6kF6Uz7NthOAtn/hPyHyZ0mMDNETfjo/Gxd4iSJF2GTOQN0Nn8s/yY8CPfx39PsGcwy/oto5FnI97s8yadGnWSt9OSJAcjE3kD8mPCj6w9vpYDaQcAaBfYjh6hPczlAyIH2Cs0SZJqwOES+aH0QxTri63e83XzNQ+0j0uLo9RQalXu7+7Pdf7XAbD//H4MRoNVeZBHEM38mgGw99xeLl1/prG2MZE+kRiMBvaf318uphCvEMK9w9EZdOYkaSnMO4xQr1CK9cUcSj9UrjzCJ4Im2iYU6go5knGkXHkzv2YEeQSRV5rH8czj5cpj/GMIcA8gpziHU9mnrMpS8lMYHD0Ydxd3Ei8kkleax9TrpzI4ajDhPnKWpSRdCxxu0ayhm4byb+6/Vu/1CO3BigErABiwYQDnCs5ZlQ+IHMCbfd4EoPun3ckrzbPeZ8xQ5vaYC8D1H12PXtFblY9qPYpZN86ixFBCl0/Kr6/waPtHmdZpGlnFWfRe37tc+fRO0xnbfixJeUncuvHWcuXPdn2Wka1GcjLrJMO+HVaufH7P+dzR/A4OpB3gwR8eLFe+uM9i+kX2Y1fKLiZum1iufEnfJfSN6IveqMfFyeE+uyVJMqls0SyHS+RHMo5QpC+yes9H42NukR9MP1i+Re7mT4x/DAAH0g6gN1on6iCPIPM46H3n9qFwSYvcszERPhEYFWPFLXJtCGHeYegMOuLS48qVh3mFEeIVQrG+mMMZh8uVR3hH0FjbmEJdIUczj5Yrj/aNNrfIT2SdKFce4xeDv7s/uSW55VrkPhofWvi3kLMsJekacM0kckmSpIaqskQu51NLkiQ5OJnIJUmSHJxM5JIkSQ5OJnJJkiQHJxO5JEmSg5OJXJIkycHJRC5JkuTgZCKXJElycDKRS5IkOTiZyCVJkhycTOSSJEkOTiZySZIkBycTuSRJkoOzSSIXQgwSQpwUQvxPCDHLFvuUJEmSqqfGiVwI4QwsAwYDbYCRQog2Nd2vJEmSVD22uF3MjcD/FEU5DSCE+Ay4EzhW2QYnT56kT58+Vu/de++9TJo0icLCQm69tfxddEaPHs3o0aPJyMhg2LDyd9GZOHEiI0aMICkpiQceeKBc+cyZMxkyZAgnT55k/Pjx5cqfe+45+vfvT1xcHI899li58ldeeYXu3buze/dunn322XLlixcvpmPHjmzbto158+aVK1+5ciUtW7bk22+/5Y033ihX/vHHHxMeHs769et59913y5Vv2LCBoKAg1qxZw5o1a8qVf//993h6erJ8+XI+//zzcuU7d+4EYNGiRWzevNmqzMPDgx9++AGAuXPnsn37dqvywMBAvvzySwCeeeYZ9uzZY1UeFhbGJ598AsBjjz1GXJz1zTVatGjBqlWrABg3bhynTlnf/KJjx44sXrwYgPvvv5/k5GSr8m7durFgwQIA7rnnHjIzM63K+/Xrx/PPPw/A4MGDKSqyvvHI7bffzhNPPAFQ7vcO5O+e/N1z3N+9MrboWmkKJFm8Tja9Z0UIMU4IsU8IsU+n09ngsJIkSRLY4A5BQojhwEBFUcaaXj8A3KgoytTKtpF3CJIkSbpytXmHoGTA8nbsYUCqDfYrSZIkVYMtEvle4DohRLQQQgPcB3xjg/1KkiRJ1VDji52KouiFEFOAHwFn4H1FUcrfCl6SJEmqFbYYtYKiKN8D39tiX5IkSdKVkTM7JUmSHJxM5JIkSQ5OJnJJkiQHJxO5JEmSg5OJXJIkycHJRC5JkuTgZCKXJElycDKRS5IkOTiZyCVJkhycTOSSJEkOTiZySZIkBycTuSRJkoOTiVySJMnByUQuSZLk4GQilyRJcnAykUuSJDk4mcglSZIcnEzkkiRJDk4mckmSJAcnE7kkSZKDk4lckiTJwclELkmS5OBkIpckSXJwMpFLkiQ5OJnIJUmSHJxM5JIkSQ5OJnJJkiQHJxO5JEmSg5OJXJIkycHVKJELIYYLIY4KIYxCiC62CkqSJEmqvpq2yI8AdwO/2iCWyyrWGTAalbo4lCRJksNwqcnGiqIcBxBC2Caayzi8aiw3pG+sk2NdMwJjYMyPoA2ydySS1OAVlRpwdhJoXGzbq12jRH4lhBDjgHEAERERV7UPt9aD+MXFn+zCUrILS7lQpMOyfe6pccHf0xV/T4360KrPfTxcca6jD5t6xaiD35fA90/C8A/sHY0kNQjFOgNnsgqJzyggIaOAhMwC0/NCzl0oZt3YrnSPsW3D6rKJXAixDWhSQdFsRVG+ru6BFEVZBawC6NKly1X1j8TePAJuHmF+XaI3cCazkH/T1R/UP+n5nM4o4HR6PtmFOnM9FydBRKAnzYK8aBaspVmQlmbB6vNArabOvlHYhYs7/Dwf2t0NrYfYOxpJuiaU6o0kZReSkGFK0plqoo7PKCA1twjFIsMFaDVEBXrSPSaQZn5uhPp52DyeyyZyRVH62/yoNuLm4sx1jb25rrF3ubLsglJzUj+dUUB8egGnM/L59VQ6pQajuZ6PuwvRwV40D9LSLFhLtCnZRwdpcXd1rsvTqR09Z8Dxb2Dz4xDZAzwD7B2RJDkEvcFISk6RRcu60Jy0k7OLMFhcr/NxdyE6SEuXKH+iAsNoFqwlKlBLVJAWXw9XAEpOnyZp7KM0eu1VCLLt2JA661qpa/5aDZ21GjpH+lu9bzAqpGQXcTojn9Om5H46vYA9pzPZeCDFXE8ICPX1KNeCjw7SEurrgZOTg7TinV3hzuWwui9smQV3r7J3RJJUbxiNCqm5RWprOrPgYgs7o4Ck7EJ0hovJWqtxJjpYS/umvtzRIdScqKODtPh7ulb5zd6Qn0/ylKkYC/NxbdrU5udRo0QuhLgLeAcIBr4TQsQpijLQJpHVEmdTN0tEoCd9WlqXFZToic8osGrBn04vYMP+ZApKDeZ67q5ORAVqaR7sRbSpJV+W6H3cXev4jKohJBZ6zYRfXoW2d0PLQfaOSJLqjKIonL9QYm5Nx1sk68SsQkr1F7+hl/1tt2zizcB2TYg2JeuoIE+CvdyuqhtWMRpJfXoWpQkJRPRJwzXrDwi5y5aniFCUuh/O16VLF2Xfvn11ftyrpSgK6Xkl/GuR3ONN3TZJl3zFCvLSXOyLt+iqiQjwxNXZjvOv9KWwqg8UZcGkPeDhf9lNJMlRKIpCRn6pOUFbtq4TMwsp0l1siGlcnIgM8DS3ptWWtSfRQVoae7vb/Nt2+vLlZCx5h8Zd9QR0awxjd4CL5qr2JYTYryhKuX6Za7ZrxZaEEDTycaeRjzvdmgdalZXqjZzJKjB106jJPT6jgJ+OnSezoNRcz9lJEBHgaeqmMbXgg7REB2uv+pP+irhoYOgyWN0PfpwNQ5fX7vEkqRaUXfuyGg1iutCYX6I313Mx/b1FBWnp3jyI6KCLiTvE1wPnOuoazfv5ZzLeWYpvhwD8m5+Cu76+6iReFZnIa0jj4kRMI29iGpW/4JpbqOPfjHyrbprT6QX89r8Mq69z3m4u5uRu7qoJUp97aGx4wTX0eugxHXa9CW3vgusG2G7fkmQjuUW6S4btFRCfqY4QyS26OBrNSUCYv5qgO0f4q61rU7Ju6ueBiz2/AQMl8fGkPvkU7lGNaXLd34j+86Bxm1o5lkN1rRTs2UPxiZO1EFHdUhSF3CIdmQWlZOaXkFVQSmZBKVn5JeQW663q+rq7EODlRqBWQ6BWY37u61H1xZUymohwvPv1u/iGrhhW3gSl+WoXi7uvrU9Pki6r7HpUgrkLpJD4jHwSMgvJsvgmWzbooKzrIypQa07Y4f6eNp9YYyuG/HwSRtyHITOD6JtTcL2uPTz0LTjVrGF2TXSt5P30E9nrPrV3GDbjbXpEXeF2pUD6FdRv/MLzBPzf/6kvXN3VbpX3BsDW5+GOJVd4dEmqnmKdoXyiNo0OSc8rsarb2MeN6CAtA9s2thoNEhHg6XDDgBWjkdRZpoub9zbG1VWBoe/WOIlXxaESeaOnniL48cftHYZdqBdzSkjILCTR9MeRkFFIQmYBSdlFVmvQBGhd1T+GAA8GfrsSZd58MrwCibp1gNqCCesC3SbD7nfULpbmfe14ZpIjK9EbSMoqNCfq+IxCc7fI2dxiq7pBXm5EB3nSp0VwuQuNnhqHSkVVyly1ivxt22l8X0+0yucweBn4R9bqMR2qa0WqmM5g5ExWoakPPt80okbtl8/PyeP135YTWpDBU72nYIhqTrNgL1oEODPp5Gg06Ml7+FeCAgOv7Rmu0lXTGYwkZRWa+qwLrfqvU3OKsFzHzt/TVU3S5mF7Zc898a6PQ3NtLG/nTpInTsKnfy9Cg79CXNcP7lun9hHZQGVdKzKRX+Nyi3TEn4jHafIj6I2wbvSLHCnWEJ9RQFvDCTZo5vCJoT+vOT9qdaG1bPJTs2DtNdVakipWNlHOalJMZtnEGOshtt6mWYwXu0A8iQ7yIjpQi6/ntZ+sK1OakED88HtxDWtK1M3pOBWdhUl/gFewzY4hE3kDV3z8OAmj7sctOprIjz8Cdw9Sc4tgyzOEnVzDBzFL2FHSitPpBaTkFFltG+LrfjGxm5J882AvQv3qbhiXVHNGo8LZC8XmRG055jopy3oWo6fGWb2wGHyxdR0d5ElUoJaAa319oqtgyC8g4b4RGDIyiZrZG83Rd2HEWmh9u02PIxO5RN7PP5M8eQpeN/cl7O23Ec7OUFoI73YHFJi4GzRainUGc/dMvGnY5L+mMfJ5FqNqNC5ORFksRhZtWsqgebAWP0/bj5WVLk9RFNLySjidbjkiRH2emFlISQWzGKMuSdTRQVqCvetgbsM1QlEUUqZNJ2/7diIWPoX2wGPQYWStzNWQiVwCIOujjzn/yisEPPwwjZ9+Sn0zYResuQ26ToDBr1a6raIoZBaUmvviT1v0xZ/JLERvdcFVY2rBX1y+oFmQlohAT9xcHGsUQn1TNovRcpx1Wf91YmYBhRbLSWicnYgILEvQnuY+6+jg2pnF2BBlrFxF+ltv0eiJxwgsXAEGPUz8Hdx9bH6sa2L4oVRzAQ8+QGliIlkffIAmMhL/+0ZAVE+44VH4cyW0GQqR3SrcVghBkJcbQV5u3BhtvYpi2QUxywut/6YXsPNUOl/sTzbXcxIQbprhGm2xlEHzYC8ayVagleyCUnOfdYJpDaCEzAISMwrJu2QWY3iAJ1GBnnRrFmhO2FGBWtn9Vcvyf/2V9MWL8bn9dgKanIR98ep48VpI4lWRLfIGSNHrSZo8mYJdvxO+YgVevXpCST682w2cXGHCLtB42ux4F4p15tmt8eZuGrXbplh38at+2epyll01ZQuTad2uzTbH1cxijA70tBoREuZv/1mMDVFpYqJ6cTM0lKh5j+K0YSR0mwID59faMWXXimTFkF9A4v33o0tKIvLTdbi3aAGnf4GP7qj1X8YyRqPCuQvFVssJl61Xk5JjvTh/Ex/3citNNgvSEubvWe9bnBXNYix7nlnJLEbzDEZT/3VEQP2dxdgQGQsKSLjvPvRp6UR98l803wxTZ0mP+0WddFdLZCKXytGdO0fC8HvB1YXo9etxCQ6Gbx+Dvz+EMVsh/Aa7xVY2KzDelNz/tRgfb9lS1Tg7ERnoab7QqnbTqK16f23dXXC9dBZj2WiQ+IyKZzGWJWrL9UEccRZjQ6QoCimPzSDvp5+I+O9qtKn/hWNfw9jtENqxVo8tE7lUoaIjR0l84AHcYmKI/OhDnIQOlndTu1bG/1arrYuroSgKWaYV8NRumnzzxdczlwyh8/N0LXextVmwF5FXecH1amYxWk43vxZnMTZEGatXk/7GmzR68kkCb/SBLx+Bvs9B7ydr/dgykUuVytu+neQpU/Hu35+mby9GnN4Bn9wDPR6DAXPsHV616Q1Gkq3u/mQaXQ3dp/AAACAASURBVJNeQJpFq7isv9mqq8b0PFDrRnK2nMUoVSz/t10kjRuHz+DBhL74OOLd7hB0HTy8BZxr/wNaJnKpSlkffsj5BQsJeGQMjZ98Er6eDHHrYOw2aNrZ3uHVWF6xjoSMQvNomrKlDOIzrIfrXUrOYpTKlJ45Q/yw4biGhBC1bi1OGx+AM3vUwQGBzeskBjn8UKqS/4MPqsMS33tfHZY4ZD78bztsmgzjfwEXN3uHWCPe7q60D/OlfZj1sr2KYnnBtYCMvBLCAzzlLEbJirGwkOQpU0EIwpa+g9OxT+Hf7XDrojpL4lWRiVwC1DHijZ99ltLkZM7NeRnXpk3xGvI2rLsXfn0dbn7O3iHWCiEEIb4ehPh60CMmyN7hSPWQoiikzp5Nyf/+R/jqVWg8S9UloJv3gxvG2js8AOR4JslMuLjQ9M03cWvenJTpj1EimqlTjX97E84etHd4kmQXWe+9R94PW2j0+Ay8/tMVvhoPzhq4c6nNVjWsKZnIJSvOXl6Er3gX4eFO0vgJ6Ls8AdogtYtFX3r5HUjSNSR/1++kvfkW3oMHEfDII/D7W5C8F257A3xC7R2emUzkUjmuoaGEL38XfVYWSU/MxjjgNTh/GHa9Ze/QJKnOlCYlkTJzJm4xMYTOn484exB2LoR290D7YfYOz4pM5FKFPNq3o+mi1yk+dJjU93eitLkHfn0Nzh2xd2iSVOvMFzdBvbjp6qR2qWiD1Quc9YxM5FKlvPv3p9GTT5L344+kn24OHv7w9SQw6C6/sSQ5KEVROPvc85ScOkXTRYvQRETAjrmQfkLtF/cMuPxO6phM5FKVAh4ejd+IEWSu+YQct/vUi56/v23vsCSp1mS9/wEXvv+e4Bkz1AXl4n+DPcugyyMQ09/e4VVIJnKpSkIImjw3G22PHpxd9TUFbn3hl1ch7bi9Q5MkmyvYvZu0N97Ae+BAAh8dC8UXYNMkCGgGt8y1d3iVkolcuizh6krTxW/hFh1F8pcplBR6qzM/DfrLbitJjqI0OZmUGY/j1rwZoa/MVyeCbZkFF5LhrpWg0do7xErJRC5Vi7O3N+ErViDc3Una1Rj9vwfgj2X2DkuSbMJYVETy1GkoikLY0qU4abVwfDPErYWej9t1JdDqqFEiF0K8LoQ4IYQ4JIT4SgjhZ6vApPrHtWlTwpcvQ59XTPK+5hi3zof0U/YOS5JqRFEUzj7/AiUnTtB00etoIiMhPx2+nQ5NYqH30/YO8bJq2iL/CWinKEoscAp4puYhSfWZR2wsoa+9SlFKIal/+qJsmgTGyhedkqT6LmvNh1zYvJng6dPxuukmUBQ1iZfkwd2rwKX+30i8RolcUZStiqKUdZT+AYTVPCSpvvO55RYaPTGTvAQX0n84AX+usHdIknRVCv74g7TXX8d7wAACx49T34xbCye/g34vQKPW9g2wmmzZRz4G+KGyQiHEOCHEPiHEvvT0dBseVrKHgDFj8Bs+nMxj3uSsehUy/7V3SJJ0RXQpKaQ8NgNNs2hCFixQL25mJ8IPsyCyJ/xnkr1DrLbLJnIhxDYhxJEKHnda1JkN6IG1le1HUZRViqJ0URSlS3BwsG2il+xGCEGTF55H27UzZ//wpOCdsWA0Xn5DSaoHjEVFJE2dimIwEL50Kc5eWvX3d9NEtcJd74KT44wFuewytoqiVDkCXgjxEHA70E+xx10qJLsRrq40XfouCUNvJfnLVKI6vIbbXbPsHZYkVUlRFM6+8CIlx08Q9u5yNFFRasEfyyDxd7hzOfhF2DXGK1XTUSuDgKeBOxRFKbRNSJIjcfb2JvzDTxEaV5Lmv4/+dJy9Q5KkKmV/9BEXvv2W4GlT8e7TR33z/DHY/jK0vA06/p9d47saNf3usBTwBn4SQsQJIeRVrwZIExZG+JK30Bc5kfzowxiLiy+/kSTZQcEff3L+tdfx6t+PwPHj1Tf1pfDVOHD3hSFv15s1xq9ETUetxCiKEq4oSkfTY4KtApMci0ePAYROHkpRSjFnJ/4fspdNqm90qamkzJiBJiqK0IWvIsr6wH9ZCOcOq0ncyzGv3zlOb75U7/lMXEBwn0Au7DlOxuvz7B2OJJkZi4tJnjIVRacj7J131IubAEl/qevsd7wfWt1m3yBrQCZyyXaEIPCVT/CNKSXj/XXkfPWVvSOSJPUG2y++RPGxY4S+/hpuzaLVgtICdY1xnzAYtMC+QdaQTOSSTYmAKEKefRLPRiWcfe45Cv78y94hSQ1c9sefkPv11wRNnYJ3374XC7Y+D1nx6lBDdx/7BWgDMpFLNif+M46wkS3QeOlJnjqFktPx9g5JaqAK/vqL86++ile/fgRNnHix4J9tsO896DYZonraL0AbkYlcsj0nJ5xHLCe8Tx5CX0jShPHos7PtHZXUwOhSU9WZmxERhL668OLFzcIsdRnm4NZw8/P2DdJGZCKXakdAMzR3PU9Y93Poz6aSPGUqxtJSe0clNRDG4mJ1WdqSEsKWLcXZy+ti4XczoTAT7l4Jru72C9KGZCKXas+N4/G8vjOh3Qso2r+fs8/OlsMSpVqnKArnXppD8dGjpoubzS4WHt4ARzdCn1kQ0sF+QdqYTORS7XFygjuX4RNeSPDNIVzYvJmMpfJmFFLtyl67jtxNmwiaPBnvm2++WHAhFb57HMJugB6P2S/AWiATuVS7gmKg72wCg/fj2+d6MpYtI/ebb+wdlXSNKty7l/MLF+LVty9Bky1WL1QU0+0Jdept25wvu8yUQ5GJXKp93SYjwroQErEbzy7Xc3b2cxTu22fvqKRrjO7sWZIfm4EmLIzQ1yxmbgLs/S/8u0O9gXJgc/sFWUtkIpdqn5Mz3LkMYSggrL+Ca1gYyZOnUJqQYO/IpGuEsaSE5GnTUYqK1Iub3t4XCzP+p44Zj+kPXR6xX5C1SCZyqW40agV9nsE54XvCn7gbnJxIGj9BDkuUakxRFM7NeZniw4cJfe1V3JpbtLgNenVBLBc3uGOpQy6IVR0ykUt1p/s0CL0ezf4FhC2ap47znTpNDkuUaiT700/J3biRoEkT8e5/ye0Tdr0FKfvh9jfBJ8Q+AdYBmciluuPsoi7aX5yL59lPCFmwgMJ9+zj73HNyWKJ0VQr37+f8Kwvw6t2boClTrAtTD6grG7YbBu3usU+AdUTY4w+oS5cuyr5LLnbpdDqSk5MplmtZX/uKc9WHNghDsQFjXh5O3t7W/ZoVcHd3JywsDFdX1zoKVKrPdOfOET9sOM5aLVFffI6zj8V6KboiWNkbSi7AxN3gGWC/QG1ICLFfUZQul75fb8bgJCcn4+3tTVRUlHoTVOnapRgh/RQYdSjBrdGdPYchJwfXkBBc/Pwq3kRRyMzMJDk5mejo6DoOWKpvjKWl6sXNwkLC1nxgncQBts+FjJNw/8ZrJolXpd50rRQXFxMYGCiTeEMgnNR7IhoNiAvJuIaG4uSpRZeSgqGgoOJNhCAwMFB+Y5PUi5svv0zxoUOELFyAW0yMdYX4X9X7b97wKMT0s0+QdazeJHJAJvGGROMJXo2hKBtRmocmIhzh6oruzBmMJSUVbiJ/PySAnPXryd3wJYETxuNzyy3WhcW5sGkSBDSHAXPsE6Ad1KtELjUw3o3BxR1ykhBOoImMBKA0MRFFr7dzcFJ9VPj335yb/wram3oRPHVq+Qo/zIILKXD3KtBo6z5AO5GJ3EL37t3tHYKVNWvWMOXSK/GX2LlzJ7t3766jiCr20ksvsWjRomrXf+WVV9Qnwgn8IsGog9wUnNzccI2IQNHpKE1KQjEaayliyRHpzqeRPH06rqEhNF20COHsbF3h+LdwcB30mglh5a4HXtNkIrdg74R4NeydyPVX0XI2J3Kw6GLJguILOGu1uDZtirGgAF1qqhyWKAHqxc2UadMwFhSq99y89OJmfhp8O11d0bD30/YJ0o7qzagVS3O+Pcqx1As23WebUB9eHNK2yjpeXl7k5+ezc+dOXnrpJYKCgjhy5AidO3fmk08+QQjB3r17mT59OgUFBbi5ubF9+3ZcXV2ZOHEi+/btw8XFhTfffJO+ffuyZs0aNm3ahMFg4MiRI8ycOZPS0lI+/vhj3Nzc+P777wkICKBPnz507NiRv/76iwsXLvD+++9z4403WsWWnp7OhAkTOHPmDACLFy+madOmrFixAmdnZz755BPeeecdWrVqVa5ejx49rPZV3bhWr17NqlWrKC0tJSYmho8//hhPT09Gjx5NQEAABw4coFOnTnhbDBtcvXo1GzduZOPGjXz55ZcsWbKE0tJSunbtyvLly5k9ezZFRUV07NiRtm3bsnbtWvBqovZt5pyBRq1w8fNDKS1Fn5aG0GhwbdTIFr8CkgM7P3ceRQcP0nTxYtxbtLAuVBT4ZhqU5MNdq8C54Q1PlS3yShw4cIDFixdz7NgxTp8+ze+//05paSkjRozg7bff5uDBg2zbtg0PDw+WLVOXZj18+DCffvopDz30kHl0xZEjR1i3bh1//fUXs2fPxtPTkwMHDtCtWzc++ugj8/EKCgrYvXs3y5cvZ8yYMeXimT59OjNmzGDv3r18+eWXjB07lqioKCZMmMCMGTOIi4ujV69eFdarSHXiuvvuu9m7dy8HDx6kdevWvPfee+btT506xbZt23jjjTfM7y1dupRvv/2WTZs2kZCQwPr16/n999+Ji4vD2dmZtWvXsnDhQjw8PIiLi1OTOKjL3fpFqF0sF1IBcAkOxtnPD31aGobc3Br8T0qOLnv95+R88QWB48bhM2hg+QoHPoFTP0D/F9WlIBqgetkiv1zLuS7ceOONhIWFAdCxY0cSEhLw9fUlJCSEG264AQAf09e7Xbt2MdV04aVVq1ZERkZy6tQpAPr27Yu3tzfe3t74+voyZMgQANq3b8+hQ4fMxxs5ciQAN910ExcuXCAnJ8cqnm3btnHs2DHz6wsXLpCXl1cu7srqeV8y2aY6cR05coTnnnuOnJwc8vPzGTjw4h/R8OHDcbboo/z4448JCwtj06ZNuLq6sn37dvbv32/+WRUVFdGoqpa1RgvaRlCQBu5+CHcfXENDUUpLKU1ORuPiirPWs/LtpWtS4YEDnJs3D22vXgRPn1a+QnYCbJkFUb2g68Ty5Q1EvUzk9YGbm5v5ubOzM3q9HkVRKhwCV1U/ruV+nJyczK+dnJys+pcv3e+lr41GI3v27MHDw6PKuKtbrzpxjR49mk2bNtGhQwfWrFnDzp07zdtotdYjAtq1a0dcXJx5wo6iKDz00EMsWLCgyjiseIeoXSy5SaBphXByRhMRQcnp0+jOJCKaX3vLj0qV051PI2XadFybNKHpotfLX9w0GuCriepF86HL1W92DVTDPfOr0KpVK1JTU9m7dy8AeXl56PV6brrpJnM3walTpzhz5gwtW7a8on2vX78eUFv3vr6++Pr6WpXfcsstLF261Pw6Li4OAG9vb6uWeWX1rkZeXh4hISHodLqL3SCVuP7661m5ciV33HEHqamp9OvXjw0bNpCWlgZAVlYWiYmJALi6uqLT6crvpKyLxVBq7mIRLi7WwxLlSJYGQSktJWX6dAz5+YQtXYrzJX8PAOxZBmd2w+BX1d+bBkwm8iug0WhYv349U6dOpUOHDgwYMIDi4mImTZqEwWCgffv2jBgxgjVr1li1eKvD39+f7t27M2HCBKu+6DJLlixh3759xMbG0qZNG1asWAHAkCFD+Oqrr+jYsSO//fZbpfWuxty5c+natSsDBgygVavL9z327NmTRYsWcdttt9GoUSPmzZvHLbfcQmxsLAMGDODs2bMAjBs3jtjYWEaNGlV+J25eoA2GwgwoUT+gzMMSS0sxZGWhyNUSr3nn5r9CUVwcoa/Mx71li/IVzh+FHXOh1e3QYWTdB1jP1JtFs44fP07r1q3rPJb6oE+fPixatIguXRrW2NdKGQ2QfkJ9HtxKvTEFoM/O5tjffxO0fQch8+fJmZ7XqOzPP+fcCy8S+OhYGs2cWb6CvhRW3wz552DSH6ANqvsg7aSyRbNki1yqf5ycL3ax5J01v+3i74+Tlxe5GzeSuWq1HQOUaktRXBzn585D26MHwY9VcoPknQvg/GEYsqRBJfGq1OhipxBiLnAnYATSgNGKoqTaIrCGxPIiomTi5g2eQVCQDu5+apcL4Ozjg8/tt5P+1ltoIsLxGTzYzoFKtqJPTyd52nRcGjem6RsVzNwEOPMn/L4Yrr8fWt1a90HWUzVtkb+uKEqsoigdgc3ACzaISZJUPqHgrFEnChkN5rdD5s/Do1MnUp+eRVENLuZK9YdSWkry9Mcw5OWp99ysaDnjknz4ajz4hsHAKxgN1QDUKJErimI5/VILyPnUku2Yu1hKIO/cxbfd3AhbthSXJk1ImjSZ0uRkOwYp2cK5BQso+vtvQubNxb2yEV9bn1PHjQ9dAe4+FddpoGrcRy6EmC+ESAJGUUWLXAgxTgixTwixLz09vaaHlRoKN2/wDFQnCpVeXKvcxd+f8BUrUAwGksZPwHDBtks6SHUnZ8MGcj79jIBHxuB7220VV/rnJ9j/AXSfAlE9Kq7TgF02kQshtgkhjlTwuBNAUZTZiqKEA2uBSpfqUxRllaIoXRRF6RIcHGy7M5CufT5NwckVchLVdTVM3JpFE7ZkCaVnzpA8fTpKRWPTpXqt6NAhzs15GW33bjSaMaPiSoVZ8PVkaNQG+j5XtwE6iMsmckVR+iuK0q6Cx9eXVF0HXNt3OLWh0aNHs2HDhirrrFmzhtRU+1477tOnD5cOFa1MQkIC69ats30QZV0s+hIosV53Rdv1RkJefpnCPX9w7uWX5WqJDkSfnk7y1Gm4NGpE6BtvIFwqGHuhKLB5hprM71oJru51H6gDqFHXihDiOouXdwAnahaOZMneidxgMFy+koVaS+Sg9ol6BkBxHqT8bVXkd9dQAieMJ+eLDWRVMJlKqn+U0lKSH5uBITeXsKXv4OLvX3HFwxvg2Cbo+wyExNZtkA6kpmutLBRCtEQdfpgITKh5SKh3+Th32Ca7MmvSHgYvrLLKRx99xKJFixBCEBsby8cff0xiYiJjxowhPT2d4OBgPvjgAyIiIhg9ejQeHh6cOHGCxMREPvjgAz788EP27NlD165dWbNmDaAujTt+/Hh+/vln/P39+eyzz7i0a2n//v08/vjj5OfnExQUxJo1a/j999/Zt28fo0aNwsPDgz179nDs2LFy9UJCQqz2Vd24Jk6cyN69eykqKmLYsGHMmaPeFisqKooxY8awdetWq5taGI1GHn74YcLDw5kzZw6zZs1i586dlJSUMHnyZMaPH8+sWbM4fvw4HTt25KGHHmJGZV+Vr5ZPU3D6n/o1e9xOcLk4ezZ42jR0Z86QtugNXMMj8Bl4S6W7kezv/MJXKdq/n9BFi3CvbCJgbgp8PxPCboTu0+s2QAdT01Er95i6WWIVRRmiKEqKrQKra0ePHmX+/Pns2LGDgwcP8vbbbwMwZcoUHnzwQQ4dOsSoUaOYNu3iCmzZ2dns2LGDt956iyFDhjBjxgyOHj3K4cOHzWucFBQU0KlTJ/7++2969+5tTphldDodU6dOZcOGDezfv58xY8Ywe/Zshg0bRpcuXVi7di1xcXG4uLhUWK8i1Ylr/vz57Nu3j0OHDvHLL79YrcTo7u7Orl27uO+++wD15hGjRo2iRYsWzJs3j/feew9fX1/27t3L3r17Wb16NfHx8SxcuJBevXoRFxdn+yQO4OQCHv6Qdgx+fd2qSDg5EbJgAR4dO5L61FMUHTxo++NLNpHz5Uay160j4OGH8b29koubRiN8PQkMerhrBTjL9f2qUj9/OpdpOdeGHTt2MGzYMIKC1JliAQEBAOzZs4eNGzcC8MADD/DUU0+ZtxkyZAhCCNq3b0/jxo1p3749AG3btiUhIYGOHTvi5OTEiBEjALj//vu5++67rY578uRJjhw5woABAwC1O+PSVvaV1KtuXJ9//jmrVq1Cr9dz9uxZjh07Rmys+tW1LN4y48eP59577zV/cGzdupVDhw6Z+/hzc3P5559/0Gg0l/9B15SrB8TeB7+9Ca2HqHeEMXFycyNs+TIS7h1B0qTJRK1fjyasae3HJFVb0eHDnJszB89u/6HRzMcrr7j3v3B6J9z+FgTKVS8vp34mcjuobInaS1nWsVz69dJlYSu7Bdqlx1AUhbZt27Jnz57LxledetWJKz4+nkWLFrF37178/f0ZPXq0+UYYUH6J2u7du/Pzzz8zc+ZM3N3dURSFd955x2p9cqjDGaqDFsDpn2HTZHh0B7hc/ABxCQggfOUKEu4bSdKE8UR9+inOl6zFLtmHPiOD5ClTcQkKoumbb1Z8cRMg4x/46QWIGQCdH67bIB2UXGvFpF+/fnz++edkZmYC6rKroCaxzz77DIC1a9fSs2fPK9qv0Wg0t1zXrVtXbvuWLVuSnp5uTtA6nY6jR48C1kvUVlXvSl24cAGtVouvry/nz5/nhx9+qLL+I488wq233srw4cPR6/UMHDiQd99917wU7alTpygoKCi3pG6t8QxQW2rnD8Out8oVuzVvTtg7SyhNSCRl+mNyWGI9oOh0pDw2A0NOTtUXNw16dfamqzvcuRTkwmjVIhO5Sdu2bZk9eza9e/emQ4cOPP64+rVvyZIlfPDBB+aLn2V959Wl1Wo5evQonTt3ZseOHbzwgvWcKY1Gw4YNG3j66afp0KEDHTt2NN9MefTo0UyYMIGOHTtiMBgqrXelOnTowPXXX0/btm0ZM2ZMuXt6VuTxxx+nU6dOPPDAA4wdO5Y2bdrQqVMn2rVrx/jx49Hr9cTGxuLi4kKHDh14663yCdamWt0G7YapfeXny3+gaf/zH0LmvETB7t2cmztPDku0s/Ovvkbhvn3qzM02bSqv+NsbkLIfbnsTvJvUXYAOTi5jW8vKbugs2YbV70lBJizvqo5mGbu9wgtiaW++ReaqVTR68kkCHyl/L1Sp9uV8tYmzzzxDwEMP0fiZWZVXTPkb3hsAbe+Ce/5bdwE6ELmMrXTt0QbCrYvgbBzsrvibUvBj0/EeNIi0RYu48NNPdRygVHT4COdefBHPrl1p9OQTlVfUFaldKtpGcOvrldeTKiQTeS2TrfFa1nYotLkTdi6EtPLz0YSTE6ELF+ARG0vqk09RdNjG8xOkSukzM0meNg3noECavlXFxU2A7S9DxikYukwdYipdEZnIJcd36xug8bo47vgSTu7uhC1fhktgIEmTJqGz87IHDYH54mZWFmHvvIOLaThvhU7/An8shxvHQfOb6y7Ia4hM5JLj8wpWv46n7Ic/llVYxSUwkPCVK1CKS9TVEuU3pVp1/vXXKdy7l5CX5+DRtm3lFYtyYNMkCIyB/nMqrydVSSZy6drQ7h71Rrw75qvjkCvgFhND2NuLKYmPJ2XG4yiVjPWXaib366/J/uhj/B98AN8776y68pZZ6u387loFGs+6CfAaJBO5dG0QQh2y5uqhrsVirHjBL2337jR58QUKfvuNc/Pny2GJNlZ09ChnX3gRzxtuoPGTT1Zd+dg3cPBTuOkJCOtcNwFeo2QirwWLFy+msLDQ3mFUyXIZ3bFjx3Ls2DEAXnnlFXuGVTPejWHwq5D0J/y5stJq/sOHEzj2EXI+/YysDz+swwCvbfqsLJKnTsU5IICmi99CuLpWXjnvPHw7HUI6wk2XSfjSZclEXgscIZFb+u9//0sb0ySNq0nklS1HYBexI+C6geooiMx/K60W/PjjeN9yC2mvvkbe9u11GOC1SdHrSZnxOIaMTMKWLMElMLCKygp8O02949Pdq8C5ioQvVUu9TeQPb3m43OOzE+pU+SJ9UYXlm/63CYDs4uxyZdUxd+5cWrVqxYABAxg5ciSLFi0CIC4ujv/85z/ExsZy1113kZ2dzfHjx7nxxhvN2yYkJBAbG8uSJUtITU2lb9++9O3bt9wx9u/fT+/evencuTMDBw7k7Nmz5Obm0rJlS06ePAnAyJEjWb16NaBOKJo5cyadOnWiX79+lN0m799//2XQoEF07tyZXr16ceKEOvRu9OjRTJs2je7du9OsWTNzq1tRFKZMmUKbNm247bbbSEtLM8dUdvOIWbNmUVRURMeOHRk1ahQJCQm0a9fOXG/RokW89NJL5m2effZZevfuzdtvv13heYE6M7ZNmzbExsaaV1OsVULAkMXqTZu/maquoldRNScnQl9diHv79qQ88SRFR65uuQNJlfb6Igr//JMmc+bg0b5d1ZX//ghObYH+L0FwJffnlK5IvU3kdW3fvn18+eWXHDhwgI0bN1rdFefBBx/k1Vdf5dChQ7Rv3545c+bQunVrSktLOX36NADr16/n3nvvZdq0aYSGhvLzzz/z888/Wx2jsiVrfX19Wbp0KaNHj+azzz4jOzubRx99FKh8Gdxx48bxzjvvsH//fhYtWsSkSZPMxzl79iy7du1i8+bNzJqlzqT76quvOHnyJIcPH2b16tUVTu9fuHAhHh4exMXFsXbt2sv+zHJycvjll1+YNm1apUvsLly4kAMHDnDo0CFWrFhxJf8lV88nFAbOh8Tf1VX0KuHk4UH4sqU4+/uRPHEiOtOHj3Rlcr/9lqwPP8T//vvxu2to1ZWz4uHHZyH6Juhqm9sXSPV49cMPBn1QaZmHi0eV5f7u/lWWV2TXrl3ceeedeHh4AOpSsKAu0ZqTk0Pv3r0BeOihhxg+fDgA9957L59//jmzZs1i/fr1rF+/vspjVLUU7YABA/jiiy+YPHkyBy3W0q5oGdz8/Hx2795tjgOgpKTE/Hzo0KE4OTnRpk0bzp8/D8Cvv/7KyJEjcXZ2JjQ0lJtvrvl43bK4qjqv2NhYRo0axdChQxk69DJ/5LZ0/f1w9CvY9hK0uAX8oyqs5hIcTPiKFST+3yiSJkwkcu1anL20FdaVyis+doyzzz2PZ5cuNH76qaorMLMmCQAAElJJREFUGw2waSIIJ7hzOTjJdqSt1NtEXteuZvTCiBEjGD58OHfffTdCCK677roq61e1FK3RaOT48eN4eHiQlZVFWFhYhfsQQmA0GvHz8zPfJOJSlkvXWp5XdZbpteTi4oLRomvCcqlbuLjcbVXn9d133/Hrr7/yzTffMHfuXI4ePYpLVTP8bEUIGPI2LO+mdrE8+E2lK+m5t2hB07cXkzRuPEnjxuHZuVPtx3eNyP3uO5z9/S9/cRNgz1I4sweGrgC/8LoJsIGQidykZ8+ejB8/nmeeeQa9Xs93333Ho48+iq+vL/7+/vz222/06tWLjz/+2Nw6b968Oc7OzsydO9fqZgxly7mW3aSijOVStN26dUOn03Hq1Cnatm3LW2+9RevWrXnllVcYM2YMe/bswdXV1bwM7n333WdeBtfHx4fo6Gi++OILhg8fjqIoHDp0iA4dOlCZm266iZUrV/Lggw+SlpbGzz//zP/93/+Vq+fq6opOp8PV1ZXGjRuTlpZGZmYmXl5ebN68mUGDBpXbprLzat26NUlJSfTt25eePXuybt068vPz8fPzu9r/pivjFw63zIXNj8H+D6BL5YtmefXoQcjLczi/YCHFR47UTXzXAGc/P8KWLcXlkt/1cs4dgR3z1JuBdKiDayUNjEzkJjfccAN33HEHHTp0IDIyki5duuDr6wvAhx9+yIQJEygsLKRZs2Z88MHFbpsRI0bw5JNPEh8fb35v3LhxDB48mJCQEKt+8rIla6dNm8b/t3f3UVXVawLHvw/Gjbq6qgl8GSS1F2JSCRgK3zJt8qppUvkCo9hSSruti4VW6rVJraG0bObeyTVZTpPeJtRSy6v2pgaElSYqR9Esr17DTLuiFuU76G/+2Jtz4fB2CM7Z58DzWYu1Dvv89tmPz9o+7LNfnl9paSnl5eVkZmYSGhrKa6+9xpYtW2jTpg19+/YlKyuLp59+ukob3CuuuMJ9+iY7O5uHH36YrKwsysrKSE1NrbOQ33vvveTk5NC9e3eio6Pdf4w8TZw4kdjYWBISEsjOzmbmzJkkJSXRpUsXYmJialyntn9XdHQ0aWlplJaWYoxh8uTJ/iviFf55nHWKZZ09UUEdR4JXDh/OlcOH+y+2lqL8nNUQK+xKGPpH7THuA9rGtpKTJ0/SunVrTp8+Td++fVm4cCEJCc5+zdY2uFX9ov3kh2LrFMs1SZD2jhYSf9sw25oA5F+XwY2DnY4mqGkbWy9MnDiRuLg4EhISGD58uONFXDWRqzrBgKdhfw4Uvul0NC3Lwc3w2X9B/Fgt4j6kp1YqWbJkidMhVKNH400k8QHYvQo+etLqsHeFTsrsc+dOWqdUroiy5llVPqNH5KplCAmBYS/BhfPWxU/tseJ76560Tmvd+wpcqhNg+5IWctVyXH0d3DkL/rIOdixzOprmbe862LYYek2CTr2cjqbZ00KuWpZbH4KoHvDhNPj5e6ejaZ5OHYfVGdD2Jrjj35yOpkXQQq5alpAQSP5v65a4tVP0FEtTMwbemwynT1gNsS65tP51VKNpIW+E1q1b+/TzS0pKSEpKIj4+no0bN9Y6Li8vj6FDh9b5WYsXLyYjI6Pa8h9//JGXX365QXH9ku6OtW3fEeHXQ/8n4ev3YNdKp6NpXoqWw5d/hv4zoH13p6NpMbSQB7CPP/6YmJgYCgsLue2223yyDX8V8oDT83cQmQjvPwEnj9Y/XtWv9BC89zhEJUHvR52OpkVpktsPReRxYB4QYYw51tjP+/655zi3p/qM6I1x6T/F0H7GjFrfnzZtGp06dXJ3EZw9ezZt2rThoYceIjk5mR9++IGysjKysrJI9pi+Ki8vjxdffJG1a9cCkJGRQWJiIuPGjWPbtm1MmTKFkydPEh4ezuLFi90NpSoUFxeTnp5OSUkJERERLFq0iBMnTjB16lR3W9lNmza5G3oBfPjhh2RmZhIeHl7lfvdTp04xadIkioqKKC8vZ/bs2e54v/32WwYNGsSBAwcYPXo0s2bNYvr06ezfv5+4uDgGDBjAlClTSElJ4aeffqK8vJwFCxZU+SNSuU1veHg4ubm5LF26lOeeew5jDEOGDOH5558HYNGiRcyZM4cOHToQHR3t7gGzZs0asrKyOH/+PFdffTXZ2dlERERw44038vnnnxMREcHFixeJjo5m8+bN1VodNImQVtYplldvg/cfh1FvNP02WpKLF625Ny+WW3ephLRyOqIWpdFH5CISBQwADjY+HOekpqZW6V749ttvM3LkSMLCwnj33XfZvn07ubm5PPbYY1432Kqtba2njIwM7r//fnbu3MmYMWN45JFHiIuL45lnniElJQWXy1WliJ89e5YJEyawZs0aNm7cyPff//2i3bPPPssdd9xBQUEBubm5PPHEE5w6dQqALVu2kJ2djcvlYvny5WzdupW5c+dy3XXX4XK5mDdvHkuWLGHgwIG4XC527NhBXFxclVg92/QePnyYadOmkZOTg8vloqCggFWrVnHkyBFmzZrFZ599xvr1690zEIHV12bz5s0UFhaSmprKCy+8QEhICGlpae72uRs2bODmm2/2TRGv0DYG+k23TgXsftd322kJCv4HDnxitQ/+h2udjqbFaYoj8j8AU4E/N8FnAdR55Owr8fHxHD16lMOHD1NSUsJVV13FNddcQ1lZGTNmzCA/P5+QkBC+++47/va3v9G+fft6P7Ou9q6Vbdq0iXfeeQeAsWPHMnVq3e1Av/rqK7p06eLutpiWlsbChQsBWLduHatXr3ZPinH27FkOHrT+xg4YMICr7Zlb7rvvPj799NNqrWVvueUW0tPTKSsr45577qlWyD0VFBTQr18/IiIiABgzZgz5+fkAVZanpKSwd+9eAA4dOkRKSgpHjhzh/PnzdOnSBYD09HSSk5PJzMzk9ddfZ/x47yYEaZRej1pzR773OHS+DX7twz8czVXJXlg/E274jdXbRvldo47IRWQY8J0xZocXYyeKyFYR2Voxy02gGTFiBCtWrOCtt95yz2aTnZ1NSUkJ27Ztw+Vy0a5du2rtXGtr91rR3tXlcuFyuSgqKmLdunX1xuFNu9naxhhjWLlypXubBw8edPcm8Vynps/o27cv+fn5REZGMnbsWN54o+5TDnV9O6ktxkmTJpGRkUFRURGvvvqqO19RUVG0a9eOnJwcvvjiCwYP9sMj3a0ugXsWwNlS+KCeftqqugtl8O5ECL0chs3XPjYOqbeQi8gGEdlVw08y8CQw05sNGWMWGmMSjTGJFUdpgSY1NZVly5axYsUKRowYAVgTS7Rt25bQ0FByc3MpLi6utl6nTp348ssvOXfuHKWlpXxszwFZub0rWKdadu+uPqVYr169WLbMekAlOzubPn361BlnTEwMBw4cYP9+a07KpUuXut8bOHAg8+fPdxfYwsJC93vr16/nxIkTnDlzhlWrVtG7d293y90KxcXFtG3blgkTJvDAAw+wffv2atuvvE5SUhKffPIJx44d48KFCyxdupTbb7+dpKQk8vLyOH78OGVlZSxfvty9fmlpKZGR1iPyf/KY/PjBBx8kLS2NUaNG0aqVn86ztrsJbp9q3cGyZ61/ttlcbPwPOFwIQ/8Aber/lqp8o95TK8aYO2taLiLdgS7ADvvIqyOwXURuNcYE5ZMWXbt25eeffyYyMtJ9CmTMmDHcfffdJCYmEhcXV2Mr16ioKEaNGkVsbCw33HAD8fHxQO3tXbt27Vpl/Zdeeon09HTmzZvnvthZl7CwMBYuXMiQIUMIDw+nT58+7LJ7aD/11FNkZmYSGxuLMYbOnTu7L8L26dOHsWPHsm/fPkaPHk1iotVErXfv3nTr1o3BgwfTrVs35s2bR2hoKK1bt67xiNyzTe+cOXPo378/xhjuuusu98XV2bNn07NnTzp06EBCQgIXLlxwLx85ciSRkZH06NGjSgvgYcOGMX78eP+cVqmsz2TYs9rqDZJT86QeqgbH/gLdR0FXP87+pKppsja2IvINkOjNXSuB2sZWOW/r1q1Mnjy51vvmfbqfHNsH+S9A+dn6xyrL5eHwLzPhMj/3mW+hamtjq90PVcCYO3cuCxYs8GriZ58Iv956GlGpINNkDwQZYzo3xT3kquWaPn06xcXF9V4jUEpVFVBPdjoxW5EKHrp/KFWzgCnkYWFhHD9+XP+zqhoZYzh+/DhhYWFOh6JUwAmYc+QdO3bk0KFDBOo95sp5YWFhdOyod5Qo5SlgCnloaKj7CT+llFLeC5hTK0oppX4ZLeRKKRXktJArpVSQa7InOxu0UZESoHrTEu+EA4F4v7rG1TAaV8NoXA0TqHFB42LrZIyp1qzKkULeGCKytaZHVJ2mcTWMxtUwGlfDBGpc4JvY9NSKUkoFOS3kSikV5IKxkAdqVyONq2E0robRuBomUOMCH8QWdOfIlVJKVRWMR+RKKaUq0UKulFJBLmALuYgMEpGvRWSfiEyv4X0RkZfs93eKSEKAxNVPREpFxGX/eDWnaSNjel1EjorIrlredypX9cXl91zZ240SkVwR2SMiu0Xk0RrG+D1nXsblxP4VJiJbRGSHHdfTNYxxIl/exOXIPmZvu5WIFIpItYlgmzxfxpiA+wFaAfuBa4FfATuAmzzG3AV8AAjQA/giQOLqB6z1c776AgnArlre93uuvIzL77myt9sBSLBftwH2Bsj+5U1cTuxfArS2X4cCXwA9AiBf3sTlyD5mb3sKsKSm7Td1vgL1iPxWYJ8x5q/GmPPAMiDZY0wy8IaxbAauFJEOARCX3xlj8oETdQxxIlfexOUIY8wRY8x2+/XPwB4g0mOY33PmZVx+Z+fgpP1rqP3jeZeEE/nyJi5HiEhHYAjwWi1DmjRfgVrII4FvK/1+iOo7tDdjnIgLoKf9de8DEenq45i84USuvOVorkSkMxCPdTRXmaM5qyMucCBn9mkCF3AUWG+MCYh8eREXOLOP/RGYClys5f0mzVegFnKpYZnnX1pvxjQ1b7a5Hasfws3AfGCVj2PyhhO58oajuRKR1sBKINMY85Pn2zWs4pec1ROXIzkzxlwwxsQBHYFbRaSbxxBH8uVFXH7Pl4gMBY4aY7bVNayGZb84X4FayA8BUZV+7wgc/gVj/B6XMeaniq97xpj3gVARCfdxXPVxIlf1cjJXIhKKVSyzjTHv1DDEkZzVF5fT+5cx5kcgDxjk8Zaj+1htcTmUr97AMBH5Buv06x0i8qbHmCbNV6AW8gLgBhHpIiK/AlKB1R5jVgP321d/ewClxpgjTsclIu1FROzXt2Ll+LiP46qPE7mql1O5srf5v8AeY8x/1jLM7znzJi4nciYiESJypf36MuBO4CuPYU7kq964nMiXMeb3xpiOxpjOWDUixxiT5jGsSfMVMFO9VWaMKReRDOAjrDtFXjfG7BaR39rvvwK8j3Xldx9wGhgfIHGNAB4WkXLgDJBq7MvUviIiS7GuzoeLyCFgFtaFH8dy5WVcfs+VrTcwFiiyz68CzACuqRSbEznzJi4nctYB+JOItMIqhG8bY9Y6/f/Ry7ic2seq8WW+9BF9pZQKcoF6akUppZSXtJArpVSQ00KulFJBTgu5UkoFOS3kSikV5LSQq2ZDRC6I1eFul4gsF5HLG7DuP4rIigZuL09EAnKCX9WyaCFXzckZY0ycMaYbcB74rTcricglxpjDxpgRvg1PKd/QQq6aq43A9SLya7H6oheI1Rs6GUBExtlH7WuAdSLSWey+6WL1uV4kIkX2Ov3t5ZeJyDKx+ke/BVxmL28lIovtbwJFIjLZoX+zaqEC8slOpRpDRC4BBgMfAk9iPSKdbj/OvUVENthDewKxxpgTYnUbrPA7AGNMdxGJwSr00cDDwGljTKyIxGI1ZAKIAyLtbwJUPDaulL/oEblqTi6zH23fChzE6lvyG2C6vTwPCMN+5B2r7WlN/dL7AP8HYIz5CigGorEmynjTXr4T2GmP/ytwrYjMF5FBgGfHQqV8So/IVXNyxm5p6mY3TBpujPnaY3kScKqWz6mpxWiFaj0tjDE/iMjNwECso/lRQHpDAleqMfSIXDV3HwGTKnXAi/dinXxgjD0+GusI/muP5d2AWPt1OBBijFkJPIU1vZ1SfqNH5Kq5+3es2Vp22sX8G2BoPeu8DLwiIkVAOTDOGHNORBYAi0RkJ+ACttjjI+3lFQdGv2/if4NSddLuh0opFeT01IpSSgU5LeRKKRXktJArpVSQ00KulFJBTgu5UkoFOS3kSikV5LSQK6VUkPt/oaeTclkhshQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_21_1.png" }, "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAacAAAEWCAYAAADCeVhIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3xUVdrA8d9JIxDC0AmQRq/SIWIDK2BQUBEp6mtldS2rru5m931X767umrXt2nYVu0izIhrsjaKEXqUaQhJaqAMkEFLO+8e5wUmYJDdlZlKe7+czn8zc+kzJnLmnPEdprRFCCCFqk6BAByCEEEKUJoWTEEKIWkcKJyGEELWOFE5CCCFqHSmchBBC1DpSOAkhhKh1pHCqZ5RSllLqnWrsv1EpNbIGQ2qQqvI+KKVmK6XG+yqmylJKjVRKZQU6jprgj+eilGqnlNqklGrky/M0FFI41RCl1BSl1Aql1HGl1B6l1GdKqfMCHVd5lFJvKqUe81ymte6jtf4+QCGdppTSSqmugY7DiZr44lNK9QP6Ax/XTFT+Vd0fRbVVZd5brfU+4Dtgmm+jahikcKoBSqkHgH8D/wDaAbHAf4BxgYyrtlJKhfjhHMG+PkcN+w0wU8uo+Brnj8+bh5mY91JUl9ZabtW4AS7gOHBtOdu8CTzm8XgkkOXxOB14CFgH5ACvYQq5z4BjwNdAC2/7eux/iX3fAt7xWPcesBdwAwuBPvbyaUA+cMqO/xPPYwEdgBNAS49jDQQOAKH241uATcBh4AsgroznHw9o4FYgA1hY3v52nNp+LY4D1wE3AYtLHVcDXT1e4/8CC+z9LrGfy4P26+oG5gLhZcR4E7AEeN7edjNwscf6m+1YjwFpwG/s5RH261Rkx3rcfu0s4F3gbXufjcCQcj4jacB5pZbd7nHOn4FB9vJewPfAEfu4V5b6rP0H89k5bj+nKMyPp8P28xpY6rPzJ/v4h4E3il8jzvycdgA+APYDO4B77eWjMZ+jfPucaz3+N14D9gC7gMeA4DKev4X5rL5jP9/1QHc7tmwgE7isovfDM27gj5jP/gwvz+Ve+zlHA42ApzCfzX3AS0Djct7bYcAK4Ki9/TMexw0Bcinjf0FulfhuDXQAdf1m/2MWACHlbPMmFRdOSzEFUkf7n3EVpjBoBHwLPOJtX4/9yyqcbgEi7eP8G1hTVlxejvUtcLvHuieBl+z744HtmC/KEOD/gB/LeP7xmILkbfsfvnFF++NR8NiPb6LiwskNnIupEQi3n8sy+wulJebL7I4yYrzJfh/vB0IxBaIbu3AGEoEugAJG2F9AxYWFt/fEAk4ClwPBwOPA0jLOHWE/lzYey67FfKEPtc/ZFYizY9sO/BkIAy7CfEH38HgdDgCD7dfgW0xBcqMdx2PAd6Xe7w1AjP0aLSn+THg+L/s1XQk8bJ+3M6ZQGOXtc2cvmwe8bD+/tvZ78ZsyXoPi12uU/Xl42477f+3nfDuww2P7it6PAuCfmM9941LP5S+Y/6829uN/A/Pt5x8JfAI8Xs57+xNwg32/KXB2qfXr8PjBILeq3aRar/paAQe01gXVPM7zWut9WutdwCIgVWu9WmudB3yEKagqTWv9utb6mH0cC+ivlHI53H0WMBlAKaWASfYyMFUXj2utN9nP/R/AAKVUXDnHs7TWOVrrE1XcvyIfa62XaK2LtNYn7WXPaa13a60PYb50BpSzfzbwb611vtZ6LrAF8yWI1jpFa/2LNn4AvgTOryCexVrrBVrrQsyv9/5lbNfc/nvMY9ltwBNa6+X2ObdrrXcCZ2O+EJO11qe01t8Cn2K/T7aPtNYr7dfgI+Ck1vptO465nPlZekFrnWm/Rn8vdaxiQzFf5n+zz5sGvIL5TJxBKdUOGAPcZ7/n2cC/ytretkhr/YX9eXgPaGM/z3xgDhCvlGoOjt6PIswPujz782aHpZ7BFIAXaq3325/r24H7tdaHtNbHMJ/F8uLMB7oqpVprrY9rrZeWWn+MX99TUUVSOFXfQaB1DdRr7/O4f8LL46aVPaBSKlgplayU+kUpdRTzKxmgtcNDvA8MV0p1AC7A/LpfZK+LA55VSh1RSh0BDmF+xXYs53iZHversn9FMr0s2+txP5fyX8ddWmvPNp+dmKsulFJjlFJLlVKH7Hgvp+LXsfS5w8v4nByx/0Z6LIsBfvGybQcgU2tdVCpOz9etsp8lz9ft9HMuJQ7oUPx+2a/BnzFX+94UX+Xt8dj+ZcwVVFlKx3nALlCLH1Mcu4P3Y7/HD5RizTHV2Y9rrd32sjZAE2ClR5yf28vLciumynGzUmq5UmpsqfWR/PqeiiryZ0NhffUTpjpiPObL3JsczD9AsahqnK/EseyG/7L+kaZgOmUUt7+4MO0Kyl5fbuO71vqIUupLYCKm+m22x5d3JvB3rfXMSsTueb7K7l/6eXt7DavbmaCjUkp5PMdYYL7dNfgDTNXYx1rrfKXUPBy+jhXRWucopX7BfOHttxdnYqqtStsNxCilgjwKqFhgazVCiPG4H2ufo7RMTLVatzKOUfo1yATygNY1UKtQgoP3w1s8YD771wPvKqWu0lovwVSBnsC0xe7yss8Zx9FabwMmK6WCgKuB95VSrez3MQRTBbu2Gk9RIFdO1Wb/AnsYeFEpNV4p1UQpFWr/snvC3mwNcLlSqqX9pXpfNU65FfMLPFEpFYppqylrXEUk5gviIOaL/R+l1u/DtB2UZxbmS+Aafq3SA9No/CelVB8ApZRLKXVtJZ5HRfuXjm0t0EcpNUApFY6poqxpbYF77ffvWkyBvADTxtIIU3AUKKXGAJeVirVVJapLvVmAaTsp9irwoFJqsDK62lWeqZiC+g92nCOBKzDVXlV1l1IqWinVEnM1NNfLNsuAo0qpPyqlGttX5X2VUkPt9fsw1W5BAFrrPZiqtqeVUs2UUkFKqS5KqRFejl1ZFb0fZdJmmMRU4COlVIJdwL8C/Esp1RZAKdVRKTXK43mVeG+VUtcrpdrY+xZfIRVf4Q0D0u0qWFENUjjVAK31M8ADmIJiP+ZX492YBmEw7Q1rMVcvX+L9n9/pudzAbzFfXrswX1RljcN4G1NNswvTM6l03fhrQG+7OmNe6Z1t84FuwD6t9elfg1rrjzANznPsKsMNmDYGp8+jov0t4C07tola663A3zA9F7cBi52eqxJSMc/1AKbtZYLW+qDdDnEvpvfdYcwV6XyP57IZmA2k2fF6qxaryHRgqt0Ggtb6PTuGWZg2jHmYzhmngCsxr9UBTM+8G+0YqmoW5nOZZt8eK72BXb12BabNbod97lcxV+Ng2ogADiqlVtn3b8QUJMU9Ad8H2lcjzuJYyn0/HOz/Faa333yl1GBMr77twFL7s/g10MPe1tt7OxrYqJQ6DjwLTPKoQpyK+eElqkmVrGIXomFSSt0E3Ka1DtjAaaXULOBdrXVZPxR8cc50zPP+2l/nrK/sK68fMF31S7d3iUqSNichagmt9ZRAxyCqzu6R2CvQcdQXUq0nhBCi1vFZtZ7daL0Q03AZAryvtX6k1DYKU2d7Oaar7U1a61WljyWEEKJh8WW1Xh5wkdb6uN2rbLFS6rNSA9bGYBqguwEJmPQzCT6MSQghRB3gs8LJHity3H4Yat9KX6aNA962t12qlGqulGpvd0P1KigoSDdu3NgnMQshRH2Vm5urtdZ1pinHpx0i7AGiKzGD0l7UWqeW2qQjJUenZ9nLShROSqlp2Gnow8LCyMnJ8VnMQghRHymlTlS8Ve3h01JUa12otR6Ayfw7TCnVt9QmyttuXo4zXWs9RGs9JCREOhgKIUR955dLPK31EUyK/9GlVmVRMnVKNN5TpwghhGhAfFY4KaXaKDuDsFKqMSa/W+lR7POBG+30LGcD7vLam4QQQjQMvqwja49JPxOMKQTf1Vp/qpS6A0Br/RImn9jlmNQhuZiUIkIIIRq4Ope+KCIiQkuHCCGEqBylVK7WOiLQcThVZ7oVCiGE8B2l1OtKqWyl1IYy1k9VSq2zbz8qpcqaPLNGSOEkhBAC4E3O7LTmaQcwQmvdD3gUk0nfZ6RfthA1oagQUl+GE4d/Xdb1EohNgJyDkOplFoUeY6DjIDi6G1a8ceb63uMgqi8c2gFrZp25vt9EaN0N9m+F9e+duX7g9dAiDvZugJ8/PnP9kFugWXvYtRK2fH7m+oQ7IKIVZCyF7d+cuf7ce6FRJKT9AOleZjC54EEIaQTbvoLMZSVWHcvL56PmNzG6bxRtI8PP3Ff4ndZ6oVIqvpz1P3o8XIrpXe0zUjgJURO2fgFf/Ml+YA/fC3eZwunEIVj45Jn7NOtgCqdje72vb9PDFE7uTO/rOw42hdPB7d7Xdx5hCqfsTd7X90w0hdOetd7X97vOFE6Zy7yvH3qrKZx2/uh9/bm/M4VT2vfw04unBzBqIELDw3lD+Xn3UZKv6XfmvsIXQpRSKzweT9daV/Xq51bgsxqIqUzSIUKImvDTf8zV0T2rIFh+83nacSCHucszeX9lFgeO59GuWSMmDolh277jnNz2Hf8d25bGw24MdJj1npMOEfaV06da69IJEzy3uRAzyeV5WuuDNRqkB/kvEqImDP8tDJsmBZPtZH4hn2/Yy5zlGSxNO0RwkOKinm2ZNDSGEd3bEBIcxNrMI2RvfYjQzzdA5+HmKlDUakqpfpgZkMf4smACKZyEqL6TblOFJwUTm/YcZc6yDD5avYujJwuIa9WEP4zuwYRB0bRtVrJtqV+0ixtb/46zj/yWpvPuRN3yBQQFByhyURGlVCzwIXCD1nqrz88n1XpCVIPW8MJQ6HQ+jP1XoKMJiON5Bcxfs5u5yzNYm+UmLCSIMX2juG5oDGd3akVQkLcUmsbsZRn8NO9lngt7AS75K5x3nx8jb1gqqtZTSs0GRgKtgX3AI5jZJNBav6SUehW4Bthp71KgtR7is3ilcBKiGjKWwuujYNyLpndcA6G1ZlXGEeYuz+DTdXvIPVVIj3aRTBoWw1UDO9K8SZij4+TkFZDwj6+Z1exF+uUuhd8uhVZdfBx9w1TXBuFKPYQQ1bF6BoQ1hd7jAx2JXxzKOcWHq7KYuzyTbdnHiQgLZtyADlw3NJb+0S7M5NbORTQK4aqB0UxbMZVvRo8lokUnH0Uu6hopnISoqrxjsOEj6Hs1NGoa6Gh8pqhI8+MvB5mzPIMvN+7jVGERA2Ob889rzmJsvw5ENKre18iUhFhmLN3JbD2M24KCIP8khMrYp4ZOCichqmrjPMjPgYE3BDoSn9jrPsn7KzOZuyKTzEMnaN4klKlnxzJpaCw9oiJr7Dy92jdjUGxzZqVmcGvMHtR7N8ENH0LUWTV2DlH3SOEkRFX1Hgch4RAzLNCR1JiCwiK+27KfOcsy+G5LNkUazu3aiodG9eSy3u0ID/VNb7qpCXH8/r21LM/tzjCAeXfCbd9CiLO2K1H/SIcIIQQ7D/46UDb7WB5tIxtx7ZBoJg6JIa6V79vQT+YXkvCPbzivW2teHLQH5kyBEX+EC//s83M3FNIhQoiGYNkrZkzOkFsCHUmVncwv5IuNe5mzLJOf0g4SpOCinm25bmgsF/YwA2X9JTw0mAmDo3nrx3T2X3EJbfpNgoVPQY/LocMAv8Uhag8pnISorMJ8+OEJU51XBwunzXuPMmdZJh+t3oX7RD4xLRvz0KgeXDMomihX4DoiTEmI5bXFO3h3RSZ3jUmGHT/A5k+lcGqgpHASorK2fQk52XVqXNPxvAI+XbubOcszWZN5hLDgIEb1jWLS0BiGdy5/oKy/dGnTlOGdWzF7WQZ3juhC0B2LIaJ1oMMSASKFkxCVtfodaNoOul4a6EjKpbVmTeYR5izL5JN1u8k9VUj3dk35y9jeXD2wIy0ial9ngykJsdwzezULt+1nZI+2ZmH2Jig8Be19OredqGWkcBKiMo7tNdNjnHNPrc2ldyT3FB+u2sXc5Zls2XeMJmHBXNGvA9cNi2FgTPNKD5T1p1F9omgVEcbM1AxTOBUVwpyppn3vNwshtHGgQxR+Ujv/u4SorXIPQkxCrRvbVFSkWZp2kDnLM/l8415OFRTRP6Y5j199Flf070DTag6U9ZewkCAmDo3h5R9+YY/7BO1djSHxKZhxFXz3d7jssUCHKPxEupILUYftO3qS91eadEIZh3JpFh7C1YOiuW5oDL3aNwt0eFWScTCXEU99x70XdeP+S7ubhZ/eb2YLvuVziD07sAHWUXWtK7kUTkI45c4yg24D3EhfUFjE91v2M2d5Jt9tyaawSDO8cysmDYthVJ8onw2U9af/eX0Zm/ceZckfLzJd2vOOwX/PgaAQuGMJhDUJdIh1Tl0rnOrGtb4QtcF3/4AtC+DBbRAc6vfTZxzM5d0Vmby3MpN9R/NoE9mIaRd05rohMcS3rjPfOY5MTYhl2oyVfLM5m1F9osx08OP+Y3pKKv+NvxKBI4WTEE7kHYONH8FZE/xaMOUVFPLFxn3MXZ7Bku1moOzIHm15dFwMF/ZsS6gfB8r600U92xLVLJxZqRmmcAIzZ1an8wMbmPAbKZyEcGLDh5CfCwNv9Mvptu47xpxlmXy4OosjuflEt2jM7y/tzoQh0aaTQD0XEhzEdUNjeO7bbWQczCW2lUc1XsZS+PYxmDynXmeDb+ikcBLCidUzoHUPiPbZxJ/k5BWQsm4Ps5dnsDrjCKHBisv6RDF5aCzndKkdA2X9adKwGJ7/dhuzl2fwx9E9f12hNaQvhq8ehrHPBC5A4VNSOAlRkSMZkLUCLnsUaniMkNaadVlu5izPYP6a3eScKqRr26b8X2Ivrh4UTctaOFDWX9q7GnNxr3a8uzyT+y/pTliIXYUZNxyG3wU/vQC9roAuFwY2UOET0ltPCCcOp0O4Cxq3qJHDHck9xbzVu5izPJPNe4/RODSYsf3aM2lYDINiW9TqgbL+9P2WbG56YznPTx7IFf07/Loi/wS8dD4UnIQ7f4Twutlt3p/qWm89KZyE8BOtNUvTDjFneQafbTADZftFu7huaAxX9u9AZLj/ewDWdkVFmgue/I7oFo2ZM214yZVZK+C1S+ESC879XSDCq1MqKpyUUq8DY4FsrXVfL+t7Am8Ag4D/1Vo/5bNgkWo9Icq35TNY+RZc+Tw0bVOlQ2QfMwNl312eSfpBM1B28tAYJg6NoU8HVw0HXL8EBSmmJMTyxOdb2J59nK5tPTpARA+BW76Ajr5rB2xg3gReAN4uY/0h4F5gvD+CkcJJiPKsfBN2r6l0dV5BYRELt+1nzrJMvtlsBsomdGrJ7y7pxpi+7evFQFl/uXZwDM98uZXZyzL4y9jeJVcWz0J8dI/Ju9e4uf8DrCe01guVUvHlrM8GspVSif6IRwonIcpydI8Z9Hnu7xwnec08ZA+UXZHF3qMnad00jNvO78R1Q2Lo3Ea6PVdFm8hGjOobxfsrs3hoVI8zC/a8Y/DSedDtUrjqpcAEWTeEKKVWeDyerrWeHrBoKiCFkxBlWTsbdJGjJK+5pwq4d/ZqvtmcDcCI7m2wruzDxb3q70BZf5qaEEvKuj2krNvDNYOjS65sFGkmfVz4BPS6EnpeHpgga78CrXWdqQOVwkkIb7Q28zbFngOtulS4+ZxlmXy9KZu7L+zKlIRYOjSv/wNl/Wl451Z0bh3BzNSdZxZOABc8ZNoHP/mdSQzbpKX/gxQ1Sn7SCeFN4SnoP9mMp6lAQWERry3ewbD4ljw4qocUTD6glOkYsSrjCD/vPnrmBiFhcNV/4cRhWPCQ/wMUNU4KJyG8CWkEIx6CXmMr3PSzDXvZdeQEt1/Q2Q+BNVwTBkcTFhLErGU7vW8QdRaM+KNJDFuY79/g6gGl1GzgJ6CHUipLKXWrUuoOpdQd9voopVQW8ADwf/Y2PhtgJuOchCjt5FH45RvocbkppMqhtebKF5aQk1fA1w+MaHAphvztgXfX8OXGfaT++WIivE2gqHWNZ/GoL+raIFy5chKitI0fwXs3wZ51FW6auuMQ63e5ue38zlIw+cHUhFiO5xUwf+1u7xsUF0zZm0xy2Dr241v8ymeFk1IqRin1nVJqk1Jqo1LqjCHcSqmRSim3UmqNfXvYV/EI4djqGdCmp6Mkr68sTKNVRBhXD+roh8DEoNgW9IyK5J2lOym31mfr57DwSdjwgf+CE2WzXEFYrkpVAfryyqkA+L3WuhdwNnCXUqq3l+0Waa0H2Le/+TAeISqWvRmylsPA6yusHtqefYxvNmdz4/B4GVTrJ0oppibEsnH3UdZlucvecPg9JnPEggfh2D7/BSh+ZblmYbmaYbkigJ+BLVgux71VfFY4aa33aK1X2fePAZsA+XkparfVM8xU4P0mVbjpq4t20CgkiBuGx/khMFFs/MCONAkLZmZqGR0jwAyavuolkyD20/ukei8wemO5j2LSHS0AYoGKBw3a/NLmZKfEGAikelk9XCm1Vin1mVKqTxn7T1NKrVBKrSgoKPBhpKLB27USuo+uMI9e9rGTfLhqF9cOadjTWgRCZHgo4wZ0YP7a3bhPlNMrr3U3uOgvsGUB/Pyx/wIUxUKxXKGYwuljLHc+4PhXgs8LJ6VUU+AD4D6tdekBCquAOK11f+B5YJ63Y2itp2uth2ith4SEyLhh4UM3fwbj/1PhZjN+2kl+URG3nifdxwNhyrA4TuYX8dGqrPI3PPtOuPwp84ND+NvLQDoQASzEcsUBXgapeefTruRKqVDgU+ALrXWFU1YqpdKBIVrrA2VtI13Jhc8UFjjKoZd7qoBzkr8loVNLXr6hzmSDqXfGvbCYE/mFfHHfBc7mvzqVA6FNGmxX81rRldxyhWC5HVV/+bK3ngJeAzaVVTDZg7qUfX+YHc9BX8UkRJmO7oanusHmBRVu+v7KLI7k5jNNBt0G1JSEWLbuO86KnYcr3tidBf8526SkEv5hudphuV7Dcn1mP+4N/I/T3X1ZrXcupvHrIo+u4pd7jjgGJgAblFJrgeeASbqujQoW9cPa2XDiELTpUe5mhUWaVxftYFBscwbHSf62QLqifwciG4Uwc2k5HSOKRXaA5nHw+Z/gSKbvgxNg5of6AiiewngrcJ/TnX3ZW2+x1lpprft5dBVfoLV+SWv9kr3NC1rrPlrr/lrrs7XWP/oqHiHKVJzkNe68CpO8frlxLxmHcuWqqRZoEhbC1YM6smD9Xg7lnCp/46AgGPcCoGH+3dJ7zz9aY7nfBYoA7Oq8Qqc7S4YIIXb+CIfSzNimcmiteXlhGnGtmnBp7yg/BSfKMyUhjlOFRby/0sHVUIt4uOxRSPseVrzu69AE5GC5WlHcQ89ynQ2UMzitJCmchFg9Axo1g97jyt1s5c7DrMk8wm3ndSJYUhXVCj2iIhka34JZqRkUFTm4Ghp8M3S+ELZ9JVdPvvcAMB/oguVagpn+/R6nO0u/bCGGTYMuF0FYk3I3m74wjRZNQpkwOMZPgQknpibEcd/cNfyUdpBzu7Yuf2OlYOJbEBbZYHvt+YXlCgZG2LcegAK22GOdHJErJyE6DoJ+E8vdJG3/cb7atI8bzo6jcZikKqpNRveNokWT0PIzRngKd5k2qKN7zASFouZZ7kJgHJa7AMu9Ecu9oTIFE8iVk2joFj4F3S6D9v3K3ey1xTsIDQ7ihuHx/olLOBYeGsyEwdG8sSSd7KMnadss3NmOX/6vGTpw5xJHsx2LSluC5XoBmAv8OjjVcq9ysrNcOYmGK3sTfPso7FhY7mYHj+fx/sosrhnUkTaR5c/vJAJj8rBYCoo0766oRDfxy/5uZtCddycUOe5EJpw7B+gD/A142r495XRnuXISDdfqdyAoFPqXn+R1xtKd5BVIqqLarHObppzbtRWzl2Vy58iuzjqsNGsPY56Ej6bB0v/AOY7b6oUTlvvC6uwuhZNomApOmYG3PcZARNmN6CdOFfL2Tzu5pFdburZt6scARWVNTYjjtzNX8cPWbC7q2c7ZTv0mmqSw3zxqqncrGIQtKsFyeZ+fz3I7mhpJqvVEw7T1c8g9CAPLz+D/waosDuWc4vbz5aqptru0dzvaRDZi5tIM5zspBWP/BQOmQET5mehFpeV43AqBMUC8053lykk0TLkHoG1v6HpxmZsUFmleW7yD/tEuhnWSVEW1XWhwENcNieE/329n15ETdGze2NmOke3gin+b+1pLF/OaYrmfLvnY9RRm3JMjcuUkGqYht8CdP0JQ2d3Cv960jx0Hcrj9gs7Osl6LgJs0LAYNzF1WiaunYofS4PVRsG9jjcdVFyilXldKZSulNpSxXimlnlNKbVdKrVNKDarkKZoAjqsg5MpJNDxH90BkVIW/kF9ZmEZ0i8aM7iOpiuqK6BZNGNm9DXOWZ3LPxd0IDa7E7+9GzeDgL6b33m3fQHCo7wKtnd4EXsBkcvBmDNDNviUA/7X/eme51vPr5ILBQBvgUafBVFg4xSelnAtYQJy9vQJ0enKiVMKLuqeoCN4YAzHD4OrpZW62cudhVuw8zCNX9CakMl9wIuCmJsRx29sr+GbTPkb3be98x4jWpv3p3Rtg0TMw8o++C7IW0lovtGctL8s44G175oilSqnmSqn2Wus9ZWw/1uN+AbDP6VxO4OzK6TXgfmAllcgoK0StlPEjHN4BI5PK3ezVRWk0Cw9h4hBJVVTXXNizLR1c4cxMzahc4QTQ+0o461pY+ITpyVnB4Ow6JkQptcLj8XStddm/0M7UEfAcSJZlLyurcHoMy12yx5HlmnHGsrKCdbCNOz05UXJ8iPphlZ3ktdeVZW6y82AOn2/cy50juhDRSGq+65rgIMWkYbE889VW0g/kEN+6kpO/jnnCDMxe/C+49g3fBBkYBVrr6kzd7K0evLzsuX1KPLJcIcBgpydz8p/3XXxSypPAh0Be8cL05ERHKSiEqDVOus2Ylv6Tyk3y+triHYQGBXHTOfH+i03UqOuGxvDsN9uYvTyDP43pVbmdm7SEG+ZBS2m5KCUL8KxKiAZ2n7GV5foT8GegMZbrqL1UAacAx1dqTgqn4gYvzxJXAxc5PYkQtcLGeVBwAgaVXatwOOcU767IZPzADs5ztIlap12zcC7p1Zb3VmTxwKXdaRRSyWS97Xqbv3nH4Hi25N4z5v9liJ0AACAASURBVAN3K6XmYMoFt9f2Jsv9OPA4lutxLPefqnqycgun+KSUYGB+enLiv6p6AiFqjf6TIbI9dCi7B+w7S3dyMr+I22TQbZ03NSGOLzbu4/MNexk3oGPlD6A1zLwWThyGaT9AaP3+saKUmg2MBForpbKAR4BQAHv28gXA5cB2IBe42euBLFdPLPdm4D0s15n/bA4Tv5ZbOKUnJxbGJ6VcCUjhJOq+kDDoflmZq0/mF/LWT+lc2KMN3dtF+i8u4RPndW1NbMsmzEzNqFrhpBSc/yDMvAa+fxwu/WvNB1mLaK0nV7BeA3c5ONTvgdsxiV7POAwOa92cVOv9GJ+Uckbac2lzEnXK4n8DGs67v8xN5q3exYHjp7j9Arlqqg+CghRTEmJJ/mwz2/Ydo1tVfnB0uwQG3Qg/Pgc9x0LM0JoPtL6x3Lfbf32e+PUc+69nsj5pcxJ1R8EpWPIsdDq/zE2KijSvLEqjb8dmDO/cyo/BCV+6dnA0T3+5hZmpGVhX9ql4B28u+zv88h3MuwPuWAyhDtMiNVSW6+ry17s/dHKYCgun9OTEapV+QgTc1s/gxCEYeGOZm3y3JZtf9ufw7KQBkqqoHmnVtBFj+rbng1VZ/HF0z6rNYhzeDK58HhY9bTpISOFUkSvsv20xFzff2o8vBL7H9PyukJMMEV7TnqcnJzpKey5EwK2aAc06Qpeyf2dNX5hGx+aNufysSg7aFLXe1IRY5q/dzafrdnNtVQdVd7kQOo+UpLBOWG7TUcJyfQr0xnLvsR+3B150ehgneVmqlfZciIBy74JfvjFTIpSR5HVt5hFSdxzi5nPjK5eLTdQJwzq1pGvbpsxMrUIyWE9KmbyMn/wOTuVUvL2IP10wGfuA7k53dlKtV6LHRXxSSqXSngsRUPm50H2MKZzK8MqiNCLDQ5g0LNaPgQl/UUoxZVgsf/v0ZzbsctO3o6vqBzuUBivfhOAwuPzJGouxnvoey/UFMBvTT2ES8J3TnavyM7FSac+FCKjW3WDyrDJH+2ceymXB+j1MSYilqaQqqreuGRRNo5AgZlVlKg1P8edCwp2wbLpJcSTKZrnvBl4G+gMDgOlY7nuc7u6kzalaac+FCJiDv4AKgpadytzk9SU7CFKKm88pextR97mahHJF/w58vHoXf768V/V+iFz8MGz7Ej6+y8wJ1kjGxJXJ9Mxz1AGiNCfv0Blpz9OTEx2nPRciYH54wvTUe3C7GYBbijs3n7nLM7lyQAeiXPV79L8wHSPeX5nFvNW7uP7suKofKKwJjP+vmZjwh3/CZY/VXJD1ielS/k9Mrz1l3zSWu5mT3Z0UTo+lJyeWSEYWn5Qyo/QyIWqV4iSvAyZ7LZgAZi7bSe6pQm6XVEUNwoCY5vRu34yZqRlMTYit3pCB2AS45lXoIsM9y/EEcAWWe1NVdnbS5lRi5Fp8Ukql0p4LERAbPjBJXgd6/w2VV1DIm0vSOb9ba3q1d/RDTtRxSpmMEZv2HGVN5pHqH/CsCSaDeWG+9N7zbl9VCyYo58opPinldNrz+KSUo/w6l0el0p4LERCrZkDbPtBhoNfV89fsJvtYHk9P7O/nwEQgjR/YkccXbGJmagYDY1tU/4CF+fD6aGjTE8Y7HsLTUKzAcs0F5uEx3VK1M0SkJyc+Djwen5TyeHpyYpXTngvhd+5dsHc9XPao10GTWptURT2jIjmva+sABCgCpWmjEMYN7MgHK7P4S2JvXE1Cq3fA4FDoPMJkj+h9JXQfVTOB1g/NMNnLPbMtaxx2kFAm0WzZ4pNSgoApQKf05MRH45NSYoD26cmJy6oWb/VERETonBy5hBYVyDlgxqKEn1ll9/2WbG56YznPTOzP1YOiAxCcCKQNu9yMfX4xD4/tzS3n1UAvzYI8mD4Scg/Bb38yVX21kFIqV2tdyWmBA8dJm9OLwHBMAQVwnEqkoBDCr4p/bEW09lowgRl0G9UsnLH9OvgxMFFb9O3oYkBMc2am7qSiH+eOhDQyvfdyD8DnSdU/Xn1hubpjub7Bcm2wH/fDcv2f092dFE4J6cmJdwEnAdKTEw8D3rs/CRFoP39s2gCO7fW6esMuN0u2H+Tmc+MJC5FURQ3V1IRYftmfQ+qOQzVzwA4DzNxPe9aanqIC4BXgT0A+AJZ7HSZLhCNO/jvz7RlxNUB8UkoboKjSYQrhD6tnwJFMiGjjdfWri9Jo2iiEyQmSqqghG9uvA83CQ5hV3Xx7ni540MyYG16N9Ej1SxMsd+nmH8djZJ0UTs8BHwFt45NS/g4sBv7hPD4h/MSdBdvLTvK6+8gJPlm3h0lDY2gWXs2GcFGnNQ4L5upB0Xy2YQ8HjudVvIMTwaFmKve8Y7DyrZo5Zt12AMvVheIMQ5ZrArCn3D08lFs42Z0hdgB/AB63Dzw+PTnxvapGK4TPrJkF6DKTvL6+eAcAN9dEI7io86YmxJJfqHl/ZVbNHnjVDPjkXtj4Uc0et+65C5NbryeWaxdwH3CH052d9Nb7KT05cXhlo1JKxQBvA1GYasDpWutnS22jgGeByzFdDm/SWpc7/bv01hNeFRXBcwOgRRz8zydnrHafyOecx7/hkt7teHaS97FPouGZ+PJP7HWf5PsHRxIUVENzNRUWwGuXwOGdcFcqNG1bM8etJie99ZRSozHfycHAq1rr5FLrWwCvA10w/RBu0VpvKPfElisCCMJyH6tMvE6q9b6MT0q5Jj4ppbLvXAHwe611L+Bs4C6lVO9S24wButm3acB/K3kOIYyiAjjnHjjnd15Xz1mWQY6kKhKlTE2IJeNQLou3H6i5gwaHwPiX4NRx+PT+X3uQ1nJKqWBMT+wxQG9gspfv7D8Da7TW/YAbMQWZd5arFZbrOWARZvqMZ7FcrZzG46RwegB4D8iLT0o5Gp+UcszOGFEurfWe4qsgrfUxYBPQsdRm44C3tbEUaK6UkqlIReWFhMGw26HbJWesOlVQxBtL0jmnS6vqzeUj6p3RfaNoGRHGzNSdNXvgtj3hwv+FzZ/C+jrTCjIM2K61TtNanwLmYL6jPfUGvgHQWm8G4pVS7co43hxgP3ANMMG+P9dpME4mG6x2PnilVDwwEEgttaojkOnxOMteVqLRTCk1DXNlRViY9GIXpZw4Ahs/hL4TvI5t+nTdbvYePcnj15wVgOBEbdYoJJhrh0Tz6qId7Dt6knbNajA7/Tn3mCENMcNq7pjVE6KUWuHxeLrW2jMVnbfv44RSx1gLXA0sVkoNA+KAaMwst6W1xHJ7Tq/0GJZrvONgnW5YVUqppsAHwH1a69JXXN6qCs+4BrZfwOlg2pxqPEhRt214H1J+b/Lolcqlp7Vm+sI0urVtysju3ruXi4ZtyrBYXv4hjbnLM7n34m41d+CgYBhjN9kUV+1VJxN69RVorYeUs97J93Ey8KxSag2wHlhN2d3Dv8NyTQLetR9PAFKcBuvTUYhKqVBMwTRTa+0tn1IWEOPxOBrY7cuYRD20aga0OwvaDzhj1eLtB9i89xi3X9C5elMkiHorrlUE53drzexlGRQU+mAI50k3zJoIa2fX/LFrVoXfx1rro1rrm7XWAzBtTm0wPbq9+Q0wC5P0NQ9TzfcAlusYlqvCpiGfXTnZPfFeAzZprZ8pY7P5wN1KqTmYy0e31tpxP3gh2Lse9qyB0f/0+qt0+sI02kY2YtwASVUkyjY1IZY73lnF91v2c0nvsppQqigsEvKOw2dJ0GkEuEo3vdcay4FuSqlOwC5MNocS4zKUUs2BXLtN6jZgoZcaMcNyV6tJyNGVU3xSynnxSSk32/fbxCelOBkoci5wA3CRUmqNfbtcKXWHUqq4r/sCIA3Yjkl18dvKPwXRoK1+xyR47TfxjFWb9hxl0bYD3HRuPI1CzhyUK0Sxi3u1o21ko5rvGAEQFGSm0yjKh/l319ree1rrAuBu4AtMB7Z3tdYbS31n9wI2KqU2Y3r1ee8eC2C5bi31OBjL9YjTeCq8copPSnkEGAL0AN4AQoF3MIVPmbTWi/Feh+m5jcYM1BKiag6lQc9Er5mgX1mURpOwYKYOq8aU3KJBCA0OYtLQGJ7/bjuZh3KJadmkZk/QsjNc+jdY8CCsegsG31Szx68hWusFmIsGz2Uvedz/CTP0x4mLsVzXALcCrTHjo35wGouTK6ergCuBHID05MTdQLV78AlRI6a+B1e9fMbiPe4TzF+zm+uGxlR/zh7RIFw3LBYFzFleg/n2PA25FeLPhx+fNwN16zvLPQV4C9NxIgW4D8v9oNPdnRROp9KTEzW/Jn6tM/OBiHqueGrskEZnrHrzx3SKtOaWcyVVkXCmY/PGXNSzLXOXZ5Hvi44RQUFw9XS49SszULe+s1zdMNV+HwDpwA1YLseXpE4Kp3fjk1JeBprHJ6XcDnyNaR8SInDcWfBkV6/5y46dzGfW0gwuP6t9zVfPiHptSkIsB47n8dXP3obt1IBmHUwVdGE+7Co3U1t98AnwMJb7N8AIYBum04UjFRZO6cmJTwHvY0q/HsDD6cmJz1ctViFqyJpZkJ97xrgmgLnLMzmWV8C0CyRVkaicEd3b0rF5Y990jPD05V/gzUTTZlp/DcNyfw2A5dZY7qeBmhuEG5+Ucj/wXnpy4ldVDlGImlRUZOZt6nQBtIgvsSq/0KQqSujUkn7RzQMTn6izgoMUk4fF8NSXW0nbf5zObZr65kTn3A1rZsK8u+CmFFPlV/80xnL9C+iI5R6N5eqNmVV9m5OdnbwizYAv4pNSFsUnpdwVn5RSw4MAhKik9EVwJAMG3njGqgXr97DryAm5ahJVNnFIDCFBitnLfNQxAsAVDaOTIeNHSH2p4u3rpjcx3dKL86VuxUyb4YiTar2/picn9sF0+e4A/BCflPJ15eMUooasngGNXNBrbInFWmteWZRGlzYRXNijdkxTIOqets3CuaxPO95bmcXJ/ELfnWjAFOg+Gr75KxzY7rvzBE5rLPe7FM+cbrkLAMcvaGWuJbOBvcBBQP7zReCMSILx/4HQxiUW/5R2kA27jnL7+Z1rbm4e0SBNTYjjSG4+n2/Y67uTKAVXPAsdBkHBSd+dJ3By7CkyimfCPRtwO93ZSZvTncB1mBxK7wO3pycn/lylUIWoCa27mlspryxMo3XTMMYPrLXpYUQdMbxzKzq1jmBm6k7ffp4io+CWz3x3/MB6AJOirguWawmmDJngdGcnne3jgPvSkxPXVC0+IWrQl3+BHpdDXMnJmbfuO8Z3W/bz+0u7Ex4qqYpE9QTZHSP+sWAzW/Yeo0eUj/MO5B2Drx6BYdPMXFD1geVeheUagenlrYAtWO58p7uXWTjFJ6U0S09OPAo8YT8ukR8mPTnxUNUiFqKK9q6HH58zjcmlCqdXF6URHhrE9WdLqiJRMyYMjuGpL7YyK3Unfx3X17cnyz9hxuztXgW3fl1/BumadqaNVdm1vDanWfbflcAK++9Kj8dC+Fdxktezri2xOPvoSeat3s3EITG0iJDJKEXNaBkRxuVnRfHhql3knvJxuqGmbSHxadi9Gpb827fnqiPKLJ7TkxPH2n8l/4sIvII8WDcXeo49I8nrWz+lk19UxK3nyUdV1KypZ8cxb81uPlm7m+uGxvr2ZH2vhk3z4ftk04svysdXa7Vchb314pNSvnGyTAif2vwpnDgMg24osTgnr4B3lmYwuk8Uca0k7aOoWUPiWtC9XVNmpvpwzJOny5+Gxs1hwUP+OZ8vWa4zywlvy8pQXptTONAEaB2flNKCX6e/aIYZ7ySE/xQWQOxw6DSyxOL3VmTiPpHP7TLoVviAUoqpCXE8Mn8j67PcnBXt8u0JI1rBtW/V5gkJK2a5TpcdWK4qlx3lXTn9BtO+1JOS7U0fAy9WIWQhqq7/dXDL5yXSvBQUFvHakh0MiWvBoNgWAQxO1GfjB3YkPDSIWct8nG+vWPy5Ji2X1pBz0D/nrFk1UnYoXcGsjPFJKffUpkSvEREROicnJ9BhCH86+As0j4XgkvMypazbw12zVvHyDYMZ1ScqQMGJhuAP76/l03V7WPrni2kW7qf5wT6+G3athGnfe50WprKUUrlaa//VfVuue7DcVS47KiycAOKTUvoCvYHw4mXpyYlvV/Wk1SGFUwNTVATP9oeOA2Hirx85rTXjX1zC0ZMFfP3ACIIlI4TwobWZRxj34hIeHdeHG4bH++ekW7+AWRPh/N/DxQ9X+3B+L5wALNc5QDyeTUiW21HZ4aRDxCPA8/btQsy4pyurEKYQlbfjB3BnQK+SH7nl6YdZm+Xm1vM6ScEkfK5ftIu+HZsxMzUDJz/oa0T3UTDgelj8L8ha6Z9z1iTLNQN4CjgPGGrfhjjd3UluvQnAxcDe9OTEm4H+QPWvMYVwYvU7EN7cdCH3MH3hL7SMCOOaQdEBCkw0JMUdIzbvPcaqjMP+O/Hof0Bke5h3B+T7Pv+eUmq0UmqLUmq7UirJy3qXUuoTpdRapdRGpdTN5RxuCHAulvu3WO577Nu9TmNxUjidSE9OLAIK4pNSmmESwErXKOF7Jw7Dpk+g30QIPV2jzPbs43y9KZsbzo6jcZikKhL+cWX/DjRtFOK/buUA4S648nmT3sjHExMqpYIxHRbGYJpxJiulepfa7C7gZ611f2Ak8LRSqqyR7xuAKjcGO8mRsSI+KaU5Zmr2lcBxYFlVTyiEY5s+gcI8GHh9icWvLU6jUUgQNwyXVEXCfyIahXDVwI7MXZHJw2N707yJn7KRdL0Y7l19RhZ+HxgGbNdapwEopeYA4wDPRN8aiFRKKaApcAgoK31Ga+BnLNcyIO/0UsvtqFmowsIpPTnxt/bdl+KTUj4HmqUnJ65zcnAhqmXA9dCmJ7Tvf3rR/mN5fLBqFxMGR9O6qdQuC/+akhDLjKU7eX9lFred78cKpJopmEKUUp6p56Zrrad7PO4IZHo8zgISSh3jBUym8d1AJHCd1rqojPNZ1Qq2rBXxSSmDyluXnpy4qjonFqJCQUEQM6zEohk/pZNfKKmKRGD0at+MQbHNmZWawa3ndcJcQNQZBVrr8jokeHsypXt/jALWABcBXYCvlFKLtNZHz9jTcv+A5YoDumG5v8ZyNQEc18OXd+X0dDnrtB2cEL7x3T+g8BRcYp1edOJUIW8v3cklvdrRpU3TgIUmGrapCXH8/r21/JR2kHO6tA50ODUpC4jxeByNuULydDOQrE2Xxe1KqR2YwbZnNvVYrtuBaUBLTEHWEXgJ08GuQuUlfr3QyQGEqHH5JyH1ZVPX7uH9lZkcyc1nmqQqEgGU2K89f/v0Z2amZtS3wmk50E0p1QnYBUwCppTaJgNTuCxSSrXDzNVUVk+NuzDtWKkAWO5tWC7Hs6g7mQn3Rm/LAzUIVzQAmz+Fk0dKdIQoLNK8ungHA2KaMyROUhWJwAkPDWbC4Gje+jGd/cfyaBNZP9o+tdYFSqm7gS8w1W+va603KqXusNe/BDwKvKmUWo+pBvyj1vpAGYfMw3KfwrLzEVquEM6sJiyTk956Qz3uh2NKzVWAFE7CN1a/A67YEklev/p5LzsP5pI0umddq+cX9dCUhFheW7yD91Zm8tuRXQMdTo3RWi8AFpRa9pLH/d3AZQ4P9wOW689AYyzXpcBvgU+cxuKkt949no/jk1JcwAynJxCiUo5kQNr3MDKpRJLX6QvTiG3ZhMskh56oBbq0acrZnVsyKzWDOy7oQpBkKfEmCbgVWI9JBrsAeNXpzlWZCzgX6FaF/YSoWFEh9J8MA36t6l658xCrMo7wt3F9JFWRqDWmJsRxz+zVLNy2n5E9HDelNByWuwgzPvaVquzupM3pE36tJwzCjBx+tyonE6JCLTvBVf8tsWj6wjSaNwllwmBJVSRqj1F9omgVEcbM1AwpnLyxXGMxbVRxmLJGARrL3czJ7k6unJ7yuF8A7ExPTsyqbJxCVCh7k5mOvcOA04t2HMjhy5/3cfeFXWkSVpULfSF8IywkiIlDY3j5h1/Y4z5Be5fPMzjUNf8GrgbWY7krnS23wtx66cmJP6QnJ/4ArAY2AbnxSSktKx2mEBVZ+CS8Pc4UULbXFqcRGhTEjf6apkCISpg8NBYNzFmWWeG2DVAmsKEqBRM4q9abhrk0OwEUUXxpJslfRU3KPQSbPoXB/3N6YrWDx/N4b0UWVw/qWG+664r6JbZVEy7o1oa5yzO556KuhAQ7yaXdYPwBWIDl+oGSufWecbKzk3qSh4A+6cmJZfVlF6L61r9vJ3m94fSid5ZmkFdQxG3nS6oiUXtNTYhl2oyVfLs5W3qTlvR3TKLwcKDSWXKdFE6/YHroCeE7q2dAVD9o3w+Ak/mFvP1TOhf3bEvXtpGBjU2IclzUsy1RzcKZmZohhVNJLbHcTsdEncFJ4fQn4Mf4pJRUPC7N0pMTHU8aJUS5ju6GQzvgkkdOL/pw1S4O5pzidklVJGq5kOAgrhsaw3PfbiPjYC6xrZoEOqTa4mss12VY7i+rsrOTwull4FvMQKqyUqMLUXXNOsCDWyhOilxUpHl1URr9ol0kdJK+N6L2mzQshue/3cbs5Rn8cXTPQIdTW9wF/AHLlQfk44Ou5AXpyYkPVDYqpdTrwFggW2vd18v6kcDHwA570Yda679V9jyijisqAqUgLOL0om82Z5N2IIfnJw+UVEWiTmjvaszFvdrx7vJM7r+kO2Eh0jECy12t+ngnhdN3do+9TyhZrXeogv3exExMVV4OvkVa67EOYhD11cYPTRfyGz4yV1DAKwvT6Ni8MWP6Sv29qDumJsTy1c/7+GLjXq7o3yHQ4dQOlqsjvw7CtZe5FzrZ1UnhVJxH5k8eyyrsSq61XqiUincShGjAVs+A/Fxoagqi1RmHWZZ+iIfH9pZuuaJOuaBbG6JbNGZWaoYUTgCW65/AdZhp3gvtpRqomcIpPTnRl/14hyul1mImtHpQa73R20ZKqWmYSasIC6t0j0RRWx3eaSd5/fPpJK+vLtpBs/AQJg6NKX9fIWqZoCDFlIRYnvh8C9uzj9O1bYOfEHM80APLnVfhll4Ecj6nVUCc1vq4UupyYB5lJJS157mfDhAREVGl0caiFlozC1Cnk7xmHMzlsw17+M2ILjRtJKmKRN1z7eAYnvlyK7OXZfCXsb0DHU6gpQGheA7ArYSAzefkOee81nqBUuo/SqnW5UxcJeqTokJYMxO6XAjNzVXS60t2EBykuOmc+MDGJkQVtYlsxKi+Uby/MouHRvUgPDQ40CEFUi6wBsv1DSUzRDgahhSw+ZyUUlHAPq21VkoNw+T5O1jd44o6Qmu4xIKm7QA4knuKucszGTegI+2ahQc0NCGqY2pCLCnr9pCybg/XNOxM+vPtW5X4bD4npdRsYCTQWimVBTyCucQrnllxAnCnUqoAk7dvktZaquwaiuAQOGvC6YczUzM4kV/I7efLoFtRtw3v3IrOrSOYmbqz4RZOlisYuAHLfUlVD+Gz+Zy01pMrWP8Cpqu5aGhyD8Gqt2DgjRDRiryCQt5Yks6I7m3oESWpikTdppTpGPFYyiY27TlKr/aOxpzWL5a7EMuVi+VyYbndVTmEzOck/G/9e/C1BV0vgYhWfLx6NweO5zFNUhWJemLC4Gie+GILs1IzeHT8GTkIai2l1GjgWSAYeFVrnVxq/UPAVPthCNALaKO19jbu9SSwHsv1FZBzeml125zik1K6Au3suZw8l58fn5TSKD058RcnJxDiDKtnQPsBEHUWRUWa6YvS6N2+Ged0aRXoyISoEc2bhDH2rPZ8tHoXSWN6ElEHep8qpYKBF4FLgSxguVJqvtb65+JttNZPAk/a218B3F9GwQSQYt+qpLxRjv8GjnlZfsJeJ0Tl7V4De9fDwOsB+H5rNtuzjzPtgs6SqkjUK1PPjuV4XgHz1+4OdChODQO2a63TtNangDnAuHK2nwzMLnOt5X4L0wS0FMv91umbQ+UVTvHpyYnrSi9MT05cAcQ7PYEQJax+B0LC4axrAZi+MI32rnAS+7UPcGBC1KxBsS3oGRXJO0t3Ukv6eoUopVZ43KaVWt8RM3ttsSx72RmUUk2A0cAHZZ7Ncl0BrAE+tx8PwHI57r1XXuFUXn/exk5PIEQJJw5D7/HQuDnrso6wNO0Qt5zbiVBJVSTqGaUUUxNi2bj7KOuyqtQnoKYVaK2HeNyml1rvreqirFL1CmBJOVV6ABbmauyIeeReAzjOOFTeN8Ly+KSU20svjE9KuRVY6fQEQpQw4TUY/18AXlm0g8hGIUwaJqmKRP00fmBHmoQFMzN1Z6BDcSIL8PxnjMaklvNmEuVV6RkFXnrqOb6ELK+V7j7go/iklKn8WhgNwUy3e5XTEwhxWs4BiGgNQUFkHsplwfo93HpeJyLDQwMdmRA+ERkeyrgBHZi3ejf/m9gbV+Na/VlfDnRTSnUCdmEKoCmlN1JKuYARwPUVHG8DlmsKEIzl6gbcC/zoNJgyr5zSkxP3pScnngP8FUi3b39NT04cnp6cuNfpCYQA4HA6PNUd1s4F4I0l6SiQVEWi3psyLI4T+YXMW70r0KGUS2tdANwNfAFsAt7VWm9USt2hlLrDY9OrgC+11jnejuPhHqAPJnXRLMCNuehxRNWShjrHIiIidE5ORa+JqHW+/buZt+n+DbhD2zE8+RtG9YniX9cNCHRkQvjclS8s5mR+IV/cd0HAeqUqpXK11hEVb1lDLNdALPfqqu4urdDC94oKTQbyLheBK5pZyzLIPSWpikTDMTUhlq37jrNi5+FAh+JPz2C5NmO5HsVy9anszlI4Cd9L+w6OZsHA6zlVUMQbS3ZwfrfW9O7QANO6iAbpiv4diGwUwsyldaJjRM2w3Bdi8qvuB6ZjudZjuf7P6e5SOAnfW/0ONG4BPROZv3Y32cfy5KpJNChNwkK4elBHFqzfy6GcU4EOx38s914s93PAHZgxTw873bX259QQdd/oZMjehA4OFIFOUgAAFBNJREFU45WFafSMiuT8bq0DHZUQfjUlIY63ftrJByuzuL0h5JG0XL0w07RfCxzAZJz4vdPdpXASvhcZBZFRLNy6ny37jvH0tf0lVZFocHpERTI0vgWzlmVw63mdCAqq9/8Db2DGQl2K5a50Diep1hO+ozXMvxe2fw3AKwvTaNesEVf07xDgwIQIjCkJsew4kMNPaQ1gXlXLfTbwX6AllqsvlqtSg7ykcBK+s2eNmbfpcDobd7tZvP0AN5/bibAQ+diJhmlM3/Y0bxJaVzJGVI/lGgFsw2Q6/w+wFct1gdPd5VtC+M6qGSbJa98JvLpoBxFhwUweFhvoqIQImPDQYK4dHM2XG/eRffRkoMPxtWeAy7DcI7DcFwCjgH853VkKJ+Eb+Sdg/fvQ60p25zXik7W7mTQstranbxHC5yYPi6WgSPPuisyKN67bQrHcW04/stxbAcdfANIhQvjGpk8gzw2DbuDNH9PRwM3nxgc6KiECrnObppzbtRWzl2Vy58iuBNffjhErsFyvATPsx555WiskV07CN0LCodsojkYlMCs1g8Sz2hPdokmgoxKiVpiaEMeuIydYuHV/oEPxpTuBjZiEr78DfsaMd3JEcusJn3plYRp/X7CJT+4+j7OiXYEOR4haIb+wiHOSv6V/tItX/2eoX87p99x61STVeqLm7VkHrbqQH9yY15fsYHjnVlIwCeEhNDiIiUOi+e/3v7DryAk6Nq9H87darnFANJb7RftxKtDGXvtHLPd7Tg4j1XqiZhUVwuxJ8OE0UtbtYY/7JNMawmh4ISpp0tBYNDB3WUagQ6lpfwA8p2NvBAzF5NlzXK0nhZOoWWnfwdFd6L4TmL4wjW5tmzKie5uK9xOigYlp2YSR3dswZ3km+YVFgQ6nJoVhuT27Ii7Gch/EcmcAjqsVpXAS/9/enYdHVd97HH9/yQKBBEIS1oQEwlJARBabpWqLiAKK0rpdlOKjVi3e0vba2j5Y65Xa+1jvvc/tbe19qte9IrijKEVxuyxVCCBgBNlCUAgiSyJLAkKS+d4/zglMhoRMlpkzk/m+nmee58w5v8l8/cnkk9+Zc36/trVuLiSlsTIhj8/2HuH2i3JjYZoWY1pken4O+4+e4P3N+7wupS11r/dszuFZfs+C/kvVwsm0napy2PJ3GPlP/O+He8hI7sjU0TZVkTGNuXhoT/p268S8onZ1aq+IOd1uP2PvnG4/BlYH+0PsggjTdra/A75qdmZfzbJlB/jVxG/RMT7O66qMiVhxHYRpedn88d1tfFFeRU561FxMdzZ3Aa8zp9uNwDp331ic756+H+wPsUvJTdvav4W7l53g78V7WXnPeFI7J3pdkTERbd+Rb/jOQx9w20UDuGfysJC9jwfLtI8H6lbA3cScwx805+U2cjJtal+n/izc8AHT83MsmIwJQq+unZgwrCcvry3jF5cOaT9nG5wwalYg+bPvnEzbWHIvLLqLZz76nFqfcusFA7yuyJioMT0/h4qqk7y98StP6xCRSSKyVURKRGR2I23GicgGEdkkIstCVYuFk2m9k8dg3bNUHz/KvFVfMHlEH7LTbaoiY4J14aAMstM6e3phhIjE4SxvMRkYDtwgIsMD2qTiLH9xlaqeg7PKbUhYOJnW2/wmnDjCOx0v48g3Ndx2kY2ajGmODh2EG/OzWb2zgpL9R70qIw8oUdVSVT2Js6z61IA2NwILVHUXgKruD1UxFk6m9dbPRbsP4MFN6eT1T2N0dvemX2OMqee6sVkkxEkoR0/xIrLW73FHwPFMwP/m2TJ3n78hQHcRWSoiH4vITaEq1sLJtE5FKXy+gi19rmLP4W+43aYqMqZF0pM7MnlEH179uIzjJ2tD8RY1qnq+3+OxgOMN3S0feDl3PM5l4VfgLB54n4gMCUGtFk6mleI7oQX/zENfjiY3owuXDO3pdUXGRK0b87M58k0Ni4q/9OLty4B+fs+zgMBCyoC3VbVKVQ8Cy4HzQlGMhZNpna59WTX4bpZ9lchtNlWRMa2SPyCNgT26eHVhxBpgsIgMEJFEYBr1J3AFWAhcJCLxItIZyAc2h6IYCyfTcns/gdKlPLG8hPQuiVw9JvD0tDGmOUSE6fk5bNh9iI17Dof1vVW1BpgFLMEJnJdUdZOIzBSRmW6bzcDbQDHOVERPqOrGUNRjM0SYlnvpJmpKVzDs0J+YNWE4P58w2OuKjIl6h49Vk/fge1wzNosHf3Bum/3caFtsMGQjJxF5SkT2i0iDqSqOh92bvYpFZEyoajEhUHUQtixmZZcJxCUkMqMwx+uKjGkXunVO4Mrz+rJw/R4qT9R4XY5nQnla7xlg0lmOTwYGu487gEdCWAs+nxJto8SIVvwS+Kp56Ktvc93YfqR1samKjGkr0/OzqTpZy8INe7wuxTMhCydVXQ5UnKXJVOBZdawCUkWkT6jq+XDHQfIffJ+fPb+e+UW7KD1QaWHVUqqwfi57k8/hM18mP7rQbro1pi2N6pfK8D5deW7Vrpj9PeXlxK+N3fC1N7Che7PYHQCJiS37Cz2lUwIFuemsLC3njU+cqyN7de1IQW76qUf/9M6I2NVmTarch1aV83jVVCYO703/jKg5jW1MVBBxZoz47esb2bD7UEze2O5lOAVzw5ez07lZ7DFwLohoyZuN6pfKwzeMRlUpPVjFqtJyVpVW8NGOchZusLBqlpTezC1czHOLNvK83XRrTEh8f3Qmf1i8mXlFuyycwiyYG77anIgwsEcyA3skMz0/54yw+rCk4bAqzE0nx8IKaqupVeHxj3Zxbk5PxubE3ofGmHBI7hjP1NGZvPpxGfddMZxunRO8LimsvAynN4BZIvICzo1ch1X1jFN6odZQWO04UBdW5fXCqnfXThTkpp0KrJgMq42vcvLt+6n9+jfcfvlEr6sxpl27MS+b+UW7WLC+jFtibBmakIWTiDwPjAMyRKQMuB9IAFDVR4HFwOVACXAMuCVUtTSHiDCoZzKDeibzw4Izw+ofJeW83kBYFQ5MJzut/YeVrp/LoRNCYlo/Lh3ey+tyjGnXRmR2Y1S/VOYV7eLm7/Rv979f/NlNuM3khFUlK0srWFVaTlFpOQcrTwLQp1snd1TlBFa7C6uKUnh4NP9RfT19rvwtMwrs3iZjQu3ltbv51SvFvHhHAfm56S3+OdF2E64t095MzsgqhUE9U5hxamR1OqxWbD/Aa+udexP8w6owN4N+aUnRHVbr5+GjA+8ljmfhmCyvqzEmJkwZ2ZcHFn3GvKJdrQqnaGPh1EoNhVXJ/spTF1gs33Y6rPqeCivnEVVh5aulZt1zLK8dyaTvjiUpMc7rioyJCUmJcVwzJot5RV9wsHI4GckdvS4pLOy0XogFhtWq0nLKq5zTgP5hVTgwnazuERxWPh9Pz32SxduP88jsH8fMB8SYSLB931Eu/e/lzJ48lJnfG9iin2Gn9Uw9IsLgXikM7pXCjML+p8JqpXuBxdJtB1jgjqwyU5PIr7vAIjeywurgsWoe2p7F1WOyLJiMCbPBvVK47cIBDO2d4nUpYWMjJ4+pKttPjayc0VWFO7KqC6vCU6cBO3tTZNVB1sz/HbN25DH/lz9gYI9kb+owxrSYjZxMs4gIQ3qlMKRXCjcV9sfnU0oOVLJyhzuy2nqABetOj6z8rwYMV1idXP88397zLBMHfs+CyRgTFjZyinA+X+DIqpyvj1UDp8OqcKATWFndQxBWqhz6r7HsPCJU3/IueQPS2v49jDEhF20jJwunKFMXVit3HGRVaQVFO0+HVVb3JL+rAdsmrGp3ryXuyUv4n+Sf8ZNfPhAx34EZY5rHwinEYj2cAvl8yrb9R1m1o7zRsCrMTadgYDqZqUnN/vm7n72D9B2vs+KqD5k41la6NSZaWTiFmIXT2dWFVd13VkU7KzjkhlW/tCQKBrgjqyDDasm/38Dx6hqm3PMi8XGhXJvSGBNKFk4hZuHUPD6fsnXf0VPfVzUnrD7+4muueeQj5kwZxs0X2tIYxkSzYMJJRCYBfwbigCdU9aGA4+OAhcBOd9cCVX0gBOVaOMWaurDyH1kdPu6EVXZa53qzrv/1tfd5c1ciH80eT5eOdmGnMdGsqXASkThgG3ApzpJGa4AbVPUzvzbjgLtVdUqIy42xS8mX/SdsfKX+vrgEmPkPZ/u9ObD1rfrHO6XCj5Y424t/DTuX1T/etS/MeM3ZXjgLytbUP54+CKbNc7ZfuRX2bap/vPdIuOZxZ3v+NPh6Z/3j/fLhqoed7b9dCZX76x8fOB4m/cHZfmICnDha//jQKXDJfc72IxfQwVfDMGAYcCvgu/h6tgy6ndUle7lsxXUc31hLbbFSBfxbhz1cmHsvXTpehjGm3csDSlS1FMBdzmgq8NlZXxUisRVOyT2hx7fq7+vgt4BXSp8zj3f0uyO7W+aZx7v0OL2dmg0njtQ/3s1vPcXUHPDV1D+emn16O20AxAcsQ5/q9/r0QZAUsLhf175+xwdDdcCoMqX36e2MIaC19Q53SOnF8L5dGd6zE3w1ClU4+k0N5VUnWFd9LgWX34Qxpl2IF5G1fs8fc1cZr5MJ7PZ7Xoaz1l6gQhH5BGdx2LtVdVMDbVrNTusZY0wMCOK03nXARFW9zX0+A8hT1Z/6tekK+FS1UkQuB/6sqiG5jNcuvzLGGAPOSMnvVA1ZOKOjU1T1iKpWutuLgQQRyQhFMRZOxhhjwLkAYrCIDBCRRGAa8IZ/AxHpLe6d+CKSh5Mh5aEoJra+czLGGNMgVa0RkVnAEpxLyZ9S1U0iMtM9/ihwLXCniNQAx4FpGqLvhuw7J2OMiQHRdhOundYzxhgTcSycjDHGRBwLJ2OMMRHHwskYY0zEiboLIkTEh3OVSEvEAzVNtgq/SK0LIrc2q6t5rK7maY91Jalq1AxIoi6cWkNE1qrq+V7XEShS64LIrc3qah6rq3msLu9FTYoaY4yJHRZOxhhjIk6shdNjTTfxRKTWBZFbm9XVPFZX81hdHoup75yMMcZEh1gbORljjIkCFk7GGGMiTrsMJxGZJCJbRaRERGY3cFxE5GH3eLGIjImQusaJyGER2eA+/jVMdT0lIvtFZGMjx73qr6bqCnt/iUg/Efk/EdksIptE5OcNtAl7fwVZlxf91UlEVovIJ25dv2ugjRf9FUxdnnwe3feOE5H1IrKogWOefB7DTlXb1QNnqvcdQC6QCHwCDA9ocznwFiBAAVAUIXWNAxZ50GffBcYAGxs5Hvb+CrKusPcX0AcY426nANsi5N9XMHV50V8CJLvbCUARUBAB/RVMXZ58Ht33/gUwv6H39+rzGO5Hexw55QElqlqqqieBF4CpAW2mAs+qYxWQKiJ9IqAuT6jqcqDiLE286K9g6go7Vd2rquvc7aPAZiAzoFnY+yvIusLO7YNK92mC+wi8CsuL/gqmLk+ISBZwBfBEI008+TyGW3sMp0xgt9/zMs78kAbTxou6AArdUw1vicg5Ia4pWF70V7A86y8R6Q+Mxvmr25+n/XWWusCD/nJPUW0A9gPvqmpE9FcQdYE3/77+BPwa8DVyPJI/j22mPYaTNLAv8C+iYNq0tWDecx2Qo6rnAX8BXg9xTcHyor+C4Vl/iUgy8CrwL6p6JPBwAy8JS381UZcn/aWqtao6CsgC8kRkREATT/oriLrC3l8iMgXYr6ofn61ZA/si4fPYptpjOJUB/fyeZwFftqBN2OtS1SN1pxpUdTGQICIZIa4rGF70V5O86i8RScAJgHmquqCBJp70V1N1ef3vS1UPAUuBSQGHPP331VhdHvXXBcBVIvI5zqn/8SLyXECbiPw8trX2GE5rgMEiMkBEEoFpwBsBbd4AbnKveikADqvqXq/rEpHeIiLudh7O/5/yENcVDC/6q0le9Jf7fk8Cm1X1j400C3t/BVOXR/3VQ0RS3e0kYAKwJaCZF/3VZF1e9Jeq3qOqWaraH+d3xAeq+sOAZhH5eWxr8V4X0NZUtUZEZgFLcK6Qe0pVN4nITPf4o8BinCteSoBjwC0RUte1wJ0iUoOzLMg0VQ35cF1Ense5MilDRMqA+3G+IPasv4Ksy4v+ugCYAXzqfl8B8Bsg268uL/ormLq86K8+wN9EJA7nl/tLqrrI689jkHV58nlsSAT0V9jZ9EXGGGMiTns8rWeMMSbKWTgZY4yJOBZOxhhjIo6FkzHGmIhj4WSMMSbiWDgZA4hIrTgzT28UkZdFpHMzXttXRF5p5vstFZHzm1+pMbHBwskYx3FVHaWqI4CTwMxgXiQi8ar6papeG9ryjIktFk7GnGkFMEhEuoizptQacdbWmQogIje7o6s3gXdEpL+4a06Js07Q0yLyqfuai939SSLygjjr77wIJLn740TkGXfE9qmI3OXRf7MxEaXdzRBhTGuISDwwGXgbuBdn+phb3aluVovIe27TQmCkqlaIMwt4nZ8AqOq5IjIUJ7yGAHcCx1R1pIiMxJlUFGAUkOmO2KibUseYWGcjJ2McSe60P2uBXTjz1F0GzHb3LwU64U4HhLPEQkNrTV0IzAVQ1S3AF8AQnIUTn3P3FwPFbvtSIFdE/iIik4DAmcSNiUk2cjLGcdxdPuEUd9LPa1R1a8D+fKCqkZ/T0HIGdc6YK0xVvxaR84CJOKOu64Fbm1O4Me2RjZyMadwS4Kd+M1OPDuI1y4HpbvshOCOtrQH7RwAj3e0MoIOqvgrch7MsvTExz0ZOxjTu9zirkha7AfU5MKWJ1/wVeFREPgVqgJtV9YSIPAI8LSLFwAZgtds+091f94fiPW3832BMVLJZyY0xxkQcO61njDEm4lg4GWOMiTgWTsYYYyKOhZMxxpiIY+FkjDEm4lg4GWOMiTgWTsYYYyLO/wMnnHqkIxrVjwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_21_2.png" }, "needs_background": "light" }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "P \n", " [[0.9 0.1 0. ]\n", " [0. 0.9 0.1]\n", " [0. 0. 1. ]]\n", "Q \n", " [[0.864 0.096 0. ]\n", " [0. 0.864 0.096]\n", " [0. 0. 0.96 ]]\n", "Govt expenditures in peace, war, postwar = [0.5 1.2 0.8]\n", "Constant tax collections = 0.7548096885813149\n", "Govt debt in 3 states = [-1. -4.07093426 -1.12975779]\n", "\n", "Government tax collections minus debt levels in peace, war, postwar\n", " T+b in peace = 1.754809688581315\n", " T+b in war = 4.825743944636679\n", " T+b in postwar = 1.8845674740484437\n", "\n", "Total government spending in peace, war, postwar\n", " peace = 1.754809688581315\n", " war = 4.825743944636679\n", " postwar = 1.8845674740484437\n", "\n", "Let's see ex-post and ex-ante returns on Arrow securities \n", "\n", "Ex-post returns to purchase of Arrow securities:\n", " π(peace|peace) = 1.1574074074074074\n", " π(war|peace) = 10.416666666666666\n", " π(war|war) = 1.1574074074074074\n", " π(postwar|war) = 10.416666666666666\n", " π(postwar|postwar) = 1.0416666666666667\n", "\n", "Ex-ante returns to purchase of Arrow securities = 1.0416666666666667\n", "\n", "The Ex-post one-period gross return on the portfolio of government assets\n", "[[0.7969336 3.24426428 0. ]\n", " [0. 1.12278592 0.31159337]\n", " [0. 0. 1.04166667]]\n", "\n", "The cumulative return earned from holding 1 unit market portfolio of government bonds\n", "0.9045311615620274\n" ] } ], "source": [ "# The following shows the use of the wrapper class when a specific state path is given\n", "s_path = [0, 0, 1, 1, 2]\n", "ts_s_path = TaxSmoothingExample(g_ex1, P_ex1, b0_ex1, states_ex1, s_path=s_path)\n", "ts_s_path.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 2\n", "\n", "This example captures a peace followed by a war, eventually followed by a permanent peace .\n", "\n", "Here we set\n", "\n", "$$\n", "P =\n", "\\begin{bmatrix}\n", " 1 & 0 & 0 \\cr\n", " 0 & 1-\\gamma & \\gamma \\cr\n", " \\phi & 0 & 1-\\phi\n", "\\end{bmatrix}\n", "$$\n", "\n", "where the government expenditure vector $g = \\begin{bmatrix} g_L & g_L & g_H \\end{bmatrix}$ and where $g_L < g_H$.\n", "\n", "We assume $b_0 = 1$ and that the initial Markov state is state $2$ so that the system starts off in a temporary peace." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "g_ex2 = [g_L, g_L, g_H]\n", "P_ex2 = np.array([[1, 0, 0],\n", " [0, 1-γ, γ],\n", " [ϕ, 0, 1-ϕ]])\n", "b0_ex2 = 1\n", "states_ex2 = ['peace', 'temporary peace', 'war']" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEWCAYAAAB2X2wCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXyU1dXA8d/JJCErAUJYw75vSYAQFCmLiLgUdwVECy6lUFds7UvVVq22tZXWatFSXEpVBFwRl6pVRBRBloJI2GUN+75kIcnMef+YScxKJskTJmTOl08+ZJ57587JZHLmzn3uc6+oKsYYY859IYEOwBhjjDMsoRtjTB1hCd0YY+oIS+jGGFNHWEI3xpg6whK6McbUEZbQzTlNRIaISEaR29tF5KIaeJx0ERnidLtOq6mf35wbLKEbv4jIqSJfHhHJLnJ7bKDjc5KIzBSRx4seU9UeqrowQCGVqaw4TXALDXQA5tygqjEF34vIduB2Vf00cBEZY0qyHrqpFhFJE5ElInJMRPaKyDQRCfeVDRCRQyLSync72Vevazlt9RCR/4rIERHZLyIP+I7XE5G/icge39ffRKSeH7GFiMgUEfleRA6LyOsi0qhI+UAR+doX0y4RGS8iE4CxwK98nz7e89UtHMo4UzwFQ0Ai8gsROeB7Tm45Q4wLReSPIrJMRI6LyLslYnxDRPb5yhaJSA/f8TLj9EkRkTW++8wVkQjffRqLyPu+n/eIiHwpIpYD6hD7ZZrqcgOTgcbA+cAw4OcAqvo18E/g3yISCbwCPKSqG0o2IiKxwKfAR0ALoCPwma/4QeA8IAVIBtKAh/yI7W7gKmCwr82jwLO+x2sN/Af4O5Dga3u1qs4AZgF/VtUYVR1ZRrsVxdMMiANaArcBz4pIwzPE+RPgVl+M+cAzRcr+A3QCmgD/88VGBXHeAFwCtAOSgPG+478AMnw/b1PgAcDW/qhLVNW+7KtSX8B24KJyyu4F3ilyOwxYCXyHN1lLOfcbA6wqp+x74LIit0cA233fDwEyyooNWA8MK1LWHMjDO9T466Jxlni8mcDj5f3MfsSTDYQWKT8AnFfOYy0EnihyuzuQC7jKqNsAbwKOqyDOm4rc/jMw3ff974B3gY6Bfg3ZV818WQ/dVIuIdPZ9jN8nIieAP+DtrQOgqnl4E09P4C/qyyxlaIU3UZalBbCjyO0dvmMVaQO84xtiOIY3wbvx9k7P9HgVqSiew6qaX+R2FhBD+XaVaCsMaCwiLhF5wjdkdAJvsoYiz2859pXz2E8CW4BPRGSriEypoB1zjrGEbqrrH8AGoJOq1sf7MV4KCkWkJfAw8C/gL2cY+94FdCinbA/e5Fygte9YRXYBl6pqgyJfEaq6u4LHq2gYoqrxlKdVibbygEPAjcCVwEV4h3Da+uoUPL+VGi5R1ZOq+gtVbQ+MBO4TkWHViNvUMpbQTXXFAieAU76TnZMKCkRE8PbOX8Q7lrwXeKycdt4HmonIvb6TjrEi0t9XNht4SEQSRKQx8FvgVT9imw78XkTa+OJJEJErfWWzgItE5AYRCRWReBFJ8ZXtB9qfod2qxlOem0Sku4hE4R0WeVNV3Xif29PAYSAK76efoiqKsxgR+bGIdPT9Xk7g/bTirkbcppaxhG6q65d4e5IngeeBuUXK7sY7vPEb31DLLcAtIvKjko2o6klgON6e4z5gMzDUV/w4sAJYg3cs/n++YxV5GpiPd4jhJLAU6O97vJ3AZXhPFB4BVuM9wQneN6DuvqGaeWW0W9V4yvMK3je+fUAE3ucN4GW8QzC7gXW++IuqKM6SOuE98XwKWAI8p7Vsbr2pHil/SNMYU9NEZCHwqqq+EOhYzLnPeujGGFNHWEI3xpg6woZcjDGmjrAeujHG1BEBW5yrcePG2rZt20A9vDHGnJNWrlx5SFUTyioLWEJv27YtK1asCNTDG2PMOUlEdpRXZkMuxhhTR1hCN8aYOsISujHG1BG2Y5ExtVBeXh4ZGRnk5OQEOhQTIBERESQmJhIWFub3fSyhG1MLZWRkEBsbS9u2bfGupWWCiapy+PBhMjIyaNeund/3q3DIRURe8m2ltbac8rG+7a7W+LbzSi6rnjHGfzk5OcTHx1syD1IiQnx8fKU/ofkzhj4T73ZW5dkGDFbVJLxLo86oVATGmDJZMg9uVfn9VzjkoqqLRKTtGcq/LnJzKZBY6ShMrZDnyeOrjK9KHW8X1462cW3Jyc9hyZ4lpco7NuhIq/qtSh03xpxdTo+h34Z3U9sy+XYqnwDQunVrhx/aVFVWXhb5mk94SDhf7v6yVHmIhNA2ri2n3afLLI8IjbCEXgcNGDCAr7/+uuKKZ8nMmTNZsWIF06ZNK7fOwoULCQ8PZ8CAAWcxsuIeeeQRYmJi+OUvf+lX/T/84Q888MADjjy2YwldRIbiTegDy6uj3p3KZwCkpqbaqmC1xGc7P2Pz0c3cl3ofvz3/t+XWi6sXd8ZyU7fUpmTur4ULFxITExOwhJ6fn19xpRKcTOiOzEMXkSTgBeBKVT3sRJvm7HGrmxCp2kvhtPs0C3ctZM+p6mypaWqjmBjv3tILFy5kyJAhXHfddXTt2pWxY8dSsErr8uXLGTBgAMnJyaSlpXHy5ElycnK45ZZb6NWrF7179+bzzz8HvD3sq666ipEjR9KuXTumTZvGX//6V3r37s15553HkSNHABgyZAj33nsvAwYMoGfPnixbtqxUbAcPHuTaa6+lX79+9OvXj8WLF7N9+3amT5/OU089RUpKCl9++WWZ9UryN67nn3+efv36kZyczLXXXktWVhYA48eP57777mPo0KH83//9X7G2n3/+eS699FKys7N59dVXSUtLIyUlhZ/97Ge43W6mTJlCdnY2KSkpjB07ttq/s2r30EWkNfA2cLOqbqp2ROas86gHV4irSvfNc+fxRcYXxITF0CKmRcV3MJX26HvprNtzwtE2u7eoz8Mje/hdf9WqVaSnp9OiRQsuuOACFi9eTFpaGqNGjWLu3Ln069ePEydOEBkZydNPPw3Ad999x4YNG7j44ovZtMmbGtauXcuqVavIycmhY8eO/OlPf2LVqlVMnjyZl19+mXvvvReAzMxMvv76axYtWsStt97K2rXFJ9ndc889TJ48mYEDB7Jz505GjBjB+vXrmThxYrHhjhtvvLHMeiX5E9c111zDT3/6UwAeeughXnzxRe666y4ANm3axKefforL5eKRRx4BYNq0aXzyySfMmzePrVu3MnfuXBYvXkxYWBg///nPmTVrFk888QTTpk1j9erVlfjtla/ChC4is4EhQGMRycC7g3sYgKpOx7tBbjzwnO+sbL6qpjoSnTkr3OrGJVVL6AU9e7faXsN1WVpaGomJ3vkOKSkpbN++nbi4OJo3b06/fv0AqF+/PgBfffVVYaLr2rUrbdq0KUzoQ4cOJTY2ltjYWOLi4hg5ciQAvXr1Ys2aNYWPN2bMGAAGDRrEiRMnOHbsWLF4Pv30U9atW1d4+8SJE5w8ebJU3OXVi42NLVbPn7jWrl3LQw89xLFjxzh16hQjRowovP/111+Py/XD39Arr7xCYmIi8+bNIywsjM8++4yVK1cWPlfZ2dk0adLkTE95lfgzy2VMBeW3A7c7FpE569yeqg+5FPTsLaHXnMr0pGtKvXr1Cr93uVzk5+ejqmVOrTvTpjlF2wkJCSm8HRISUmz8uWS7JW97PB6WLFlCZGTkGeP2t54/cY0fP5558+aRnJzMzJkzWbhwYeF9oqOji7XXs2dPVq9eXXhhkKoybtw4/vjHP54xjuqytVwMvZv0ZmDLcs9ln1FBz97tsYQebLp27cqePXtYvnw5ACdPniQ/P59BgwYxa9YswDsUsXPnTrp06VKptufOnQt4e/txcXHExcUVK7/44ouLzXYpGLKIjY0t1lMvr15VnDx5kubNm5OXl1f485Wnd+/e/POf/+SKK65gz549DBs2jDfffJMDBw4AcOTIEXbs8K6CGxYWRl5eXpXjKsoSuqFLoy70bNyzSvctSOge9TgZkjkHhIeHM3fuXO666y6Sk5MZPnw4OTk5/PznP8ftdtOrVy9GjRrFzJkzi/WA/dGwYUMGDBjAxIkTefHFF0uVP/PMM6xYsYKkpCS6d+/O9OnTARg5ciTvvPNO4UnR8upVxWOPPUb//v0ZPnw4Xbt2rbD+wIEDmTp1KpdffjlNmjTh8ccf5+KLLyYpKYnhw4ezd+9eACZMmEBSUpIjJ0UDtqdoamqq2gYXtcPh7MO4xEWDiAZVuv9p92lCJbTKJ1ZNaevXr6dbt26BDiMghgwZwtSpU0lNtVNxZb0ORGRleecprYdumLdlHu9tfa/K96/nqmfJ3JhawFZbNHjUU+WTouC9MKlFdAu6xQdnj9I4q+jJRlM51kM3uNVNqFT9vX3l/pVsO77NwYiMMVVhCd14rxQNqfpLwSUum7ZoTC1gCd3g9lT9wiLwJnSb5WJM4NkYuuGiNhcRHRZdccVyhEiI9dCNqQWsh27oHt+dNvXbVPn+oSGh1kM31TJ+/HjefPPNM9aZOXMme/YEdhG4IUOG4O906+3bt/Paa6/VcETFWUI37Dq5i2M5xyquWI5JyZO4rvN1DkZkTGmBTuhud+U+hVpCNwExa/0slu5bWuX721ZpddPLL79MUlISycnJ3HzzzQDs2LGDYcOGkZSUxLBhw9i5cyfg7WFPmjSJoUOH0r59e7744gtuvfVWunXrxvjx4wvbjImJ4Re/+AV9+vRh2LBhHDx4sNTjrly5ksGDB9O3b19GjBjB3r17efPNN1mxYgVjx44lJSWF7OzsMuuV5G9ckyZNIjU1lR49evDwww8XHm/bti2/+93vGDhwIG+88UbhcY/Hw7hx43jooYdwu93cf//99OvXj6SkJP75z38CMGXKFL788ktSUlJ46qmnqvW78JeNoRvcnupNW1y8ezGCMKBl4HaJqdP+MwX2fedsm816waVPlFucnp7O73//exYvXkzjxo0L1wS/8847+clPfsK4ceN46aWXuPvuu5k3bx4AR48eZcGCBcyfP5+RI0eyePFiXnjhBfr168fq1atJSUkhMzOTPn368Je//IXf/e53PProo8XWWsnLy+Ouu+7i3XffJSEhgblz5/Lggw/y0ksvMW3atMIrSM9UryR/4vr9739Po0aNcLvdDBs2jDVr1pCUlARAREQEX33l3Zpx+vTp5OfnM3bsWHr27MmDDz7IjBkziIuLY/ny5Zw+fZoLLriAiy++mCeeeIKpU6fy/vvvO/Zrq4gldFOtDS4ANh/djIgl9LpkwYIFXHfddTRu3BiARo0aAbBkyRLefvttAG6++WZ+9atfFd5n5MiRiAi9evWiadOm9OrVC4AePXqwfft2UlJSCAkJYdSoUQDcdNNNXHPNNcUed+PGjaxdu5bhw4cD3mGO5s2bl4rP33r+xvX6668zY8YM8vPz2bt3L+vWrStM6AXxFvjZz37GDTfcwIMPPgjAJ598wpo1awrPARw/fpzNmzcTHh5e8RPtMEvoQc6jHhSt3rTFEBe57lwHozLFnKEnXVPKWxq3pKJ1ii45W3I52vK2Ziv5GKpKjx49WLKk9GbkVannT1zbtm1j6tSpLF++nIYNGzJ+/HhycnIK65VcGnfAgAF8/vnn/OIXvyAiIgJV5e9//3ux9dEhMFe82hh6kCuYblidtVhCJMRmudQxw4YN4/XXX+fwYe+OkgVDLgMGDGDOnDkAzJo1i4EDK7fsssfjKezJvvbaa6Xu36VLFw4ePFiYqPPy8khPTweKL417pnqVdeLECaKjo4mLi2P//v385z/l7nMPwG233cZll13G9ddfT35+PiNGjOAf//hH4RK4mzZtIjMzs9RSvmeD9dCDnEtc3ND5BhKiEqrVhs1Dr1t69OjBgw8+yODBg3G5XPTu3ZuZM2fyzDPPcOutt/Lkk0+SkJDAv/71r0q1Gx0dTXp6On379iUuLq5w3fMC4eHhvPnmm9x9990cP36c/Px87r33Xnr06MH48eOZOHEikZGRLFmypNx6lZWcnEzv3r3p0aMH7du354ILLqjwPvfddx/Hjx/n5ptvZtasWWzfvp0+ffqgqiQkJDBv3jySkpIIDQ0lOTmZ8ePHM3ny5ErHVlkVLp8rIi8BPwYOqGqpRbNFpCvwL6AP8KCqTvXngW353Lrjnc3vcDjnMLf3so2rnFJXl8+NiYnh1KlTgQ7jnFHZ5XP96aHPBKYBL5dTfgS4G7jK/zBNbZHnyWP78e00iWpCXL24iu9Qhqs7Xe1wVMaYqqhwDF1VF+FN2uWVH1DV5YAzeyiZsyorL4vXNrzG1uNbAx2KCQLWO69ZZ/WkqIhMEJEVIrKirAsKzNlXMPZdnWmL/9v/P977vuobZBhjnHFWE7qqzlDVVFVNTUio+kk445yCzZ2rM21xX+Y+1h9Z71RIxpgqsmmLQa5w2mI1EnpIiE1bNKY2sIQe5AoScXWGXFziKuzpG2MCp8K/YhGZDSwBuohIhojcJiITRWSir7yZiGQA9wEP+erUr9mwjVMaRTTipm43kRibWOU2bIMLcyZ/+9vfyMrKCnQYZ1R0+d7bb7+ddevWAfCHP/whkGFVmj+zXMaoanNVDVPVRFV9UVWnq+p0X/k+3/H6qtrA9/2Jmg/dOCEiNIIODTpUa4OLyNBIYsJjqOiaBhOczoWEXtQLL7xA9+7dgaol9PKWOTgbbMglyJ3KPUX64XSy8qr+B3d+i/OZ3HeyLaNbxzz22GN07dqV4cOHM2bMGKZO9V4zuHr1as477zySkpK4+uqrOXr0KOvXryctLa3wvtu3bycpKYlnnnmGPXv2MHToUIYOHVrqMcpaAvf48eN06dKFjRs3AjBmzBief/55oPzld7///nsuueQS+vbty49+9CM2bNgAeHved999NwMGDKB9+/aFvXBV5c4776R79+5cfvnlHDhwoDCmgk0spkyZQnZ2NikpKYwdO5bt27fTs+cP11ZOnTqVRx55pPA+DzzwAIMHD+bpp58ud2nfZ555hu7du5OUlMTo0aMd+T0Vo6oB+erbt6+awNt0ZJM+8vUjmnEyI9ChmCLWrVtX7PbMtTNLfS3bu0xVVXPzc8ssX7V/laqqZuZmliqryPLlyzU5OVmzsrL0xIkT2rFjR33yySdVVbVXr166cOFCVVX9zW9+o/fcc4+qqiYnJ+v333+vqqpPPPGEPvbYY6qq2qZNGz148GCpx8jNzdXzzz9fDxw4oKqqc+bM0VtuuUVVVT/55BM977zzdPbs2TpixIjC+wD66quvqqrqo48+qnfccYeqql544YW6adMmVVVdunSpDh06VFVVx40bp9ddd5263W5NT0/XDh06qKrqW2+9pRdddJHm5+fr7t27NS4uTt944w1VVR08eLAuX75cVVWjo6MLH3vbtm3ao0ePwttPPvmkPvzww4X3mTRpUoU/V/PmzTUnJ0dVVY8ePVrh76Hk68D3HKzQcvKqreUS5JyY5bLxyEZW7F/BtZ2uJSI0wqnQTAB99dVXXHnllURGRgLeJWjBuzTssWPHGDx4MADjxo3j+uuvB+CGG27g9ddfZ8qUKcydO7fUOi0lnWkJ3OHDh/PGG29wxx138O233xbep6zld0+dOsXXX39dGAfA6dOnC7+/6qqrCAkJoXv37uzfvx+ARYsWMWbMGFwuFy1atODCCy+s+pPlUxDXmX6upKQkxo4dy1VXXcVVVzl/cb0l9CDnxIVFJ3NPsuXYFvI9gRs7rOvG9RhXblmYK+yM5VFhUWcsL4tW4XzIqFGjuP7667nmmmsQETp16lThY5S3BK7H42H9+vVERkZy5MgREhPLPmkvIng8Hho0aMDq1avLrFN0ydyiP1dlhwhDQ0PxeH44+V90iV34YZndM/1cH3zwAYsWLWL+/Pk89thjpKenExrqXBq2MfQgVzDdsFrTFn1L79qKi3XHwIEDee+998jJyeHUqVN88MEHAMTFxdGwYUO+/PJLAF555ZXC3nqHDh1wuVw89thjxTaFKG8Z2TMtgfvUU0/RrVs3Zs+eza233lq4NG1Zy+/Wr1+fdu3aFW4Rp6rFevVlGTRoEHPmzMHtdrN3714+//zzMuuFhYUVPnbTpk05cOAAhw8f5vTp0+XuRFTez+XxeNi1axdDhw7lz3/+M8eOHXN8KQTroQe5gumG1bqwyPdmYAm97ujXrx9XXHEFycnJtGnThtTUVOLivIu3/fvf/2bixIlkZWXRvn37Ykvojho1ivvvv59t27YVHpswYQKXXnopzZs3L5Y4y1sqNywsjBdeeIFly5YRGxvLoEGDePzxx3n00UfLXX531qxZTJo0iccff5y8vDxGjx5NcnJyuT/f1VdfzYIFC+jVqxedO3cufFMqacKECSQlJdGnTx9mzZrFb3/7W/r370+7du3o2rVrmfcp7+fq3LkzN910E8ePH0dVmTx5Mg0aNPD/l+KHCpfPrSm2fG7tkJmXyZGcIzSPbk5oSNXe39ceWstbm9/i58k/r9a66uYHtWH53FOnThETE0NWVhaDBg1ixowZ9OnTJ6AxBdvyuzWxfK6pw6LDoqs1Bx0gwhVBQmSCTVusYyZMmMC6devIyclh3LhxAU/mpmKW0IPc/sz97M3cS8/GPavcQ+/YsCMdG3Z0ODITaK+99lqgQyglmHrnVWEnRYPclmNbePf7d+3S/VooUMOhpnaoyu/fEnqQc2Ie+r7Mfby09iX2Ze5zKqygFxERweHDhy2pBylV5fDhw0REVO66DhtyCXJOrLZ42n2aXSd3VWv5AFNcYmIiGRkZ2EYwwSsiIqLc+fflsYQe5NzqxiWuap3QLOjd27RF54SFhdGuXbtAh2HOMTbkEuTcHne1eufwQ0K3cXhjAst66EFuQIsB9G7Su1ptFFwpmq926b8xgWQJPcjFhMcQEx5TrTbCQ8JpGdOSCJctzGVMIPmzY9FLInJARNaWUy4i8oyIbBGRNSJiVx+cQ74/9j2rD5S9qJG/GkQ04PZet9OhQQeHojLGVIU/g6czgUvOUH4p0Mn3NQH4R/XDMmfLmoNr+CLji0CHYYxxgD9b0C0CjpyhypXAy76115cCDUSkuVMBmprlUU+15qADZOdnM/3b6aw9VOaHOGPMWeLELJeWwK4itzN8x8w5oGDaYnXtz9rPqTy7LNuYQHIioZc1gbnMy9tEZIKIrBCRFXbBRO3gVgenLXps2qIxgeREQs8AWhW5nQjsKauiqs5Q1VRVTU1IsGVWawOPegqnHVZVwRuCTVs0JrCcmLY4H7hTROYA/YHjqrrXgXbNWXB1x6urfYWnXVhkTO1QYUIXkdnAEKCxiGQADwNhAKo6HfgQuAzYAmQBt9RUsMZ5UWFR1W5DRGgf154G9ZzdfcUYUzm2Y1GQW3VgFeEh4fRo3CPQoRhj/HCmHYtsLZcgt3zfctYcWhPoMIwxDrCEHuTcHmemLb7w3Qss2LnAgYiMMVVlCT3IOTFtEeBE7gky8zIdiMgYU1WW0IOcE1eKgnemS77Hpi0aE0iW0INcvuZXex46eOei27RFYwLLls8Ncnek3IGUebFv5YRKqO1YZEyAWUIPcvVc9Rxpp12DdsSEVW9ddWNM9VhCD3Kf7fyM1rGt6dSwU7XauaTtmVZYNsacDTaGHuSW7FnCzhM7Ax2GMcYBltCDmKp6l8914KTo6xtfZ9b6WQ5EZYypKhtyCWIFs1KcmIee684lx51T7XaMMVVnPfQgVpDQHZmHHuKyaYvGBJgl9CBWsH65Ez10l7hwe2zaojGBZEMuQSwyNJLfnPcbR9oKkRCbh25MgFlCD3JO9M4B2tRvQ1y9OEfaMsZUjSX0IJaVl8WCXQtISUghMTaxWm31a9bPoaiMMVVlY+hBLCs/i5X7V3Ik50igQzHGOMCvhC4il4jIRhHZIiJTyihvKCLviMgaEVkmIj2dD9U4zclZLp9s/4Spy6dWux1jTNVVmNBFxAU8C1wKdAfGiEj3EtUeAFarahLwE+BppwM1zitM6A5cWKQoeZ68ardjjKk6f3roacAWVd2qqrnAHODKEnW6A58BqOoGoK2INHU0UuO4glkpjk1btFkuxgSUP3/JLYFdRW5n+I4V9S1wDYCIpAFtgFJn2URkgoisEJEVBw8erFrExjEe9RAqoYRK9c+NFyT0QG06bozxL6GXtVh2yb/aJ4CGIrIauAtYBZTavkZVZ6hqqqqmJiQkVDpY46xWsa148LwHad+gfbXbKhi20VIvDWPM2eJP1ywDaFXkdiKwp2gFVT0B3AIgIgJs832ZINEiugVpzdK8PfTq75dhjKkCf3roy4FOItJORMKB0cD8ohVEpIGvDOB2YJEvyZtabO+pvbyz+R2O5hytdlsdG3bk0naXOnKC1RhTNRUmdFXNB+4EPgbWA6+rarqITBSRib5q3YB0EdmAdzbMPTUVsHHOsdPHWHNoDafdp6vdlqp3louNoRsTOH6dDVPVD4EPSxybXuT7JUD1trwxZ52T89BX7l/JB9s+YHLfydQPr1/t9owxlWdXigYxJ6cthoZ4+wYejy2ha0ygWEIPYgUJ3YkeesGbgs1FNyZwLKEHsRAJITo0urB3XR0Fbwq2yYUxgWOrLQax5IRkkhOSHWnLeujGBJ710I0jGkc2ZmCLgUSFRQU6FGOCliX0IJZ+OJ05G+aQ7yl1UW+lJUQlMKzNMJvhYkwAWUIPYoezD7Px6EZHZrl41ENWXpYjbw7GmKqxhB7E8j35COJIQt99cjdPrniSHSd2OBCZMaYqLKEHMY96HNtTNCTETooaE2iW0IOYW92OTFmEH6Ytuj2W0I0JFEvoQSwyNJKG9Ro60pbNQzcm8GweehAblDiIQYmDHGnL5qEbE3jWQzeOiAqL4sJWF9I0ynYeNCZQrIcexBZlLOJw9mGu7nR1tduKDI3kR4k/ciAqY0xVWQ89iO3P2s+ezD0VV/SDqnIs5xjZ+dmOtGeMqTxL6EHM43Fu2mKuJ5enVz3N6gOrHWnPGFN5ltCDmFvdhIozo252UtSYwPMroYvIJSKyUUS2iMiUMsrjROQ9EflWRNJF5BbnQzVOc6vbsbxLuCwAAB37SURBVB66TVs0JvAq7J6JiAt4FhgOZADLRWS+qq4rUu0OYJ2qjhSRBGCjiMxS1dwaido4omFEQ8cuBBLfP7uwyJjA8efzdhqwRVW3AojIHOBKoGhCVyBWRASIAY4AtkpTLffj9j92rC0R75owNuRiTOD4k9BbAruK3M4A+peoMw2YD+wBYoFRqqU/e4vIBGACQOvWrasSr6nFRrQdQbOoZoEOw5ig5c8AqpRxTEvcHgGsBloAKcA0ESm1MLaqzlDVVFVNTUhIqHSwxllvbXqL/+74r2Pt9WvWj1b1WznWnjGmcvxJ6BlA0b/SRLw98aJuAd5Wry3ANqCrMyGamrI/az9Hc4461t6h7EMcP33csfaMMZXjT0JfDnQSkXYiEg6Mxju8UtROYBiAiDQFugBbnQzUOM+t7sLZKU54Zd0rLNy10LH2jDGVU+EYuqrmi8idwMeAC3hJVdNFZKKvfDrwGDBTRL7DO0Tzf6p6qAbjNg7wqAdXiHMJ3SUum7ZoTAD5dVWJqn4IfFji2PQi3+8BLnY2NFPT3B5ne+g2y8WYwLIrRYNYy5iWxEfGO9aeK8R66MYEkq22GMRGdR3laHsucdkm0cYEkCV045jBiYMJc4UFOgxjgpYNuQSxZ1c/y9K9Sx1rr0ujLrSPa+9Ye8aYyrGEHqRUlUPZh8jJz3GszYNZB9mXuc+x9owxlWMJPUgVzEZxcpbLJzs+4f2t7zvWnjGmciyhB6mC2SiOT1u01RaNCRhL6EGqoIceEuLcS8AlLpuHbkwAWUIPUoLQuWFnGtZr6FibltCNCSybthikIkIjGNN1jKNthkiIXVhkTABZQjeO6d+8P70a9wp0GMYELRtyCVKHsw/zlxV/YeORjY612SKmBR0bdnSsPWNM5VhCD1L5nnxO5Z1ydMz7UPYhvj/2vWPtGWMqxxJ6kKqJeeirDqxizoY5jrVnjKkcS+hBqnDaojj3ErCTosYEliX0IFV4YZHTG1zgQbXklrPGmLPBr4QuIpeIyEYR2SIiU8oov19EVvu+1oqIW0QaOR+ucUpUaBQ943sSGxbrWJsFwzc2F92YwKhw2qKIuIBngeF4N4xeLiLzVXVdQR1VfRJ40ld/JDBZVY/UTMjGCQlRCVzb+VpH2yxI6DbsYkxg+DMPPQ3YoqpbAURkDnAlsK6c+mOA2c6EZ84l3eO70yymGaEhdnmDMYHgz5BLS2BXkdsZvmOliEgUcAnwVvVDMzVpw5EN/PGbP3Ig64BjbTaIaED7uPaOnmg1xvjPn788KeNYeWe9RgKLyxtuEZEJIrJCRFYcPHjQ3xhNDcj35JPryXU0+R7LOUb6oXRy3bmOtWmM8Z8/f80ZQKsitxOBPeXUHc0ZhltUdYaqpqpqakJCgv9RGsfVxDz07Se28+bmN8nMy3SsTWOM//xJ6MuBTiLSTkTC8Sbt+SUriUgcMBh419kQTU0oWLfcyR66zXIxJrAqPHulqvkicifwMeACXlLVdBGZ6Cuf7qt6NfCJqlr37BxQEz30gjnttsmFMYHh13QEVf0Q+LDEseklbs8EZjoVmKlZjSMb06dJH8Jd4Y61adMWjQksm18WpNrFtaNdXDtH2ywYvsnXfEfbNcb4xxJ6kCq4PF+krElMVZMYm8htPW+jSVQTx9o0xvjPJgwHqS8yvuB3S3/n6LorkaGRJMYmOjqMY4zxnyX0IOVWNyGEONpDz8zLZNWBVRw/fdyxNo0x/rOEHqQ86nH8is7jp48z//v57Mvc52i7xhj/WEIPUm51O7p0LvxwUtTmoRsTGJbQg5TH43wPvWBRLpu2aExg2CyXINU2ri1RYVGOtmk9dGMCyxJ6kOoe353u8d0dbdMuLDImsCyhB6mCFRGdnGIYExbDpORJxIY7twuSMcZ/NoYepOZtmccL373gaJuuEBdNopoQGRrpaLvGGP9YQg9SHvU4ujAXeBflWrp3KbtP7Xa0XWOMfyyhB6mamLaoKB9v/5itx7Y62q4xxj+W0IOU2+N2fNqinRQ1JrAsoQepmhhyERFCCLFpi8YEiM1yCVIpTVIcaUdV+XLzIfq3b0S9UBchYgndmECxHnqQSmmS4khSf/GrbfzkpWV8uu4A4J3pYgndmMDwK6GLyCUislFEtojIlHLqDBGR1SKSLiJfOBvmD1SV3Hwbo62uU7mnyM7PrlYb32Uc508fbQBg/4kcACYlT2Jw4uBqx2eMqbwKh1xExAU8CwwHMoDlIjJfVdcVqdMAeA64RFV3ikiN7XCwb+697NmwnITYejSpX4+IUGfHgYPFv+UYTTWU64ip0v3dqrgzjjE3HHLdHloui4TNUcQ5HKcxdVKzXnDpE443608PPQ3YoqpbVTUXmANcWaLOjcDbqroTQFUPOBvmD8JcIcREhLLneDardx1j/b4THMnKRXFuo4Zg4Ma743dVbTuUSU6+h45NYggNEfLc3k9Ny8hhPbmOxGiMqRx/Toq2BHYVuZ0B9C9RpzMQJiILgVjgaVV9uWRDIjIBmADQunXrqsRL4+ufojGw51g2c5fvYu7yXezblUPT+vUY1a81o/u1okUDu1KxIu6VTxES1x46lnxvrtg7qzKYPPdb7hnWifOGd+bXf/2CDgkxTL+5L9+s+jstY1rSrdM1NRC1MeZM/EnoZW1pU7I7HAr0BYYBkcASEVmqqpuK3Ul1BjADIDU1tVpd6hYNIpk8vDN3XdiRzzceZNY3O/j7gs1MW7CZoV2acGP/1gzp0gRXiHM78tQlVd3gYtuhTB56Zy1pbRtx14UdAWgUHc6RTG+v3CUu8j22SbQxgeBPQs8AWhW5nQjsKaPOIVXNBDJFZBGQDGyihoW6QhjevSnDuzdl15Es5izfyesrMvjs3ytoERfBqH6tGdWvFc3iImo6lHNKvie/cP1yf+Xme7h79ipCXSH8bXQKoS7vG0Kj6HA2HzgFeJfQtQuLjAkMf7poy4FOItJORMKB0cD8EnXeBX4kIqEiEoV3SGa9s6FWrFWjKO4f0ZWvp1zIP8b2oUOTGJ76dBMX/GkBE15ewcKNB/B4bKwd4MLWF9K1UddK3efJjzfw3e7j/Pm6pGLDWiV76DZt0ZjAqLCLpqr5InIn8DHe82gvqWq6iEz0lU9X1fUi8hGwBvAAL6jq2poM/EzCXCFc2qs5l/Zqzo7Dmcxetos3Vuzik3X7SWwYyZi01tyQ2oqE2HqBCjHg+jXrV6n6n288wPNfbuPm89owokezYmXx0eEczcrF7VHvPHSPJXRjAkFUA9NjTU1N1RUrVpy1xzud7+aT9P289s1Olmw9TGiIcHGPpozt34bz28cTEmRj7QezDhIdFu3XrkUHTuZw6d++pHFMPd698wIiworPj5m5eBuPvLeOlQ9dREwkhBBCmCuspkI3JqiJyEpVTS2rLGgu/a8X6mJkcgtGJrfg+4OnmP3NTt78XwYffrePtvFRjElrzXV9E4mPqfu9do96eO7b5xjaaiiDEgedua5HuW/ut2Tm5jPnxvNKJXOAhtHeTTKOZuUSH2ObWxgTKEF56X+HhBge+nF3lv56GH8blUKT2Aj++J8NnP/HBdw9exVLtx4mUJ9czoaCMW5/Zrn8c9FWvtpyiIdH9qBT07KTdXy0903w8KlcVh9YzZI9S5wL1hjjt6DpoZclIszFVb1bclXvlmzaf5LXvtnJ2//LYP63e+iQEF3Ya28Q5dw2bbVBwSyUihL6qp1H+csnG7m8V3NG92tVbr1Gvh76kcxcTuRu5MjpI5zf4nznAjbG+CUoe+hl6dw0lkeu6ME3D1zEk9clUT8yjMc/WE/aHz7jvrmrWbH9SJ3ptRectAyV8t/PT+TkcfecVTStH8EfrumFSPnnGOJjvAn9cGYuISE2bdGYQAnqHnpZIsNdXJ/aiutTW7FuzwleW7aDeav28Paq3XRpGsuN/VtzVe+WxEWeuyf9KhpyUVUefGcte47l8PrPzqvwZ20Q5S0/mplLYnyozXIxJkCsh34G3VvU5/GrevHNA8N44ppehIeG8PD8dPr/4VPuf+NbVu08ek722uu56nFFhytoU79NmeVvrMzgvW/3MPmiTvRt06ji9kJdxNYL9fbQbT10YwLGeuh+iK4Xyui01oxOa813Gcd5bdkO3l29hzdWZtC9ef3CXntMvXPj6Qx3hdO7Se8yy7YcOMXD76Zzfvt4Jg3p6HebjWK8FxfZlaLGBE7QzEN32smcPN5dvYdZ3+xk/d4TRIW7uDKlBWP7t6Fny9q9iGyeO4/9WfuJj4wnMvSHKz5z8txc/dzX7DuezUf3DqJpff+XS7j6ucVEh4fy8m39EOSMY+7GmKqzeeg1IDYijJvOa8PY/q1ZvesYr32zk3dW7Wb2sl0kJcZxY1prrkhpQVR47XuKD+cc5sW1L3JD5xvoFt+t8PgT/9nA+r0neHFcaqWSOUCjqHD2Hs9xfONpY4z/7K+vmkSE3q0b8uT1yXzzwEU8ekUPcvLcTHn7O9J+/xm/mbeW9XtPBDrMYsqatvjpuv3M/Ho7t1zQlmHdmla6zYL1XDYe2cgHWz9wLFZjjP9qX/fxHBYXGca4AW35yfltWLnjKLO+2cncFbt4ZekO+rRuwI392/DjpOZlXm15NhXMQnGJN459x3O4/81v6d68PlMurdyCXQUKxtB3n9zNyv0rubz95Y7Fa4zxj/XQa4CIkNq2EU+NSuGbXw/jocu7cSw7j1++8S1pv/+UR99LZ8uBkwGLr2AWiivEm9CfWbCZ7Dw3f7+xN/WquKVffHQ4uW4PuW5Q1E6MGhMA1kOvYQ2jw7n9R+25bWA7lm49wmvLdvLq0h38a/F20to24sb+rbmkZ7Oz2msvSLahEoqq8sXGgwzunECHhKrtLwrQ0Hc1bdZpb9tuddt4ujFnmSX0s0REOL9DPOd3iOfwqe68uTKD15bt5N65q2n4XhjX9klkTP/W1Uqq/moS1YTrOl1HfGQ83x/MZPexbH4+tEO12iy4WjTTl9Cth27M2WcJPQDiY+rxs8Ed+OmP2vP194d5bdkOZn69nRe+2sb57eO5sX9rRvRoRnhozfRwY8Jj6NG4BwBfbt4GwKBOCdVqs5Fvga7M00p4SLh3nD6wpwqMCTqW0AMoJEQY2KkxAzs15sDJHN5YkcHsZTu5a/Yq4qPDuS41kRvTWtMmPtrRxz2Ve4oD2QdIjElk0aaDtGscTatGFa+LfibxvgW64l3dmZg6wokwjTGVZIOctUST2AjuGNqRRfcPZeYt/ejbpiEvfLmNwU8u5OYXv+E/3+0lz+3MMMbW41t5Zd0rHMo6xtKtR/hRp8bVbrNhkRUXjTGB4VcPXUQuAZ7G+yH6BVV9okT5ELz7im7zHXpbVX/nYJxBIyREGNKlCUO6NGHf8RzmLt/F3OU7mTTrfyTE1mNUaitGp7UisWHVe9QF49trM06Sneeu9nALQHS4i/DQEHac2Mlbm1ZzcduLiQ23zS6MOZsqTOgi4gKeBYYDGcByEZmvqutKVP1SVX9cAzEGrWZxEdxzUSfuvLAjCzce4LVvdvLcwi08u3ALgzsnMLZ/G4Z2SSDUVbkPWgXTFpdsPUqYy3uytrpEhPjocA5mHmPt4bUMShxkCd2Ys8yfHnoasEVVtwKIyBzgSqBkQj9rPt/5Od8d+q7YsRAJ4c7edwLw8faP2XhkY7HyyNBIfpr0UwDe3/o+W49tLVZeP7w+43uOB+Cdze+w6+SuYuXxkfGM7TYWgNc3vs6+zH3FyptFN+OGLjcA8Oq6VzmSc6RYeev6rbmq41UAvLT2JU7lnipW3rFBRy5rfxkA07+dTq67+NBFt/huvDh+OLuPZfN/n/2Jb/cc5+v/uIlZEEq35rFc1/MCru5yMfmefJ5b/Vyp5yy1aSoDWg4gKy+Lz3Z+BsCSLUfp07oh0Q4tKtYoOpyTOd43i1fWv0KohDKgxQBSm6VyLOcYL697udR9hrQaQlJCEgezDjJ7w+xS5cPbDKdbfDd2n9rNW5veKlV+WbvL6NiwI9uPb2f+9/NLlV/d8Wpa1W/FpqOb+GjbR6XKb+hyA82im5F+KL3weSlqbLexxEfGs/rAahZlLCpVPr7neOqH12fZ3mUs3bu0VPmEpAlEhEawePdiVu5fWar8zt53EiIhLNi5gLWHiu+r7gpxcUfKHUDVXtNx9eIY12McUPFreu6GuezP2l+svHlMc67vfD0Ar6x7haM5R4uVt6nfhis7XglU7TXdPb47F7W5CIC/r/p7qZVLkxOSGdxqMHmePP6x+h+UlNoslQEtvK/pF757oVR5bX3tFc0VTvPnL7klUPSVkAH0L6Pe+SLyLbAH+KWqppesICITgAkArVu3rny0Pg0jGtIqtvgOOgUXyQDER8SXKq/n+mGv0MaRjclz5xUrL7pZcpOoJqUes369+oXfN41qSlhI8TXC4yN/6OU2j25OdFjxE5lNIn9os0VMC7LzsouVN478YRw7MTaxVHzxEd72WzaI5Prk3lzVy836PSdYuu0Iyzaf5Ju13/NB2xWMTmtJy5hWlNzzOi7Cu2CYK8RFpwadwBPFv/ae5v4R7Ur9rFXVKDqc45mN6Nu0b2H8Bb300JDQUr8TgJgw7zTNcFf4GcvrueqVWV7we4sIjSizvF6o9/ceFRpVZnm4yzv2Hx0WXWZ5wWbXMWExZZYXbBISVy+uzPKCufgN6jUos7xAo4hGjr+mi74GK3xNRzctfC4KH7PEa7rgd1EgIfKHobqqvKYbRfywNHOr2FalEnrDiIYACFLmc9egXgPA+zyVVV5bX3tFf26nVbjaoohcD4xQ1dt9t28G0lT1riJ16gMeVT0lIpcBT6tqpzO1e66vtlib7DqSxexlO3l9RQaHTp2mZYNIxqS14obUVjQpZ5Gtd1ZlMHnut7x350B6JTqzOuQ9c1axaucxFv1qqCPtGWNKO9Nqi/4MvmYARd9+EvH2wgup6glVPeX7/kMgTESqP3XC+KVVoyh+dUlXvp5yIc/e2Ie2jaOY+skmzn9iARNfWcmiTQfxeIq/cS/adIhG0eH0aFG/nFYrr2CBLmNMYPgz5LIc6CQi7YDdwGjgxqIVRKQZsF9VVUTS8L5RHHY6WHNm4aEhXJ7UnMuTmrPtUCZzlu3kjZUZfJS+j9aNohid1orr+7YiPjqcLzcfYmDHxoSUHJuphvjocE6dzud0vrvKa8IYY6quwoSuqvkicifwMd5piy+parqITPSVTweuAyaJSD6QDYzWc3FvtjqkXeNofn1ZN+67uDMfrd3Ha9/s5M8fbeSp/27i/A6NOXTqNIM6V3+6YlEFc9GPZubRLM4SujFnm1/TG3zDKB+WODa9yPfTgGnOhmacUC/UxZUpLbkypSVbDpzktW928db/Mgh3hTDIgQuKiiq4WvRw5mmaxVVugwxjTPXZpf9BpGOTWH47sju/uqQLh06dLveEaVUVrOdi4+jGBIZd+h+EIsJc1brStDyN7PJ/YwLKErpxjCV0YwLLErpxTIPIMELEEroxgWIJ3TgmJERoGBXOYUvoxgSEJXTjqEbR4Ry1hG5MQFhCN45qGG09dGMCxRK6cVS8Xf5vTMBYQjeOsvVcjAkcS+jGUfHR4RzLysXtsZUfjDnbLKEbRzWMDsejcDw7r+LKxhhH2aX/xlEFFxdd89xiwiq5NZ4xwWJUv1bc/qP2jrdrCd046oKOjbmmd0ty8t2BDsWYWqtxTL2KK1WBJXTjqMYx9fjrqJRAh2FMULLPxMYYU0dYQjfGmDrCr4QuIpeIyEYR2SIiU85Qr5+IuEXkOudCNMYY448KE7qIuIBngUuB7sAYEeleTr0/4d2qzhhjzFnmTw89DdiiqltVNReYA1xZRr27gLeAAw7GZ4wxxk/+JPSWwK4itzN8xwqJSEvgamA6xhhjAsKfhC5lHCt5XfffgP9T1TNOPhaRCSKyQkRWHDx40N8YjTHG+MGfeegZQKsitxOBPSXqpAJzRASgMXCZiOSr6ryilVR1BjADIDU11Rb7MMYYB4nqmfOqiIQCm4BhwG5gOXCjqqaXU38m8L6qvllBuweBHVWIGbxvGoeqeN+aVltjq61xgcVWFbU1Lqi9sdXWuKBysbVR1YSyCirsoatqvojciXf2igt4SVXTRWSir7xK4+blBeQPEVmhqqlVvX9Nqq2x1da4wGKritoaF9Te2GprXOBcbH5d+q+qHwIfljhWZiJX1fHVDcoYY0zl2ZWixhhTR5yrCX1GoAM4g9oaW22NCyy2qqitcUHtja22xgUOxVbhSVFjjDHnhnO1h26MMaYES+jGGFNHnHMJ3d+VH89SLC+JyAERWVvkWCMR+a+IbPb93zAAcbUSkc9FZL2IpIvIPbUhNhGJEJFlIvKtL65Ha0NcJWJ0icgqEXm/tsQmIttF5DsRWS0iK2pLXL44GojImyKywfd6O782xCYiXXzPV8HXCRG5t5bENtn3+l8rIrN9fxeOxHVOJXR/V348i2YCl5Q4NgX4TFU7AZ/5bp9t+cAvVLUbcB5wh+95CnRsp4ELVTUZSAEuEZHzakFcRd0DrC9yu7bENlRVU4rMVa4tcT0NfKSqXYFkvM9dwGNT1Y2+5ysF6AtkAe8EOjbfuld3A6mq2hPvtT2jHYtLVc+ZL+B84OMit38N/DrAMbUF1ha5vRFo7vu+ObCxFjxv7wLDa1NsQBTwP6B/bYkL77IWnwEX4r3auVb8PoHtQOMSx2pDXPWBbfgmV9Sm2ErEczGwuDbExg+LHTbCex3Q+774HInrnOqh48fKj7VAU1XdC+D7v0kggxGRtkBv4BtqQWy+IY3VeJdZ/q+q1oq4fP4G/ArwFDlWG2JT4BMRWSkiE2pRXO2Bg8C/fMNUL4hIdC2JrajRwGzf9wGNTVV3A1OBncBe4LiqfuJUXOdaQvdn5UfjIyIxeNeov1dVTwQ6HgBVdav3Y3AikCYiPQMdE4CI/Bg4oKorAx1LGS5Q1T54hxrvEJFBgQ7IJxToA/xDVXsDmQR2uKwUEQkHrgDeCHQsAL6x8SuBdkALIFpEbnKq/XMtofuz8mOg7ReR5gC+/wOy4YeIhOFN5rNU9e3aFBuAqh4DFuI9B1Eb4roAuEJEtuPdxOVCEXm1NsSmqnt8/x/AOw6cVhviwvv3mOH7lAXwJt4EXxtiK3Ap8D9V3e+7HejYLgK2qepBVc0D3gYGOBXXuZbQlwOdRKSd7513NDA/wDGVNB8Y5/t+HN7x67NKRAR4EVivqn+tLbGJSIKINPB9H4n3xb0h0HEBqOqvVTVRVdvifV0tUNWbAh2biESLSGzB93jHW9cGOi4AVd0H7BKRLr5Dw4B1tSG2Isbww3ALBD62ncB5IhLl+zsdhvdEsjNxBfJkRRVPKlyGdznf74EHAxzLbLzjYHl4eyu3AfF4T6xt9v3fKABxDcQ7FLUGWO37uizQsQFJwCpfXGuB3/qOB/w5KxHnEH44KRro56w98K3vK73gNR/ouIrElwKs8P1O5wENa1FsUcBhIK7IsYDHBjyKtyOzFngFqOdUXHbpvzHG1BHn2pCLMcaYclhCN8aYOsISujHG1BGW0I0xpo6whG6MMXWEJXRTp4iI27e63loReUNEoipx3xYi8mYlH2+hiNTKjYdN8LGEbuqabPWustcTyAUm+nMnEQlV1T2qel3NhmdMzbGEbuqyL4GOvqstXxKR5b5FpK4EEJHxvl78e3gXv2orvrXtfWtU/8u3DvkqERnqOx4pInNEZI2IzAUifcddIjLT98ngOxGZHKCf2QSx0EAHYExNEJFQvOt4fAQ8iPdS/lt9Sw8sE5FPfVXPB5JU9YhvZcoCdwCoai8R6Yo34XcGJgFZqpokIkl4lwAG7xWTLX2fDChY4sCYs8l66KauifQtz7sC77oZL+Jd/2SK7/hCIAJo7av/X1U9UkY7A/Felo2qbgB2AJ2BQcCrvuNr8F7yDrAVaC8ifxeRS4BasbqlCS7WQzd1TbZ6l+ct5FsE6VpV3VjieH+8S76WpaylmguUWi9DVY+KSDIwAm/v/gbg1soEbkx1WQ/dBIOPgbt8iR0R6e3HfRYBY331O+Pt0W8scbwn3gXHEJHGQIiqvgX8Bu8yssacVdZDN8HgMby7Ea3xJfXtwI8ruM9zwHQR+Q7vHq3jVfW0iPwD7w49BStZLvPVb+k7XtBJ+rXDP4MxFbLVFo0xpo6wIRdjjKkjLKEbY0wdYQndGGPqCEvoxhhTR1hCN8aYOsISujHG1BGW0I0xpo74f0YI5Bp7fxjnAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_24_0.png" }, "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEWCAYAAAB7QRxFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3yT1f7A8c9J92a0DMsoe0OBCjIEHIioiCLLy6pVARUQ9KooV8UfqKjoRfSComIBmQJyFcdFhIoMpQXKHrJBVimjjO6c3x9PWls6aEnok7Tf9+sVTXKenHwTkm9PzvM836O01gghhHBdFrMDEEIIYR9J5EII4eIkkQshhIuTRC6EEC5OErkQQrg4SeRCCOHiJJELYQel1GGl1N1F2C5MKaWVUu4lEVdR2OKpa3Ycwn6SyMsopVR/pdQfSqkrSqkztutPK6WU2bGZRSkVo5R6wqTnHq+U+uom9m/aaxM3nyTyMkgp9TzwIfAeUAWoDAwHOgCeJRiH04xOhXBpWmu5lKELEARcAR4pwnazgQTgCPAvjD/8XsAFoGmObUOAZKCS7fYDQLxtu/VA8xzbHgZeArYBqUBdQANDgKPAWWBcju3HA18DXwGXgO1AfeBl4AxwDLjnmri/AE4CfwETATdbWySwFpgMnAcOAd1tbW8CmUAKcBn4uID3ZZDt/UgExtlez922NgswFjhga18EVLC1hdle51DghC2+521t9wJpQLrtubcW8NyHba97ly3+LwFvW1t5YLnt3+u87Xq1wl6bLZ7hwJ+2x/wHULa2usCvwEXbv8lCsz+7cink+2p2AHIp4X9wI2lkAO7X2W428F8gwJaE9gGP29pmAm/m2PYZ4Cfb9Va2BNsWcLMl6MOAl639MEaSrw745Ehwn9lut8BI8I1s24+3JaBugLstrkO2JOoBPAkcyhHLMuBTwA+oBGwEhtnaIm3J8klbbE/ZkmpW8ooBnijkPWlsS4SdMP6gfWB7L7MS+Wjgd6Carf1TYL6tLet1zrfF1syWdO/O8Tq/us6/yWFgh+29qwCsAyba2ioCjwC+tn+zr4FlOR6b57XZ4lkOlANq2OK519Y23/YeWwBvoKPZn125FPLZMDsAuZTwPzgMBE5dc996jNFzsi1JudmSaeMc2wwDYmzX7wYO5mhbBwy2XZ8OTLim/71AZ9v1w0BUjrasBFctx30bgf626+OBn3O09bAl06xRdoDt8eUwpohSAZ8c2z8KrLZdjwT252jztT22iu329RL5a8CCHLf9MEbSWcl4N3BXjvaqGH843HO8zoY52t8FvsjxOouSyIfnuH0fcKCAbcOB8zluF5TIO+a4vQgYa7s+G5iR899FLs57kTnysicRCM45P621bq+1LmdrswDBGHPlR3I87ggQaru+CvBRSrVVStXESBrf2NpqAs8rpS5kXTBGkLfk6OtYPnGdynH9KuCf4/bpHNeTgbNa68wct7FtXxNjlH4yx3N/ijEyz/M8WuurOR5bFLfkjF1rfQXjPctSE/gmx3PvxpjSqJxjm5yv/Qi535eiyPfxSilfpdSnSqkjSqkkYA1QTinldp3+CnrfXwQUsFEptVMpFVXMOEUJkkRe9mzAGLX2LGSbsxgjyZo57quBMeeM1tqKMXp7FPgHsFxrfcm23TGMaZdyOS6+Wuv5Ofq6WSU3j2G8tuAczx2otW5SxMdfL66TGH+UACN5Ykxp5Hz+7te8dm+t9V85tqme43oNjKmdojz39R7/PNAAaKu1DsT4ZQVGMi5O/8bGWp/SWj+ptb4F49fYNDlU0XlJIi9jtNYXgDcwvpi9lVL+SimLUiocY6oA22h3EfCmUirANup+DmOHY5Z5QD9ggO16ls+A4bbRulJK+Sml7ldKBZTAazsJrADeV0oF2l5XHaVU5yJ2cRqoXUj7YuABpVRHpZQn8H/k/g59gvGe1QRQSoUopa79g/mqbfTcBHgMWJjjucOUUtf7Tj6jlKqmlKoAvJLj8QEYv04u2NpeL+Zry0Up1UcpVc128zzGH4LMQh4iTCSJvAzSWr+LkZhfxNgxeRpjCuIljPlygJEYR7ccxDjSYx7GTs6sPv6wtd8C/Jjj/jiMnYkfYySA/Rhz0yVlMMa0UNaRHYsx5qqL4kOgt1LqvFJq6rWNWuudGDt252GMzs8Dx695/LfACqXUJYwdn22v6eZXjPfkF2Cy1nqF7f6vbf9PVEptLiTGeRh/rA7aLhNt90/B2Fl81va8PxXnteXjVuAPpdRl22t6Vmt9qAiPEybI2lsvhHBySqnDGDssV5odi3AuMiIXQggXJ4lcCCFcnEytCCGEi5MRuRBCuDhTihYFBwfrsLAwM55aCCFc1qZNm85qrUOuvd+URB4WFkZcXJwZTy2EEC5LKXUkv/tlakUIIVycJHIhhHBxksiFEMLFSSIXQggXJ4lcCCFcnCRyIYRwcZLIhRDCxckq5sJxEg/AtoUgZR+EKFiL/lCxjkO7lEQuHCf2c/h9Gn8vSiOEyKN6W0nkwomlJ4NfJXjhT7MjEaJMkUQuHCb11AUubnaHKVPMDkUIpxXUsydetWo5tE9J5MJhzq8/yvktwLbPzQ5FCKfl2zpCErlwXjotHTdfRf3NO8wORYgyRQ4/FA6j0zOxuMuOTiFKmiRy4TDW9AyUu3ykhChp8q0TDqPTMyWRC2EC+dYJh9HpmVg85CMlREmTb51wGJ2RiXJ3MzsMIcocSeTCYawZVpSHJHIhSpokcuEwOkOjPOSIViFKmiRy4TA6Q2ORRC5EiZNELhxGZ2qUpyRyIUqaJHLhMNYMjfLwMDsMIcocuxO5Uqq6Umq1Umq3UmqnUupZRwQmXI/OBOUpiVyIkuaI38EZwPNa681KqQBgk1LqZ631Lgf0LVyF1mirwuLpaXYkQpQ5do/ItdYntdabbdcvAbuBUHv7Fa5FZ2agMxVKErkQJc6hc+RKqTCgJfBHPm1DlVJxSqm4hIQERz6tcAI65TIAyksSuRAlzWGJXCnlDywBRmutk65t11rP0FpHaK0jQkJCHPW0wknoK5cAUF5eJkciRNnjkESulPLASOJztdZLHdGncC062TYil6kVIUqcI45aUcAXwG6t9Qf2hyRckU6+AoDFy9vkSIQoexwxIu8ADALuVErF2y73OaBf4UKsyVcBUN6SyIUoaXYffqi1XgvIsjBl3N87OyWRC1HS5MxO4RDaNiK3ePuYHIkQZY8kcuEQOjkZAOUliVyIkiaJXDiENSVrjlwSuRAlTRK5cAidahuR+/iaHIkQZY8kcuEQOsVI5BZvSeRClDRJ5MIhdEoKAMrHz+RIhCh7JJELh7CmSiIXwiySyIVDaEnkQphGErlwiKypFYuvv8mRCFH2SCIXDqHT0gEZkQthBknkwiGsaamgNMpLErkQJU0SuXAInZqGsmhwl3rkQpQ0SeTCIXRaGhY3MP4jhChJksiFQ1jT0lGSw4UwhSRy4RA6PR1ld1FkIcSNkEQuHEKnZ6DcpCy9EGaQMVQZp7XGWK0Phv88nNNXT+dqv63qbbzU5iUAhvw4hKS03Otqh/iE8PFdH6PTMrC4SyIXwgySyMswq7bS9euuDG4ymCFNhhDqH4qPe+4ytCG+IdnXqwdU50r6lezbqZmpPN7scdyUm4zIhTCRJPIy7NilY5xJPkOAZwAAr7Z7tdDtJ3acWGCbNT0T5SEzdUKYwSGJXCk1E3gAOKO1buqIPsXNtztxNwCNKjS64T5WHF6BFSsN0jOxeMlhK0KYwVFDqGjgXgf1JUrI7nO7cbe4U7dc3RvuY9G+RUTviEZnZGKREbkQpnDIN09rvQY454i+RMnZnbibeuXq4eHmccN9NKrQiH3n92HNsKLcZUQuhBlkjrwM6xDaAQ/LjSdxMBJ5ujWd9Awrvh7ycRLCDCX2zVNKDQWGAtSoUaOknlYUYkiTIXb30aiiMb+ekaFRksiFMEWJTWpqrWdorSO01hEhISHXf4C4qS6kXOBS2iW7+6kZWBNfd1/I1Fg8JZELYQbZO1VGzdszj9sX3E5KRopd/ViUhRW9V+CRgYzIhTCJQxK5Umo+sAFooJQ6rpR63BH9iptnd+JuagbWxNvd2+6+Aj0C0FZQnp4OiEwIUVwOGUJprR91RD+i5Ow+t5uIKhEO6evP07sASHLXyKSZECVPplbKoMTkRE5fPW3XiUA5WVNTATjplumQ/oQQxSOJvAzac24PYN8ZnTnV9KkKwEm3NIf0J4QoHknkZVCdcnV49bZXsw8dtJdbuhWA4yrVIf0JIYpHDjMog6r4VaFvg74O608nXwXgqLqaqyyuEKJkyIi8DFp9dDWnrpxyWH/6qnE8eoCXT5565UKIm08SeRlzKe0So1aP4tsD3zqsT51s1Ch/MbQzQV5BDutXCFE0ksjLGEfv6ASwphhTK8rL/mPShRDFJ4m8jMlO5A7a0Qmgrxoj8s+T4nlpzUsO61cIUTQut7Oz3/J+HLp4KNd9t1W9jal3TgWgxzc98qw7eVeNu3j79reN61/flafGSI/aPbJXx2k/rz0ZOiP3czbox/MRz5OamcrtC27PE9NjTR7jqfCnOJdyjnuX5C3L/kz4MwxpMoTjl47T69teedpfuPUF+tTvw77z+xj4w8A87a+3e537a99P/Jl4hv48NE/7O7e/wx017mD9ifWMXj06T/tHd35E26ptWXlkJR/EfUCITwjBPsF5trtROtUYkae5W/jx0I+sPrY6u+2HXj8Q7BPMp1s/5YsdX+R5bEzfGHw9fPlg0wcs2LMgV5tC8ceAPwB48/c3+e+B/+Zq9/fwZ1XfVQCMWzuOn4/8nKs9xCeE73t9D8CY1WNYd2JdrvawwDAW9VgEwLCfh7HlzJZc7Y0qNGJW91kADPxhIPvO78vV3rpya6bfPR2AR759hGOXjuVq71StE5M7Twbg3iX3ci4ld6XnbmHdmNBhAgCdF3YmOSM5V3uver0Y22YsVm3ltnm3ca2BjQYyqtUoLqVd4q6v78rTPrT5UJ5o9gRnrp7hgW8eyNM+utVo/tHoHxy6eIh+y/vlaX+5zcs8XO9hdibu5LGfHsvTPrHDRO4Ju4fYU7E888szedo/6PIBHUM78uuxX3lhzQt52j+5+xNaVW7FT4d+4rX1r+Vpn9N9Dg0qNGDJviW8E/tOnvbFPRZTI7AGc3bN4aMtH+Vpd8bP3uDGgxnRckSeWOzlcon83rB7SUxOzHVfWFBY9vUHaj+QJ1HXr1A/+/pDdR8iNSP3YXJNg/9e1Kh3/d5YtTVXe3ilcMCoK9K3ft6jPbIe7+3mnW97wwoNAeMfP7/2rIUdynmVy7c9LNB4fcE+wfm2hwaEArajUfJpr+xbGTDW3BzQaACtK7fOs409dIqRgB6+pQ2W0I5orbPbvN2M6ZYmwU3yjc3dYnwEw0PCsVpzv+85j36JqBKBl5tXrnZPt79LAtxW9TbKe5XP1e7n6Zd9/fZqtxPqH5qrvbz339t3qd6FeuXq5Wqv7Fc5+3rXml0JDwnP1V4j8O8qnt1rdedCyoVc7XXK1cm+3rNOz1zrnQI0rNgw+3qver1Iz0zP1d48pHn29fzeu6x2D4tHvu2NKzYGwMfdJ9/2+uWN70WgZ2C+7bXL1QagonfFfNurB1QHoJJvpXzbq/oZ5xfc4n9Lvu1Z68HWCKyRb3s5r3KA8T7m1+7v6Q8Y36/82p3xs5fz39SRVM4vXUmJiIjQcXFxJf684ua4MHMKJ9/9lDqfjsOzc95fFEIIx1BKbdJa56mtIXPkwm5ZI3Ll7WNyJEKUTZLIhd2yErnF19/kSIQomySRC7vpNKPGivL2NTkSIcomSeTCbtbUrKkVv+tsKYS4GSSRC7vplFRQGuUlc+RCmEESubCbTkvF4qbBTVYIEsIMksiF3aypqShJ5EKYRhK5sJtOTUNZAHev624rhHA8SeTCbjo9XUbkQpjIIYlcKXWvUmqvUmq/UmqsI/oUrkOnpRlz5DIiF8IUdidypZQb8B+gO9AYeFQp1djefoXrsKZloCwyIhfCLI4omtUG2K+1PgiglFoA9AR2FfSAvXv30qVLl1z39e3bl6effpqrV69y33335XlMZGQkkZGRnD17lt69e+dpf+qpp+jXrx/Hjh1j0KBBedqff/55evTowd69exk2bFie9n/961/cfffdxMfHM3p03gqCb731Fu3bt2f9+vW88soredqnTJlCeHg4K1euZOLEiXnaP/30Uxo0aMB3333H+++/n6d9zpw5VK9enYULFzJ9+vQ87YsXLyY4OJjo6Giio6PztP/www/4+voybdo0Fi1alKc9JiYGgMmTJ7N8+fJcbT4+Pvz4448ATJgwgV9++SVXe8WKFVmyZAkAL7/8Mhs2bMjVXn7/bv4d5g8WN0aPHk18fHyu9vr16zNjxgwAhg4dyr59uasIhoeHM2XKFAAGDhzI8ePHc7W3a9eOt982qlc+8sgjJCbmLpp211138eqrRvXK7t27k5ycu4rgAw88wD//+U+APJ87kM+eK3/2qlWrxldffQVQJj97WRwxtRIK5Kzfedx2Xy5KqaFKqTilVFx6evq1zcKFaasV5S7rdAphFrurHyql+gDdtNZP2G4PAtporUcW9Bipfli6HLr7Ntw5R/WV+66/sRDiht3M6ofHgeo5blcDTjigX+EidHqGjMiFMJEjEnksUE8pVUsp5Qn0Bxy3sq9wetb0TJS7m9lhCFFm2b2zU2udoZQaAfwPcANmaq132h2ZcBk6w4pyl1MShDCLQ5Z601r/APzgiL6E69HpmVg8ZEQuhFlkGCXsZs3QKEnkQphGErmwm860ojxcbh1vIUoNSeTCLjojA6xIIhfCRJLIhV2ylnmzeHqYHIkQZZckcmEXa2oqICNyIcwkiVzYJXvhZS8ZkQthFknkwi7ZidxTKh8KYRZJ5MIu2ja1YpFELoRpJJELu2TPkUsiF8I0ksiFXXRq1hy5t8mRCFF2SSIXdtFpthG5lyzzJoRZJJELu2TPkcuIXAjTSCIXdrGmGEtbyYhcCPNIIhd20clXAFDeMiIXwiySyIVddPJVAJSXr8mRCFF2SSIXdskakVt8ZEQuhFkkkQu7ZM+Re8uIXAizSCIXdtGpKYAkciHMJIlc2EVnj8h9TI5EiLLLrkSulOqjlNqplLIqpSIcFZRwHTo1GWXRKA9J5EKYxd4R+Q6gF7DGAbEIF2RNTUW5aXCTMrZCmMWu1QC01rsBlFKOieY6Tu/8jRMHttOyRrkSeb5Sq2oLqNzEIV3plBSURYO7nBAkhFlKbFkXpdRQYChAjRo1bqiPP1d+Tsfzy2CzIyMrgyo1gafXO6QrnZZmG5FLIhfCLNdN5EqplUCVfJrGaa3/W9Qn0lrPAGYARERE6CJHmEPLwe/y5OweHDx7hSn9WtIsNPBGuinbYibBvp8c1p1OTcXiBrhLGVshzHLdRK61vrskAikKdegErwVnMm3Hcb547whPd6lLpUAZCRbLngy8z1zCOzPdIfPa1rRUY2rFTRK5EGZxqRVzk5Z/x+V58xlsu535B5w0NSLX5BlQgTpXEiDwFrv70mnptqkVSeRCmMWuRK6Uehj4CAgBvldKxWutuzkksnyEjBpFxSeeAGDPyUuMmLeZquV8mDawFQFeLvU3yTTnPnyDc//9FevZY1gckchTbXPksrNTCNPYe9TKN8A3DorlutzKlcOtnHHESrNbYEJABaKiY3n657+YFdUGL3e3kgrFZfk0awb/XUPavp14125rd386LR2LBdnZKYSJXPrMzk71Q3ivT3N+P3iO5xZtxWq9oX2oZYpXo2YApO7b55D+rOkZchy5ECZz+fmIh1tW40xSKm//uIdKAV689kDjEjuu3RV5NgwHpUk9dMQh/en0dJS7TK0IYSaXT+QAQzvV5nRSKjPXHaJKoDfDOtcxOySnpfyC8Ay0knrslEP60+kZKE85jlwIM5WKRK6U4l/3N+LMpRTe/nEPIQFe9GpVzeywnJZXsAcpJy44pC+dloElSGFMlAshzFBqvn0Wi+L9vi1oV7siLy7expp9CWaH5LS8KvuTfi4Fa3Ky3X1ZMzJR7qXmYySESypV30Avdzc+HdyaupX8eeqrTWw/ftHskJySV2hFANIOHbK7L51hlUQuhMlK3Tcw0NuDWVFtKOfryWPRGzmSeMXskJyOV03j+PHU/fvt6kdrjU7PRHnIYZ9CmKnUJXKAyoHezH68DRlWzZCZGzl7OdXskJyKZ1iYceSKvYcgZmSABotHqdjVIoTLKpWJHKBOiD9fDLmVU0kpPB4dy5XUDLNDchoqsDKeARmk7ttjVz/W1DSjP5laEcJUpfob2LpmeT5+tBXb/7rI03M3k55pNTsk5+BfCa+gDPunVtKMXzrKU04GEsJMpTqRA9zduDJvPdyMX/cl8NKSbWgtZ3/iVwmvoHTST56x68gVnWpL5DK1IoSpSn0iB+jfpgZj7q7P0s1/8e7/9podjvn8K+EVmAFa23Xkik4zplYsMiIXwlRlIpEDjLqrLv9oW4PpMQeYtf6w2eGYyy8YryBjn4E90yvWVJlaEcIZlJnfxEopJvRsytlLqYz/bichAV7c16yq2WGZwysQz3JuYFGk/nnjiVxn7ez0kEQuhJnKzIgcwM2imPpoS1rXKM/oBfH8fjDR7JDMoRQqsBKewT6kHjhww91k7+z0kjorQpipzIzIs3h7uPH5kAh6f7KBJ2fH8fXwdjSsUgbX/vQLwaviFVLsmFrJ2tmZNUe+ZNNx3l+xF9mdLETBPugbTrs6FR3aZ5lL5ADlfD2ZFdWGR6atZ8jMjSx9ugOh5XzMDqtk+VfCK/BPLu05hjU5GYtP8V+/1bazU3kaI/KFscewauhUP9ihoQpRmpT3c/xUZJlM5ACh5XyYFdWG3p8YyXzx8HaU8y1D6076heDlFw/aQtqhQ3g3blzsLrLnyL29uJKawZZj54nqWIuXuzdydLRCiEKUqTnyazWoEsBngyM4eu4qj8+KIyU90+yQSo5/Jby8zwE3fuTK33Pk3mw8fI70TE3HujIaF6KkldkReZbbalfkw37hPD1vMyPnb2H6gFa4u5WBv29+lfD0TwM3Ny6v+Q238uWL3UXKjh0AWLy9Wb//LJ5uFiJqVnB0pEKI67ArkSul3gN6AGnAAeAxrbVjViwoQd2bVWV8jya8/u1OXv3vTt56uGnpXy7OPwRlAe+6YSQtX07S8uU31o/SWPx8Wbs/kdY1y+PjKZUQhShp9o7IfwZe1lpnKKXeAV4GXrI/rJI3pH0Yp5NSmBZzgCqB3jx7dz2zQ7q5/CoBUH38cNLVDa6mpMHtqztJ9fRm98kk/nlPfQcGKIQoKrsSudZ6RY6bvwO97QvHXC90a8DppFT+vXIflQO96N+mhtkh3Tz+RiJ3d0/BvVn4jfWRkQYBmRxMMvYtdJD5cSFM4cg58ihgYUGNSqmhwFCAGjWcM0EqpZj0SDPOXk7llW+2U9Hfi66NK5sd1s3hF2L8//KZG+8j0zhq5eD5dAK83GkWGuSAwIQQxXXdvXpKqZVKqR35XHrm2GYckAHMLagfrfUMrXWE1joiJCTEMdHfBB5uFqYNaEWz0CBGzt/MpiPnzQ7p5vApDxYPuGJ/It93NpXb6lQsGzuJhXBC1/3maa3v1lo3zefyXwCl1BDgAWCALiU1Yv283Pki8laqBHrz+KxY9p+5bHZIjqeUMSq/bMci1RnG4YdnrkIHB5+pJoQoOruGUEqpezF2bj6otb7qmJCcQ7C/F7Oj2uJuUQyZuZHTSSlmh+R4/iF2jsiNRJ6GOx3ryfy4EGax97fwx0AA8LNSKl4p9YkDYnIaNSr68mVkGy5cTWPIzI0kpaSbHZJj+VWyc47ceD98vH2oE+LvoKCEEMVlVyLXWtfVWlfXWofbLsMdFZizaFYtiE8GtWb/mcsMm72J1IxSdPanXwhcufGpFWu68SulTpUKpf+4eyGcmOydKoLb64XwXp/mbDiYyHOLtmK1lopdAbaplQS4wV0bh08bO4Lrhcr8uBBmkkReRA+3rMbL3Rvy/baTTPh+V+lY+9OvknHkScqNnYy746gxmm9YTebHhTBTma+1UhxDO9XmdFIqM9cdokqgN8M61zE7JPvYTgricoJxOGIx7T5+lgeBioEBjo2rFEtPT+f48eOkpJTCnefCYby9valWrRoeRVx9SxJ5MSil+Nf9jThzKYW3f9xDSIAXvVrd4OntziDrpKArZyCkeKfXp2VYOXjqnPGbzq0Mlf+10/HjxwkICCAsLEz2K4h8aa1JTEzk+PHj1KpVq0iPkamVYrJYFO/3bUG72hV5cfE2ft1nx3HYZssekRf/yJX4YxfQtuPIcZdEXlQpKSlUrFhRkrgokFKKihUrFutXmyTyG+Dl7sang1tTt5I/T321iW3HXa7go8FWOOtGjlxZt/8sXirDuOEma3YWhyRxcT3F/YxIIr9Bgd4ezIpqQ3lfT6KiYzmSeMXskIrPtwIoyw2NyNftP0vtCraRuIzIhTCVzJHboXKgN7Mfb8Mj09czeOZGljzVnmB/FxqdWtzANxiOboC4mUV+WEqGlYZ/7aJrlRNwCZkjdzHt27dn/fr1ZoeRLTo6mri4OD7++OMCt4mJicHT05P27duXYGS5jR8/Hn9/f/75z38Wafu33nqLV1555SZHZZBEbqc6If58MeRWBnz+O1HRscx/8jb8vFzoba3UCA79CkfWFfkh3sBEd+As4OkP3uVuVnTiJnCmJF5UMTEx+Pv7m5bIMzIyiv0YSeQupnXN8nz8aCuGzonjqbmb+WJIBB6uUglwwGJIPlesh/z7530s2Xyclc91xtsvCLzk9Pwb8cZ3O9l1IsmhfTa+JZDXezQpdBt/f38uX75MTEwM48ePJzg4mB07dtC6dWu++uorlFLExsby7LPPcuXKFby8vPjll1/w8PDgqaeeIi4uDnd3dz744APuuOMOoqOjWbZsGZmZmezYsYPnn3+etLQ05syZg5eXFz/88AMVKlSgS5cuhIeHs3HjRpKSkpg5cyZt2rTJFVtCQgLDhw/n6NGjAEyZMoXQ0FA++eQT3Nzc+Oqrr/joo49o2LBhnjE+6LIAACAASURBVO06dOiQq6+ixvXZZ58xY8YM0tLSqFu3LnPmzMHX15fIyEgqVKjAli1baNWqFQEBfx9m+9lnn7F06VKWLl3KkiVLmDp1KmlpabRt25Zp06Yxbtw4kpOTCQ8Pp0mTJsydW2BhWIdwkWzj/O5uXJm3Hm7Gmn0JvLRkm+ucMOTuCQFVinX531GoGVYb7wqhksRd3JYtW5gyZQq7du3i4MGDrFu3jrS0NPr168eHH37I1q1bWblyJT4+PvznP/8BYPv27cyfP58hQ4ZkH1mxY8cO5s2bx8aNGxk3bhy+vr5s2bKFdu3aMXv27Oznu3LlCuvXr2fatGlERUXliefZZ59lzJgxxMbGsmTJEp544gnCwsIYPnw4Y8aMIT4+nttvvz3f7fJTlLh69epFbGwsW7dupVGjRnzxxRfZj9+3bx8rV67k/fffz77v448/5rvvvmPZsmUcPnyYhQsXsm7dOuLj43Fzc2Pu3LlMmjQJHx8f4uPjb3oSBxmRO1T/NjVyrDDkzUv3NjQ7JIdLuJTKnlOXePHeBmaH4vKuN3IuCW3atKFaNeNciPDwcA4fPkxQUBBVq1bl1ltvBSAwMBCAtWvXMnLkSAAaNmxIzZo12bdvHwB33HEHAQEBBAQEEBQURI8ePQBo1qwZ27Zty36+Rx99FIBOnTqRlJTEhQu5j/hauXIlu3btyr6dlJTEpUuX8sRd0HY5R81FjWvHjh3861//4sKFC1y+fJlu3bplP75Pnz64uf29Du2cOXOoVq0ay5Ytw8PDg19++YVNmzZlv1fJyclUqlSpsLf8ppBE7mCj7qrLqaQUpsccoHKAF5EdinZAv6tYf+AsAB3qyGn5pYGX1987593c3MjIyEBrne/hb4X9yszZj8Viyb5tsVhyzS9f2++1t61WKxs2bMDHx6fQuIu6XVHiioyMZNmyZbRo0YLo6GhiYmKyH+Pn55erv6ZNmxIfH599so7WmiFDhvD2228XGsfNJlMrDqaUYkLPJnRtXJk3lu/i+20nzQ7JodbvTyTQ252msqxbqdWwYUNOnDhBbGwsAJcuXSIjI4NOnTplTxPs27ePo0eP0qBB8X6ZLVxorAa5du1agoKCCArK/Tm65557ch29Eh8fD0BAQECukXlB292IS5cuUbVqVdLT0687DdKyZUs+/fRTHnzwQU6cOMFdd93F4sWLOXPGOIT33LlzHDlyBAAPDw/S00um9LUk8pvA3c3CR4+2pFWN8oxZGM+GA4lmh+QQWmvW7j9LuzoVcbPISS2llaenJwsXLmTkyJG0aNGCrl27kpKSwtNPP01mZibNmjWjX79+REdH5xrxFkX58uVp3749w4cPzzUXnWXq1KnExcXRvHlzGjduzCefGEsc9OjRg2+++Ybw8HB+++23Are7ERMmTKBt27Z07dqVhg2vPx3asWNHJk+ezP3330+lSpWYOHEi99xzD82bN6dr166cPGkM3oYOHUrz5s0ZMGDADcdWVMqMnXIRERE6Li6uxJ+3pF24mkbvTzZwOimFr4e3o2GVQLNDssuRxCt0fi+GCT2bMKhdmNnhuKTdu3fTqFEjs8MwRZcuXZg8eTIRERFmh+IS8vusKKU2aa3zvIEyIr+Jyvl6MiuqDX6e7gyZuZG/LiSbHZJd1u435sfb15X5cSGciSTymyy0nA/RUbdyNS2TITM3cuFqmtkh3bD1+xOpGuRN7WC/628sxDViYmJkNH6TSCIvAQ2rBPLZ4AiOJl7l8VlxpKS73nJxVqtm/YGztK8TLEWfhHAydiVypdQEpdQ228LLK5RStzgqsNLmttoVmdI/nM1HzzNy/hYyMq1mh1Qsu04mcf5qOh3rybJuQjgbe0fk72mtm2utw4HlwGsOiKnUuq9ZVcb3aMLPu07z2rc7XefsT4xqhwDt5fhxIZyOXScEaa1zForwA1wnM5lkSPswTielMC3mAJUDvHn27npmh1Qk6w4kUq+SP5UDvc0ORQhxDbvnyJVSbyqljgEDKGRErpQaqpSKU0rFJSS48Ko6DvBCtwY80qoa/165jwUbj5odznWlZmSy8VAiHeRoFVFMkZGRLF68uNBtoqOjOXHiRAlFlL8uXbpQ1EOiDx8+zLx5825yRMVz3USulFqplNqRz6UngNZ6nNa6OjAXGFFQP1rrGVrrCK11REhIiONegQtSSjHpkWZ0rh/CK99sZ+Wu02aHVKjNRy6Qkm6VRC5uCrMTeWZm8Q4+cMZEft2pFa313UXsax7wPfC6XRGVER5uFqYNaMWjn/3OiPmbmfvEbbSuWfyV7EvC+gNnsShoW7uC2aGULj+OhVPbHdtnlWbQfVKhm8yePZvJkyejlKJ58+bMmTOHI0eOEBUVRUJCAiEhIXz55ZfUqFGDyMhIfHx82LNnD0eOHOHLL79k1qxZbNiwgbZt2xIdHQ0YpXGHDRvG6tWrKV++PAsWLODaAdumTZt47rnnuHz5MsHBwURHR7Nu3Tri4uIYMGAAPj4+bNiwgV27duXZrmrVqrn6KmpcTz31FLGxsSQnJ9O7d2/eeOMNAMLCwoiKimLFihWMGPH3+NNqtfLYY49RvXp13njjDcaOHUtMTAypqak888wzDBs2jLFjx7J7927Cw8MZMmQIY8aMsfMfzX72HrWSc4L3QWCPfeGULX5e7syMvJUqgd48PiuW/Wcumx1SvtbuP0uL6uUI9PYwOxRhp507d/Lmm2+yatUqtm7dyocffgjAiBEjGDx4MNu2bWPAgAGMGjUq+zHnz59n1apV/Pvf/6ZHjx6MGTOGnTt3sn379uwaJ1euXKFVq1Zs3ryZzp07ZyfMLOnp6YwcOZLFixezadMmoqKiGDduHL179yYiIoK5c+cSHx+Pu7t7vtvlpyhxvfnmm8TFxbFt2zZ+/fXXXJUYvb29Wbt2Lf379weMxSMGDBhA/fr1mThxIl988QVBQUHExsYSGxvLZ599xqFDh5g0aRK333478fHxTpHEwf7qh5OUUg0AK3AEGG5/SGVLsL8Xs6Pa0mv6OobM3MjSp9s71Q7FpJR0th2/yFOd65gdSulznZHzzbBq1Sp69+5NcLAxTVahgvEra8OGDSxduhSAQYMG8eKLL2Y/pkePHiilaNasGZUrV6ZZs2YANGnShMOHDxMeHo7FYqFfv34ADBw4kF69euV63r1797Jjxw66du0KGNMZ146yi7NdUeNatGgRM2bMICMjg5MnT7Jr1y6aN28OkB1vlmHDhtG3b9/sPxwrVqxg27Zt2XP8Fy9e5M8//8TT0/mWNrT3qJVHHBVIWVajoi9fRrah/4wNRH4Zy8JhtznN6PePg+fItGqZHy8lCipRe62c2+Qs/XptWdiClkC79jm01jRp0oQNGzZcN76ibFeUuA4dOsTkyZOJjY2lfPnyREZGZi+EAXlL1LZv357Vq1fz/PPP4+3tjdaajz76KFd9ciBXmVtnIWd2Oolm1YKYPrA1f56+xLDZm0jNcI6zP9ftP4u3h4VWNWVdztLgrrvuYtGiRSQmGhU5z50zlvlr3749CxYsAGDu3Ll07NixWP1ardbskeu8efPyPL5BgwYkJCRkJ+j09HR27twJ5C5RW9h2xZWUlISfnx9BQUGcPn2aH3/8sdDtH3/8ce677z769OlDRkYG3bp1Y/r06dmlaPft28eVK1fylNR1BrKwhBPpVD+E9/o0Z8zCrTy/aCtT+7fEYnK52HX7z3JrWAW83N2uv7Fwek2aNGHcuHF07twZNzc3WrZsSXR0NFOnTiUqKor33nsve2dncfj5+bFz505at25NUFBQdt3xLJ6enixevJhRo0Zx8eJFMjIyGD16NE2aNCEyMpLhw4dn7+wsaLviatGiBS1btqRJkybUrl07z5qe+Xnuuee4ePEigwYNYu7cuRw+fJhWrVqhtSYkJIRly5bRvHlz3N3dadGiBZGRkU4xTy5lbJ3Qp78e4O0f9/BYhzBee6CxabVNziSl0OatXxjbvSHDZY7cIUprGdusBZ2F4xSnjK2MyJ3Q0E61OZ2Uysx1h6gS6M0wk5LoOtuybh1lflwIpyaJ3AkppfjX/Y04cymFt3/cQ6VALx5uWa3E41i3P5Fyvh40ruraC2KIm09G4+aSRO6kLBbF+31bkHg5jRe+3kZFPy861S+5M2K11qzbf5b2dSqaPk8vhCicHLXixLzc3fh0cGvqVQ5g+Feb2H78Yok996GzVzh5MUWqHQrhAiSRO7lAbw9mPXYr5X09eSx6I0cSr5TI82aVrZX5cSGcnyRyF1Ap0JvZj7ch06oZPHMjZy+n3vTnXLc/kdByPtSs6HvTn0sIYR9J5C6iTog/X0TeyumkFKKiY7mSmv8ZdY6QaVvWrUPdirKsmyjQlClTuHr1qtlhFCpnGd0nnniCXbt2AfDWW2+ZGZbDSSJ3Ia1qlOc//2jFzhNJPDV3M+k3abm4nScukpSSIafli0K5QiLP6fPPP6dx48bAjSXygsoROAM5asXF3NWoMm8+1JSxS7fz0pJtvN+nhcNHzWtlWbcS89hPj+W5r1tYN/o37E9yRjJPr3w6T3vPuj15qO5DnE85z3Mxz+Vq+/Le65+ROWHCBObOnUv16tUJDg6mdevW/POf/yQ+Pp7hw4dz9epV6tSpw8yZMzl16hRDhgxh48aNgFGL+8EHH+SJJ57gxIkT3HHHHQQHB7N69epcz5FfyVpfX1/atGnDt99+S4MGDXj00Ue58847efLJJwssg3vgwAGeeeYZEhIS8PX15bPPPqNhw4ZERkYSGBhIXFwcp06d4t1336V3795orRk5ciSrVq2iVq1auZZT7NKlC5MnT2bx4sUkJycTHh5OkyZNePPNN3nggQfYsWMHAJMnT+by5cuMHz+eLl260L59e9atW8eDDz5Ily5d8i2xO3XqVD755BPc3d1p3LhxdrmDkiIjchfUv00Nnutan6Wb/+Ld/+11eP/r9yfSsEoAIQFe199YuJS4uDiWLFnCli1bWLp0aa5VcQYPHsw777zDtm3baNasGW+88QaNGjUiLS2NgwcPArBw4UL69u3LqFGjuOWWW1i9enWeJF5QydqgoCA+/vhjIiMjWbBgAefPn+fJJ58ECi6DO3ToUD766CM2bdrE5MmTefrpv/+wnTx5krVr17J8+XLGjh0LwDfffMPevXvZvn07n332GevXr8/zHkyaNAkfHx/i4+OZO3fudd+zCxcu8OuvvzJq1KgCS+xOmjSJLVu2sG3bNj755JPi/JM4hIzIXdTIO+tyKimF6TEHqBzgRWSHWg7pNyU9k9jD5xjQtqZD+hOFK2wE7ePuU2h7ee/yRRqB57R27Vp69uyJj48PYJSCBaNE64ULF+jcuTMAQ4YMoU+fPgD07duXRYsWMXbsWBYuXJinjsq1CitF27VrV77++mueeeYZtm7dmv2Y/MrgXr58mfXr12fHAZCa+veO/oceegiLxULjxo05fdpYZWvNmjU8+uijuLm5ccstt3DnnXcW6/3JT1Zchb2u5s2bM2DAAB566CEeeughu5+zuCSRuyilFBN6NuXspVTeWL6LSoHe3Ncs/7rNxbH5yHlSM6x0rFfRAVEKZ3MjtZX69etHnz596NWrF0op6tUrfMHwwkrRWq1Wdu/ejY+PD+fOnaNatfzPWFZKYbVaKVeuXPYiEdfKWbo25+sq7lSju7s7Vuvf+5tylrqFv8vdFva6vv/+e9asWcO3337LhAkT2LlzJ+7uJZdeZWrFhblZFFMfbUnrGuUZvSCeDQcS7e5z7f6zuFsUbWpJIi+NOnbsyHfffUdKSgqXL1/m+++/ByAoKIjy5cvz22+/ATBnzpzs0XmdOnVwc3NjwoQJuRZjKKica2GlaP/973/TqFEj5s+fT1RUVHaJ2PzK4AYGBlKrVi2+/vprwEikOUfx+enUqRMLFiwgMzOTkydP5pn2yeLh4ZH93JUrV+bMmTMkJiaSmprK8uXL831MQa/LarVy7Ngx7rjjDt59910uXLhQ4iULZETu4rw93Ph8SAS9P9nA0NlxLBrejkZ21EZZdyCR8Orl8PeSj0ZpdOutt/Lggw/SokULatasSUREBEFBQQDMmjUre2dn7dq1c5Wy7devHy+88AKHDh3Kvm/o0KF0796dqlWr5kqYBZWs9fDw4PPPP2fjxo0EBATQqVMnJk6cyBtvvFFgGdy5c+fy1FNPMXHiRNLT0+nfvz8tWrQo8PU9/PDDrFq1imbNmlG/fv3sP0bXGjp0KM2bN6dVq1bMnTuX1157jbZt21KrVi0aNmyY72MKel3169dn4MCBXLx4Ea01Y8aMoVy5kq3fL2VsS4m/LiTzyLT1aDRLn+5AaDmfYvdxMTmdlv+3ghF31uO5rvVvQpTCGcrYXr58GX9/f65evUqnTp2YMWMGrVq1MjUmKYObV3HK2MrUSikRWs6HWVFtuJqWyeAv/uD8lbRi9/H7wUSsWk7LL+2GDh1KeHg4rVq14pFHHjE9iQv7OeT3s1Lqn8B7QIjW+qwj+hTF16BKAJ8PjmDQzI08MTuOuU+0xduj6Cv7rNt/Fh8PN8Kry7Jupdm8efPMDiEPGY3bx+4RuVKqOtAVOGp/OMJebWtX5MN+4Ww+ep4R87aQUYyzP9ftP0vb2hXwdJcfakK4Ekd8Y/8NvAiU/GS7yFf3ZlUZ36MJK3ef5tX/7izSIWenLqZwIOEKHeRsTiFcjl1TK0qpB4G/tNZbpbiScxnSPozTSSlMizlA5UAvRt9d+M7LrLK1Ul9FCNdz3USulFoJVMmnaRzwCnBPUZ5IKTUUGApQo0aNYoQobtQL3RpwOimVKSv/pHKgN4+2Kfh9X7f/LBX8PGlYJaAEIxRCOMJ1p1a01ndrrZteewEOArWArUqpw0A1YLNSKr+kj9Z6htY6QmsdERJSckuWlWVKKSY90ozO9UMY9812ft51Ot/ttNasOyDLuon8+fv739T+ExISaNu2LS1btsw+ISk/MTExPPDAA4X2FR0dzYgRI/Lcf+HCBaZNm1asuG6kumNBz3+z3fAcudZ6u9a6ktY6TGsdBhwHWmmtTzksOmE3DzcL0wa0omloECPnb2bTkfN5tjmQcJnTSakyrSJM8csvv9CwYUO2bNnC7bffflOeo6QSuVnk9L0ywM/LnZmRt9J7+noenxXL4uHtqVvp71HWuv3Gqf1y/HjJOvXWW6Tu3uPQPr0aNaTKK68U2P7SSy9Rs2bN7CqC48ePJyAggGHDhtGzZ0/Onz9Peno6EydOpGfPnrkeGxMTw+TJk7NPYR8xYgQRERFERkbmW7Y2q6BUliNHjhAVFUVCQgIhISF8+eWXnDt3jhdffDG7rOyGDRuyC3oB/PTTT4wePZrg4OBcx7tfuXKFkSNHsn37djIyMhg/fnx2vMeOHePee+/l0KFD/OMf/+D1119n7NixHDhwgPDwcLp27cpzzz1Hv379SEpKIiMjg+nTp+f6IzJ16tQ8ZXrnz5/PW2+9hdaa+++/n3feeQeAL7/8krfffpuqVatSv3797Bow3333HRMnTiQtLY2KFSsyd+5cQkJCaNCgAevXryckJASr1Ur9+vX5/fffCQ6+8e+fw44zs43M5RhyJxXs78WsqDa4WxRDZm7kdNLfhYHW7j9L9Qo+VK8gy7qVdv37989VvXDRokX06dMHb29vvvnmGzZv3szq1at5/vnni1xgq6CytdcaMWIEgwcPZtu2bQwYMIBRo0YRHh7O//3f/9GvXz/i4+NzJfGUlBSefPJJvvvuO3777TdOnfr7x/6bb77JnXfeSWxsLKtXr+aFF17gyhVjPduNGzcyd+5c4uPj+frrr4mLi2PSpEnUqVOH+Ph43nvvPebNm0e3bt2Ij49n69athIeH54r12jK9J06c4KWXXmLVqlXEx8cTGxvLsmXLOHnyJK+//jrr1q3j559/zl6BCIy6Nr///jtbtmyhf//+vPvuu1gsFgYOHJhdPnflypW0aNHCriQOMiIvU2pW9OPLyDb0n7GBITM3smh4O3w93Pj9YCIPNLe/cqIonsJGzjdLy5YtOXPmDCdOnCAhIYHy5ctTo0YN0tPTeeWVV1izZg0Wi4W//vqL06dPU6VKvru8cimsvGtOGzZsYOnSpQAMGjSIF198sdB+9+zZQ61atbKrLQ4cOJAZM2YAsGLFCr799lsmT54MGEn/6FHjVJauXbtSsaJR9K1Xr16sXbs2T2nZW2+9Nbto10MPPZQnkV8rNjaWLl26kLV/b8CAAaxZswYg1/39+vVj3759ABw/fpx+/fpx8uRJ0tLSqFXLKDUdFRVFz549GT16NDNnzuSxx/IuLlJccuZHGdOsWhDTB7Zm/5nLDJ0dx+ajF7iUkiGrAZUhvXv3ZvHixSxcuJD+/fsDRnGqhIQENm3aRHx8PJUrV85TzrWgcq9Z5V3j4+OJj49n+/btrFix4rpxFOWQ5YK20VqzZMmS7Oc8evRodl2Sax+TXx+dOnVizZo1hIaGMmjQIGbPnl1oHIX9OikoxpEjRzJixAi2b9/Op59+mv1+Va9encqVK7Nq1Sr++OMPunfvXuhzF4Uk8jKoU/0Q3uvTnN8PnmP4V5sAaF9HytaWFf3792fBggUsXryY3r17A8bCEpUqVcLDw4PVq1dz5MiRPI+rWbMmu3btIjU1lYsXL/LLL78AhZetzal9+/bZS6DNnTuXjh07Fhpnw4YNOXToEAcOHABg/vz52W3dunXjo48+yk6wW7ZsyW77+eefOXfuHMnJySxbtowOHTrkKbl75MgRKlWqxJNPPsnjjz/O5s2b8zx/zse0bduWX3/9lbNnz5KZmcn8+fPp3Lkzbdu2JSYmhsTERNLT07NL7ma9p6GhoYBRWTKnJ554goEDB9K3b1/c3IpeRqMgMrVSRj3cshpnklJ5+8c9NKoaSEV/WdatrGjSpAmXLl0iNDQ0ewpkwIAB9OjRg4iICMLDw/Mt5Vq9enX69u1L8+bNqVevHi1btgQKLu/apEmTXI+fOnUqUVFRvPfee9k7Owvj7e3NjBkzuP/++wkODqZjx47Z62q++uqrjB49mubNm6O1JiwsLHsnbMeOHRk0aBD79+/nH//4BxERRrHADh060LRpU7p3707Tpk1577338PDwwN/fP98R+bVlet9++23uuOMOtNbcd9992TtXx48fT7t27ahatSqtWrUiMzMz+/4+ffoQGhrKbbfdlqsE8IMPPshjjz3mkGkVkDK2ZZrWmnkbj1K9vC+d6sux/SXBGcrYCvPFxcUxZsyYQo+bL04ZWxmRl2FKKVmbU4gSNmnSJKZPn16khZ+LSubIhRCiBI0dO5YjR45cdx9BcUgiF6KEmTGdKVxLcT8jksiFKEHe3t4kJiZKMhcF0lqTmJiIt7d3kR8jc+RClKBq1apx/PhxEhISzA5FODFvb2+qVatW5O0lkQtRgjw8PLLP8BPCUWRqRQghXJwkciGEcHGSyIUQwsWZcmanUioByFvMoWiCAWctl+ussTlrXOC8sTlrXOC8sTlrXOC8sRU3rppa6zynYZuSyO2hlIrL7xRVZ+CssTlrXOC8sTlrXOC8sTlrXOC8sTkqLplaEUIIFyeJXAghXJwrJvIZZgdQCGeNzVnjAueNzVnjAueNzVnjAueNzSFxudwcuRBCiNxccUQuhBAiB0nkQgjh4lwqkSul7lVK7VVK7VdKjTUxjplKqTNKqR057quglPpZKfWn7f/lTYqtulJqtVJqt1Jqp1LqWWeITynlrZTaqJTaaovrDWeIK0d8bkqpLUqp5U4W12Gl1HalVLxSKs7JYiunlFqslNpj+7y1Mzs2pVQD23uVdUlSSo02O64c8Y2xff53KKXm274XdsfmMolcKeUG/AfoDjQGHlVKNTYpnGjg3mvuGwv8orWuB/xiu22GDOB5rXUj4DbgGdv7ZHZ8qcCdWusWQDhwr1LqNieIK8uzwO4ct50lLoA7tNbhOY43dpbYPgR+0lo3BFpgvH+mxqa13mt7r8KB1sBV4Buz4wJQSoUCo4AIrXVTwA3o75DYtNYucQHaAf/Lcftl4GUT4wkDduS4vReoarteFdhr9ntmi+W/QFdnig/wBTYDbZ0hLqCa7Qt0J7Dcmf49gcNA8DX3mR4bEAgcwnbAhDPFliOWe4B1zhIXEAocAypgVJ5dbovR7thcZkTO329CluO2+5xFZa31SQDb/yuZHA9KqTCgJfAHThCfbfoiHjgD/Ky1doq4gCnAi4A1x33OEBeABlYopTYppYY6UWy1gQTgS9uU1OdKKT8niS1Lf2C+7brpcWmt/wImA0eBk8BFrfUKR8TmSolc5XOfHDtZAKWUP7AEGK21TjI7HgCtdaY2fvJWA9oopZqaHZNS6gHgjNZ6k9mxFKCD1roVxpTiM0qpTmYHZOMOtAKma61bAlcwd/opF6WUJ/Ag8LXZsWSxzX33BGoBtwB+SqmBjujblRL5caB6jtvVgBMmxZKf00qpqgC2/58xKxCllAdGEp+rtV7qbPFprS8AMRj7GcyOqwPwoFLqMLAAuFMp9ZUTxAWA1vqE7f9nMOZ62zhJbMeB47ZfVQCLMRK7M8QGxh++zVrr07bbzhDX3cAhrXWC1jodWAq0d0RsrpTIY4F6Sqlatr+2/YFvTY4pp2+BIbbrQzDmpkucUkoBXwC7tdYf5GgyNT6lVIhSqpztug/Gh3qP2XFprV/WWlfTWodhfKZWaa0Hmh0XgFLKTykVkHUdYz51hzPEprU+BRxTSjWw3XUXsMsZYrN5lL+nVcA54joK3KaU8rV9T+/C2EFsf2xm7Yi4wZ0F9wH7gAPAOBPjmI8xx5WOMTJ5HKiIscPsT9v/K5gUW0eMKadtQLztcp/Z8QHNgS22uHYAr9nud4r3zRZLF/7e2Wl6XBjz0Fttl51Zn3lniM0WRzgQZ/s3XQaUd4bYMHamJwJBOe4zGHvi8QAAAjhJREFUPS5bHG9gDGB2AHMAL0fEJqfoCyGEi3OlqRUhhBD5kEQuhBAuThK5EEK4OEnkQgjh4iSRCyGEi5NELkoNpVSmreLdDqXU10op32I89hal1OJiPl+MUsrpFvQVZY8kclGaJGuj8l1TIA0YXpQHKaXctdYntNa9b254QtwckshFafUbUNd2duRMpVSsrbhTTwClVKRt1P4dRlGqMGWrL2+rEf2lrQ74FqXUHbb7fZRSC5RS25RSCwEf2/1uSqlo2y+B7UqpMSa9ZlFGuZsdgBCOppRyx6i18RMwDuO0+yhbiYCNSqmVtk3bAc211udslSKzPAOgtW6mlGqIkejrA08BV7XWzZVSzTFK8YJxhmOo7ZcAWaUIhCgpMiIXpYmPrUxuHEZdiy8w6pOMtd0fA3gDNWzb/6y1PpdPPx0xTp9Ga70HOALUBzoBX9nu34ZxajrAQaC2UuojpdS9gFNUmxRlh4zIRWmSrI0yudlsxYke0Vrvveb+thilV/OTX8nkLHlqWmitzyulWgDdMEbzfYGo4gQuhD1kRC5Ku/8BI20JHaVUyyI8Zg0wwLZ9fYwR/N5r7m+KUQgMpVQwYNFaLwFexSjnKkSJkRG5KO0mYKwAtM2WzA8DD1znMdOAT5RS2zHWQI3UWqcqpaZjrIiTVVlyo237UNv9WQOjlx38GoQolFQ/FEIIFydTK0II4eIkkQshhIuTRC6EEC5OErkQQrg4SeRCCOHiJJELIYSLk0QuhBAu7v8BwoL729dA2+IAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_24_1.png" }, "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAEWCAYAAADGjIh1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hUVfrA8e876QlkKAkBEmDoVVBABAQRK27Ute5i7+iu3V3XuPpb7666xr6uq6vYK4odN9hQsNIVpCMldAh1Agkl5fz+uDc4hCRzk5lkUt7P88xD5pYz7xTmnXPuKWKMQSmllKoPPJEOQCmllCqjSUkppVS9oUlJKaVUvaFJSSmlVL2hSUkppVS9oUlJKaVUvaFJqREREUtEXg/h/EUicnwYQ2qSavI+iMgEETmrtmKqLhE5XkTWRzqOcKiL5yIiaSKyRETiavNxmgJNSmEgIheKyBwR2SMim0TkExEZEem4qiIiL4vIfYHbjDF9jTHTIhTSQSJiRKRbpONwIxxfeCLSHxgAfBSeqOpWqD+G6qvqvLfGmC3AVGBc7UbV+GlSCpGI3Ab8C/gnkAZ0BJ4GfhvJuOorEYmug8eIqu3HCLNrgTeMjmQPu7r4vAV4A/u9VKEwxuithjfAC+wBzq/imJeB+wLuHw+sD7ifC9wO/AwUAC9gJ7dPgN3AFKBlRecGnH+S87cFvB6w7x1gM+AHvgH6OtvHAUXAASf+jwPLAtoDe4FWAWUdBWwDYpz7VwJLgJ3AZ0CnSp6/DzDAVcBa4JuqznfiNM5rsQf4PXA58F25cg3QLeA1/i8w2TnvJOe5/Nl5Xf3A20B8JTFeDnwPPOkcuxQ4MWD/FU6su4FVwLXO9iTndSp1Yt3jvHYWMBF41TlnETC4is/IKmBEuW3XBDzmYmCgs703MA3Y5ZR7ZrnP2tPYn509znNqi/2jaafzvI4q99m50yl/J/BS2WvE4Z/T9sB7wFZgNXCTs30M9ueoyHnM+QH/N14ANgEbgPuAqEqev4X9WX3deb4LgB5ObHnAOuCUYO9HYNzAHdif/dcqeC43Oc85A4gDHsH+bG4BngESqnhvhwBzgHzn+McCyo0GCqnk/4LeXH6vRjqAhnxz/kMWA9FVHPMywZPSDOxElO78J/wROwnEAV8B91R0bsD5lSWlK4HmTjn/AuZVFlcFZX0FXBOw72HgGefvs4AV2F+Q0cDdwA+VPH8fdgJ51fmPnhDsfAISjnP/coInJT9wLHbtP955LrOcL5JW2F9i11US4+XO+3grEIOdCP04SRnIBLoCAoxyvnjKkkRF74kF7AN+A0QBDwAzKnnsJOe5pAZsOx/7i/xo5zG7AZ2c2FYAfwVigROwv5h7BrwO24BBzmvwFXYCudSJ4z5garn3eyHQwXmNvi/7TAQ+L+c1nQv8zXncLtjJ4NSKPnfOtg+BZ53n18Z5L66t5DUoe71OdT4Przpx3+U852uA1QHHB3s/ioEHsT/3CeWey/9h//9Kde7/C5jkPP/mwMfAA1W8t9OBS5y/mwFDy+3/mYAfCnqr/k2b70LTGthmjCkOsZwnjTFbjDEbgG+BmcaYn4wx+4EPsBNUtRljXjTG7HbKsYABIuJ1efqbwAUAIiLAWGcb2E0UDxhjljjP/Z/AkSLSqYryLGNMgTFmbw3PD+YjY8z3xphSY8w+Z9u/jTEbjTE7sL9sjqzi/DzgX8aYImPM28Ay7C8/jDE5xpiVxvY18DkwMkg83xljJhtjSrB/rQ+o5LgWzr+7A7ZdDTxkjJntPOYKY8waYCj2F2G2MeaAMeYr4H8475PjA2PMXOc1+ADYZ4x51YnjbQ7/LP3HGLPOeY3uL1dWmaOxv8T/4TzuKuA57M/EYUQkDTgNuMV5z/OAxys73vGtMeYz5/PwDpDqPM8i4C3AJyItwNX7UYr9Q26/83lzwpLHsBPfaGPMVudzfQ1wqzFmhzFmN/Znsao4i4BuIpJijNljjJlRbv9ufn1PVQ1oUgrNdiAlDO3WWwL+3lvB/WbVLVBEokQkW0RWikg+9q9igBSXRbwLDBOR9sBx2L/mv3X2dQKeEJFdIrIL2IH9qzW9ivLWBfxdk/ODWVfBts0BfxdS9eu4wRgTeE1nDXYtCxE5TURmiMgOJ97fEPx1LP/Y8ZV8TnY5/zYP2NYBWFnBse2BdcaY0nJxBr5u1f0sBb5uB59zOZ2A9mXvl/Ma/BW7dl+RslrdpoDjn8WuMVWmfJzbnERadp+y2F28H1sDfpiUaYHdbP2AMcbvbEsFEoG5AXF+6myvzFXYTYtLRWS2iJxebn9zfn1PVQ3U5UXAxmg6drPDWdhf4hUpwP7gl2kbwuMdUpZzQb+y/0AXYne2KLu+4sW+biDO/iovqhtjdonI58DvsJvZJgR8aa8D7jfGvFGN2AMfr7rnl3/eFb2GoXYSSBcRCXiOHYFJThff97CbwD4yxhSJyIe4fB2DMcYUiMhK7C+6rc7mddjNU+VtBDqIiCcgMXUElocQQoeAvzs6j1HeOuzms+6VlFH+NVgH7AdSwtCKcAgX70dF8YD92b8YmCgiZxtjvsdu6tyLfa11QwXnHFaOMeYX4AIR8QDnAO+KSGvnfYzGbmqdH8JTbPK0phQC5xfX34CnROQsEUkUkRjnl9xDzmHzgN+ISCvny/SWEB5yOfYv7kwRicG+FlPZuIjm2F8M27G/0P9Zbv8W7GsDVXkT+z//ufzadAf2xeA7RaQvgIh4ReT8ajyPYOeXj20+0FdEjhSReOymyHBrA9zkvH/nYyfiydjXUOKwE0axiJwGnFIu1tbVaBatyGTsayNlngf+LCKDxNbNadqciZ2g/+LEeTxwBnbzVk1dLyIZItIKu/bzdgXHzALyReQOEUlwauH9RORoZ/8W7OY1D4AxZhN2k9qjIpIsIh4R6Soioyoou7qCvR+VMvZwh4uAD0TkGCexPwc8LiJtAEQkXURODXheh7y3InKxiKQ655bViMpqdEOAXKepVdWQJqUQGWMeA27DThBbsX8l3oB9oRfs6wnzsWsrn1Pxf3q3j+UH/oj9pbUB+wuqsnEUr2I3x2zA7mlUvu37BaCP02zxYfmTHZOA7sAWY8zBX3/GmA+wLyS/5TQNLsS+huD2eQQ73wJecWL7nTFmOfAP7J6IvwDfuX2sapiJ/Vy3YV9bOc8Ys925znATdm+6ndg10EkBz2UpMAFY5cRbUfNXMOOBi5xrHBhj3nFieBP7GsWH2J0uDgBnYr9W27B72l3qxFBTb2J/Llc5t/vKH+A0o52BfU1utfPYz2PXvsG+BgSwXUR+dP6+FDuBlPXsexdoF0KcZbFU+X64OP8L7N57k0RkEHYvvRXADOezOAXo6Rxb0Xs7BlgkInuAJ4CxAU2FF2H/4FIhkEOb0ZVqekTkcuBqY0zEBjyLyJvARGNMZT8QauMxc7Gf95S6eszGyqlpfY3d5b789SxVDXpNSal6wBhzYaRjUDXn9DDsHek4GgNtvlNKKVVvaPOdUkqpekNrSkoppeqNBnVNyePxmISEhEiHoZRSDUphYaExxjSISkiDSkoJCQkUFBREOgyllGpQRGRv8KPqhwaROZVSSjUNmpSUUkrVG5qUlFJK1RualJRSStUbmpSUUkrVG5qUlFKqiRORF0UkT0QWVrL/IhH52bn9ICKVLVoZMk1KSimlXsaeAb0yq4FRxpj+wL3YM9vXigY1Tqmmvlm+lZVb9/D7ozuQGNsknnLtWzkV1vxw+PbhN0C8F1Z/C6u/OXz/yNsgRgdAK1WfGGO+ERFfFfsD/7PPADJqK5Ym8Q09ZckWXp2+hie/WsHlw31cNsyHNzEm0mE1bOtnwzcPceiCn8Cgy+2ktHY6fPPw4ecNu94+98fX4DcPQ0KLuohWqaYuWkTmBNwfb4ypaW3nKuCTMMRUoQY1IWtSUpKp6YwOc3J38N9pK/lyaR5JsVH8/uiOXDa8E51aJ4U5ShXU3Ffg45vg1kXgrbUfXEoph4gUGmOq/LJzakr/M8b0q+KY0diLS44wxmwPa5COJlFTAhjsa8ULl7diyaZ8nvl6Ja9Oz+WlH1YzumcbLh/uY0S3FDweCVqOchgDUsPXK8qppZYUhS8epVStEpH+2CsOn1ZbCQmaYEeH3u2SeWLsUXyfdQI3ju7Gz+t3cemLsxj96DSemrqCLfm6aKQrj/eFSTdW+zRjDJMXbwOgcJ++1ko1BCLSEXgfuMQYs7w2H6vJ1JTKS0uO57ZTenL9Cd2YvGATb81ax8OfLePRz5dxfM82nDMwnRN7pZEQGxXpUOunkgMg1ftNY4zh3v8tYfPCrfwmFjbv2k2X9rUUn1LKNRGZABwPpIjIeuAeIAbAGPMM8DegNfC02C0kxcaYwbURS5NNSmXioqM4+6gMzj4qg9xtBbwzdx3vzl3PV861p1P6tuXMAe05tlsKsdFNrmJZuZIiiIp1fXhpqeGuDxcyYdZa/pieyrZtyWzfU0SXWgxRKeWOMeaCIPuvBq6ui1iafFIK5EtJ4vZTe3HbyT2ZuXo7H8/fyOQFm/ngpw00j4tmdK82nNq3Lcf3TCUprom/dKXF4HHXg7GopJQ73v2Z93/awPWju/L7waMZ/HBXHpKOHF3LYSqlGpYm/s1asSiPMLxrCsO7pvD3M/vx7S9b+WzRZqYsyWPS/I3ERns4pnMrRvVIZXSvNnRJSUJqetG/oSopgqjgH591Owq5ccJPzFu3i9tP7cn1o7uxr6gEgM16/U4pVU6T6RIeDsUlpcxZs5MvFm9h2rI8Vm61Y8lomcCxXVMY3q01w7q0pk1yfMRirDOf3w2dRkDPygeBfzx/I399fwEIZJ/Tn8z+7ewdeUuY+vSNLOhxAzddeFYdBaxU0+WmS3h9oUkpBOt2FDJt+Va+Wb6Vmau2k7+vGICuqUkM6dyKwZ1acbSvFR1aJTSpmtTOggM88MkSJs5Zz8COLXhi7FF0aJX46wFrpsNLY3is7YPcdt11kQtUqSaiISUlbb4LQYdWiVwytBOXDO1ESalh8cZ8vl+5jVmrd5Dz8yYmzFoHQEqzWAZktODIDi0Y0KEFR6R7aZnkvpNAvWMMHCiA6PhDmvD2F5fw6g9rePKrX9izv5jrR3fllpN6EBNVroOIM04pv6CwLqNWSjUAmpTCJMojHJHh5YgML9eN6kppqeGXvD3Myt3BvLW7mL9+F18ty6OsYtreG0+f9l76tk+md7vm9EhrTqfWSUQ1hAG8BwrggXQ4+R9w7M0Ul5QyeeFmHvlsGWt3FHJ8z1TuPK03Pds2r/h8j/2x212o15SUUofSpFRLPB6hZ9vm9GzbnEuGdgIgf18RC9f7WbjRz8IN+Sza6OfLpVsOJqq4aA/d05rRLbUZXVOb0bVNM7qkJuFrnUR8TD0aL1Vqz8RQUCy8PHUFr89Ywyb/Pnq1bc5rVw1hZPfUqs93akp79+2jqKT08JqUUqrJ0qRUh5LjYxjeLYXh3VIObis8UMyKvD0s27zbvm3ZzezcnXw4b+Mh57bzxtOpdSK+1kl0aJVIRssEMlom0qFlAinN4up0iqR9+/cTDzwyZRUvFS3j2G6t+fuZfTmxd5q7ml5MArsTMth3IIatu/fTvoXOGq6UsmlSirDE2Gj6Z7Sgf8ahs2UXHihm1dYCVm7dw5rtheRuL2DN9kKmLMlj2579hxwbEyW08ybQzhtPO288ad542iXH09YbT2rzeNo0jyO1eVxYaltrtxdy16vTeQ04omMKX5x5HN3TKmmmq0yrLsw68yu+emUOW/L3aVJSSh2kSameSoyNpl+6l37p3sP27T1QwvqdhazbWcj6nXvZuGsfG3ftZeOuvczO3Une7n0UlRzeq7J5fDQpzeJIaRZL66Q4WjWLpXVSLC0SY2mVFEOLxFhaJsbSIiGGFokxJMfHHFID+2LxFm6bOI909gBwzmAfVDchOdKcbvM616BSKlBEk5KIjAGeAKKA540x2ZGMp6FIiI2ie1rzSmsopaWGHYUH2Ozfx9Y9+9mav5+te/aTl7+P7QUH2L7nAKu27WF27gF2Fh6gtJJRASLQLC4ab0IMzeKiWbp5N/3Sk3n23BNg2R3Q9oiaPYHCHfT47FJO9hzNZn+fmpWhlGqUIpaURCQKeAo4GVgPzBaRScaYxZGKqbHweMSpEcUFPba01LB7XzE7Cg+wo2A//r1F7Cosux0gf18x+fuKyN9bzKieqdx6Ug+7GbD9X2seoDHErv2WDlFd2LJ7f/DjlVJNRiRrSkOAFcaYVQAi8hbwW0CTUh3yeARvYgzexBg6p7gcW1d8APbugISWEB088R3GGdvUIk7I9WvznVLqV5Hsi5sOrAu4v97ZdggRGScic0RkTnFxcZ0Fp6qwZSE82hNWflWz852JXFvGic5/p5Q6RCSTUkV9hw+7umGMGW+MGWyMGRwdrf0y6oVS58eBy1nCD+OMU/LGaUcHpdShIpmU1gMdAu5nABsrOVbVJ2XLmLuYJbxCnmhI64ckpbIlX68pKaV+FcmkNBvoLiKdRSQWGAtMimA8yq2DNaUaJiUR+MP3bOg2lj37i9mzX5tllVK2iCUlY0wxcAPwGbAEmGiMWRSpeFQ1ONMM1bj5zpGWbHeS2KydHZRSjohepDHGTAYmRzIGVQOtu9mTsbboWPMyXjmDo1oOB/qTl7+Pbm2ahS08pVTDpTNhqupr6YNjb4bkdjUvY/MCWh7YZP+pnR2UiigReVFE8kRkYSX7e4nIdBHZLyJ/rs1YNCmp6tuXD9tX2uOVaioqlsRou7OlJiWlIu5loPJlpGEHcBPwSG0HoklJVd/yT+HJgbBrbc3L8MQQQwnN46LJ0x54SkWUMeYb7MRT2f48Y8xsoKi2Y9GBP6r6Qu0SXnZuSRFp3njt6KBU7YsWkTkB98cbY8ZHLJoqaFJS1ReO3nfpg6F1V9J2xmnznVK1r9gYMzjSQbihSUlV38GaUghJ6bwXAEjLm8eMldvDEJRSqjHQa0qq+kIdPBugbXI8ebv3U1rZ+hlKqSZFa0qq+nwjIfMxiA1hbNG7V0JMAm3b3E5xqWFbwX7aNI8PX4xKKddEZAJwPJAiIuuBe4AYAGPMMyLSFpgDJAOlInIL0McYkx/uWDQpqepr28++hcK/AaJjadPVTkR5+ZqUlIoUY8wFQfZvxp6ftNZp852qvvyNsHEemBCa3KJioKSYtl47EWkPPKUUaFJSNTH7BRh/vD2xak15oqG0iLbJTlLSHnhKNU6W14PlTXZ7uCYlVX2lRRAVG1oZUTFQUkRKs1g8AnmalJRqPCzvm1jeZCxvEvZq4suwvLe7OVWTkqq+kuLQuoODPU6pwzFER3lIaaZjlZRqZPpg+fOBs7An3e4IXOLmRO3ooKqvtCj07uDH33Hwz7beeDbrVENKNSYxWN4Y7KT0Hyx/EZbX1UVorSmp6ispCr2mFKBN83htvlOqcXkWyAWSgG+wvJ0AV93HxYTSg6qOJSUlmYKCgkiHodbPhfz10Oe3NS/j07/C2ukwbir3fLSQV2esYUBGCwZ3aslgX0sGdWpFavO48MWsVBMmIoXGmKSIBmF5o7H8QZeZ1uY7VX0Zg4BBoZWxPx922+spjRvVlcS4aObm7uTVGWt4/rvVAHRJTWKIrxVDOrfimC6tSW+REGLgSqk6YXnTgH8C7bH8p2F5+wDDgBeCnapJSVVf3hIoKoT0EBKT0/sOIL1FAneM6QXA/uISFm7IZ07uDmat3sHkBZt4a/Y6ADq0SmBo59YM62rf2nk1SSlVT70MvATc5dxfDryNJiVVK6b+E7Yth+tn1rwMT8yvs40HiIuOYlCnlgzq1JJrR3WltNSwdPNuZq7ezoxV2/liyRbembsegC4pSQzv1prhXVMY3rU1LRJD7KaulAqXFCz/RCzvnQBY/mIsb4mbEzUpqeorLQ5t2QpwBs8G/4x6PEKf9sn0aZ/MFcd2prTUsGRzPtNXbueHldv54McNvD5jLR6BIzJacFz3FEZ2T+Woji2IidJ+PEpFSAGWtzVgd1qwvEMBv5sTNSmp6istBk9UaGW0GwC9z6j2aR6P0Le9l77tvVw9sgtFJaXMX7eLb3/ZxncrtvH0tJU8+dUKmsdFM6J7CqN6pHJ8zzYHpzNSStWJ24BJQFcs7/dAKnCemxO1952qvlfPggN74OopkY7kMP69RUxfuY2vl29l2rKtbHLm1OvTLpkTe7dhdK82DMhoQZQnhCmSlGpg6rT3neWNAm4CngR6AgIsw/K7Wkpdk5KqvpdPt5vervwk0pFUyRjDL3l7+GppHl8tzWPump2UlBpSmsVyQq82nNQ7jZHdU0mIDbHWp1Q9V+ddwi3vNCz/8TU5VZOSqr51s8CUQsehNS/jh//AtAfgL6sgum7GI/kLi5i2PI8vl+QxdVkeu/cVEx/jYWT3VMb0bctJvdPwJoZvULBS9UUEktL9gBe7x92vX9qW/8dgp+o1JVV9HYaEXoYpsZsAS4rqLCl5E2P47ZHp/PbIdIpKSpm1egdfLN7CZ4s288XiLUR7hGFdWzOmX1vG9G1L62Y6eFepGhru/PuPgG0GOCHYiVpTUtW3+luITYL0gTUvY/rT8NmdcEcuJLQMW2g1YYzh5/V+Pl20mU8Xbmb1tgI8AsO6tibziPaM6deWVkna3Vw1XPViRgeXNCmp6nt6GLTqAmPfqHkZs56DyX+GP6+AZqnhiy1ExtjjonJ+3kTOgk2s3lZAtEcY0T2FMwe055S+bWkWpw0MqmGJQPPd3yre7v9HhdsD6P8uVX3hmJC1bJbxCgbQRpKI0LtdMr3bJfOnU3qweFM+H8/fxMfzN3LbxPnERS/gpD5pnHNUOsf1SNWxUEpVLLD2EA+cDixxc6ImJVV9pUWhD55N7QUDL4Po+jt+SOTXMVF3jOnJj2t38tG8jXw8fyM5P2+idVIsZwxoz3mDMujbPhkJZSVepRoTy//oofe9j2CPWwoqIklJRB4GzgAOACuBK4wxuyIRi6qBcCzy12mYfWsgRIRBnVoxqFMr7s7swzfLt/LBTxt4c9ZaXv4hl15tm3PeoAzOOiqdFO0goRoYEXkRuzaTZ4zpV8F+AZ4AfgMUApcbY4L2pAuQCHRxc2CkakpfAHcaY4pF5EHgTuCOIOeo+iIci/wBlF3PbGA1jNhoDyf1SeOkPmn4C4uY9PNG3p27nvtylpD9yVJO7pPG2CEdGdEtRQfpqobiZeA/wKuV7D8N6O7cjgH+6/xbMcu7gLIphiAKe0aHe90EErSjgy8r51jAAjphJzEBTG52pqusFzQAkbOB84wxFwU7Vjs61BPrZtk95lK617yMJf+Dty+Ca7+Fdv3DF1sELd+ym4mz1/Hej+vZWVhEeosEfje4A2OHdCAtuf42U6rGz01HBxHxAf+rpKb0LDDNGDPBub8MON4Ys6nCwuxF/coUA1vcrKUE7mpKLwC3AnMBV7O8VtOV2AOsKiQi44BxALGx2i23XgjHOKWyufPqWUeHUPRIa87dp/fh9jE9+WLxFt6atY7Hpyzn31/9wil90rh4aCeGd22t155UJESLyJyA++ONMeOrcX46sC7g/npnW8VJCe7D8l9yyBbL+9ph2yoK1EUw/tzszGrPJyMiU4C2Fey6yxjzkXPMXdhZtNK+xc4LNx7smlJ141C1YMG7kNoT2h5R8zLKrkmVuPrx1KDERUdxev/2nN6/PbnbCnhz1lomzlnHJws30yU1icuG+Th3UIZ2LVd1qdgYMziE8yv6JVXV93HfQ+5Z3mhcrgzq5n/FVF9WzsPA+8D+so252ZlVXuQyxpxU1X4RuQz7wtqJpiENllLwwbUw/KbQklJZ771GVFOqiC8lib/+pje3ndyDyQs28cr0NdwzaREPf7aM8wZlcNlwH51TGsSYRtW0rQc6BNzPADYedpS9ftJfgQQsb76zVbA7tbmqmblJSmUXswKzrKvpIiojImOwOzaMMsYU1rQcFQHG2EtXhNr77mBNqXEnpTLxMVGcMzCDcwZmMG/dLl75IZc3Zq7hlem5nNgrjatHduaYzq20aU/VV5OAG0TkLeyc4K/wepLlfwB4AMv7AJb/zpo8UJUdHXxZOVHATbnZmY/XpPBKH1RkBRAHbHc2zTDGXBfsPO3oUA+UFMG9KTD6bhh1e83L2ZkLM8fD4CtC6zDRgOXt3sfrM9by+ow17Cg4QN/2yYw7rguZR7QjWgflqjAK1tFBRCYAxwMpwBbgHiAGwBjzjNMl/D/AGOwu4VcYY+YcVpDl7YXlX4rlrXgOMhcTsrrpfTc1NztzdLCC6oImpXrgQCH8sx2cZMGIWyMdTaOwr6iED37awPPfrmLl1gIyWiZw9YjO/O7oDiTG6nUnFbo6m2bI8j6H5b8Gyzu1gr0Gyx/6hKy+rJwKpyAPdk2pNmhSqgf27oIHO8Ep98PwG2peTmkpFBVCVCxEa69KgNJSw5dL83jm65XMXbOTlokxXHlsZy4d7sOboEtqqJprVBOy+rJyKsx4udmZNb6mVFOalOqBkmLYshCat4PmaTUvZ+syeGoInPsCHOFqleQmZU7uDv47bSVfLs2jeVw0lw7vxJXHdtblNFSN1GFN6Zyq9/vfD1aEzhKuImP7SnhyIJz9LAwYG+lo6q1FG/08PXUlkxduIj46ikuGdWLccV10KiNVLXWYlF5y/mqDvabSV8790cA0LH/VSQsXve98WTkVTkGem50ZdApy1Qjty4cFE6HzqNA6KBycJbzxjVMKp77tvTx10UBW5O3hqakreP7bVbw2fQ2XDu/EuJFdtOak6hfLf4X9r/d/QB8s/ybnfjvgKTdFuOniUxBwK8GeA8lX7WBV41C4DXL+BOsP73hTLU2sS3iourVpxuO/P5IvbhvFqX3TeO6bVYx8aCqPfr4M/159DVW94zuYkGxbgB5uTgxaU8rNzjxkCnJfVo7rKchVI1Q2A0PI6ymVDZ7VmlJ1dE1txr/GHsUNJ3TnX1OW8+RXK3h1+hquHdWFy4f7tLeeqi+mYXk/AyZgj2sdC1TUP+EwNRkM4XoKctUIlc3AEOos4XHNYNQd0P6o0GNqgrq1acZ/LhxIzk0jGNSpJQ99uoxRD0/jjZlrKC4pjfrYFngAACAASURBVHR4qqmz/DcAzwIDgCOB8Vj+G92c6qb3XYVTkOdmZz5Z44BrSDs61AMb58H4UTD2TeiVGelolGNO7g6yP1nKnDU76ZqaxB1jenFynzSdIUIBDatLuJufu6cH/F0MbMnNztQ2l6aqrLkt1JVnjYE9WyAmEeKTQ4+riRvsa8U71w3j88VbePDTpYx7bS5DfK34v9P7cESGN9LhqabG7hr+IHYvPHFuBssf9D+7m5rSa7nZmZcE21YXtKZUDxTtg/wN0CzNboKrqdJS+EdLOP5OOD4rfPEpiktKeWv2Oh7/Yjk7Cg9wzlEZ/GVMT13TqQmr85qS5V0BnIHlX1LdU91cUzpkCnJfVo7rKchVIxQTD627hpaQADweEI/2vqsF0VEeLh7aiam3H8+447rw8fyNHP/wNP7z1S/sK6qNJdGUOsyWmiQkqKL5zpeVc3AKcl9WTj6/rqfhegpy1QjtzIXFH8ERv4PkdqGV5Ylp9EtXRFJyfAx3ntabi4Z04p+Tl/DI58uZOGc995zRhxN7hzAbh1LBzcHyvg18SMCSR25mdKg0KeVmZz4APODLynkgNzuzRlOQq0Zo6zL44m/QaUToSSkqplEu8lffdGydyDOXDOK7X7ZhfbyIq16Zw+ieqVhn9qVT6wZx7Vs1PMnYs4mfErDNYK/LVyU3HR3u8mXlXAx0zs3OvNeXldMBaJebnTmrRqGqhq2suS0qDONhPNFaU6pDI7qn8MnNI3nlh1z+NeUXTn78G24Y3Y1rR3UhLjoq0uGpxqRsZocacHNN6SlgGHChc38PLqeLUI3QwXFKYZi1+oS7tVt5HYuJ8nD1yC58+adRnNInjce+WM5pT3zLDyu2RTo01ZhY3h5Y3i+xvAud+/2xvHe7OdVNUjomNzvzemAfQG525k5A1xpoqsI1owPAkGugy/Ghl6OqLS05nv9cOJBXrhxCSanhwudn8qeJ89lZcCDSoanG4TngTsD+FWv5f8ae1SEoN0mpyFmB1gD4snJSAR0y3lSFa0YHgJ1rIP/wFZVV3RnVI5XPbjmO60d35aN5Gzj58a/5eP5GGtLqAapeSsTyl7/E4+oCspuk9G/gA6CNs+Dfd8A/qxefajT6ng1/WgbeDqGX9drZ8PldoZejQhIfE8Xtp/Zi0g0jaN8igRsn/MTVr8xhs39fpENTDdc2LG9XymYDsrznAa5+gVY5eNaXleMBhgI7gBOxu4V/mZudWaP+56HSwbONzFPHQEoP+P1rkY5EOUpKDS99v5pHPl9GTJSHe87oy7kD03W6ogYuAoNnu2APHRoO7ARWAxdh+dcEO9XNjA7Tc7Mzh4UjzlBpUqoH1s6EFVNg5G0QkxBaWf8dAS06wAUTwhObCpvcbQXc/u58Zufu5IRebXjgnCN0RogGLFhSEpExwBPY85s+b4zJLre/JfAi0BW7f8GVxpiFQR/Y8iYBHiz/brexumm++9yXlXOuLytHfyopWD8LvnkoPDMxREXrjA71lC8libfHDeNvp/fhh5XbOPmxr5k0f2Okw1K1QESisHtUnwb0AS4QkT7lDvsrMM8Y0x+4FDuBVc7ytsby/hv4FnsZiyewvK3dxOMmKd0GvAPs92Xl5PuycnY7MzyopujgOKUw9L7zxECJ9vaqrzwe4coRnfnk5uPo2qYZN034iZvf+gl/of6QaGSGACuMMauMMQeAt4DfljumD/AlgDFmKeATkaqmBXkL2AqcC5zn/P22m2DcLPLX3E1BqokI1yzhACNuCU8vPlWrOqck8c61w3h62kqe+PIXZq3ewaPnD2B4t5RIh6bcixaRwOWixxtjyqaLSwfWBexbDxxT7vz5wDnAdyIyBOgEZGCvKFuRVlj+ewPu34flPctVoG4OUuqgspqSJwwzAOjA2QYjOsrDTSd2Z1SPVG6dOI+LXpjJdaO6ctvJPYiJqslaoaqOFRtjBleyr6JLM+U7G2QDT4jIPGAB8BNVd/GeiuUdC0x07p8H5LgJVD9NqnpKi+xaUjh6Y21fCXkR6cipamhAhxb878YRjD26A/+dtpLznpnOmu3a+aiBWw8EjvHIAA65gGiMyTfGXGGMORL7mlIqdo+6ylwLvIk9Get+7Oa827C8u7G8VV7+Cdr7rj7R3nf1QEkRFO+DuDC06r45FvLXw3XfhV6WqnOTF2wi672fKTVw/9n9+O2R6ZEOSVWiqt53IhINLMce9rMBmA1caIxZFHBMC6DQGHNARK4BRhpjLq2NWF3VlHxZOSN8WTlXOH+n+rJyOtdGMKoBiIoJT0ICp/edzhLeUP3miHZMvnkkvdo25+a35nHn+wt0vaYGyBhTDNwAfAYsASYaYxaJyHUicp1zWG9gkYgsxe6ld3OVhVreq8rdj8Ly3uMmnqDXlHxZOfcAg4GewEtADPA6cKybB1CNzML37Sa3E8IwE4Oup9TgZbRMZMK4oTzy+TKe/XoV89ft4umLBuJL0SUxGhJjzGRgcrltzwT8PR3oXo0iT8TyngtcBaRgj3H62s2JbmpKZwNnAgUAudmZGwHtkddUrZoKP74anrKiYnScUiMQE+XhztN688Jlg9mway+nP/kdnyzQOQ2bNMt/IfAKdqeIHOAWLP+f3ZzqJikdyM3ONPw6IWvYfgKJyJ9FxIiI9i1tKEqKwzNGCZyakjbfNRYn9k5j8s0j6damGX9440eyP1lKcYnO3dwkWd7u2E187wG5wCVY3kQ3p7pJShN9WTnPAi18WTnXAFOwpyUPiYh0AE4G1oZalqpDpUXhG1s0+Ar4zcPhKUvVC+ktEnj72qFceExHnvl6JZe9NIsduhxGU/Qx8Dcs/7XAKOAX7A4UQbnqfefLyjkZe1lbAT7Lzc78ouaxOg8s8i5wL/ARMNgYE3SVMe19Vw9MvAzyFsMNrj5fqgmbOGcdd3+4kNRmcTx7ySD6pXsjHVKTFYEJWZOx/PnltnXH8v8S7FQ3HR1uBd4JRyIqIyJnAhuMMfN19uGGxoRnNgeAHasgfyP4RoSnPFWv/G5wB3q3Tea61+dy3jM/8PB5AzhjQPtIh6XqRgKW93EgHcs/BsvbB3sF89CTEpAMfObLytmBPQDq3dzszMqmljhIRKYAbSvYdRf25H6nuHhsRGQcMA4gNlYXvI24370K4RrbNuclmDUe7g76cVIN1BEZXj664Vj+8PpcbpzwE0s35/Onk3vi8eiP0UbuZeze2mXddJdjz333QrATg15Tys3O/HtudmZf4HqgPfC1LytnSrDzjDEnGWP6lb8Bq4DOwHwRycUePfyjiFSUwDDGjDfGDDbGDI6O1lmR6oVw1W61912TkNIsjjeuHsrYozvw1NSVjHttLnv2aweXRi4Fyz+RslXKLX8x4GoQW3WmGcoDNgPbgTbVDPAgY8wCY0wbY4zPGOPDnuJioDFmc03LVHXo+yfgu3+FpyxPDJiS8NW8VL0VG+3hgXOO4O9n9mXqsjzOf2Y6G3ftjXRYqvYUOEtVlK08OxTwuzkxaFLyZeX8wZeVMw172vIU4Jrc7Mz+NQ5VNWzLPrEX+QuHKKfmq7WlJkFEuGy4jxcvP5p1Owo566nvWbDe1feUanhuAyYBXbG83wOvAje6OdFNe1gn4Jbc7Mx5NY+vck5tSTUUJUWhrzhbpqzDRGkRoNcLm4pRPVJ57w/DufLl2fzu2en8a+yRnNq3wtZ71VBZ/h+xvKOwZwISYBmW39Wvz0q7hPuycpJzszPzfVk5rSran5uduaOm8daUdgmvB549Dpq1hYsmBj82mB2rYNsv0PXEX2tNqsnI272Pa16Zw88b/Fhn9OWy4b5Ih9Ro1XmX8BBU9U3wJnA6MBe7XTDw6rYButRiXKq+CueMDq262DfVJLVpHs9b44Zx44SfuGfSIjb693LHqb20Z14Tp0tXqOp57kRo3Q3OeTb0snatg03zoduJ4WsSVA1OcUkp90xaxBsz13LWke156LwBxEbrUm/h1JBqSm46OnzpZptqIq75MjwJCWDVNHj7IijYGp7yVIMUHeXhvrP6cfupPflw3kaufHm2dhlv6Czv4Tmiom0VqLT5zpeVEw8kAim+rJyW/Np8l4w9Xkmp0JQ1A2rvuyZPRLh+dDfSkuO5472fuej5mbx8+dG0TNIOMA2K5T2YN7C8NcobVdWUrsW+ntTL+bfs9hHwVA1DVg3dpJtg7svhKatsYledKVw5zhuUwTMXD2LJpnzOf3Y6m/w6lqmBCTlvBL2m5MvKuTE3O/PJ0OIMD72mVA881AX6nAWnPxZ6WYs/gomXwnXfQ9t+oZenGo0Zq7Zz9Stz8CbE8NpVQ+iS2izSITVoEZiQ9UYsf43yhttZwvsBfYD4sm252ZlhWunNPU1K9cADHeHIC+C0B0Mva+lkeOsCGPc1tD8y9PJUo7Jwg5/LXpyFiPDG1cfQs62uLVpTEenoYHmHAz4CLxNZ/qB5w01Hh3uAJ53baOAh7JVoVVMUzvWUOg6FyydD667hKU81Kv3Svbx97TCiPDB2/HQWbtDZHxoMy/sa8AgwAjjauQ12c6qbfpfnAScCm3OzM68ABgBxNYtUNXglReEbp5TYCnzHQpz+AlYV69amGROvHUZibDQXPDeDn9bujHRIjZKIjBGRZSKyQkSyKtjvFZGPRWS+iCwSkSuCFDkYOBbL/0cs/43O7SY3sbhJSntzszNLgWJfVk4y9sSsOuKxqWreFhJahqesgm0w/23YrXPxqsp1ap3ExOuG0Soploufn8ms1XU+mUyjJiJR2J0QTsO+THOBiPQpd9j1wGJjzADgeOBREamqa+RCKl66KCg37TBzfFk5LbCXQJ8L7AFm1eTBVCNw68LwlbV9JXwwDi5+3052SlUivUUCE68dxoXPzeDyl2bx8hVDGNK5whnQVPUNAVYYY1YBiMhbwG+BxQHHGKC52KuyNgN2AFV1m00BFmN5ZwH7D261/EEv/QRNSrnZmX90/nzGl5XzKZCcm535c7DzlAoqSruEK/fSkuOZMG4oF4y3E9MrVw7haJ8mJpeiRWROwP3xxpjxzt/pwLqAfeuBY8qd/x/sWb83As2B3xtjSqt4PKvGgVa2w5eVM7CqfbnZmT/W9EFVA3WgAN6+BAZfCb1PD708jw6eVdXTpnk8E64ZytjnZnD5i3ZiGqyJyY1iY0xlHQ0qmmywfLfsU4F5wAlAV+ALEfnWGJNfYYmW/2ssbyegO5Z/CpY3EYhyE2hVNaVHq9hnnOBUU1K8H1Z+Cd1drWQf3MEZHQ6EpzzVJLRJjueta4YydvwMLntxFq9edQyDOoXpOmfTtB7oEHA/A7tGFOgKINvYY4hWiMhq7AGyFV/KsbzXAOOAVthJLB14BrvTXJUqTUq52Zmjg52smpiyGk24lpk4uJ6SNt+p6mnjNOWNdZryJlwzlH7p3kiH1VDNBrqLSGdgAzAWuLDcMWuxE8q3IpKGvU7SqirKvB77WtVMACz/L1heVyuWB/128WXlXFrR9kgMnlURVuokJU+YuoR7M+yBsy07hac81aSkJcfzxtXHcP4z07nkhZm8fe0weqTp8ILqMsYUi8gNwGfYTWwvGmMWich1zv5ngHuBl0VkAXZz3x3GmG1VFLsfy38Ay/mhYHmjObxJsEJufvIeHfB3PHa2/BF7eVvVlJTVaMI1eDYmXmdyUCFp3yKBN6+xE9NFz8/knWuH4UtpECs01CvGmMnA5HLbngn4eyNQnXb7r7G8fwUSsLwnA38EPnZzopved4esq+7LyvECr1UjONVYiAdSeoZvnFLRXpj3pj2zQ1rf8JSpmpxOrZN44+pj+P34GVz0/EwmXjeM9Ba6PleEZQFXAQuwJ2mdDDzv5sRqL/Lny8qJAX7Ozc7sXc0gQ6Zz3zUyhTvgoc4wJhuG/iHS0agGbuEGPxc8N4PU5nG8e91wWumyFwc1pEX+3FxT+phf2wI92CN+J9ZmUKqJ0PWUVBj1S/fywmVHc8kLM7nipVm8cc1QmsWFqalZVY/lPR37OlQn7DwjgMHyJwc71c079kjA38XAmtzszPU1iVM1cHlL4eOb4ZR7ocOQ0Ms72PtOk5IKjyGdW/HUhQO59vW5XPfaXF64fDBx0a6Gx6jw+hdwDrAAy1+t5rigc9/lZmd+nZud+TXwE7AEKPRl5ehotaZonx/WzYD9FY+Xq7aDNSXtEq7C56Q+aTx4bn++W7GN296eT0lp9S5RqLBYByysbkICd81347CrYXuBUsqqYTopa9MT7i7hnihAtKakwu68QRnsLDjA/ZOXkNo8jnvO6IM9bZuqI38BJmN5v+bQue+Crg7qpvnudqBvbnZmVX3SVVNQNvNCuJauALhxbvh68ykV4JrjurDJv48Xv19NRssErh6pv6Pr0P3Yk3fHA9XqceImKa0ECmsQlGpsyprZwlVTAl3gT9WquzN7szl/L/flLKGdN4HM/u0iHVJT0QrLX6P5yNwkpTuBH3xZOTMJqIblZme6WrBJNSJxzaD9QIgP2oHGvZnjIaUbdNWpFFX4eTzCY787krz8mdw6cR5tkuN0ZvG6MQXLewqW//Pqnhh0nJIvK2cW8B32IKiDU5XnZme+Ut0HC5WOU2qEHuoKfc6E0x+PdCSqEdtZcIBzn/mB7XsO8MEfh9MltVmkQ6pTdT5OyfLuBpKwKzJFhLlLeHFuduZtoUWoVCWiYnSckqp1LZNiefnyIZz19Pdc9cocPvjjcFok6uDaWmP5azwJoZukNNXpgfcxhzbf6ZrETc3SyTD1frhwInjTw1OmJwZKS8JTllJV6Ng6kfGXDOLC52Zy3etzefXKY4iNDjoqRtWU5U3n18Gzzjb/N8FOc5OUyqYwvzNgW8hdwkXkRuAG7AG5OcaYv4RSnqoDhdtgy0KocsHJaoqK1i7hqs4M9rXiwfOO4Na353P3hwt48Nz+2lW8NljeB4HfYy+pXvar0wChJ6Xc7MzOIQVXAREZjb0GfH9jzH4RcbXOhoqwg+sphbH3nUeb71TdOvuoDFZtLeDJr1bQNbUZ147SHqC14CygJ5Z/f9Ajy4nUekp/wF7FcD+AMSYvhLJUXSmthS7hV0yGKG3bV3Xr1pN6sGprAdmfLqVHWnNG99LfxWG2CoghcOCsS5FaT6kHMFJE7gf2AX82xsyu6EARGYe9rC6xsfrlFVHhXnkWICklfGUp5ZLHIzxy/gBytxdw04Sf+PCGY+naxHrk1bJCYB6W90sOndEh6FCiWltPSUSmAG0r2HWX87gtgaHYSW+iiHQxFfRPN8aMB8aD3SU82OOqWuRNh87HQVRc+Mqc+4o93dBRF4evTKVcSIiN4tlLBnHmf77nmlfn8OH1x5IcH8ZWgKZtknOrtpr85C0Eugc7yBhzUmX7ROQPwPtOEpolIqVACrC1BvGoutL3bPsWTvPf0qSkIiajZSJPXzSQi5+fyS1vzeO5SwcT5dGODyGxvFHAJVj+SnNAVSK1ntKHwAnANBHpgT03ks6t1xRFRWtHBxVRQ7u05p4z+/J/Hy7k0c+X8ZcxvSIdUsNm+UuwvIVYXi+W31/d0yO1ntKLwIsishA4AFxWUdOdqme+/zf8+CrcOCd8ZXpi4IBOragi6+JjOrJog5+np63kyA4tOKVvRVceGi8RGQM8AUQBzxtjssvtvx24yLkbDfQGUo0xlY1X3QcswPJ+Afw6DU8o15R8WTndgDRnLaXA7SN9WTlxudmZK4MVXhljzAFA22samoKt4A/z+o5RMTpOSUWciGCd2ZfFm/L508T5TLqxOZ1TGsTq4SETkSjgKeBkYD0wW0QmGWMWlx1jjHkYeNg5/gzg1ioSEkCOc6u2qoYz/wvYXcH2vc4+1dSUFod3jBKAJ1oX+VP1QnxMFE9fNJCoKOEPr8+l8ECT+VwOAVYYY1Y5FYa3sMeRVuYCYEKVJVr+V7Av88zA8r9y8OZCVUnJl5ud+XP5jbnZmXMAn5vCVSNTUuQszBdG5z4P46aGt0ylaiijZSL/HnsUy7bs5q4PFtKIripEi8icgNu4gH3p2CvFllnvbDuMiCQCY4D3qnw0y3sGMA/41Ll/JJbXVW+8qpJSfBX7EtwUrhqZ0qLwDpwFiEmA6DB2MVcqRMf1SOXWk3rwwU8beH3GmkiHEy7FxpjBAbfxAfsq6m5YWTY+A/g+SNMdgIVdA9tl3/PPA1zNDlRVUprty8q5pvxGX1bOVcBcN4WrRiatH/So0bpdlVvwLkz9Z3jLVCpEN4zuxuieqdz7vyUs3FDtDmQNzXqgQ8D9DGBjJceOJVjTna24gp53rqqdla6n5MvKSQM+wO4dV5aEBmN33z47Nztzs5sHCCddT6kRmnQjLP8c/rws0pEodYgdBQfI/Pe3xEZ7+N+NI2jegAfWVrWekohEA8uxZ+vZAMwGLjTGLCp3nBdYDXQwxlT9RWx5XwC+BLKAc4GbgBgs/3XBYq20ppSbnbklNztzOPB3INe5/T03O3NYJBKSaqQ82vtO1U+tkmJ58oKjWL9zL1nvL2hM15cOYYwpxl6x4TNgCTDRGLNIRK4TkcAkcjbwedCEZLsR6Is9xdCbgB+4xU08QVeerU+0phRhH/wBdq2xJ1ENl0/ugHkT4M614StTqTD677SVPPjpUu49qx+XDO0U6XBqJAIrzx6F5f+pJqeGcWZN1ejt3Qn788NbpicaSg6Et0ylwuja47owc/V27v3fYo7q0IJ+6d5Ih9QQPIblbQe8A7yF5V8U7IQyuuyicq82et9FxeDy+qdSEeHxCI+eP4CWiTHc9NZPTWn8Us1Z/tHA8djzmY7H8i7A8t7t5lRNSsq9kqLwD5498R64e0t4y1QqzFo3i+Ox3x3J6m0F3Pu/JZEOp2Gw/Jux/P8GrsMes/Q3N6dp851yr7Q4/DUlXYpaNRDHdkvh2uO68szXKxnVI4Ux/dpFOqT6y/L2xl4O/XzsybbfAv7k5lRNSsq9rqNBwly5XjEFFr4Ppz+ug2hVvXfbyT34YeU27nhvAQM6tKCdV+cRqMRL2OOZTsbyVzbmqULa+05F1g//gc/vgqx1EJ8c6WiUCmr1tgIy//0tAzJa8PrVxzSI9ZfqvPcdgOWNxV5lHGAZlt/V2A+9pqQiq+waValePFYNQ+eUJKwz+zJ91Xae+3ZVpMOpnyzvKOAX7NnHnwaWY3mPc3OqJiXl3n9HwHtXh7dMj9OCrAv9qQbk/EEZjOnblsc+X86STWEeJtE4PAacguUfheU/DjgVeNzNiZqUlHtFhWBKw1vmwZqSJiXVcIgI95/dj+SEaG59ex77i0siHVJ9E4Pl/3XuMMu/HHDVS0o7Oij3amWW8ESI94Y/2SlVy1o3iyP7nP5c/eocnpjyiy6jfqg5zvx3rzn3L8LlRN5aU1LulRRDVJh/xxxxHmSthRYdw1uuUnXgpD5p/H5wB575eiVz1wRbzaFJ+QOwCHsi1puBxdjjlYLS3nfKvYe7Qe8z7O7bSikAdu8r4rQnvsUjwic3jyQprv41QEWk910NaU1JuXfkReAbEd4yN/wIEy+FHavDW65SdaR5fAyPnD+AtTsKefizJr4Ei+X9LZb3+oD7M7G8q5zb+W6K0KSk3Dv579Dv3PCWWbAVFn8Ehdr0oRquoV1ac/lwHy//kMvMVdsjHU4k/QUIXPY8Djgaex48V813mpSUe8X7oTTMHRLKuoRr7zvVwP1lTE86tErgL+/9zN4DTbY3XiyWf13A/e+w/Nux/GsBV82HmpSUe/e3hWlhXrq8rEu4jlNSDVxibDQPntufNdsLeeTzJtuM1/KQe5b/hoB7qW4K0KSk3Ckttbtte8J8Edej45RU4zG8awoXD+3Ii9+vbqq98WZiea85bKvlvRaY5aaA+tdNRNVPZUkj3EkpNhGS08NfrlIRknVab6Yu3crt7/zM5JtHEh8TFemQ6tKtwIdY3guBH51tg7CvLZ3lpgCtKSl3yprXwr2eUrsBcNti6OxqWiyl6r1mcdFkn3sEq7YV8NTUFZEOp25Z/jws/3DgXiDXuf0Dyz8My+9q4TT9earcOVhTCnNSUqoRGtk9lXOOSue/01Zyev/29GzbPNIh1S3L/xXwVU1O1ZqScicqFkbcCukDw1uufwO8dg6s+jq85SoVYXef3ofm8dFkvf8zpaX1e5ICERkjIstEZIWIZFVyzPEiMk9EFolIrf2H1aSk3IlNgpMs6Dg0vOWW7IeVX0J+tdYBU6rea5UUy/+d3oef1u7ijZlrIh1OpUQkCnuJidOAPsAFItKn3DEtsJegONMY0xd7RdlaEZGkJCJHisgMJ+vOEZEhkYhDVUNpCRRsh+ID4S1Xe9+pRuzso9IZ2T2FBz9dxib/3kiHU5khwApjzCpjzAHspct/W+6YC4H3jTFrAYwxebUVTKRqSg8BfzfGHAn8zbmv6rOdufBwF1j0QXjL1XFKqhETEe4/6wiKS0u556NFkQwl2qkAlN3GBexLBwIHvK53tgXqAbQUkWkiMldELq21QGur4CAMULb2tRfQtpv67mDvu9oap6Qrz6rGqWPrRG4+sQcPfrqUKYu3cFKftEiEUWyMGVzJvorWcy9/ESwau2v3iUACMF1EZhhjlocxRiByNaVbgIdFZB3wCHBnZQeKyLiy7F5crF9cEVNbve+iYyGlJ8QlBz9WqQbqqhGd6d6mGdbHi+rjFETrgQ4B9zM4vKKwHvjUGFNgjNkGfAMMqI1gai0picgUEVlYwe232Gtt3GqM6YA92OqFysoxxow3xgw2xgyOjtYe7BFTW+OU4prDDbPgyAvCW65S9UhstId7z+rH+p176+PYpdlAdxHpLCKxwFgOnVQV4CNgpIhEi0gicAywpDaCqbVveWPMSZXtE5FXsRd+AngHeL624lBhUta8puOUlKqRoV1ac85R6Tz7zUrOHphO19RmkQ4JAGNMsYjcAHwGRAEvGmMWich1zv5njDFLRORT4GegFHje+TvcUwAADftJREFUGLOwNuKJyCJ/IrIE+IMxZpqInAg8ZIwZFOw8XeQvgvwbYP4Ee+mKVp3DW/aLY2DAWBh0eXjLVaqe2bp7Pyc8Oo3+GV5ev+oYRCq6nBN+ushfcNcAj4rIfOCfwLggx6tI86bDcX8Of0ICWD8bdtbfcRxKhUtq8zj+cmpPvl+xnUnztX9XRSKSlIwx3xljBhljBhhjjjHGzI1EHKoaDhTaiaN4f/jL9sToOCXVZFx4TCeOSPdyf84S9uzXzlvl6YwOyp3VX8MT/WFLLYy1iIqBEv3PqZqGKI9gndmXvN3762Onh4jTpKTcqa3ed2AvW6E1JdWEDOrUknMGpvPCt6vJ3abXyQNpUlLu1OYs4emDwJsR/nKVqseyxvQiJkq4L2dxpEOpVzQpKXfKmtdqo6Z08bv2DORKNSFtkuO56cTuTFmSx9RltTaVXIOjSUm5U1srzyrVhF1xbGe6pCRx78eLOVBcGulw6gVNSsqd9MEw5kFIbBX+st+6CD67K/zlKlXPxUZ7+L8z+rBqWwEv/7A60uHUC/qzV7nTppd9qw07VtVOuUo1AKN7tmF0z1Se/HIF5w7MoHWzuEiHFFFaU1LuFGyDLYvtdZXCzROts4SrJu2vv+lNYVEJT3z5S6RDiThNSsqdeW/Cf4dBUS0sVBYVo+spqSate1pzLhzSkTdmrmVF3p5IhxNRmpSUO6W1OU5JZ3RQ6paTupMYE8UDk2tl8u0GQ5OScqeklscpte0f/nKVakBaN4vjhhO68eXSPL77ZVukw4kYTUrKnZIiEA94auEjM+afcOr94S9XqQbmsuE+OrRK4L6cxZSU1v0KDvWBJiXlTmmRrqWkVC2Lj4nijjG9WLp5N+/NXR/pcCJCk5Jyp+/ZcOa/a6fsj2+B186pnbKV+v/27jxIquoM4/DvdYZlGPZFkEXZIRQiKGFxi4ALKkrFLWi0MGq5YIwaLQMxWqVJlVYlRWJSinGDlAvuEkMsAYkkLknABRUUEBUVUTHuigKjX/44pzM90z0Kgeaeob+nqqtP3+92zzs9d+r0XfqcRubIPXdjaI+2TF+wii83Jzd1esl5p+S2TNdhYSK+UvjiA/i4PD8VOlefJKYePpB3PvmSWU+uyTrODuedktsy778C654tzWv71XfO1TGqdwfGDtyV6x5dzUcbNmUdZ4fyTsltmcenw+yTSvPaPp+ScwUuGT+ATzfWMGPRK1lH2aG8U3Jb5qsaqCjRqFQ+n5JzBQZ2ac0xw7oz88k1rPuoBF9azyNpvKSVklZLmlqkfpCkjyUtjbfLS5XFOyW3ZUp59V3XYdB3XGle27lG7KeH9gfgtwtWlexnSKoArgUOBwYBJ0oaVGTVx8xsaLxdWao85TMg6x2T4MN6o/D2GFl7RdmfjoLP6s1p0mcsjL8qtG86GDZ+Wrc+cAKMuyy0Z+xXOH7bkBPggIugZiP88cDCTPucCqPOgQ0fwMzDC+ujpsA+k8NFALcdW1g/4GIYcjy8twruPqWwPu5yGHgkrFsKD5xVWB9/NfQZA6//E+ZeUFg/6vew+0hY/Qismg9tuhWusz1893TgdJj/C3h5Qd1aiw7wo4dC+68XwZrH69bb9AjzMQHMmQJvPV233rE//ODW0L57Mry3om696zD4/vWhffvx8NEbdet77AcTpof2zCNhQ70vNfY7BA79VWjfMAY2b6hbHzQRxvw8tK8dWfCrs9ekMJfUpg1w45jC+vDTYeSZYezBWUcW1vc9D4adDB++DnecUFj/3s9g8DGwfgXcM7mwfsiV0P+w8L7NmVJYP+LX0OtAeO0xeOjiwvrEa6H7cFg1DxYU+fB83EzoPAiWPwCLri6sn3QXtOsZhrF64prC+uS50LITLL4RltxUWD9jITRrGZ679I7C+pR/gQSPXgUvzqlbq2wOZ/09tBPd9rpNmM7k0XvwnydvZeUBvRnQpVXh77jtRgCrzexVAEl3AhOBTGYfLJ9OqX0vqGxad1nbHrXtDn2hql3deuuuefV+sLnetMWtutS2O/YHq3f5ZsvOsSHoNKAwU3WncL9LRfF6bpqIiqbF67m8lc2K15u3CfdNWhSvN4sbeNMG6k1bxPVaQ9+x0KfEezOtuxXmyP0OEGanrV9vmfc3aNMDNtUbN6ztHrXtdnsA9b6Q2Hb32nb73tCkqm49vyPu0AeqO9Stt8rbRjr2h5p6h1nyt5Fi73FuG1FD20j8eQ1tI1Xfto20DfcNbSO5baChbaRpdVyvZfF6k7xtpGi9ebhv3qZ4vSL+T1a1K17fpSLcV3csXlc82FO9a/F6TqvOhfXK5rXthLe9KQf15ebXulLz9TbNt1Qp6am8xzeY2Q2x3Q14M6+2FijyCYrRkp4D1gEXm9nybQnUEJk1nm8NV1dX2+ef+3z2zjm3NSRtMLPqBmrHA4eZ2Rnx8SnACDM7L2+d1sDXZvaZpCOAa8ysXymy+jkl55wrb2uBvMNGdCfsDf2PmX1iZp/F9kNAE0kdSxHGOyXnnCtvS4B+knpJagpMAh7MX0FSF0mK7RGEvuP9UoQpn3NKzjnnCphZjaQfA/OACuAWM1su6exYvx44DjhHUg3wBTDJSnTux88pOefcTu6bzimlxg/fOeecS4Z3Ss4555LhnZJzzrlkeKfknHMuGY3qQgdJXxOu/Ph/VAKpDkWdarZUc0G62VLNBelmSzUXpJtta3NVmVmj2AlpVJ3StpD0lJkNzzpHMalmSzUXpJst1VyQbrZUc0G62VLNtT00ip7TOedcefBOyTnnXDLKqVO64dtXyUyq2VLNBelmSzUXpJst1VyQbrZUc22zsjmn5JxzLn3ltKfknHMucd4pOeecS0ZZdEqSxktaKWm1pKkZ5rhF0npJy/KWtZe0QNLL8b7dN71GCbP1kPSopJckLZd0fgr5JDWXtFjSczHXFSnkystXIelZSXMTy7VG0guSluZmHE0oW1tJ90paEbe30VlnkzQgvle52yeSLsg6V16+C+P2v0zS7Ph/kUS27W2n75QkVQDXAocDg4ATJQ3KKM4sYHy9ZVOBhXEWx4XxcRZqgIvM7DvAKODc+D5lnW8jMNbM9gKGAuMljUogV875wEt5j1PJBTDGzIbmfZ8llWzXAA+b2UBgL8L7l2k2M1sZ36uhwD7ABuCBrHMBSOoG/AQYbmaDCdNLTEohW0mY2U59A0YD8/IeTwOmZZinJ7As7/FKYLfY3g1YmfV7FrP8GTgkpXxAC+AZYGQKuQgzdC4ExgJzU/p7AmuAjvWWZZ4NaA28RrzIKqVseVkOBZ5IJRfQDXgTaE8YyWFuzJh5tlLcdvo9JWr/oDlr47JUdDaztwHi/a4Z50FST2AY8G8SyBcPkS0F1gMLzCyJXMDvgEuAr/OWpZALwID5kp6WdGZC2XoD7wEz42HPmyRVJ5ItZxIwO7Yzz2VmbwG/Ad4A3gY+NrP5KWQrhXLolFRkmV8H3wBJLYH7gAvM7JOs8wCY2VcWDqt0B0ZIGpx1JkkTgPVm9nTWWRqwn5ntTThsfa6kA7MOFFUCewMzzGwY8DkJHXaK04EfDdyTdZaceK5oItAL6ApUSzo521SlUw6d0lqgR97j7sC6jLIU866k3QDi/fqsgkhqQuiQbjez+1PLZ2YfAYsI5+WyzrUfcLSkNcCdwFhJtyWQCwAzWxfv1xPOjYxIJNtaYG3c2wW4l9BJpZANQif+jJm9Gx+nkOtg4DUze8/MNgP3A/smkm27K4dOaQnQT1Kv+CloEvBgxpnyPQhMju3JhHM5O5wkATcDL5nZ9LxSpvkkdZLUNrarCP+gK7LOZWbTzKy7mfUkbFN/M7OTs84FIKlaUqtcm3D+YVkK2czsHeBNSQPionHAiylki06k9tAdpJHrDWCUpBbx/3Qc4eKQFLJtf1mf1NoRN+AIYBXwCnBphjlmE44JbyZ8Yjwd6EA4Wf5yvG+fUbb9CYc1nweWxtsRWecDhgDPxlzLgMvj8iTet5jlIGovdMg8F+G8zXPxtjy3zaeQLeYYCjwV/6ZzgHYpZCNcSPM+0CZvWea5Yo4rCB/GlgG3As1Syba9bz7MkHPOuWSUw+E755xzjYR3Ss4555LhnZJzzrlkeKfknHMuGd4pOeecS4Z3Sq7sSfoqjgy9TNI9klpsxXO7Srp3K3/eIknDv31N58qPd0rOwRcWRogeDGwCzt6SJ0mqNLN1ZnZcaeM5Vz68U3KurseAvnFUhFskLYkDh04EkHRq3Jv6C2HA056K82PFOW5mxnmMnpU0Ji6vknSnpOcl3QVUxeUVkmbFPbQXJF2Y0e/sXDIqsw7gXCokVRLGPnsYuJQwdNBpcZijxZIeiauOBoaY2QdxRPWccwHMbE9JAwmdVn/gHGCDmQ2RNIQw/QaEkQ26xT00csMpOVfOfE/JOaiKU2M8RRhn7GbCeHFT4/JFQHNg97j+AjP7oMjr7E8YAgYzWwG8DvQHDgRui8ufJwyvA/Aq0FvSHySNB5IYld25LPmeknPxnFL+gjjw5bFmtrLe8pGE6RaKKTZNSk7BeF5m9qGkvYDDCHtZJwCnbU1w53Y2vqfkXHHzgPNi54SkYVvwnH8AP4zr9yfsWa2st3wwYZBZJHUEdjGz+4DLCFM4OFfWfE/JueJ+SZhZ9vnYMa0BJnzLc64Drpf0AlADnGpmGyXNIMy0mhuBfXFcv1tcnvtwOG07/w7ONTo+Srhzzrlk+OE755xzyfBOyTnnXDK8U3LOOZcM75Scc84lwzsl55xzyfBOyTnnXDK8U3LOOZeM/wL4VAMsTT/gXAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_24_2.png" }, "needs_background": "light" }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "P \n", " [[1. 0. 0. ]\n", " [0. 0.9 0.1]\n", " [0.1 0. 0.9]]\n", "Q \n", " [[0.96 0. 0. ]\n", " [0. 0.864 0.096]\n", " [0.096 0. 0.864]]\n", "Govt expenditures in peace, temporary peace, war = [0.5 0.5 1.2]\n", "Constant tax collections = 0.6053287197231834\n", "Govt debt in 3 states = [ 2.63321799 -1. -2.51384083]\n", "\n", "Government tax collections minus debt levels in peace, temporary peace, war\n", " T+b in peace = -2.027889273356399\n", " T+b in temporary peace = 1.6053287197231834\n", " T+b in war = 3.1191695501730106\n", "\n", "Total government spending in peace, temporary peace, war\n", " peace = -2.027889273356399\n", " temporary peace = 1.6053287197231834\n", " war = 3.119169550173011\n", "\n", "Let's see ex-post and ex-ante returns on Arrow securities \n", "\n", "Ex-post returns to purchase of Arrow securities:\n", " π(peace|peace) = 1.0416666666666667\n", " π(temporary peace|temporary peace) = 1.1574074074074074\n", " π(war|temporary peace) = 10.416666666666666\n", " π(peace|war) = 10.416666666666666\n", " π(war|war) = 1.1574074074074074\n", "\n", "Ex-ante returns to purchase of Arrow securities = 1.0416666666666667\n", "\n", "The Ex-post one-period gross return on the portfolio of government assets\n", "[[ 1.04166667 0. 0. ]\n", " [ 0. 0.90470824 2.27429251]\n", " [-1.37206116 0. 1.30985865]]\n", "\n", "The cumulative return earned from holding 1 unit market portfolio of government bonds\n", "-9.3689917325942\n" ] } ], "source": [ "ts_ex2 = TaxSmoothingExample(g_ex2, P_ex2, b0_ex2, states_ex2, init=1, random_state=1)\n", "ts_ex2.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3\n", "\n", "This example features a situation in which one of the states is a war state with no hope of peace next period, while another state\n", "is a war state with a positive probability of peace next period.\n", "\n", "The Markov chain is:\n", "\n", "$$\n", "P =\n", "\\begin{bmatrix}\n", " 1 - \\lambda & \\lambda & 0 & 0 \\cr\n", " 0 & 1 - \\phi & \\phi & 0 \\cr\n", " 0 & 0 & 1-\\psi & \\psi \\cr\n", " \\theta & 0 & 0 & 1 - \\theta\n", "\\end{bmatrix}\n", "$$\n", "\n", "with government expenditure levels for the four states being\n", "$\\begin{bmatrix} g_L & g_L & g_H & g_H \\end{bmatrix}$ where $g_L < g_H$.\n", "\n", "We start with $b_0 = 1$ and $s_0 = 1$." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "g_ex3 = [g_L, g_L, g_H, g_H]\n", "P_ex3 = np.array([[1-λ, λ, 0, 0],\n", " [0, 1-ϕ, ϕ, 0],\n", " [0, 0, 1-ψ, ψ],\n", " [θ, 0, 0, 1-θ ]])\n", "b0_ex3 = 1\n", "states_ex3 = ['peace1', 'peace2', 'war1', 'war2']" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEWCAYAAAB2X2wCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3xUVdrA8d+ZSa8kpNI7aSQBEsCABEQQUYoFEFFBVARd+7rrq1hhd91dbIgr1qWIiqIidhfpEJUgNSQUaQkkhPReZua+f0xmTEgPSe7Mzfnuh8+aOXfuPDNz55kz5z73HKEoCpIkSZL906kdgCRJktQ6ZEKXJEnSCJnQJUmSNEImdEmSJI2QCV2SJEkjZEKXJEnSCJnQJbsmhBgjhEir9vdpIcTVbfA4SUKIMa2939bWVs9fsg8yoUtNIoQoqvbPJIQorfb3bLXja01CiJVCiCXVb1MUJVxRlK0qhVSnuuKUOjYHtQOQ7IOiKB6W/xZCnAbuVhRlk3oRSZJ0KdlDly6LEGKYECJBCJEnhEgXQiwXQjhVtcUJIbKEEN2r/o6q2i6knn2FCyH+J4TIEUJcEEI8WXW7sxDiVSHE+ap/rwohnJsQm04I8YQQ4nchRLYQ4hMhhG+19lFCiN1VMaUKIeYKIeYDs4G/VP36+KpqW+tQRkPxWIaAhBCPCSEyq16TOxuIcasQ4h9CiF+FEPlCiC8vifFTIURGVdt2IUR41e11xlklWghxsOo+64QQLlX38RNCfF31fHOEEDuEEDIHaIh8M6XLZQQeAfyAK4BxwH0AiqLsBt4CVgkhXIE1wCJFUVIu3YkQwhPYBHwPdAH6AT9VNT8FjACigShgGLCoCbE9CEwD4qv2mQu8UfV4PYDvgNcB/6p971cU5W1gLfAvRVE8FEWZXMd+G4snCPAGugJ3AW8IIXwaiPMOYF5VjAZgWbW274D+QADwW1VsNBLnDGAi0BuIBOZW3f4YkFb1fAOBJwE594eWKIoi/8l/zfoHnAaurqftYeCLan87AnuBQ5iTtajnfrOAffW0/Q5Mqvb3NcDpqv8eA6TVFRuQDIyr1hYMVGIeavy/6nFe8ngrgSX1PecmxFMKOFRrzwRG1PNYW4EXq/0dBlQA+jq27YQ5AXs3Eudt1f7+F7Ci6r9fAL4E+ql9DMl/bfNP9tClyyKEGFD1Mz5DCFEA/B1zbx0ARVEqMSeeCOAlpSqz1KE75kRZly7AmWp/n6m6rTE9gS+qhhjyMCd4I+beaUOP15jG4slWFMVQ7e8SwIP6pV6yL0fATwihF0K8WDVkVIA5WUO117ceGfU89r+BE8CPQoiTQognGtmPZGdkQpcu15tACtBfURQvzD/jhaVRCNEVeBb4L/BSA2PfqUDfetrOY07OFj2qbmtMKnCtoiidqv1zURTlXCOP19gwREvjqU/3S/ZVCWQBtwJTgasxD+H0qtrG8vo2a7hEUZRCRVEeUxSlDzAZeFQIMe4y4pZsjEzo0uXyBAqAoqqTnQstDUIIgbl3/h7mseR0YHE9+/kaCBJCPFx10tFTCDG8qu0jYJEQwl8I4Qc8A3zQhNhWAH8TQvSsisdfCDG1qm0tcLUQYoYQwkEI0VkIEV3VdgHo08B+WxpPfW4TQoQJIdwwD4usVxTFiPm1LQeyATfMv36qayzOGoQQ1wsh+lW9LwWYf60YLyNuycbIhC5drj9j7kkWAu8A66q1PYh5eOPpqqGWO4E7hRBXXroTRVEKgfGYe44ZwHFgbFXzEiAROIh5LP63qtsa8xqwEfMQQyHwMzC86vHOApMwnyjMAfZjPsEJ5i+gsKqhmg117Lel8dRnDeYvvgzABfPrBrAa8xDMOeBIVfzVNRbnpfpjPvFcBCQA/1FsrLZeujyi/iFNSZLamhBiK/CBoijvqh2LZP9kD12SJEkjZEKXJEnSCDnkIkmSpBGyhy5JkqQRqk3O5efnp/Tq1Uuth5ckSbJLe/fuzVIUxb+uNtUSeq9evUhMTFTr4SVJkuySEOJMfW1yyEWSJEkjZEKXJEnSCJnQJUmSNMKmViyqrKwkLS2NsrIytUORVOLi4kK3bt1wdHRUOxRJsjs2ldDT0tLw9PSkV69emOcPkjoSRVHIzs4mLS2N3r17qx2OJNmdRodchBDvVy2ldbie9tlVy10drFrOK6qu7ZqirKyMzp07y2TeQQkh6Ny5s/yFJkkt1JQx9JWYl7OqzykgXlGUSMxTo759OQHJZN6xyfdfklqu0SEXRVG2CyF6NdC+u9qfPwPdLj8sSarNpJg4V3iO7l7dMZqMbE/bXmubnl496dOpDxXGCnad21WrvU+nPvT06klJZQm/pP9Sq72/T3+6eXajqKKIPRl7arWHdg4lyD2I/PJ8frvwW632CL8I/N38yS7N5uDFg7XaI/0j6ezamcySTJKykmq1DwkcgrezN+lF6aTk1Fp6lWHBw3B3dK91u9Q8p/NPcyr/lCrvp5ezF0MDh7b+k6L1x9DvwryobZ2qViqfD9CjR49WfujWERcXx+7duxvfsJ2sXLmSxMREli9fXu82W7duxcnJibi4uHaMrKbnnnsODw8P/vznPzdp+7///e88+eSTzXqMzJJMEtITcNI74evqy45zO2pto6DQp1MfKk2VdbY76h3p6dWTcmN5ne0eTh7mhF5ZVGe7r6svQe5BFJQX1Nke5B6Ev5s/uWW5dbb39OpJZ9fOXCy9WGd7P59+eDt7k1GSUWd7uF84JZUlVJgq6OrRtVa71DSbzm7iXNE5fFx82uX9vFBywdre1aNrmyX0Jk3OVdVD/1pRlIgGthkL/AcYpShKdmP7jImJUS69UjQ5OZnQ0NBG4+lImpLQm5tMW5vBYGDJkiXNisHDw4OioqI62+o7DlILU3n/8PvMDplNP59+lxWzPfvk6CdklWZxX/R9aodit9488CadXTozY+AMtUNpNiHEXkVRYupqa5U6dCFEJPAuMLUpydyWeXiY19PdunUrY8aM4eabbyYkJITZs2dbVlFnz549xMXFERUVxbBhwygsLKSsrIw777yTQYMGMXjwYLZs2QKYE/K0adOYPHkyvXv3Zvny5bz88ssMHjyYESNGkJOTA8CYMWN4+OGHiYuLIyIigl9//bVWbBcvXuSmm24iNjaW2NhYdu3axenTp1mxYgWvvPIK0dHR7Nixo87tLtXUuN555x1iY2OJioripptuoqSkBIC5c+fy6KOPMnbsWP7617/W2Pc777zDtddeS2lpKR988AHDhg0jOjqae++9F6PRyBNPPEFpaSnR0dHMnj27ye+N0WReLU2v0zf5PlqkF3qMilw57nIYTUZ0QnuX4Vz2kIsQogfwOXC7oijHLj8ks+e/SuLI+YLW2h0AYV28eHZyeJO337dvH0lJSXTp0oWRI0eya9cuhg0bxsyZM1m3bh2xsbEUFBTg6urKa6+9BsChQ4dISUlhwoQJHDtmfjkOHz7Mvn37KCsro1+/fvzzn/9k3759PPLII6xevZqHH34YgOLiYnbv3s327duZN28ehw/XLCx66KGHeOSRRxg1ahRnz57lmmuuITk5mQULFtToHd966611bneppsR14403cs899wCwaNEi3nvvPR544AEAjh07xqZNm9Dr9Tz33HMALF++nB9//JENGzZw8uRJ1q1bx65du3B0dOS+++5j7dq1vPjiiyxfvpz9+/c3490zj6EDOAibqrZtd3qd3vrlJrWMSTGhF9rrGDT6yRBCfASMAfyEEGmYV3B3BFAUZQXmBXI7A/+pqlAw1PdzwN4MGzaMbt3M53ijo6M5ffo03t7eBAcHExsbC4CXlxcAO3futCa6kJAQevbsaU3oY8eOxdPTE09PT7y9vZk8eTIAgwYN4uDBP060zJo1C4DRo0dTUFBAXl5ejXg2bdrEkSNHrH8XFBRQWFhYK+76tvP09KyxXVPiOnz4MIsWLSIvL4+ioiKuueYa6/2nT5+OXv/Hh2LNmjV069aNDRs24OjoyE8//cTevXutr1VpaSkBAQENveQNMigGAHQ67fWsmkMv9NYvN6llxvUch7uD9k4uN6XKZVYj7XcDd7daRFWa05NuK87Oztb/1uv1GAwGFEWps7SuoXMR1fej0+msf+t0OgwGg7Xt0v1e+rfJZCIhIQFXV9cG427qdk2Ja+7cuWzYsIGoqChWrlzJ1q1brfdxd6/5gYiIiGD//v3WC4MURWHOnDn84x//aDCOpnLWO9PVoyvOeufGN9YwvdBbv9yklgnvrH5+aQsdu6vTAiEhIZw/f549e8wlbYWFhRgMBkaPHs3atWsB81DE2bNnGThwYLP2vW7dOsDc2/f29sbb27tG+4QJE2qcHLUMWXh6etboqde3XUsUFhYSHBxMZWWl9fnVZ/Dgwbz11ltMmTKF8+fPM27cONavX09mZiYAOTk5nDljnvnT0dGRysrKZsXS06sndw+6Gz9Xv5Y9GY0YEjiEG/vdqHYYdi2tMI388ny1w2h1MqE3k5OTE+vWreOBBx4gKiqK8ePHU1ZWxn333YfRaGTQoEHMnDmTlStX1ugBN4WPjw9xcXEsWLCA9957r1b7smXLSExMJDIykrCwMFasWAHA5MmT+eKLL6wnRevbriUWL17M8OHDGT9+PCEhIY1uP2rUKJYuXcp1111HQEAAS5YsYcKECURGRjJ+/HjS09MBmD9/PpGRkc06KSqZBbkHdegqn9aw+shqfs2oXXhg71RbU1SWLdY0ZswYli5dSkyMJk4/XJb6joPk7GS2pW3jttDb8HDyUCEy25Bdmk1WaRYDfZv3C1D6w+KExcR1jWNcj3Fqh9JsbV62KEntobiymAslF9QOQ3VJ2Ul8fPRjeWK0hRRFwYRJk9VS2ntGdqr6yUapbpbaay3WDzeHpdzOqGizlrqtafk40t4zkjRLXlhkZklEsha9ZSwJvUPWoUuSrdDyB7E5HHTmj628WrRl9ELP9AHTCXBr+TURtkomdMlueDt709urd4dP6NYeukzoLeKgcyCsc5jaYbQJmdAluxHpH0mkf6TaYaiuv09/5oTNwdWh4QvHpLpVGis5U3CGQPdAPJ08G7+DHZFj6CqaO3cu69evb3CblStXcv78+XaKqG5jxozh0hLT+pw+fZoPP/ywjSPq2LycvOjl3QtHnVx3tSUKKgpYm7KWU/mn1A6l1cmEbuPUTuhGY/N+1rdlQt+aupUVB1p+kZRW5JfnczjrMKWGUrVDsUuWck8tDt3JhH6J1atXExkZSVRUFLfffjsAZ86cYdy4cURGRjJu3DjOnj0LmHvYCxcuZOzYsfTp04dt27Yxb948QkNDmTt3rnWfHh4ePPbYYwwZMoRx48Zx8eLFWo+7d+9e4uPjGTp0KNdccw3p6emsX7+exMREZs+eTXR0NKWlpXVud6mmxrVw4UJiYmIIDw/n2Weftd7eq1cvXnjhBUaNGsWnn35qvd1kMjFnzhwWLVqE0Wjk8ccfJzY2lsjISN566y0AnnjiCXbs2EF0dDSvvPLKZb0XlyqqLKKoou451DuSjOIMPjv+GblluWqHYpesJ9c1WC1lu2Po3z0BGYdad59Bg+DaF+ttTkpK4m9/+xu7du3Cz8/POif4n/70J+644w7mzJnD+++/z4MPPsiGDRsAyM3NZfPmzWzcuJHJkyeza9cu3n33XWJjY9m/fz/R0dEUFxczZMgQXnrpJV544QWef/75GnOtVFZW8sADD/Dll1/i7+/PunXreOqpp3j//fdZvny59QrShra7VFPi+tvf/oavry9Go5Fx48Zx8OBBIiPNY9QuLi7s3LkTgBUrVmAwGJg9ezYRERE89dRTvP3223h7e7Nnzx7Ky8sZOXIkEyZM4MUXX2Tp0qV8/fXXrfa2WZgUU4efaRFq1qFLzaflainbTegq2Lx5MzfffDN+fubJn3x9fQFISEjg888/B+D222/nL3/5i/U+kydPRgjBoEGDCAwMZNCgQQCEh4dz+vRpoqOj0el0zJw5E4DbbruNG2+sObHS0aNHOXz4MOPHjwfMwxzBwcG14mvqdk2N65NPPuHtt9/GYDCQnp7OkSNHrAndEq/Fvffey4wZM3jqqacA+PHHHzl48KD1HEB+fj7Hjx/Hycmp8Re6hYwmoyav7msuy5eavFK0ZUwm7Q652O6no4GedFupb2rcS1XfpvqUs5dOR1t9atz67m953PDwcBISEhqNrynbNSWuU6dOsXTpUvbs2YOPjw9z586lrKzMut2lU+PGxcWxZcsWHnvsMVxcXFAUhddff73G/OjQtle8yisjzaw9dHlhUYv4ufkxO2Q2Qe5BaofS6uSno5px48bxySefkJ1tXkXPMuQSFxfHxx9/DMDatWsZNWpUs/ZrMpmsPdkPP/yw1v0HDhzIxYsXrYm6srKSpCTzCuLVp8ZtaLvmKigowN3dHW9vby5cuMB339W7tjcAd911F5MmTWL69OkYDAauueYa3nzzTesUuMeOHaO4uLjWVL6tqYt7F/p1krMMyiGXy+Pq4Eo/n364ObqpHUqrs90eugrCw8N56qmniI+PR6/XM3jwYFauXMmyZcuYN28e//73v/H39+e///1vs/br7u5OUlISQ4cOxdvb2zrvuYWTkxPr16/nwQcfJD8/H4PBwMMPP0x4eDhz585lwYIFuLq6kpCQUO92zRUVFcXgwYMJDw+nT58+jBw5stH7PProo+Tn53P77bezdu1aTp8+zZAhQ1AUBX9/fzZs2EBkZCQODg5ERUUxd+5cHnnkkWbHVp+4rnGtti97FuAWwD2D7sHXxVftUOxSQUUBaYVp9Pburblafjl9bjtoaIV7qTatHgeSbTiSfYRPj33KgsgFBLoHqh1Os8npcyVN+DD5Qz5O+VjtMFRXbixn74W9ZJVmqR2KXbLWoWuwbFEm9HYge+eto9RQSqWpecvWaVFpZSlfn/yatMI0tUOxSwaTuVhBi1UuMqFLdsOkmGSVC3/0LC2JSWoeOR+6JNkAoyLr0OGPnqWsQ28Zy+tmmYZYS7T3jCTNMipGTY57Npe1h67IHnpLhPqGEuQWhIveRe1QWp1M6JLdGOgzEG9nb7XDUJ28sOjyeDh5aHaRcTnk0kZeffVVSkpK1A6jQdWn77377rs5cuQIAH//+9/VDKteV/e8mtigWLXDUJ1e6Lk/+n6GBg5VOxS7lFGcwf7M/ahVst2WZEJvI/aQ0Kt79913CQszr+LSkoRe3zQHUusTQuDn6qfJKx3bQ3J2Mht/36h2GG1CJvRLLF68mJCQEMaPH8+sWbNYunQpAPv372fEiBFERkZyww03kJubS3JyMsOGDbPe9/Tp00RGRrJs2TLOnz/P2LFjGTt2bK3HqGsK3Pz8fAYOHMjRo0cBmDVrFu+88w5Q//S7v//+OxMnTmTo0KFceeWVpKSkAOae94MPPkhcXBx9+vSx9sIVReFPf/oTYWFhXHfddWRmZlpjsixi8cQTT1BaWkp0dDSzZ8/m9OnTREREWLdbunQpzz33nPU+Tz75JPHx8bz22mv1Tu27bNkywsLCiIyM5JZbbmnxe7N0z1J+OP1Di++vJb+m/6rJBRrag2VOoKbM22RvbHoMfVXSqlq3hXUOIzYolkpjJR+m1F5IIco/iuiAaEoqS/j02Kc12uaEz2nw8RITE/nss8/Yt28fBoOBIUOGMHSo+WftHXfcweuvv058fDzPPPMMzz//PK+++ioVFRWcPHmSPn36sG7dOmbMmMGDDz7Iyy+/zJYtW6wzN1o0NlXu3Llzeeihh8jNzeWee+4BqHf63fnz57NixQr69+/PL7/8wn333cfmzZsBSE9PZ+fOnaSkpDBlyhRuvvlmvvjiC44ePcqhQ4e4cOECYWFhzJs3r0Z8L774IsuXL2f//v2A+UuqIXl5eWzbto3Kykri4+PrfF4vvvgip06dwtnZmby8vAb315BKUyUC7X0IW2JL6haiAqLo7d1b7VDsjlExarIGHWw8obe3nTt3MnXqVFxdzfM7TJ48GTBPDZuXl0d8fDwAc+bMYfr06QDMmDGDTz75hCeeeIJ169bVmqflUg1NgTt+/Hg+/fRT7r//fg4cOGC9T13T7xYVFbF7925rHADl5eXW/542bRo6nY6wsDAuXLgAwPbt25k1axZ6vZ4uXbpw1VVXtfzFqmKJq6HnFRkZyezZs5k2bRrTpk1r8WPJKpc/6IVenhRtIaNJu8eRTSf0hnrUjnrHBtvdHN0a7ZFfqiUnSWbOnMn06dO58cYbEULQv3//Rh+jvilwTSYTycnJuLq6kpOTQ7du3erchxACk8lEp06drD3pS1WfMrf682ruz0wHBwfr/NFAjSl24Y9pdht6Xt988w3bt29n48aNLF68mKSkJBwcmnfoKYqi6Z5Vc+l0OjnbYgtp+TiSY+jVjBo1iq+++oqysjKKior45ptvAPD29sbHx4cdO3YAsGbNGmtvvW/fvuj1ehYvXlxjUYj6ppFtaArcV155hdDQUD766CPmzZtnnZq2rul3vby86N27t3WJOEVRavTq6zJ69Gg+/vhjjEYj6enpbNmypc7tHB0drY8dGBhIZmYm2dnZlJeX17sSUX3Py2QykZqaytixY/nXv/5FXl5ei6ZC0PIqMy0he+gtF989njvC7lA7jDZh0z309hYbG8uUKVOIioqiZ8+exMTE4O1trntetWoVCxYsoKSkhD59+tSYQnfmzJk8/vjjnDr1x0mq+fPnc+211xIcHFwjcdY3Va6joyPvvvsuv/76K56enowePZolS5bw/PPP1zv97tq1a1m4cCFLliyhsrKSW265haioqHqf3w033MDmzZsZNGgQAwYMsH4pXWr+/PlERkYyZMgQ1q5dyzPPPMPw4cPp3bs3ISEhdd6nvuc1YMAAbrvtNvLz81EUhUceeYROnTo1/U2pZnjQcLp6dG3RfbVGL/TyStEW8nLygrZbWEtVcvrcSxQVFeHh4UFJSQmjR4/m7bffZsiQIarG1NGm37WF48DWFVUUodfpNTefd3s4mnOUSlMlEX4RjW9sgxqaPlf20C8xf/58jhw5QllZGXPmzFE9mUtmiqJgUAw4CAdNlps1l1avdGwP+zL3kV+eb7cJvSEyoV/iww9rl0KqrSP1zutTUFHAq7+9ypS+UxgcMFjtcFS3L3MfAkF0QLTaodgdLVdL2dxJUS1ejis1XX3vv2WqWC1OedoSBzIPcOBiwyfBpboZTdpdbNymnpWLiwvZ2dkyqXdQiqKQnZ2Ni0vtWfCsU57K6XMB8xebLFtsGZNi0my1lE19Orp160ZaWpr10nap43Fxcamz/l7LixK0hF6np8JQoXYYdsmgGHDVa/Nksk0ldEdHR3r3lpcyS7VZ69A1OvbZXHqhlysWtdAtA1s+n5Cta7S7I4R4XwiRKYQ4XE+7EEIsE0KcEEIcFELIshCp1Xk4ejCq6yh8XXzVDsUm6HWyDr2ltDwfelN66CuB5cDqetqvBfpX/RsOvFn1/5LUarydvRnXY5zaYdiMaX2nIecpa5k9GXvwcvJioO9AtUNpdY320BVF2Q7kNLDJVGC1YvYz0EkIEdxaAUoSmKtciiuLZa+0iqPeEUedo9ph2KXd53dzJPuI2mG0idY4w9QVSK32d1rVbbUIIeYLIRKFEInyxKfUHL/n/c7SxKVkFGeoHYpNSM5OZvPZzWqHYZeMilGTC0RD6yT0un741Vl3qCjK24qixCiKEuPv798KDy11FJaeuaxyMTtdcJo9GXvUDsMuGU1ytsWGpAHdq/3dDTjfCvuVJCtLlYtWe1bNJSfnajmjYkSn02bHoDWe1UbgjqpqlxFAvqIo6a2wX0myktPn1qTX6eWFRS1kNBk1e4Fao89KCPERMAbwE0KkAc8CjgCKoqwAvgUmASeAEuDOtgpW6rgsc3/LIRczvTAndEVR5GRlzfRozKOa7Rg0mtAVRZnVSLsC3N9qEUlSHbp4dOGq7lfJ6WKr6IQOgdD0ZextRcvHkDZ/d0iaE+QeRJB7kNph2Iwru17J6G6j1Q7D7hhMBrambqW/T396evVUO5xWJ3+/SnahpLKE3LJcOXFbFTnM0jIGk4Fd53dxvkibdRsyoUt2IfFCIsv2LZOVHVXOFJxh4+8bKTOUNb6xZGU5frQ6TCUTumQXZB16TTllOezL3Ee5sVztUOyKQTFPaKbVSd7kp0OyC5aLQeRQg5nli03+Ymkek0n20CVJdQbFoNkPYUtYXgtZi948lh66Vn/pySoXyS6YFJNmfya3hCWhyznRm8fP1Y+nRzytdhhtRiZ0yS6EdQ6TZYvVOOgccNY7qx2GXdJq7xxAqFUGFhMToyQmJqry2JIkdUy5ZbnsPr+bYUHD8HezzwkChRB7FUWJqatNu19VkqbkluWSVZqldhiSnSuoKCDxQiKFlYVqh9ImZEKX7ML/zvyPT45+onYYNiOrNIv1x9bL+eGbSeuTvMmELtkFk2LS9Nhnc5Uby0nKTiK/PF/tUOyKZZI3mdAlSUVaXmWmJSwJSdahN4/l9dLqsSQTumQXjCaj7KFXIxN6y1hmp9TqsaTNrylJc+Q0sTVZavItF8pITRPaOZRFnRepHUabkQldsgujuo6Sl/1X46BzwNPJU37JSTXIhC7ZhX4+/dQOwaZ4OXnx6NBH1Q7D7pzMP8mBzANM7D1RkwtdaHMgSdKcc0XnZB26dNmySrI4mHVQs/Pqy4Qu2YUvjn/BttRtaodhMypNlaxNXktSVpLaodgVax26RucFkgldsgtGRVa5VCcQnMg7QXZZttqh2BVLQtfqsaTNZyVpjqxDr0mWLbaMvLBIkmyAZYELyUwIgV7o5XzozeSgc8DdwV2zPXTZ5ZHsglExotNp80PYUnqht/Y4paYZ2XUkI7uOVDuMNiMTumQXbux/I95O3mqHYVP83fw1WXontZxM6JJdGOAzQO0QbM7dg+5WOwS7sydjD+eKzjGt3zS1Q2kT8jesZPMUReFY7jFyynLUDkWycxnFGZzMO6l2GG1GJnTJ5hkUAx+lfMSR7CNqh2JTPjv2mazNbyaDyaDZGnSQQy6SHbCU5skql5oySjJQ0OYVj21F6/Pqa/eZSZqh9V06tPEAACAASURBVNrhlpJVLs1nVIw4CO32Y7X7zCTNsEwRq+WeVUvohV5On9tMbo5uGEzafc1kQpdsnsmk7VVmWkqv08srRZvp+j7Xqx1Cm5KfEMnmuTu5c0fYHXR27ax2KDbF39Vf/mqRapAJXbJ5jjpHenv3VjsMmzO572S1Q7A73536DkedI1f3vFrtUNqE/HqXbF5JZQmHsw5TUFGgdiiSnTtXdI4LJRfUDqPNyIQu2bycshw+O/4ZF4q1+0FsiR9P/8gnRz9ROwy7YjAZNF0tJRO6ZPOsixJo+IPYEgUVBWSWZKodhl0xKSZNX1gkE7pk87S+ykxL6YWscmkurdehy4Qu2TxL2aKs6KhJr5N16M3V2aUz3s7anbVTu19VkmZYeuha7lm1hE7orF92UtPcGnqr2iG0qSZ1eYQQE4UQR4UQJ4QQT9TR7i2E+EoIcUAIkSSEuLP1Q5U6qh5ePbh70N2yDv0SAa4B9PDqoXYYkg1pNKELIfTAG8C1QBgwSwgRdslm9wNHFEWJAsYALwkhnFo5VqmDcnVwpatHV5z08pCqbljwMGYMnKF2GHZl5eGV/JL+i9phtJmm9NCHAScURTmpKEoF8DEw9ZJtFMBTCCEADyAHkIN7UqvIKs3itwu/UWGsUDsUyc6lFaVRVFGkdhhtpikJvSuQWu3vtKrbqlsOhALngUPAQ4pS+/S7EGK+ECJRCJF48eLFFoYsdTRnCs7w1cmvKDOWqR2KTfk1/Vde++01FEVOodsUiqLI6XMBUcdtlx5B1wD7gS5ANLBcCOFV606K8raiKDGKosT4+/s3O1ipY5LT59at3FhOXnme9aSx1DCl6n9aLn9tSkJPA7pX+7sb5p54dXcCnytmJ4BTQEjrhCh1dPLCorpZXg+Z0JumI3QMmpLQ9wD9hRC9q0503gJsvGSbs8A4ACFEIDAQ0O7CfVK7sq5YpOGeVUtYXg+5yEXTKCj09OzZsevQFUUxCCH+BPwA6IH3FUVJEkIsqGpfASwGVgohDmEeovmroihZbRi31IHIHnrdZA+9eZz0TsyNmKt2GG2qSVdqKIryLfDtJbetqPbf54EJrRuaJJnFBMYQ6huq6ZNZLeHr4kuob6j8opOs5KV3ks1zc3TDzdFN7TBsTp9OfejTqY/aYdiN/PJ81hxZw/ie4xnoO1DtcNqE7PJINu9k/kn2ZOxROwzJzlWaKskuy6bSVKl2KG1GJnTJ5qVkp7AldYvaYdic47nH+deef5FRnKF2KHbBsji0lofutPvMJM3Q+pSnLaWgUGoolSdFm8haLaXhcw4yoUs2z6gYZcliHSxfcrJssWk6QrWUTOiSzTOajJr+mdxSltdE9tCbxlnvTP9O/fFw8lA7lDYjf8dKNk8OudRNXljUPAFuAZqfD11+SiSbN7nvZJm06uDh6EGkX6Sme5xS88jfsZLNc3VwlUmrDj4uPtzQ/waC3IPUDsUuHM89zsuJL3OxRLszvcqELtm8/Zn72Z+5X+0wJDtXYaygsLJQ7TDalEzoks3bl7mPgxcPqh2Gzckry2PJz0s4cPGA2qHYBcuC2lo+wa7dZyZphixbrJsQAqNilOcXmshSh+6g0+6pQ5nQJZtnNBk1XTvcUpbEJMsWm0bOhy5JNsCoyDr0usg69ObxcfEhvHM4jnpHtUNpM9r97SFphlGRPfS6yCtFm6dvp7707dRX7TDalEzoks1bELkApdYytpJepyc2MFaWLUpW8nesZPMc9Y446Z3UDsPm6ISOSX0mab7X2Vq2p23nxV9fRFG02zmQCV2yeZvPbiYlJ0XtMGySSTHJIZcmqjRVUmmsRAihdihtRiZ0yeb9mvErZwrOqB2GTfrnr/9k09lNaodhF0yKSfPlr3Y3hl721eNkHkukSycXHHTy+6gjMIgc9Ek/AMvUDsXm6EUupiPytWkKI8XoRQUc2aV2KBA0CK59sdV3a3cZ8VxuKefzSzmQlk9WUbk8WaZxCgomQNv9qpbTAwa1g7ATBrR/HNldD73vHcspSs1j0YbDHDqXzxV9OvPC1HD6B3qqHZrUBhTFhPLzYvTdx0K30WqHY3P0e1/F5N0b+k1VOxSb1/3iAZyKL0CvCWqH0mbsrocOENW9ExvuH8niaREknc/n2td28I/vkikul30VrekIV/ddDp3QyQuLmijKP4oJGk7mAEKtEp6YmBglMTHxsveTVVTOi9+lsH5vGl28XXj6+jAmRgRp+kx2R2M5RuV7Wtvu87vxcvIiwi9C7VBsnqIomjiGhBB7FUWJqbPN3hO6ReLpHBZtOExKRiHxA/x5fko4vfzcW23/kiTZt3Up68gtz2VB1AK1Q7ksDSV0uxxyqUtML1++fmAUT18fxt4zuUx4dTsv/+8YZZXy56g9K6ks4avfvyK1IFXtUGxGYVklucUVAJQbyyk1lKockX3oCFNIaCahAzjoddw1qjc/PRbPxPAglv10nPGvbGNzygW1Q5NaqNxYzm+Zv5Fdlq12KDbhQGoeY5duY/4a86/btclr+fTopypHZR86wiRvmnx2gV4uLJs1mA/vHo6TXse8lYncszqRtNwStUOTmslywk/Lc1g31feH05n5dgJZReWkpBeiKAp6obfO8y01zKSYZA/dnsX18+O7h0bz14kh7DyexdUvb+ONLScoN8hhGHthqXLRes+qIYqi8Pb231m49jdCg71YEN+XwnID+aWVOOgcrCvxSA0zmAyav1JU858SJwcdC8f0ZdNj8YwZEMC/fzjKta/uYOfxLLVDk5rA0vvUes+qPpVGE09tOMzfv01hUkQwH90zgujunQBIzSk1ly3KuVyaZJDfIMI6h6kdRpvSfEK36NrJlRW3D2XlnbEYFYXb3vuFP334Gxn5ZWqHJjVAQcFZ74yjTruLEtSnoKySeSv38OEvZ1k4pi+vzxqMi6Oe7r6uAKTmlsghl2YYFjyMoYFD1Q6jTXW4gckxAwP44eHOvLXtJG9sPcGWlEweGT+AOXG9cNR3mO83u9HFowtPDHtC7TDa3bm8Uub9dw+/XyzinzcNYmZsD2tbd183AFJzShgdMYgSgzw31BTlxnJ0QqfpzkGHzGAujnoeuro/mx6JZ3ifziz5Jpnrl+3k11M5aocmSRxMy2PaG7s4n1/KqnnDaiRzAC8XR7xdHUnNLSG0c6jme52t5a0Db/H171+rHUab6pAJ3aJHZzfemxPD27cPpajcwIy3Enj0k/1cLCxXOzSpSnpROuuPrSe3LFftUNrFD0kZzHgrASe9js8XxjGyn1+d2/XwdeNsTikllSXkleW1c5T2yagY5UlRrRNCMCE8iP89Opr7xvTlqwPnueqlraxOOI3RJGdyVFtBRQFJ2UmUG9v3SzarqJwPfzlLhaF9xqcVReHdHSdZ8MFeBgZ5seH+kQ1OONfd15W0nBK2pm7lnUPvtEuM9s5oknXoHYabkwN/mRjCdw+NJrKbN898mcSU5Tv57WzH6BnaKktJXntVuRhNCmsSTnPV0q08+cUhfjyS0eaPaTCaePrLwyz5JpmJ4UF8fM8I/D2dG7xPdx830nJLEcjJuZpKXinaAfUL8OCDu4bz+qzBZBWVc+N/dvN/nx+0Xmotta/2rEPfn2oeu376yyTCu3ij1wmS0wva9DELyyq5a1UiH/x8lnvj+/DGrUNwdWo86XTzdaPCaKKoXC5B11RtkdAzC8p4ZN1+Zr/7s02sVdrhqlyaQgjB5KgujA0J4LVNx3h/12m+P5zBXyeGMCOmOzqd/c/YZi/aow49r6SCf35/lI/3nMXfw5nXbolmSlQXrnl1O8nphW32uOfySrlr5R6OZxbxjxsHMWtYj8bvVKW7j7l0MbfYIHvoTTSq6yi6eXRrlX0ZjCZWJ5zhlf8do7Bq2u70/DK6dHJtlf23lEzoDfBwduCp68K4aWg3ntmQxBOfH2JdYiqLp0YQ0dVb7fA6BJ3Q4eno2SaX/ptMCuv3pvHi9ynkl1ZyZ1xvHhnfH08Xc1lbaLBXm1U+HUrLZ96qPZRVGFl5ZyxX9vdv1v0tpYs5RQYUZwWTYtL8+PDlGt1KC6TsPZPLog2HSU4vYPQAf6ZEdeHPnx4gOb1A9YTepCNACDFRCHFUCHFCCFFnUbAQYowQYr8QIkkIsa11w1RXSJAX6+4dwUvTo0jNKWHK8p08++Vh8ksr1Q5N8yL9I3k05lE8nDxadb9J5/OZ/lYCf/nsIH383Pn6gVE8MznMmszBnNDT88vIK2nd4bYfq1WyrF8Y1+xkDuYL5YSAyrIAJvWe1KrxaZGiKOSX51NhbPl7mV1Uzl/WH+CmN3eTV1LBm7OHsOrOWCZGBAG0+fBcUzTa7RFC6IE3gPFAGrBHCLFRUZQj1bbpBPwHmKgoylkhREBbBawWIQQ3De3G1WGBvPTjUdb8fIZvDmXw5KQQbhjcVRMT53cEBWWVvPzjMVYnnMbHzYl/3xzJTUO61TmMFhrsBcCR9ALi+tZdPtgciqLw/q7TLPnmCJFdvXlnTgwBni4t2peLo55ATxfyCjyJDYq67Ni0rtJUyau/vcr4HuOJ6xrXrPsaTQof/XqWf/9wlOJyA/fG9+HBq/rj7mxOnx7ODvTwdWvT4bmmasrv2GHACUVRTgIIIT4GpgJHqm1zK/C5oihnARRFyWztQG2Ft6sjL0yNYEZMd57acJhHPznAuj2pLJ4WwQC5rmmrO5x1mIMXDzJz4MzLqiFWFIUv95/nb98mk1VUzuzhPXh8QgjebvVfNRgabH4/k9MLLzuhG4wmXvj6CKsTzjAxPIhXZkY36eRnQ7r7unImN5eM4gz8Xf01X2N9OQymqmqpZr5GB9PM6xcfTMtnRB9fFk+NqLOcNDTY0yZ66E0ZcukKVF9dIK3qtuoGAD5CiK1CiL1CiDtaK0BbFdHVmy8WxvH3GwZx9EIhk17bwd+/leuatrbs0myO5x2/rPHh4xcKmfXOzzy8bj/B3i58ef9Ilkwb1GAyBwjwdMHPw+myP6hF5QbuWZ3I6oQz3Du6D/+Z3bRKlsZ093HjbNEx3jr4FsWG4sven5ZZTq439TjKL6lk0YZDTH1jF+n5Zbx2SzQf3TOi3msDQoO9OJVdTEmFup//pvTQ6xpLuLQ+xwEYCowDXIEEIcTPiqIcq7EjIeYD8wF69Gj6GX1bpdMJbh3eg4kRQfzzuxTe3n6SjfvP8/T1YUwaJNc1bQ0GxYAOXYtey+JyA8s2H+e9Hadwd3bgbzdEcEtsD/TNqFIKDfa6rISenl/Knf81V7L87YYIZg/v2eJ9XaqbrxvZRw2YTAomk5ygqyFNnVffZFL47Lc0XvwuhdySCubG9eKR8QPwcmn4yz802AtFgaMZhQzu4dNqcTdXUxJ6GtC92t/dgPN1bJOlKEoxUCyE2A5EATUSuqIobwNvg3lN0ZYGbWt83Z34582RzBzWnac3HOb+D3/jyv5+PD8lnD7+rXsyr6NpSfWGoih8fziDF74+Qnp+GTNiuvHXiSF09mj4Yp26hAZ7sXLXaSqNpmZP3nb4XD53rdpDcbmR/86NZfSA5p/8bEh3H1cUk47iCqOcE70RloTe0LGUnF7A0xsOk3gmlyE9OrH6rmGEd2laNVtY1fmW5HTbT+h7gP5CiN7AOeAWzGPm1X0JLBdCOABOwHDgldYM1B4M6eHDxj+N4oOfz7D0x6NMfHUH80f34f6x/VrlJ3ZHZDQZm1WyeCqrmGc3JrH92EVCg71Yfutghvb0bfHjhwZ7UmE0cfJiMQODmn6OZNORCzzw0T583Z34bOHwZt23qXr4ugE6isoMcgrdRrg6uDKh5wS6uHep1VZYVskr/zvOqoTTeLs68q+bIrl5aN0nyuvTzccVT2cH1cfRG/2kKIpiEEL8CfgB0APvK4qSJIRYUNW+QlGUZCHE98BBwAS8qyjK4bYM3FbpdYI5cb2YNCiYf3ybzPItJ/hi3zmemxLO+LBAtcOzO64OrnR27dzodmWVRv6z5QQrtp3E2UHHs5PDuH1ETxwuc0rkUGvPq6DJSfm/u07xwtdHiOjizXtzYgjwalklS2O6+7qBIiiukAm9Ma4OrlzR5YoatymKwsYD5/nbN8lcLCpn1rAe/OWagXRyc2r2/oUQhNjAidEmdX0URfkW+PaS21Zc8ve/gX+3Xmj2zd/TmZdnRjMztjtPf3mYe1YnMi4kgOemhFsvCrEV5/NKSckoYOzAAJsb94/vHk989/gGt/kp+QLPfZVEak4pU6O78NSk0FZLon39PXDS60hOL2Da4EtrAWoyGE0s/voIqxLOMCEskFdvicbNqe2u3Qv0ckFv8iFQXImXk1ebPY4WVBorya/Ix8vJCye9E6eyinny80MknMxmUFdv3rkjhqiqlaBaKjTYi89/O4fJpKh2Nbm8tKyNDe/TmW8evJInJ4WQcDKbq1/exus/HbepdU1f/t8x5q1M5JkvkzAY7aenl5pTwt2rErlrVSLODno+vGc4r90yuFV7xI56Hf0CPDjSSM+rqNzA/DV7WZVwhnuu7M2btw1t02QO5l+DXb06U1rUDTdH2+ok2JqM4gze2P8GqYXmgr0/f3qAw+fzWTwtgg33j7zsZA7mhF5UbiAtt/Sy99VS8tL/duCo1zF/dF8mR3VhydfJvPS/Y3z2WxrPT40gvpVPlLVE0vkCPF0cWPPzGVJzS3h91uAaV0yqacvZLeSV53FD/xust5UbjLyz/STLt5xAIHji2hDmjeyNk0Pb9E9Cg73Yduxive3p+aXMW5nIsQuFLJkWwW0jWq+SpTFdfR05lXuaUkMorg7qXnZuyywnRS1zAh2/UMi06K7c3orvVfUL0Xp0VucLVvbQ21GwtytvzB7C6nnDEEIw5/1fuW/tXtLz1ftGrzCYOJFZyOzhPfn7DYPYcTyL6SsSOJ+nXkzVXSy9SEbJH1PY7jyexbWv7mDpj8cYOzCAnx6LZ0F83zZL5mA+MZpVVF7nwieHz+Uz7Y1dpOaU8P7c2HZN5gB+3uWcU74jrTCtXR/X3lRP6PkllRSUGaxrs7aWgYGe6ETDUwAYTQr/+Da5zabllgldBaMH+PP9w1fy5wkD+Ck5k3EvbWPFtt/bbTGF6n6/WESlUSE02JNbh/fgv3NjScstZdobuziUlt/u8VzKYDJYe1Wnsoq54/1fMCkKq+YN483bhrbLZEhh1U6MVvdT8gVmvJWAXgjWL7xClV9bXTu5U2YwUVQup3duSPUrRVNzzWuwdvdp3V60q5OeXn7u9Sb04nID967Zy1vbT7K9gV98l0MmdJU4O+j501X92fRoPHF9/XjxuxQmLdtBwu/Z7RqH5eCzJK3RA/z5bGEcjnodM95KYNORC+0az6VMisma0FPSCzApsPzWIe2aPEPrSOgrd53intWJ9PX3YMP9IwkJUuekZDcfdwDO58srRRtS/UrR1JyqhN4GxQmhwV4kZ9RO6BcKypj5dgKbUy7wwtRwHr56QKs/NsiErrruvm68OyeGd++IoazSaL5E/eN9ZBaWtcvjJ6cX4OSgo7efu/W2gUGefHF/HP0DPbhnTSL/3XWqXWKpS/VFCaw9q3auEvJxdyLIy4Xk9AKMJoXnNibx3FdHGBcayLp7R7RZWWJTdOtkvnDtfJ5M6A0Jcg/i+j7X4+Xk1abHUViwF6k5pRSW/TETa3J6AdPe2MWpi8W8NyeWO67o1eqPayETuo24OiyQ/z0SzwNX9ePbQxmMW7qN/+461eZVJ8nphQwM9KxVrx3g6cK6+VcwISyQ5786wrNfHlalAsbXxRc/N/PEWKk5pXi5OODt2v4nbEODPTmYls/81Yms3H2aeSN7s6IdKlka072qh55RaBvnPGyVj4sPQwOH4ubo1qbHkWVCt5QM88yLW45mcvObu1EU+HRBHGND2nYiWpnQbYirk57HJgzkh0dGE92jE89/dYQpy3ex90zbnEBRFIXk9ALrQVhXPG/OHso9V/ZmVcIZ5q/ZS1E7Tz42ue9kru9zPWDuoatVwx8a7MXJrGK2HM1k8bQInpkc1qw5YdpKV69OOBTFkZcvF1xpSFFFEeeKzmEwGdr0OKo+PLfm5zPctXIPvfzc2XD/SMK6tP2wnEzoNqi3nzur5w3jP7OHkFNcwU1v7uYv6w+QXVS7yuJyXCwsJ7u4wnoQ1kWnEzx1XRhLpkWw7dhFpq9IUK0qJzWnpNVPZDXVuNAAuvu68t7c2FYtdbtcTg5OjOgWyWd78lj4wV6bqU6yNck5ybx76F3KDGVtehwFebnQyc2R1zef4OkNhxk7MIBP7r2CIO/2GZaTCd1GCSGYNCiYnx6L597Rffj8t3Nc9dI21v5yBpOpdeY1s1ws01BCt7htRE/enxtLak4J097YxeFz7VMB83HKx2w6swlFUUjLLW31UrOmGtrTlx1/uYqxA21r7RaTYuKx672476pANqdkcvXL5oqpSju6QKw9VJ+cqy2PIyEEoUFeXCwsZ25cL96+I8a6EEZ7kAndxrk7O/B/k0L57qErCQ325KkvDnPDf1qnpNCywkpoEys04gf4s37hFeiFYMZbCfyU3PYVMJklmRRWFHKxsJxyg8nmpk1Qm1Ex8unxj4kLL6tZMfVa+1dM2TLL9MI5RYY2P46enBTKituG8NyU8HYflpMJ3U70D/Tko3tG8OrMaM7llTHljZ0s2nCI/JKWr2uanF5A106ujS70UF1IkBcb7h9JX38P7lnd9hUwRsWITug424alZvbMUgFkNBmtFVPvzYmhVIWKKVtmmV74fJ552LItj6NB3byZGBHcZvtviEzodkQIwbTBXdn853jmXNGLD385y1UvbWX93jQUpfnDMA2dEG1IgJcL6+4dwbjQtq+AMSmmNr0YxN7phA6BsA4pAIwLVadiypZZ6tDTcs1fblo9jmRCt0NeLo48NyWcrx4YRc/Obvz50wPMeCuBlDouaKhPWaWRk1nFTRo/r4ubkwMrbhvK3aP+qIBpi+X3LFeKpuaYT/Z185HzlVxKL/Q1Ejq0f8WUrQvrHMZN/W+yJnStHkcyodux8C7erF8Qx79uiuREZhHXLdvJ4q+P1LiooT4nMoswmpQWJ3Qwz/a36PowFk+LYOvRTKavSCAjv3V/3vfw6oGfqx+pOSUEeDrj4igXCrmUXlc7oVvUVzGVU9yxpgoIcAsgwi9C88eRTOh2TqcTzIjtzubHxjAjpjvv7zrFuJe2sfHA+QaHYSwVLiGtsJLO7SN68t7cWM5kFzPtjV0knW+9CphZIbOIDYpVtQbd1s0cOJOYwJh62y0VU5sei2d+VcXU2KVbW7ViytZdLLnI2YKzmj+OZELXCB93J/5x4yC+uG8kAV7OPPjRPm577xdOZBbVuX1yegGujnp6dnavs725xg4M4NMFcQgB01eY56xoTak5pXTX6M/ky9Xbuzd+rn6Nbufh7MCTk0L59qErGRj0R8XUwbS8dohSXb9k/MKnxz7V/HFkl/OhlxnKqDTVHlbwdDL3NksNpdbZ1SwEAg8n87wXJZUltX6i6oQOd0f3Frfrhd66yEBxZXGtJcGqtxdVFKFQs2fkoHOwzmfdWHthRWGt5+6oc8TFwYWobt58cE8U6xNTee2n41z7+jnmXNGL+8eG4OPqjkkxUVxZzOH0DPoFOVBiMCd8Z70zTnona/ulLO1Gk5ESQ0mtdhe9C2FdvPhs4XDuXrObu9fs5P+uDeGWYT3M7Q4uOOocqTRVUmaoPSzj6uCKg86hRrtJMbEqaRXDgq4gPb+U7r4NrxjUUR3PPY7BZKCbZzfrbQ29n8E+sOauIXx76CJLvjnC1Dd/YmZMdx64qh9eVZfDu+hdcNQ7YjAZKDXUvlipJe9nne3GSsqMtdvdHNzQ6/RUGCsoN9a+oM7d0R2d0FFuLKfCWHv4yMPRAyGEtd0cg9D8cWSXCX3z2c3subCnxm16oWfRiEUAfH/qew5mHazR7ubgxuOxjwPw1e9fkZKbUqPdx9mHB4c8CMBnxz/jZP7JGu2BboEsiFoAwIcpH3Ku6FyN9u6e3ZkXMQ+AVUmruFhac3rMfp36MTt0NgDvHHqHgoqaJzBDfUOZMXAGAG/sf6PWQR7tH83UflMBeHXvq5io+YUxPGg4E3tPxKAYeG3fK6CH68ca2X82jzXHvmXj0UEsnnALI/t78HLiy6RUpNHD142X9+4CYFyPcYzqOor88nyW7VvGpSb1nkRsUCwXSy/y1sG3arVP6zeNKP8ojLpchg7eTfnvWSxN/Jav0jwZ0sOHmQNnENo5lDP5Z1ibsrbW/W8PvZ0+nfpwLPcY64+tr9GWWViCSdFuZcLl2nRmE5mlmTVua8r7ecPgWCJ6wGM/LmXDmUK+W6MjuocPffzcmdbf/H6mF6XzftL7te4/Y0DL30+AeRHz6O7ZncPZh9n4+8Za7QujFhLgFsC+zH18f/r7Wu0PD3kYb2dvfkn/hS2pW2q1Px7zOG6ObuxI28Gu8+Zj3FHxNh9HGh5yscuEHuEXQYBbzSv2dOKP0aOogCi6e3av0V595fihgUPp26lvjXZnvbP1v4cFDSPUN7RGu6vjHz/TRnYZWavXY+n9A8R3i6/Vq/Fy/uPk47ge42r1Knxd/liZ/ppe19T6hVH9J/WkPpNqjY8HupkXoNYLPdf1vs56+00DzBcQrdqRx71r9hI/0Ieroq6kJDuJkaG9mdA7CMDau3NzdKtxf4seXuaetpeTV53tXT3MvR4fFx+m9rueyX0VPvj5DN8cTMel3AevCHP8/m7+dd7fshB0sHtwjXa9Tk9ujj9wQNMfxMsxtd9Uzhedr3FbU9/Prl6+PDP2Nk5lFfPezlPs3FdIVrAn13Q1zw3j4+JT5/2D3M3HTXPfTwsfZx/A3BGqq93D0fx56uXVq852FwfzpfT9O/XHzaH2ceGoN//SCPENoZOzeXm5cxddgDOa7hiIltQvt4aYmBglMTFRlcfuiCqNtoIaQgAADk5JREFUJlbtPs2rm45bJ9hav+AKYnr5NnLPy7M64TTPbUwiNNiL9+fGEtiCqWY/+vUs//f5IXb+dSzdNPxhVJvJpPDp3lRe/C6FgjIDc+N68fDV/W1mOcLLpZXjSAixV1GUOs+Cy5OiHYSjXsfdV/bhp8fimRLVhZ6d3S6rZLGp7riiF+/NieV0lrkC5sj5ptfKW6TmlOCgEwR7a/dkli3Q6QQzY3uw+bExzIxtesWUvegIx5FM6B1MoJcLy2YNZtvjY9tt0qCxIeYKGEWB6St2syUls/E7VZOaW0qXTq42MV1tR+Dj7sTfbzBXTAV6ufDgR/uY/W79FVP2oiMcRzKhS+0irIt5Dphefu7ctWoPaxJON/m+qTklqs2y2JFFd+/EhvtHsnhqOIfP5XPta9v55/cplFS075z4raUjHEcyoUvtJsjbhU/uvYKrQgJ4+sskXvjqCMYmXNiSlqvePOgdnV4nuP2KXmz+8ximRHXlza2/M/7l7fyQlGF3wzAd4TiSCV1qV+7ODrx1ewx3juzF+7tOce+avQ32+EoqDGQVVcgKF5X5eTjz0owoPrn3CjxdHLh3zV7mrdzDmWz7WMu0oxxHMqFL7U6vEzw7OZznJoexOeUCM95K4EJB3XPApOWayz+1/kG0F8N6+/LVA6NYdF0ov57KYfwr23nlf8coq6x7Lhm1JPyezb1rEq0rOFkmd9P6cSQTuqSauSN78+6cGE5eLOaGN3aRnF67AuZstmXaXG2PfdoTS8XU5j+P4ZrwIF776TgTXtne7JPdbemz39L4IemCdXWt1JyOcRzJhC6p6qqQQD5dcAVGRWH6igS2Hq2ZFKzzoGu8Z2WPAr1ceH3WYNbePRwHveDOlXuYvzqRczawrmlyegEDAz1x1OuYviKBdYmpgPaPI5nQJdWFd/Fmw/0j6eHrxl2rEvng5zPWttScUlwd9XR2d1IxQqkhI/v58d1DV/L4NQPZfvwiV7+0jf9sPUGFQZ0FNSqNJo5fKCJ+oD9f3B9H/0AP/nfkQoc4jmRCl2xCsLcrny64gvgB/izacJglX5srYMzTnboihHZrh7XA2UHP/WP7senReK7s78e/vj/Kta9tZ/eJrHaP5eTFYiqMJkKDPQnwdOHj+SOYFt2FiRFBmj+O7HIuF0mb3J0deOeOGBZ/fYR3d57ibE4Jv18soncrTfErtb1uPm68fUcMW1IyeXZjEre++wuTo7qw6LrQFk370BKWczGWK6HdnBx49ZbB7fLYapMJXbIpep3guSnh9OzsxuKvj2BSYHR/f7XDkpppbEgAV/TtzJtbf+fNbb+zJSWTh6/uz9y4Xjjo23ZgIDm9ACe9jr7+Ho1vrDFyyEWySXeO7M3bt8fg5eJAbBtPICa1DRdHPY+MH8CPD48mppcPS75J5vrXd7LndE6bPu6R9AL6BXjg2MZfHLao4z1jyW5cHRbIgWcncF1ksNqhSJehl587/50by4rbhlJQWsn0FQk89skBsopqL1zRGpLTC9tl4jlbJBO6ZNO0fhKroxBCMDEiiE2PxbNwTF82HjjHVUu3sibhdJOmf2iqi4XlZBWVExp8+Wvl2iOZ0CVJajduTg78dWII3z10JRFdvXn6yySmvbGLA6mts66p5YRomOyhS5IktY9+AZ6svXs4y2YN5kJBGdP+s4snvzhEXknt9UGbIyWjZoVLRyMTuiRJqhBCMCWqCz89Fs+8kb1ZtyeVq17axid7UjG1cBgmOb2QIC8XfDR+AVF9ZEKXJElVni6OPH19GF8/MIo+fu785bOD3LxiN0nn85u9r+T0AkI66Pg5NDGhCyEmCiGOCiFOCCGeaGC7WCGEUQhxc+uFKElSRxAa7MUn917Bv2+O5Ex2CZNf38lzG5MoKKts0v3LDUZOZBZ12OEWaEJCF0LogTeAa4EwYJYQIqye7f4J/NDaQUqS1DHodILpMd3Z/NgYbh3eg1UJpxn30jY27DvX6IIaJzKLMJgUmdAbMQw4oSjKSUVRKoCPgal1bPcA8BlgO3NoSpJkl7zdHFkybRBf3j+SLt4uPLxuP7Pe+ZnjFwrrvU9yurkt7P/bu/cYqco7jOPfB1YR0IogrbiLXCyghgLqRthKbEWtYIza1jRoTTU2MSq1akxaiWkT0zZNmsZqmqo1iqTVQCNQa4lRqZZqWlNcb7B2BauAIlvBS0sjxqr99Y/zjkyX5erAeffs80kmM+fdmdlnzs789sw7c37HUy471Qy8Vre8IY19TFIz8GXg9p3dkaTLJLVLat+8efOeZjWzPmZSyxCWXHkyPzxvIp1d/2bWLU/w4wc7eff97Y9y1dm1hQFN/Rjdh3v/7E5B72nPju7vfW4GvhsROz1sSUTcERGtEdE6fLj7c5jZrvXvJy6aNorHrvsCXzmhmV8+/gqn3/QnHlzV9X/TMJ1dW5hwxCH7vFdMznbnkW8ARtYttwAbu12nFVgoaR1wPnCrpPMaktDMDBh28AB+cv5kFl/RxqEDD+DKe5/hG/NWsPbNd4kIOru2cOwRfXf+HHav2+JTwDhJY4DXgdnAhfVXiIgxtcuS5gNLI+L+BuY0MwPgxFFDWXrVdH715HpuWraGM3/2OBdOPYp3tn7QZ3f5r9llQY+IDyV9i+LbK/2BeRHxgqTL0893Om9uZtZoTf37cen0MZw9aQQ/erCT+X9ZB/TdPURrtKuvAu0rra2t0d7eXsrvNrNqefLlt1i+ZhPXnTGBA5uqPYcu6emIaO3pZz7AhZn1em1HD6Pt6GFlxyhdtf+VmZn1IS7oZmYV4YJuZlYRLuhmZhXhgm5mVhEu6GZmFeGCbmZWES7oZmYVUdqeopI2A+v38uaHA282ME4j5Zot11zgbHsj11yQb7Zcc8GeZRsVET22qy2toH8Sktp3tOtr2XLNlmsucLa9kWsuyDdbrrmgcdk85WJmVhEu6GZmFdFbC/odZQfYiVyz5ZoLnG1v5JoL8s2Way5oULZeOYduZmbb661b6GZm1o0LuplZRfS6gi5ppqTVkv4u6fqSs8yTtElSR93YUEnLJL2Uzg8rIddISX+U1CnpBUlX55BN0kGSVkh6PuW6MYdc3TL2l/SspKW5ZJO0TtIqSc9Jas8lV8oxRNIiSS+m51tbDtkkTUjrq3baIumaTLJdm57/HZIWpNdFQ3L1qoIuqT/wC2AWcBxwgaTjSow0H5jZbex64NGIGAc8mpb3tw+B6yLiWGAaMCetp7KzvQ/MiIjJwBRgpqRpGeSqdzXQWbecS7ZTI2JK3XeVc8l1C/BQRBwDTKZYd6Vni4jVaX1NAU4EtgK/LTubpGbg20BrREykOE7z7IbliohecwLagIfrlucCc0vONBroqFteDYxIl0cAqzNYb78DzsgpGzAIeAaYmksuoCW9mGYAS3P5ewLrgMO7jeWQ61PAWtKXK3LK1i3Pl4A/55ANaAZeA4ZSHAJ0acrXkFy9agudbSujZkMay8lnIqILIJ1/uswwkkYDxwN/JYNsaUrjOWATsCwissiV3Ax8B/hv3VgO2QJ4RNLTki7LKNdYYDNwd5qmulPS4Eyy1ZsNLEiXS80WEa8DPwVeBbqAf0XEI43K1dsKunoY8/cud0DSwcBi4JqI2FJ2HoCI+CiKt8EtwEmSJpadCUDS2cCmiHi67Cw9ODkiTqCYapwj6ZSyAyVNwAnAbRFxPPAu5U6XbUfSgcA5wH1lZwFIc+PnAmOAI4HBki5q1P33toK+ARhZt9wCbCwpy468IWkEQDrfVEYISQdQFPN7I2JJTtkAIuKfwHKKzyByyHUycI6kdcBCYIake3LIFhEb0/kminngk3LIRfF63JDeZQEsoijwOWSrmQU8ExFvpOWys50OrI2IzRHxAbAE+HyjcvW2gv4UME7SmPSfdzbwQMmZunsAuDhdvphi/nq/kiTgLqAzIm7KJZuk4ZKGpMsDKZ7cL5adCyAi5kZES0SMpnhePRYRF5WdTdJgSYfULlPMt3aUnQsgIv4BvCZpQho6DfhbDtnqXMC26RYoP9urwDRJg9Lr9DSKD5Ibk6vMDyv28kOFs4A1wMvADSVnWUAxD/YBxdbKN4FhFB+svZTOh5aQazrFVNRK4Ll0OqvsbMAk4NmUqwP4fhovfZ11y/lFtn0oWvY6Gws8n04v1J7zZeeqyzcFaE9/0/uBwzLKNgh4Czi0bqz0bMCNFBsyHcCvgQGNyuVd/83MKqK3TbmYmdkOuKCbmVWEC7qZWUW4oJuZVYQLuplZRbigW6VI+ih11+uQdJ+kQXtw2yMlLdrD37dcUpYHHra+xwXdqua9KLrsTQT+A1y+OzeS1BQRGyPi/H0bz2zfcUG3KnsC+Gza23KepKdSE6lzASRdkrbif0/R/Gq0Um/71KP67tSH/FlJp6bxgZIWSlop6TfAwDTeX9L89M5glaRrS3rM1oc1lR3AbF+Q1ETRx+Mh4AaKXfkvTa0HVkj6Q7pqGzApIt5OnSlr5gBExOckHUNR8McDVwBbI2KSpEkULYCh2GOyOb0zoNbiwGx/8ha6Vc3A1J63naJvxl0U/U+uT+PLgYOAo9L1l0XE2z3cz3SK3bKJiBeB9cB44BTgnjS+kmKXd4BXgLGSfi5pJpBFd0vrW7yFblXzXhTteT+WmiB9NSJWdxufStHytSc9tWqu2a5fRkS8I2kycCbF1v3XgEv3JLjZJ+UtdOsLHgauSoUdScfvxm0eB76erj+eYot+dbfxiRQNx5B0ONAvIhYD36NoI2u2X3kL3fqCH1AcjWhlKurrgLN3cZtbgdslraI4RuslEfG+pNsojtBT62S5Il2/OY3XNpLmNvgxmO2Suy2amVWEp1zMzCrCBd3MrCJc0M3MKsIF3cysIlzQzcwqwgXdzKwiXNDNzCrif91oxXxd8P9lAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_27_0.png" }, "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEWCAYAAACDoeeyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3gU1frHP2d3UzZt04EQIIDSCaErIoiA2LAgRS4tolLsyL2K9cIFO/aGcOmggKAotp8CYgMh4RICoZeEFtJ73935/bGbkJAQEshmtpzP8+yT3T0zc97ZzH73nVO+RyiKgkQikUicE43aAUgkEonEdkiRl0gkEidGirxEIpE4MVLkJRKJxImRIi+RSCROjBR5iUQicWKkyEskNkIIkSiEGFKH7SKEEIoQQtcYcdUFazzXqB2H5OqRIi+phhDifiHETiFEgRAi1fr8ESGEUDs2tRBCbBNCPKRS3bOFEKtseHzVzk1ie6TIS6oghJgJvA+8BTQFmgDTgBsA90aMw26yWonEoVEURT7kA0VRAAxAAXBfHbZbAaQBScCLWBIGDyAb6FJp2xCgCAi1vr4TiLNutx2IrLRtIvAsEA+UANcACjAJOAWkAy9U2n428CWwCsgD9gHtgOeAVOA0cMtFcS8GkoGzwDxAay2LBv4E5gNZwEngNmvZK4AJKAbygY8u8blMsH4eGcAL1vMZYi3TALOA49bydUCgtSzCep5TgHPW+GZay24FSoEya917L1F3ovW8D1jjXwp4WssCgO+s/68s6/Pw2s7NGs804Kh1n48BYS27BvgNyLH+T9aqfe3KRy3fV7UDkA/7eVgFxQjoLrPdCuAbwNcqUEeAB61lS4BXKm37KPCT9XkPq/j2BbRW8U4EPKzliVh+AFoA+krit8j6uhsW8e9o3X62VZyGATprXCetAusGPAycrBTLRuAzwBsIBXYBU61l0VYhfdga23Sr4JYL2zbgoVo+k05WkRyA5cfuHetnWS7yTwF/A+HW8s+AL6xl5ef5hTW2rlZBHlLpPFdd5n+SCOy3fnaBwF/APGtZEHAf4GX9n30JbKy0b7Vzs8bzHeAPtLTGc6u17AvrZ6wBPIH+al+78lHLtaF2APJhPw9gPHD+ove2Y8m6i6wCprUKbadK20wFtlmfDwFOVCr7C5hoff4pMPei4x8GBlqfJwKTK5WVi194pfd2Afdbn88GfqlUNtwqtOXZua91f38szU4lgL7S9mOBX63Po4Fjlcq8rPs2tb6+nMi/DKyp9NobSwZeLtQHgcGVypth+VHRVTrPDpXK3wQWVzrPuoj8tEqvbweOX2LbKCCr0utLiXz/Sq/XAbOsz1cACyv/X+TDfh+yTV5SmQwguHJ7uKIo/RRF8beWaYBgLG3zSZX2SwKaW59vBfRCiL5CiFZYBOVra1krYKYQIrv8gSXzDKt0rNM1xHW+0vNCwKfS65RKz4uAdEVRTJVeY92+FZbsPrlS3Z9hyeir1aMoSmGlfetCWOXYFUUpwPKZldMK+LpS3QexNJM0qbRN5XNPournUhdq3F8I4SWE+EwIkSSEyAV+B/yFENrLHO9Sn/szgAB2CSEShBCT6xmnpBGRIi+pzA4s2e7dtWyTjiUDbVXpvZZY2rhRFMWMJesbC/wD+E5RlDzrdqexNOX4V3p4KYryRaVj2coW9TSWcwuuVLefoiid67j/5eJKxvKDBViEFUszSeX6b7vo3D0VRTlbaZsWlZ63xNJcVJe6L7f/TKA90FdRFD8sd2RgEer6HN+ysaKcVxTlYUVRwrDcxX0ih1vaL1LkJRUoipINzMHypR0phPARQmiEEFFYmh+wZsnrgFeEEL7WbP1pLJ2f5XwOjAHGWZ+XswiYZs3yhRDCWwhxhxDCtxHOLRn4GXhbCOFnPa+2QoiBdTxECtCmlvL1wJ1CiP5CCHfgP1T9fi3A8pm1AhBChAghLv4xfcmadXcGHgDWVqo7Qghxue/ro0KIcCFEIPB8pf19sdzVZFvL/l3Pc6uCEGKUECLc+jILy4+EqZZdJCoiRV5SBUVR3sQi2s9g6SRNwdKs8SyW9nmAx7GMwjmBZUTK51g6XMuPsdNaHgb8WOn9WCwdmx9hEYdjWNrCG4uJWJqaykegrMfSNl4X3gdGCiGyhBAfXFyoKEoClk7mz7Fk9VnAmYv2/xb4WQiRh6UTtu9Fh/kNy2eyBZivKMrP1ve/tP7NEEL8r5YYP8fyQ3bC+phnff89LB3X6dZ6f6rPudVAb2CnECLfek5PKopysg77SVSgfOSARCJxYIQQiVg6TzerHYvEvpCZvEQikTgxUuQlEonEiZHNNRKJROLEyExeIpFInBi7MoEKDg5WIiIi1A5DIpFIHIrdu3enK4oSUlOZXYl8REQEsbGxaochkUgkDoUQIulSZbK5RiKRSJwYKfISiUTixEiRl0gkEidGirxEIpE4MVLkJRKJxImRIi+RSCROjBR5iUQicWLsapy8RFJfFEXhyyNfklqYWuX9u9reRUu/lhzLOsZPiRc768LIdiNp6t2UgxkH2XJqS7Xy+zvcT7A+mL1pe/njzB/Vyid0moDBw0Ds+Vj+Tv67WvmDXR9Er9Oz/dx2/pdS3R14Wrdp6DQ6fjv9G/vS91Up0wot06OmA7A5aTOHMg9VKffUefJQ14cA+PHkjxzPPg7AtQHXMixiWLW6JPXjdO5pvjn+TbX3h7cdTiu/VhzPPs6PJ3+sVj7i2hGE+YRxKPMQm5Oqm4GWX1PxafH8fub3KmVebl5M7mKbBbakyEscmqPZR5n791wARMVCR9AjtAct/VpyIucEC+MXVtuvf/P+NPVuyuGswzWWD4sYRrA+mP3p+2ssv/faezF4GNiTuqfG8vEdx6PX6Yk5H8PifYurlU+NnArAX+f+Ys2hNVXK3DRuFSK/7fQ2vj3+bZVyfw//CpH/JekXNidtRkFBJ3Rc1+w6DB6GavVJLs/Z/LM092nOmfwzNf5Po0KjaOXXisScxBrL+4X1I8wnjCNZR2osH9pqKMH6YBIyEqqVB+mDbCbydmVQ1qtXL0XOeJXUB0VROJR5iDCfMJcWt/i0eMb9MI5X+7/K8LbD1Q7H4UgpSGHI+iE83/d5xnYYq3Y49UYIsVtRlF41lclMXuLQCCHoGNRR7TBUp0twF9oY2pBdkq12KA7Jr6d/BaBv04sX63J8pMhLHJYzeWdYtG8RD3V5iBZ+LS6/gxOjERo23r0RIcTlN5ZUY8upLUT4RdDGv85L3ToMcnSNxGHZcmoLXx39SgqblfLPodRUqnIkjkVOSQ6x52O5ueXNaodiE6TISxyWLae20D6gPeG+4WqHYhcoisKEHybwnx3/UTsUh+L3M79jVIwMbjlY7VBsghR5iUOSXpROXGqc034xrwQhBM19m/Pbmd8wmo1qh+MwDGwxkLcGvEWX4C5qh2ITpMhLHJJtp7ehoDjtLfaVcnOLm8kuyWZP6h61Q3EY/Nz9uLX1rWiEc8qhc56VxOkxK2Z6hPagXUA7tUOxK/o374+7xr3GCV6S6vwv5X8sT1hOYVmh2qHYDCnyEodkdPvRLL9tuex0vQgvNy/6hfVj66mt2NMcGHvlq6Nf8dnez3DTuKkdis2QQyglDkduaS4+bj5Oe3t9tYzvNJ60ojRMigmdkF/xS2E0G/ntzG8MaDEAN60UebvnTN4ZknKrL3PYu2lv3LXuJOUmcSbvTLXyvs36otPoOJFzguT85GrlNzS/AYBjWcdIKUypUqbVaLmu2XUAHM48THpRepVyd607vZv2BiAhI4Hs4qoTVfQ6PT2a9ABgX9o+cktzq5R7u3kTFRoFQFxqHAVlBVXKDR6Gis6i3Sm7KTYWVykP8AygU1AnAHYl76LMXFalPFgfTPvA9gDsOLcDs2KuUt7EqwnXBFyDoihsP7e92mcT5hNGa0Nrysxl7EreVa28pW9LWvi1oMRUQuz56jOZIwwRNPdpTmFZYY1tyG3929LUuyl5pXnEp8VXvL/ywErSi9JZf9f6avtILNc0wP70/eSU5FQpu9w15efuR9eQrsDlr6mY8zHVhmvW9ZoC+OvsX9Vib+bTjDaGNhjNRnYm76xW3sK3BS39WlJqKiXmfEy18lZ+rQj3Db/sNZVfms83x78huySbm1s4d7+O04j8L0m/8M7ud6q9/+voXwnWB7Pp+CY+i/+sWvnOf+xEp9Hx5eEvWXVwVZUygSB+kkVcVh1cxYajG6qU+7j5sOMfOwD4777/VjPCCtWHsmW0pW304z0f88fZqkZXEX4RbLp3EwDzY+fzv9SqRladgzqz5k6Lr8krO1+pZlTVp2kfFg+z+KK8/NfLnMo7VaX8phY38eHNHwLwzO/PkFGcUaX89ta388aANwB48tcnKTIWVSkf1W4UL1//MgoK0zZP42KiO0czs9dMio3FNZY/EvUI07tNJ7s4u8byf/X6FxM7T+R84fkay/99/b8Z2W4kSblJ1cpHtRtVbXtJVd7Z/U41IewY2JF1w9cB8Nqu1ziQcaBKec8mPVl26zIAZm+fTWJuYpXyAeED+HjwxwA8+/uzpBWlVSm/LeI23hz4JgAzts2o9iNy37X3MbvfbIAa/+cTOk3gmd7PUGoqrbF8WrdpPBr1KDklOTWWz+w5k+gu0aQWptZY/tJ1LzG6/WhO5Z3i9V2v46Xzon/z/tW2cyacxrsmpSCF5ILqmXjnoM64ad04X3Ce8wXnq5V3De6KVqPlbP5Z0grTqpWXZz2nc09XE0mt0FZkPYk5idWmlLtp3egc1BmAE9knqmXqHlqPiin5R7OOVvtC6HX6iqzocObhaiLs4+ZTkRUdzDhIiamkSrmfhx9tDJYZfAnpCdUy+QDPAFr5tQIs3icXZ11B+iBa+LZAURT2pu2t9tmEeoUS5hOG0Wxkf/r+auVNvZvS1LsppabSamICljuBUK9Qio3F1X7AAMJ9wwnWB1NYVsiRrCMV7wshaBfQDr1OX20fyQWOZR0jvyy/yntXfU25+1XMCq3pmvL38CfCEAFY7k5NiqlKeZBnUMXs5LjUuGoxh3iF0NynOSazqZo7J1y4pspMZSRkJFQrr+81VX4NOzq1edc4jchLJBKJq1KbyMueK4lEInFipMhLJBKJEyNFXiKRSJwYm4u8EOJWIcRhIcQxIcQsW9cnkUgkkgvYVOSFEFrgY+A2oBMwVgjRyZZ1SiQSieQCth4n3wc4pijKCQAhxBrgbqD6eDrg8OHD3HTTTVXeGz16NI888giFhYXcfvvt1faJjo4mOjqa9PR0Ro4cWa18+vTpjBkzhtOnTzNhwoRq5TNnzmT48OEcPnyYqVOnVit/8cUXGTJkCHFxcTz11FPVyl999VX69evH9u3bef7556uVv/fee0RFRbF582bmzZtXrfyzzz6jffv2bNq0ibfffrta+cqVK2nRogVr167l008/rVa+fv16goODWbZsGcuWLatW/sMPP+Dl5cUnn3zCunXrqpVv27YNgPnz5/Pdd99VKdPr9fz4o2XB4rlz57JlS1U/lKCgIDZssMwdeO6559ixY0eV8vDwcFatssw9eOqpp4iLqzpkrl27dixcaFnrcsqUKRw5cqRKeVRUFO+99x4A48eP58yZqpPZrr/+el577TUA7rvvPjIyqg5xHTx4MC+99BIAt912G0VFVYcL3nnnnfzzn/8EqHbdgbz25LXnuNdeZWzdXNMcOF3p9RnrexUIIaYIIWKFELFlZVXH3EokEonk6rDpOHkhxChgmKIoD1lfTwD6KIryeE3by3HyEolEUn/UHCd/Bqi8+GY4cM7GdUokEonEiq1FPga4VgjRWgjhDtwPfGvjOiUSiURixaYdr4qiGIUQjwH/B2iBJYqiVDeckEgkEolNsLkLpaIoPwA/2LoeiUQikVRHzniVSCQSJ0aKvEQikTgxUuQlEonEiZEiL5FIJE6MFHmJRCJxYqTISyQSiRMjRV4ikUicGCnyEolE4sRIkZdIJBInRoq8RCKRODE2tzVoFExGkpJTaBXkpXYkjo3WA9zlZ+gUKAoUZ6sdhfpo3cHdW+0oVMUpRD4+9ncif7xX7TAcH607PBYLAa3UjkRytXz7OOxZqXYU6iO0MGUbNItUOxLVcAqR79ihE6v/ns7xtHxG9WxBx2Z+aofkeGSfhr8/hoyjUuSdgbRDENwOek1WOxL1KMyE39+0fBZS5B0bN0NT7p0+j3H/3cmq3bmsmNyH69oEqR2WY5Fx3CLy+WlqRyJpCIpzILQTXDdd7UjUoyjbIvL5qWpHoipOIfIlJ0+S8cabvG0yE5uUxbHti/FrGYCvp1OcXuNgNqJJ8qfZgLOyN94JyNmfQ27KCdjqwiIPiBNBNI087RxCd4U4x7kbjRhTUxFAN72ZE2kFJB7JpW2IN+5aKVl1wVxYSGmSFwEHj+J1s9rRSK6WrAQzJXnZuAvXzWLNpSWUnvLAL+E4fiPUjkY9nELkPa69ltZfbah4rUnJY+SCHQR4ubF+ej+CfTxUjM4xKD58hJN3340xzXVFwWkoK8JUAt6dWxC+esPlt3dSylJTOTZgIKaMDLVDURWnTHOvbeLLkujenM8t5oGlMeSXGNUOye7RhQQDYHTxL4RTUJyDqViD1t+1ByDoAgMBMGblqByJujilyAP0bBXAJ+N6cCA5l6krYykxmtQOya7R+vuDAGN2ntqhSK4SpSATU6kGXUCA2qGoitDp0Hq7YcwpVDsUVXFakQe4uUMT3rwvkr+OZfD0ur2YzYraIdktQqNB6+OOKadA7VAkV4kp9Swg0AYFqx2K6ugMXhjzS8BsVjsU1XBqkQe4r2c4z9/ege/jk5mzKQFFkUJ/KXQGb4z5ZWCSzVuOjCk1GQBtcKjKkaiP1t8PU5EGijLVDkU1nF7kAaYMaMuUAW1YviOJj7YeUzscu0UX4IexWAOFsl3ekTGlnwdAF9JM5UjURxcUaLmmXXisvEuIPMCsWzswontz3v7lCJ/vPKV2OHaJLijI8oUocN0vhDNgzLBMaNOGNlc5EvXRhYS6/DXtMiKv0QjeGBnJTe1DeHHjPn7an6x2SHaHNqQJpmItSt55tUORXAWmTEvThLZpC5UjUR9dkzAUkwZz+mm1Q1ENlxF5ADethk/G9aBbC3+eWBPH3ydks0RldE3DUMwCc+oZtUORXAWmLIv7pE62yaNt1hIA49kklSNRD5cSeQAvdx1LJvWmZaAXDy+P5cC5XLVDsht0zSzGZMbzsjnLkTHm5KJxUxDu7mqHojq6Zpa7GWPqOZUjUQ+bibwQ4i0hxCEhRLwQ4mshhL+t6qovAd7urJjcBx9PHZOW7uJUhmuPoy1H1yQMANN51/1COAOm3EK0Xi6Xv9WILtg6yS81ReVI1MOWV8IvQBdFUSKBI8BzNqyr3oT561kxuQ9lJjMTl+wkPb9E7ZBURxscAiCtDRwcU14ROi83tcOwC7RBFjdaU4YcQtngKIrys6Io5QOu/wbCbVXXlXJtE18WT7LYH0Qv3eXy9gfS2sA5MBaUopV+TYC0NoDGa5OfDPxYU4EQYooQIlYIEZuW1vhe5j1bBfDpuJ4cTM5zefsDaW3gHJgKTWj95DKOIK0N4CpFXgixWQixv4bH3ZW2eQEwAqtrOoaiKAsVRemlKEqvkJCQqwnnihnUIbSK/YHJRe0PpLWB46MoCqYiBZ2fj9qh2A2ubm1wVVbDiqIMqa1cCDEJuBMYrNi5n8B9PcPJKCjh1R8OEeTtzpy7OiOEUDusRsdibZBrsTbQOoUTtUthzs9HMQuXd6CsjNbfD1NKmsXawNv1/HxsObrmVuBZ4C5FURziXqnc/mDFjiQ+dFH7A2lt4NiYrHMctC7uQFkZV7c2sGWb/EeAL/CLECJOCLHAhnU1GOX2B+/8coTVO11vAkWFtUG+6w45c2RMyZaZndKB8gLl1gauOpPbZvfjiqJcY6tj25Jy+4OswlJe2rifIG93bu3iOkZPFdYG+Sm4XmOV42NKs9h1yNmuF6iwNsg4i9YhVenqkDMmasBNq+FjF7U/kNYGjo0xzZKtakOaqhyJ/VBubWA653p35iBF/pJcbH+QcM41xtlWWBsku+YXwtExSQfKalRYG6ScVTkSdZAiXwtV7A+WxLiE/UGFtUGKdOl0RExZmQiNgiZQZvLlVFgbuOhMbinylyHMX8/KB/tgNJuZsGQnaXnObX9wwdpAdrw6IsbMbLQeZoSXHF1TTrm1gTHddZpdKyNFvg5cE+rLkujepFjtD/KKy9QOyWZcsDZwXa8PR8aUk4vWwwzuvmqHYjeUWxuYsl3TcVaKfB3p0TKAT8f35PD5PKau3O209gcXrA1c8wvh6JjyCtHpNaCRX+1yLlgbuOZMbnkl1INB7UN5c2Qk249n8PRa57Q/KLc2cGWvD0fGmFeE1lvOVL4YncELY16pS1obSJGvJyN6hPPC7R35fl8yczYlYOduDVeEzuCNKb/MYm0gcShM+dKBsia0/n6YijUWawMXQ4r8FfDwgDZObX9wwdogXe1QJPVAKSvDXGJG6ysdKC/mgrWB6w0okCJ/hcy6tQMjejin/cEFawPXHHLmqBizsgCkA2UNXLA2cD2Rl413V4hGI3jjvkiyCpzP/kBaGzgm5Qt4SwfK6riytYHM5K+CKvYHX8Sx47hzjMPVNWkmrQ0cEFOWpb1ZGyjHyF+Mtqll1qsrWhtIkb9KvNx1LI3uTasgL6ascA77A11YBCCtDRwNk3VGp046UFZDF2bxr3FFawMp8g2Av5c7Kx7sg6/V/iApw7HH45ZbGxhTzqkciaQ+GK0OlNrgJipHYn+4srWBFPkGoplBzwqr/cHEJbsc2v6g3NrA5IJfCEfGlJYCKGiDpMhfjCtbG0iRb0CuCfVlaXRvUnNLHNr+QFobOCamjFS07grCO1DtUOyOCmuDLNebyS1FvoHp3jKAT8f3cGj7A2lt4JgYszLRepjA06B2KHZHhbVBrmM3pV4JUuRtwE3tQ3lrlMX+YMbaOIezP5DWBo6JyepAid5f7VDsEle1NpDj5G3Evd3DycgvZd73BwnyTuA/d3dGCMcZdW6xNsiFz8eoHUoNCLj+EWg9QO1A7ApTbh5uHmaZyV8Crb8fppQ0+HwUaKzSF9oRhsxWMyybI0Xehjx0YxvS8kr47PcTBPt48OSQa9UOqc7omoZjPJMPeXa4eEjKAfAOliJ/EcbcAvRBZvCUmXxN6Jq3pujsOSiwrJ5Ffioc+QkGvQha55VC5z0zO2HWbR1Izy/l3c1HCPJxZ/x1rdQOqU7omreh5Gw6TN2qdijV+bgvFDv+fISGRFEUTHnFaMMFuHmqHY5domveBmPJLpQpv1nuqv9eAD89CyW54OW8ndVS5G2MEILX7+tKVmEpL31jsT+4rav92x9og4MwpaeT+9NPaodSnSQ3vDQZ8uKthDkvD8wKWh8p8JdCFxyEUlxM7qZNCHd3SDyLW6Yb+qIsKfKSq8NNq+Hjf/Rg3H//5sk1cRi83OjX1r5nJbpHRKCUlXH2qRlqh1IjAVGFNJ2udhT2gynTMtxV56dXORL7xT0iAoBzzzxb8Z7QBtH+X1mIIJWCagSkyDcSenctS6J7M2rBDqau2M2aqdfROcx+O8j8R47Eq2cvu/SUPz1pNMbcYrXDsCuMmRYHSq10oLwkPoMH0/b/fkIpLQUgZ9UCMtb+gDkjGW0LlYOzIVLkG5Fy+4P7PtnOpCUxbJh+Pa2CvNUOq0aEEHi0aa12GDWi8/fCVOB6451rw5RtFXl/+00c1EYIgXurC31iHtdaBkIYU5PRqhVUIyDHyTcyzmR/oBY6X2+MRWaXG+9cGxXNNQHSgbKuaEOaAmBKd277DpuLvBDin0IIRQhh343QjYiz2B+ohdbfF1OJBkrz1A7FbqhorpEOlHVG2yQcAFNGmsqR2BabNtcIIVoAQ4FTtqzHESm3P3hoeSxTVuxm6QO98XRz5pvGhkMb4I+pVINSmIVQceJP2blzJEU/gLlQ/ZnB5oIChFZB4+e8o0QaGl2o1W3V+gNpS3I2fUfqm2/Wuia078030+w/cxq8blu3yb8LPAN8Y+N6HJKb2ocyf1Q3nlobx9Pr4vhwbA+0GseZFasWuoBAUASm1LPoAiNUi6P4wAHKTp3C99Zb0RpUbgs3leGZuEROhKoH2nLTsuxsm9dVsGMH5oIC/IYPv+Q2nl0626Rum4m8EOIu4KyiKHtrm84vhJgCTAFo2bKlrcKxW+7p3pz0/BLmfX+QQO/9zL27i0PZH6iBNjgUAFPaOXQd1Iuj3La2yXOzcGuisr1vzhl49yNpaVAPNJ6eCB2YcvJtXpcxIx23iFY0mzPb5nVdzFWJvBBiM9C0hqIXgOeBWy53DEVRFgILAXr16uVYTl4NxEM3tiEtv4TPfrPYHzw1pJ3aIdk15YtimFLVtVwwZqQDF2xsVaV8BrA0J6sXOi9NozhTmtIzKhYuaWyuSuQVRRlS0/tCiK5Aa6A8iw8H/ieE6KMoyvmrqdNZmXVrBzLyS3lv81GCfTwcxv5ADbTWlavU7jAzpqej9fdHuLmpGgcARdYmB5nJ1wuttzumfNuPcDOmp+PRTp3kzSbNNYqi7ANCy18LIRKBXoqipNuiPmdACMHrI7qSVeBY9gdqoGtimblSnkmrhSk9A22wnUyVLM/kpcjXC62PB6Zs247SUhQFY2YmOpWuFTlO3o7QaTV89I8e9GgZwJNr4th+XP4m1oTWKvKmLNt3mNWGMSPDfhbNrhB52VxTH3S+XhgLbbuwjzknB8rKKpYgbGwaReQVRYmQWXzd0LtrWTypFxHBXkxZsZv9Z6Xb4sVovLwQOgVTjrorVxnT01VrZ61GsWyuuRK0Bl9MxUAtQxuvFmOGpYNeZ107ubGRtgZ2iL+XO8snW+wPopfat/2BWuj0AmMjjIqoDVN6OrpAfyhRNw7ggke6FPl6oQ0woJgE5txMNAbbZNrGNGsHvcG79mtFo7OJTbQUeTvFYn/Ql1ELtjNh8S7WT7+eUF9pI1uO1kuHKU+9SUjmoiLMhYVo9y2E195SLY4qePqDRk6oqw/aAOtY+fOnbCfy5aOwvroPttRi+Nd5BIxa2uD1S5G3YygijLIAACAASURBVK4J9WFJdG/+sWgn0UtiWDP1Ovw87WAkhx1gGRVRqlr9Fbfg7qXQ73HwDr3MHo1Ak05qR+BwlPepGFPP4ta+u03qMFmvFa2/Lwx5+tIbBttm5Tgp8nZOVfuDWJY90EfaHwA6X09K0mw/Hf1SGNMszSM6TzNc/zj4qjwZSnJFaENsP+fCmJ4BGtA2jYAbnrBZPZdCjq5xAMrtD/4+kcmMtXGYzC45Z6wKWj9vTIXquVBWZGd6xbLerMQh0YZYhimb0mw3fceYno5OLxAqJQJS5B2Ee7o358U7OvLj/vO8/M3+Wo2OXAGtwc/SYVZUpEr95ZYGugCDbAd3YHShFidKY2aGzeowZqSj9TSDtxxdI7kMD93YhvT8Uhb8dpxgHw9mDHVd+wNtgGU8uCktBU3LiEav35hu7UwLUueLezlW/Z1EdmEpjw66Rnoh1YImJAyEUuHHbwtM6RmWvhsfdfptpMg7GM/e2p70/BLe33KUYF8PJrio/YEu0DISwphyBjc1RD4jHa1egzDYX1v8vjM5vPzNfswKlJkUl04GLofwCkDrYcaUbbv5KMa0VDy8TeCjzrUiRd7BqGx/8PI3+wn0cueOSNezP9BaJ5aYUs6qUr8pPcNyC65SdnYpykxmntkQT7CPB/3aBrl8MnBZtG7oPMGYYxtrA4ulQRa6IJNsrpHUnXL7gwmLdzJjbRwBXm70u8a1Ov8qnCjT1HGiNGZkoHMvU+2LeykW/XGCg8m5fDahJ4M7hJJXbORlqxfS7dILqUa0ei2mXNvMuTDn5IDRaBmFpVJCIDteHRSL/UFvi/3BStezP9CFNgfAmKHO+pzGtFR0HmV2lcmfTC/gvc1Hua1LU4Z1blqRDPRsGcBTa+LYfkw6i9SE1tsNU36xTY5dPp/CctcnR9dI6onBy40Vk/ti0LsRvXQXiem298W2FzTBzSwdZhm2GxVRG6b0DGt2Zh9t8mazwqwN8XjoNMy568IKQ66eDNQFna8HpgLbrLNcYWngqV5zjRR5B6epwZPlk/tgMitMXLKL1DzbZCT2RkWHWVbjT4gyFxZiLipSdVjcxayNPc3Ok5m8cHtHQv2q2l+4cjJQF7S+3piKzSjGWiwHrpAKSwNvrWq+QlLknYBrQn1Y+kAf0vJKiF4SQ26xbbISu8LTgM7DjDG78Z0oKywNPE120VyTklvMqz8c5Lo2gYzp3aLGbVw1GagLWoMPAKachr/LqZg0FxgIKg1llSLvJES18GfBhJ4cScljyopYists65GtOjpPtJ4KptzGd4CsGCPvabYLz5p/f5NAqdHMayMiax0TX+6FlJZXwiRXSQbqgM7fkmHbYqx8haVBkHrXiRR5J2JguxDXsT8QwupE2fgzXu3J0uCn/cn8lHCep4a0o3Xw5e2ou7cMYMGEnhx1lWSgDmita/QabdC/o7alAUiRdzru6d6cl+7s5BL2B7pGWp/zYioyeZUtDXKKynjpmwQ6NfPjoRtb13m/ysnAU2ucPBmoA1qrE6UpteHnXBgz0q13fOr13UiRd0Ie7N+aaQPbsnrnKd7bfFTtcGyG1lePqchkkw6z2qjwrVHZ0uD1Hw+SWVDKmyMjcdPW76tcngz8lHCel5w8Gbgc2iDbzbkwpWegdS9VdRSWnAzlpDx7a3synNz+QOvnDeRhyslB14jrZ1oMp9S1NNhxPIMvdp1m6oA2dGl+ZaM2HuzfmvT8Ej7ddpwQF/ZC0oU0BcCY3vBzLozpaXh4qdtBL0XeSRFC8NqIrmQVOq/9gc7fDziPKTOzUUXelJ6BVq/eDMbiMhPPfRVPy0AvnhpydcL8zLBKyYCPOxOuj2iYIB0I4ReMxs2MKaNhJ4spioIxIxNdoHpj5EE21zg1Oq2GD8daZjzOWOt8Mx611lERxszGHStvTE9X1dLg/S1HScwo5LURXdG7X12fgBCCV+/typCOobz8bQLfx6tjE6EqngbLnIsGHl1T1dJAdrxKbETlGY8Pr4h1qhmPWqsTpSnLdjaxNWFMT1PN0iDhXA4Lfz/B6F7h3NBAfkXOngxcFuuci4Z2oqxqaSCHUEpsSPmMR38vd6ea8VjhRGnDVX1qQi1LA6PJzKwN+wjwcuf52zs26LGdORm4LJ7+aD3MDe5EaQ+WBiBF3mWoPONxwpKdTjHjUWd1ojTacH3Oi1HT0mDJXyfZdzaHOXd1xt/LvcGP76zJwGVx97E01zSwE6U9WBqAFHmXotz+ICO/1ClmPAqfIGuHWVqj1amWpUFSRgHv/HKEoZ2acHvXpjarp6nBkxUPupj9gUaDztsNU35Jgw4lrZg0FxSkmqUBSJF3OaJa+LNgvGXG48PLHXzGY3mHWSM6UaphaaAoCs99tQ+dRsN/7u5s8+X82oZYkoH0fNexP9D6eqKYzJgLGu7upcLSIFDd+RQ2FXkhxONCiMNCiAQhxJu2rEtSdwa0C+Ht0d3YedLBZzzq/S0mZY3oRKmGpcGXu8+w/XgGs27rQDODvlHqrJwMuIL9gdbXC2hY/xpjejo6L42qlgZgQ5EXQgwC7gYiFUXpDMy3VV2S+nN3VHNedvQZj+WZfE7jOVE2tqVBal4x8747QJ+IQP7Rp6XN66tMeTLgCvYHWoMvQINaVxsz0tF5qO9UastMfjrwuqIoJQCKoqizhI/kkkzu35rpN7Xlc0e1P7COijDlNJ4TZWNbGsz59gDFRjOv3dcVjabx23XvjnIN+wNdxZyLhsvkKywNVHYqteWM13bAjUKIV4Bi4J+KosRcvJEQYgowBaBly8bNVCQXzXh0NPsDDz90HiZM+UUoimLztmqobGlg+y/uzwnn+X5fMv8a1p62IT42r+9SVLY/CPbx4GkntD/QBgYAYMrKbrBj2oOlAVylyAshNgM1dfW/YD12AHAd0BtYJ4Roo1yUCiiKshBYCNCrVy/nTBPsmPIZj5kFDmh/oNWh9XZDMVo6zLQ+thdCU3q61dLAtu2sucVlvPTNfjo09WXKgDY2rasulCcDH2w5SogT2h9UOFE20MQ6e7E0gKsUeUVRhlyqTAgxHfjKKuq7hBBmIBhovPFukjpRvuDzhMU7mbE2jgAvN/o10GxKW6P11QMKpszMRhF5Y3pGo1gavPHjIdLySlg4oVe9HSZtwYVkoIyXv00gwNudOyPD1A6rwdAYghEaBWN6w8iTvVgagG3b5DcCNwMIIdoB7oCLzZd2HDzdtPx3Ym9aB3s71IxHixNlw3aY1UZjWBrsOpnJ6p2nmHxDa7q18LdZPfXFkgx0p1cri/3BX05kfyD01v6dBnKitBdLA7CtyC8B2ggh9gNrgEkXN9VI7AuDlxvLJ/dxqBmPOoMf0LAdZrVha0uD4jITszbEEx6g5+lb7K/tuzwZaBPswxQHSgYui966MHwDOVHai6UB2LDjVVGUUmC8rY4vsQ3lMx5HLdjBxCW7+P6J/vh6uqkd1iXRBvgD58hes5bC2FjbVmZWbG5p8NHWY5xIL2DF5D54udunE3h5MnDfp9uJXrqL9dP6EVGHpQftGqtJWfGRY6S89dZVH640MQkAnbdOVUsDkH7ykhpoG+LDook9GblgB2/+dJi593RRO6RLogsNwd0ABTt3UrBzp83r03h5og9Kt8kt+MHkXBb8dpz7eoQzoJ262d/lqJwMTFiykw3T+hHq56l2WFeOpz9eoSUUHs4na/XnDXJIt0BP3EIDVbU0ACnykkvQs1UgD/RrzZK/TnJXVBi9IwLVDqlGND4BtL07F54/2DgV7loEP/yzwcc+m8wKszbEY9C78eIdDeswaSvahviwJLo3/1j0NxOX7GLdtOvxs+O7vlrxNBDcOZ/gl96DyFENc8yVI6Cocdc6qAn1u+0ldsvMW9rR3F/PrA3x9jut3dMApflgaqR1XvNTQWga3NJg6V8n2Xsmh3/f1ZkA74Z3mLQV5fYHx1LzHdsLqbxJpbjhxslTkKp6pytIkZfUgreHjldHdOV4WgEf/3pM7XBqxtM6+qSkkawN8lPAK6hBLQ1OZxby9s9HGNwhlOGOMkehEk7hhVQh8g3YkZwvRV7iAAxsF8KI7s35dNtxDp1vPI+YOlP+5Wys2+KCtAZtqlEUhee/3odGwNx7ujTKrF1bUNkL6cWNDmh/4OYJOs+Gy+TNZihIV93SAKTIS+rAi3d2wk/vxrMb9tlflqa3ZvINmYHVRn4q+DRcp+jXe87yx9F0nr2tA2H+jeMwaSsm92/NIze15Ytdp3j3lyNqh1N/PP0b7joqygRFfUsDkCIvqQOB3u78e3gn9p7OZvn2RLXDqYot2lJroyC1wcbIp+eX8J/vDtCzVQDj+zqQZ1At/GtYe8b0asEHW4/Z37VyOTwNUNRA11F+iuWvFHmJo3BXtzAGtQ/hrf87zOnMhl0m7arwbMRMXlEsmXwDjZH/z6YDFJaYeH2EOg6TtkAIwSv3dmFIxybM3pTAd/Hn1A6p7ugbMJPPt86ctYPmGrsfQllWVsaZM2coLnaBZcjsnKf7+JDaQUfi8SPkp3ioHY4FswmGrcUzLYPwLx/CzVRku7oUBYzFDZKdbT2Uwrd7z/HUkGu5tolvAwRnP5TbH5R7Ifnr3el/rQN4IXka4PQuWDPu6o+VZ1132A4yebsX+TNnzuDr60tERITDdko5E+n5JZzLLqJpoBcBNlhMut4oCkqGnoycppxRzLQ++Klt62sWBa0HXNUh8kuMvPj1fto18eGRm65poMDsi3L7g9Gf7WDqyli+mHIdkeH248NTIx3uhJyzkHmyYY7X9mbwV78Zzu5Fvri4WAq8HRHk7U52YRnJ2UX4eujQqe2QKAQi+BqCghTSSj1g0HZ146kDb/10iOTcYjaM64e7znlbTA1ebqx4sA8jPtnOA0tjWD+9H63t2f6g5yTLw8lwiCtMCrz9IIQgPECPSYFzOfbThOYo18jupExW/J3EpOsj6NEyQO1wbE4TP09WPtgHBZiweCepufZzzbgKDiHyEvvC001LqK8H2YWl5BaVqR2Ow1BiNPHshn2EGfT8a1h7tcNpNNqE+LA0ujeZBaVMXLKLHHnNNCpS5OtAv3791A6hCsuWLeOxxx6rdZtt27axfbvtmi5CfD3w1Gk5m110ybHzs2fPZv78uq/f/uqrrzZUeHbJx78e51hqPvPu7YK3h923lDYo3Vr489mEnhxPy+fhFQ5sf+CASJGvA7YUS1tha5HXCEHzAD1lJjMpNdyCG43195JxZpE/fD6PT7cd456oMAa1V3/EhRrceG0Ib4+OIiYxkyfX7LG/iXVOikOlE3M2JXDgXMNOre8U5se/h3eudRsfHx/y8/PZtm0bs2fPJjg4mP3799OzZ09WrVqFEIKYmBiefPJJCgoK8PDwYMuWLbi5uTF9+nRiY2PR6XS88847DBo0iGXLlrFx40ZMJhP79+9n5syZlJaWsnLlSjw8PPjhhx8IDAzkpptuIioqil27dpGbm8uSJUvo06dPldjS0tKYNm0ap06dAuC9996jefPmLFiwAK1Wy6pVq/jwww/p0KFDte1uuOGGKseqa1yLFi1i4cKFlJaW0rxVa/799icY9G48OvUhAgMD2bNnDz169MDX98LQwEWLFvHVV1/x1VdfsWHDBj744ANKS0vp27cvn3zyCS+88AJFRUVERUXRuXNnVq9e3RD/XrvAZFZ4dkM8vp5uvHyZa83ZuatbGBn5JczZdIAXN+7j1Xu7Okx/iqMiM/l6smfPHt577z0OHDjAiRMn+OuvvygtLWXMmDG8//777N27l82bN6PX6/n4448B2LdvH1988QWTJk2qGO+/f/9+Pv/8c3bt2sULL7yAl5cXe/bs4frrr2fFihUV9RUUFLB9+3Y++eQTJk+eXC2eJ598khkzZhATE8OGDRt46KGHiIiIYNq0acyYMYO4uDhuvPHGGreribrENWLECGJiYti7dy9RXTvz7drVnM0qQgGOHDnC5s2befvttyuO+dFHH7Fp0yY2btxIYmIia9eu5a+//iIuLg6tVsvq1at5/fXX0ev1xMXFOZXAA6zckUjc6WxevrMTgQ7kMGkrHrihNY8OassXu047pv2Bg+FQmfzlMu7GoE+fPoSHhwMQFRVFYmIiBoOBZs2a0bt3bwD8/CxL0v355588/vjjAHTo0IFWrVpx5Ijloh40aBC+vr74+vpiMBgYPnw4AF27diU+Pr6ivrFjxwIwYMAAcnNzyc6uOu168+bNHDhwoOJ1bm4ueXl51eK+1HaVs+26xrV//35efPFFsrOzyc/PZ9DgoRQbTRSXmRg1ahRa7QWHxpUrVxIeHs7GjRtxc3Njy5Yt7N69u+KzKioqIjTUeZsvzmQV8ub/Heam9iHcHeU8C19fLf+8pT3peaV8sPUYQT4eTOoXoXZITotDibw94OFxYaanVqvFaDSiKEqNt5y1OfFVPo5Go6l4rdFoqrRnX3zci1+bzWZ27NiBXl+7uVVdt6tLXNHR0WzcuJFu3bqxbNkytm3bhr/eneIyE24eVY/fpUsX4uLiOHPmDK1bt0ZRFCZNmsRrr71WaxzOgKIovLhxPwDzHNhh0haU2x9kFpYye1MCgd7uDO8mfwRtgWyuaQA6dOjAuXPniImJASAvLw+j0ciAAQMqmh6OHDnCqVOnaN++fkPn1q5dC1juCgwGAwZD1fUib7nlFj766KOK13FxcQD4+vpWyegvtd2VkJeXR7NmzSgrK6s4vzB/TwSQUVBa5cete/fufPbZZ9x1112cO3eOwYMHs379elJTLd4emZmZJCVZ1sN0c3OjrMx5htd9u/cc2w6n8a9h7QkP8FI7HLtDp9Xw4dju9G4VyNPr4vjzaMMsoi2pihT5BsDd3Z21a9fy+OOP061bN4YOHUpxcTGPPPIIJpOJrl27MmbMGJYtW1YlU64LAQEB9OvXj2nTprF48eJq5R988AGxsbFERkbSqVMnFixYAMDw4cP5+uuviYqK4o8//rjkdlfC3Llz6du3L0OHDqVDhw6A5Qvr5a6j1Ggio6C0yvb9+/dn/vz53HHHHYSGhjJv3jxuueUWIiMjGTp0KMnJFp+PKVOmEBkZybhxDeAdojKZBaXM2XSAqBb+TLw+Qu1w7BZPNy2LJvWibYgPU1fGEn+mkdxEXQhhT+b+vXr1UmJjY6u8d/DgQTp2dIw1Lxuam266ifnz59OrVy+1Q6kTiqKQmFFIQYmRdk18G33Kvj1dKzPWxvFd/Dm+e/xG2jd1LgMyW5CSW8yIT7ZTXGayf/sDG1BYasTL/cpbz4UQuxVFqVEoZCYvaTCEEDT39wTgbHaR460O1EBsO5zK13vOMv2ma6TA15GL7Q9qmnvhrJjNChMX7+K5r+Ivv/EVIEXejtm2bZvDZPHluOu0NPHzJK+4zCWnrxeUGHnh6/20DfHm0UFt1Q7HoahsfzDJhewPVu86RWxSls28jKTISxqcYB93vNx1nMsuxmgyqx1OozL/58OczS7ijfsi8dA13GLfrkIV+4Plzm9/kJxTxBs/HqL/NcGM7BlukzqkyEsaHGG1PDCZFZLtyKnS1uw5lcWy7YlMuK4VvSIC1Q7HYamwP0jK5Ikv9jhtoqAoCi9+vR+j2WzTmb82E3khRJQQ4m8hRJwQIlYI0efye0mcBb2blhBfD7IKS8krdv7b7lKjmVkb9tHUz5NnbnUdh0lbcVe3MP59Zyd+PpDCixv3O2X/zvf7ktlyKJWZQ9vTMsh2Q2xtmcm/CcxRFCUKeNn6WuJChPp64KHTcjbr0k6VzsKC345zOCWPefd0wdfTTe1wnILoG1rz2KBrWBNzmneczP4gq6CU2d8mEBlu4IEbImxaly1FXgH8rM8NgAOt6Kse0dHRrF+/vtZtli1bxrlz6n6cN910ExcPd70YjcaywMjJxEQWLF7eSJE1PsdS8/ho6zHujGzG4I5N1A7HqZh5Szvu792CD7ceY9lfDbQsnx3wyg8HySos4/URkTZfXc2WR38KeEsIcRqYDzxX00ZCiCnW5pzYtLQ0G4bjPKgt8iZT3TvDvD105KefY93aLygsrb/9sL1jNivM2rAPLw8ts+9S31vJ2RBCMO+eLtzSqQlzvjvApr2Onyv+eTSd9bvPMHVAGzqF+V1+h6vkqrxrhBCbgaY1FL0ADAZmKIqyQQgxGlgMDLl4Q0VRFgILwTIZqtYKf5wF5/ddTcjVadoVbnu91k1WrFjB/PnzEUIQGRnJypUrSUpKYvLkyaSlpRESEsLSpUtp2bIl0dHR6PV6Dh06RFJSEkuXLmX58uXs2LGDvn37smzZMsBiXzx16lR+/fVXAgICWLNmDSEhIVXq3b17N08//TT5+fkEBwezbNky/vrrL2JjYxk3bhx6vZ4dO3Zw4MCBats1a9asyrHqGtf06dOJiYmhqKiIkSNHMmfOHAAiIiKYPHkyP//8c5UFS8xmMw888AAtWrRgzpw5zJo1i23btlFSUsKjjz7K1KlTmf/KbA4cOEjPHj14eHI0Tz/99FX+0+yH1TuTiE3KYv6obgT71G82s6Ru6LQaPhjbnYmLd/H0ujgCvNzpf22w2mFdEUWlJp77Op42wd48MfjaRqnzqjJ5RVGGKIrSpYbHN8Ak4Cvrpl8CDtnxmpCQwCuvvMLWrVvZu3cv77//PgCPPfYYEydOJD4+nnHjxvHEE09U7JOVlcXWrVt59913GT58ODNmzCAhIYF9+/ZVeMYUFBTQo0cP/ve//zFw4MAKMS2nrKyMxx9/nPXr17N7924mT57MCy+8wMiRI+nVqxerV68mLi4OnU5X43Y1UZe4XnnlFWJjY4mPj+e3336r4ojp6enJn3/+yf333w9YFgYZN24c7dq1Y968eSxevBiDwUBMTAwxMTEsWrSIkydP8sbrr3PDDf1Z+9PvjH/okYb756hMUkYBb/x0mBuvDea+Hs3VDsepcRb7g3d+OczpzCJeHdEVT7fGGWJrSxfKc8BAYBtwM3D0qo94mYzbFmzdupWRI0cSHGzJHAIDLUPjduzYwVdfWX7DJkyYwDPPPFOxz/DhwxFC0LVrV5o0aULXrl0B6Ny5M4mJiURFRaHRaBgzZgwA48ePZ8SIEVXqPXz4MPv372fo0KGApYnk4uy8PtvVNa5169axcOFCjEYjycnJHDhwgMjISICKeMuZOnUqo0ePrvhR+fnnn4mPj6/oU8jJyeHo0aO4u7uj0woMejdS8krw07s12gVuK9LySpi4ZBc6rZALXzQSBr0byyf34b5Pt/PA0hiHsz+IP5PN4j9PMrZPS65rE9Ro9dpS5B8G3hdC6IBiYIoN67IZl7IRvpjK21S2573YuvdSy+JdXIeiKHTu3JkdO3ZcNr66bFeXuE6ePMn8+fOJiYkhICCA6OjoikVOALy9q36h+vXrx6+//srMmTPx9PREURQ+/PBDhg0bVmW7bdu2ARDmryc/JY+zWUW0CfF2WGHMKy4jeukuUnNL+PzhvrQIlA6TjUUTP09WTO7DyAU7mLB4Jxum96OJn6faYV2WMpOZZzfsI9jHg+du79Coddus41VRlD8VRempKEo3RVH6Koqy21Z12ZLBgwezbt06MjIyAIs1LlgEbs2aNQCsXr2a/v371+u4ZrO5IuP9/PPPq+3fvn170tLSKsS7rKyMhIQEoKqNcG3b1Zfc3Fy8vb0xGAykpKTw448/1rr9gw8+yO23386oUaMwGo0MGzaMTz/9tMIu+MiRIxQUFFTE66bV0Mygp6DUSOZFTpWOQonRxJQVuzl8Po9Pxvegu42moksuTZsQH5Y94Fj2B+9tPsLB5Fzm3tMFv0YeYisXDbkMnTt35oUXXmDgwIFotVq6d+/OsmXL+OCDD5g8eTJvvfVWRcdrffD29iYhIYGePXtiMBgqfOPLcXd3Z/369TzxxBPk5ORgNBp56qmn6Ny5M9HR0UybNq2i4/VS29WXbt260b17dzp37kybNm2qrQFbE08//TQ5OTlMmDCB1atXk5iYSI8ePVAUhZCQEDZu3EhkZCQ6nY5u3boxadIk7pkwhfM5xfh5uuHWyE6VV4PJrPD02r3sOJHBu2O6ueyC3PZAZLjF/mDyshgeXh7Ligf72G0T4Mq/k/j41+OM6dWCYZ1rGqdiW6TVsEqULw7uipQYTRxNycfHQ0erIK8Ga7ax5bWiKAovfbOfVX+f4sU7OvLQjW1sUo+kfny79xxPrtnD0I5N+GRcD5uPOa8v38cn89gX/2Nwh1AWjO9ps/ik1bDErvDQaWni50GuAzlVvr/lKKv+PsXUgW2kwNsR9mx/sP1YOjPWxtGzZQAfjlXvB0g216iEq2bx5QT7eJBdWMa57GJ8PHR2l4FVZtXfSby3+Sj39Qhn1q2N22kmuTzRN7QmPb+Uj349RrCPB/8cpr530P6zOUxZuZvWwd4sntQbvbt6TUn2+82SODVCWCwPTGaF83bsVPnjvmRe+mY/N3cI5fX75FBJe2XmLe0Y26cFH/2qvv1BYnoB0Ut3VQz5NHip62UkM3mJaujddQT7upOWV4K/lxs+dmbstf14Ok+uiaN7C38+/kcP3Oz4bsPVEUIw9+4uZOSXMue7AwT6eHBXt7BGjyM1r5iJS3ZhMiuseLAPTQ3qD++UV61EVZr4euKh03ImuwizHTlV7j+bw5QVu2kV5MWSaHVvtyV1o9z+oHdEIDPXxfHH0cb1wsotLmPSkhjS80tY+kAf2ob4NGr9l0KKvERVNBrLAiOlRjMpefbRbJOUUUD00hj8PHWseLAP/l7uaockqSOebloWTSy3P9jN3tONY39QXGZiyopYjqbksWB8T6Ja+DdKvXVBinwj8t5771FYWKh2GLVS2er4oYce4sCBAwC8+uqrNqvTx0NHoLc76XklqjtVpuYVM2HxLoxmMyse7EMzg17VeCT1x6B3Y8XkPgR6u/PAshhOpNl2kIPJrPDUmjj+PpHJ26O7HDBOrwAAF31JREFUMaBdyOV3akSkyDcijiDylfnvf/9Lp06dgCsT+UtZONREU4MnOq2Gs1lFmFUaBpdXXMYDS2NIyythaXRvrgn1VSUOydUT6ufJygf7IoAJi3eRkmubu8Ty+RM/JZznpTs7cXeU/RnVOZzIP/DTA9Ueaw5Z7AWKjEU1lm88thGArOKsamV1Ye7cuXTo0IGhQ4cyduxY5s+fD0BcXBzXXXcdkZGR3HvvvWRlZXHw4EH69LlguJmYmEhkZCQffPAB586dY9CgQQwaNKhaHbt372bgwIH07NmTYcOGkZycTE5ODu3bt+fw4cMAjB07lkWLFgGWyVQzZ86kR48eDB48mHIv/uPHj3PrrbfSs2dPbrzxRg4dOgRYMvQnnniCfv360aZNm4psXVEUHnvsMTp16sQdd9xBampqRUzlC4PMmjWLoqIioqKiGDduHImJiXTp0qViu/nz5zN79uyKfZ5//nkGDhzI+++/X+N5AXzwwQd06tSJyMhI7r//fnQaDWH+eorKTKTnl9Tp/9KQWG63pV2BM9E62JtlD/Qhu9B29gfvbj7K5ztPMf2mtjzYv3WDH78hcDiRb2xiY2PZsGEDe/bs4auvvqqyGtLEiRN54403iI+Pp2vXrsyZM4eOHTtSWlrKiRMnAFi7di2jR4/miSeeICwsjF9//ZVff/21Sh2XshU2GAx89NFHREdHs2bNGrKysnj44YeBS1sVT5kyhQ8//JDdu3czf/58HnnkgrVvcnIyf/75J9999x2zZs0C4Ouvv+bw4cPs27ePRYsWsX379mqfweuvv45erycuLo7Vq1df9jPLzs7mt99+44knnrikDfLrr7/Onj17iI+PZ8GCBYDlNtugdyM1t4SSsrovTHK1mMwKM9bGseNEBvNHSbsCZ6JruIHPJvTieFo+Dy+PpbgBr6uVOxL5YMtRRvcK5xk7GJt/KRxuCOXSWy/tEaPX6WstD/AMqLW8Jv7880/uvvtu9HpL2+zw4cMBi41udnY2AwcOBGDSpEmMGjUKgNGjR7Nu3TpmzZrF2rVrq/nSXExtdsFDhw7lyy+/5NFHH2Xv3r0V+9RkVZyfn8/27dsr4gAoKbmQFd9zzz1oNBo6depESkoKAL///jtjx45Fq9USFhbGzTffXK/PpybK46rtvCIjIxk3bhz33HMP99xzT8W+Yf56jqTkcSa7iDbBtneqVBSFl7/Zz4/7z/PiHR25p7v93W5Lro7+1wbzzugonlizh8e/2MOC8T3Raq7uuvo+PpmXv01gSMdQu7eadjiRb2yuZJr0mDFjGDVqFCNGjEAIwbXX1r4CTG12wWazmYMHD6LX68nMzCQ8PLzGYwghMJvN+Pv7VywAcjGV7YUrn1d9L1CdTofZbK54XdmOGC5YEtd2Xt9//z2///473377LXPnziUhIQGdTmd1qvTkTFYRWYWlBHrbdrWl97ccZfXOU0wb2FbaFTgxw7uFkZZXwn++O8Cqv5OY1C/iio/117F0nlq7R3W7grpi39HZAf3792fTpk0UFxeTn5/P999/D4DBYCAgIIA//vgDgJUrV1Zk9W3btkWr1TJ37twqC21UtgiuTG12we+++y4dO3bkiy++YPLkyRU2vjVZFfv5+dG6dWu+/PJLwCKylbP/mhgwYABr1qzBZDKRnJxcrSmpHDc3t4q6mzRpQmpqKhkZGZSUlPDdd9/VuM+lzstsNnP69GkGDRrEm2++SXZ2dhWbhwAvd7w9dCTnFFNmMtd47Iag3K5gZM9wnr3Vfm+3JQ3DAzdEcOO1wbz50yHOZhdd0TEs8ydiaRPso7pdQV2Rmfxl6N27N3fddRfdunWjVatW9OrVC4PBAMDy5cuZNm0ahYWFtGnTpord8JgxY/jXv/7FyZMXplhPmTKF2267jWbNmlUR00vZCru5ufHf//6XXbt24evry4ABA5g3bx5z5sy5pFXx6tWrmT59OvPmzaOsrIz777+fbt26XfL87r33XrZu3UrXrl1p165dxQ/VxUyZMoXIyEh69OjB6tWrefnll+nbty+tW7emQ4ea/VwudV7t2rVj/Pjx5OTkoCgKM2bMwN//wrhiIQTh/nqOpuZzLruIVkENv/rPD1a7gsEdQnl9hH3fbksaBiEsq3jd8u7vvPj1PpZE967X/73crsDfy90u7ArqirQargP5+fn4+PhQWFjIgAEDWLhwIT169FA1JlewKk7NK+Z8TjGtgrww6C8/Iamu18r24+lEL4mha7iBVQ/2dYhsTNJwLP7zJHO/O8D790fVechjam4x9y3YTkGJiS+nXf//7d17WFV1vsfx9xckt6ZjKngJTKy8lA6CYXir1JmOliadvMAommHWmUkbsuOtntIaS0ufZqbOqTk+k5oNYqVmWuexSCG7mIJCSt7SgygqinhNRRF/54+12HEXA92Lzff1PDyw17593G5+rP1ba32WY45mLaJVw9X0xBNPEBoaSrdu3Rg6dKjHB/i6wr9RfRr4+XLoZD6XLtfMtE1RXUGwf0PefTRcB/g6aGyvYLq2uYmXVm+v0hnKTucX8OjCFPJ+vsjCsd0dN8BfiU7XVMGSJUs8HaEMb1+LB/Cxmyr3HD1Lzql8gppW71yqxesK3ovVuoK6ytdHeG3obxn85jfM+nQ7b0SFVnjb/IJCxr+Xyp6jZ3j30e50dVBdQVXpmrxytKKmyuNnL/Jz/q+vPCiqKyi8fJnF4yK0rqCO69TqN/yx722sSDvIV7vLLzIrqivYmHmcecOdV1dQVTrIK8dr2djFDfV8OHjy3K9qqjydX8DYBVZdwYKx3bm9Re36uK2ujaf63c6tATfy3IptnL1QcgWieF3Biw6tK6gqHeSV4/n4WHvbXPgVTZVF7YC7j5zhH6Pv0roC5eby8+W1oSEcPHmeNxJ3l7jur4m7WbJxP3/qexuxDq0rqCod5FWt0MjlR7OGN3DszEXOV7Gpsng74LzhXbmvln7cVtdO9+BmxPS4hYXfZpJu1xIv3rCPN9ftYUR4EJMdXFdQVTrIXwONGl3b6YDc3FwiIiIICwtzH4xVnuTkZAYPHlzpYy1atIgJEyaUWX7y5Enefvvtq8r1a1o2K3r+8rRq4sLXR8g+cf6KRyKXbgfUugJVkakDO9GisYtpy7eyMu0gM1b9yO/vaOn4uoKq0kG+Flq7di2dOnUiLS2Ne+6555o8x/Ua5K9GPV8fAm9yVamp8m+1oB1QOUNjlx9/ebgLO3POEPdBOuFtm/JfI8McX1dQVbVqF8qcV1/lwo6dNfqY9e/oRKvnnqvw+qlTp9K2bVt3m+PMmTNp3LgxTz75JJGRkZw4cYKCggJmzZpFZGRkifsmJyczb94892H/EyZMIDw8nLFjx7J582YmTZrEzz//jL+/P4sWLXKXdxXJysoiNjaW3NxcAgICWLhwIcePH2fKlCnu6t8NGza4y9MA1qxZQ1xcHP7+/iX25z979iwTJ05k27ZtXLp0iZkzZ7rzHjhwgIEDB5KZmcnIkSOZMWMG06ZNY+/evYSGhnL//fczadIkoqKiOH36NJcuXeKdd94p8QemeJWyv78/SUlJJCQk8Oqrr2KMYdCgQbz22msALFy4kNmzZ9O6dWs6dOjg7tRZvXo1s2bN4uLFizRv3pz4+HgCAgLo2LEj3333HQEBATSq78uQe+7i/VWJ/OaOttSvV3Y/9/e/z+LvtaAdUDnH/Xe2JLp7G3bknOGfY7rj8vOe4yeq9adKRIaLyI8icllEwktdN11E9ojILhEZUL2YnhMdHV2iRfLDDz9k+PDhuFwuPv74Y7Zs2UJSUhLPPvtslcvMKqoWLm3ChAmMGTOGrVu3MmrUKJ5++mlCQ0N5+eWXiYqKIj09vcQAn5+fz/jx41m9ejVff/01OTk57uteeeUV+vfvT0pKCklJSUyePJmzZ88CsGnTJuLj40lPT+ejjz4iNTWVOXPmcNttt5Gens7cuXNZsmQJAwYMID09nR9++IHQ0JL7FpeuUj506BBTp05l3bp1pKenk5KSwsqVKzl8+DAzZszg22+/JTEx0X3mKbB6gr7//nvS0tKIjo7m9ddfx8fHh5iYGHfF8dq1awkL60qzZs05WM60zf9uO8yLn2TUinZA5Sxzhoaw8k+9ak1dQVVVd00+A3gE+J/iC0XkTiAa6AzcDHwpIh2MMdUqc65sjftaCQsL4+jRoxw6dIjc3FyaNm3KLbfcQkFBAc899xzr16/Hx8eHgwcPcuTIEVq1anXFx6ysgre4DRs2sGLFCgBGjx7NlClTKn3cnTt30q5dO3frZUxMDPPnzwfgiy++YNWqVe4TnuTn57N//37AqjNu3rw5AI888gjffPNNifpfsDp8igrSHn744TKDfGkpKSn07duXgABrY+eoUaNYv349QInlUVFR7N5t7dmQnZ1NVFQUhw8f5uLFi7RrZ02zxMbGEhkZSVxcHAsWLGBcbCytmrg4ePI8J84V0OxG66CmCwWFxH2QXmvaAZXzeONKQbUGeWPMDij3hYkElhpjLgCZIrIHuBso2zlbCwwbNoxly5aRk5NDdHQ0YBWB5ebmsnnzZvz8/AgODi5TuVtRJW9lFbyVqcobsKLbGGNYvnw5HTuWnL7YuHFjmfuU9xj33nsv69ev57PPPmP06NFMnjyZMWPGVJijsk81FWWcOHEikyZNYsiQISQnJ7vPNtWmTRtatmzJunXr2LhxI/Hx8fj4+HDyXAGHT52nsaselwovk3f2ol1XUDvaAZW6Hq7Vqk4gcKDY5Wx7WRki8oSIpIpIatEp7JwmOjqapUuXsmzZMoYNGwZYJw1p0aIFfn5+JCUlkZWVVeZ+bdu2Zfv27Vy4cIFTp06xdu1aoPJq4eJ69erF0qXWqQ3j4+Pp06dPpTk7depEZmYme/fuBSAhIcF93YABA3jrrbfcg29aWpr7usTERI4fP8758+dZuXIlvXv3LlOLnJWVRYsWLRg/fjzjxo1jy5YtZZ6/+H0iIiL46quvOHbsGIWFhSQkJHDfffcRERFBcnIyeXl5FBQUuGuRi17TwEDrbfLee++VeOzHH3+cmJgYRowYga+vLyJCYNMGXDZw4Pg5Mo+dw0eExbERXvdxW6nquOKavIh8CZQ3B/G8MeaTiu5WzrJyV+2MMfOB+WC1UF4pjyd07tyZM2fOEBgY6J5WGTVqFA899BDh4eGEhoaWW7fbpk0bRowYQUhICO3btycsLAyouIK3c+fOJe7/5ptvEhsby9y5c90bXivjcrmYP38+gwYNwt/fnz59+pCRkQHACy+8QFxcHCEhIRhjCA4Odm8Q7tOnD6NHj2bPnj2MHDmS8HBr80rv3r3p0qULDzzwAF26dGHu3Ln4+fnRqFEjFi9eXOb5S1cpz549m379+mGM4cEHH3Rv6J05cyY9e/akdevWdOvWjcLCQvfy4cOHExgYSI8ePUrUNA8ZMoTHHnuMxx775by8Lj9fWjauT87pfOr5CM0b3UCrJq5KXyOl6poaqRoWkWTgP40xqfbl6QDGmNn25c+BmcaYSucnnFo1rDwvNTWVZ555psxxAZeN4ejpfJo08GPf3p/0vaLqJE9UDa8CokWkvoi0A9oDm67RcykvN2fOHIYOHcrs2bPLXOcjQqsmDWhwQ63aG1ip66a6u1D+u4hkAz2Bz+w1dowxPwIfAtuBNcBT1d2zRtVd06ZNIysr64rbJJRSZVV375qPgY8ruO4V4JXqPH6xx/LKXZtUzXHSGc6UchLH70jscrnIy8vTX2JVIWMMeXl5uFy60VWp0hw/kRkUFER2djZO3b1SOYPL5SIoKMjTMZRyHMcP8n5+fu4jH5VSSl0dx0/XKKWU+vV0kFdKKS+mg7xSSnmxGjnitaaISC5QtgSm6vyBYzUUpyY5NRc4N5tTc4Fzszk1Fzg3m1NzwdVla2uMKff8lo4a5KtLRFIrOrTXk5yaC5ybzam5wLnZnJoLnJvNqbmg5rLpdI1SSnkxHeSVUsqLedsgP9/TASrg1Fzg3GxOzQXOzebUXODcbE7NBTWUzavm5JVSSpXkbWvySimlitFBXimlvJhXDPIiMlBEdonIHhGZ5uEsC0TkqIhkFFvWTEQSReQn+3tTD+RqIyJJIrJDRH4UkT87IZuIuERkk4j8YOd6yQm5SmX0FZE0EfnUSdlEZJ+IbBORdBEpOiubx7OJyE0iskxEdtrvt54OydXRfq2Kvk6LSJxDsj1jv/8zRCTB/r2okVy1fpAXEV/gv4EHgDuBP4jInR6MtAgYWGrZNGCtMaY9sNa+fL1dAp41xtwB9ACesl8nT2e7APQ3xnQFQoGBItLDAbmK+zOwo9hlJ2XrZ4wJLbY/tROy/R1YY4zpBHTFeu08nssYs8t+rUKBu4BzWOfD8Gg2EQkEngbCjTFdAF8gusZyGWNq9RfWWak+L3Z5OjDdw5mCgYxil3cBre2fWwO7HPC6fQLc76RsQENgCxDhlFxAkP0L1h/41En/n8A+wL/UMo9mA34DZGLv1OGUXOXk/DfgWydkAwKBA0AzrGbgT+18NZKr1q/J88sLVCTbXuYkLY0xhwHs7y08GUZEgoEwYCMOyGZPh6QDR4FEY4wjctn+BkwBLhdb5pRsBvhCRDaLyBMOyXYrkAsstKe4/ikiNzogV2nRQIL9s0ezGWMOAvOA/cBh4JQx5ouayuUNg3x55wXU/UIrICKNgOVAnDHmtKfzABhjCo31EToIuFtEung6E4CIDAaOGmM2ezpLBXobY7phTVU+JSL3ejoQ1ppoN+AdY0wYcBbPTmeVISI3AEOAjzydBcCea48E2gE3AzeKSExNPb43DPLZQJtil4OAQx7KUpEjItIawP5+1BMhRMQPa4CPN8ascFI2AGPMSSAZa5uGE3L1BoaIyD5gKdBfRP7lkGwYYw7Z349izS3f7YBs2UC2/WkMYBnWoO/pXMU9AGwxxhyxL3s62++BTGNMrjGmAFgB9KqpXN4wyKcA7UWknf0XOhpY5eFMpa0CHrV/fhRrPvy6EhEB3gV2GGPecEo2EQkQkZvsnxtgveF3ejoXgDFmujEmyBgTjPW+WmeMiXFCNhG5UUQaF/2MNYeb4elsxpgc4ICIdLQX/Q7Y7ulcpfyBX6ZqwPPZ9gM9RKSh/Xv6O6yN1TWTy5MbP2pww8WDwG5gL/C8h7MkYM2rFWCt1YwDmmNtvPvJ/t7MA7n6YE1jbQXS7a8HPZ0NCAHS7FwZwIv2co+/ZqVy9uWXDa8ez4Y19/2D/fVj0fveIdlCgVT7/3Ql0NQJuexsDYE8oEmxZR7PBryEtXKTAbwP1K+pXFproJRSXswbpmuUUkpVQAd5pZTyYjrIK6WUF9NBXimlvJgO8kop5cV0kFd1gogU2s2DGSLykYg0vIr73iwiy67y+ZJFxJEniFZ1iw7yqq44b6wGwi7AReA/qnInEalnjDlkjBl2beMpdW3oIK/qoq+B2+2jRheISIpdphUJICJj7bX91VgFYMFinx/A7vleaPe4p4lIP3t5AxFZKiJbReQDoIG93FdEFtmfILaJyDMe+jerOqqepwModT2JSD2s7pI1wPNYVQWxdrXCJhH50r5pTyDEGHPcbu0s8hSAMea3ItIJ649AB+CPwDljTIiIhGBVJoN19Geg/QmCogoHpa4XXZNXdUUDu844Fasr5F2svpdp9vJkwAXcYt8+0RhzvJzH6YN12DnGmJ1AFtABuBf4l718K9Yh/QD/B9wqIm+JyEDAEc2fqu7QNXlVV5w3Vp2xm10GNdQYs6vU8gisitzylFdtXaRMR4gx5oSIdAUGYH0KGAHEXk1wpapD1+RVXfY5MNEe7BGRsCrcZz0wyr59B6w1/12llnfBKl5DRPwBH2PMcuAFrNpdpa4bXZNXddlfsM78tNUe6PcBg69wn7eBf4jINqzz5o41xlwQkXewzoZU1PK5yb59oL28aIVqeg3/G5SqlLZQKqWUF9PpGqWU8mI6yCullBfTQV4ppbyYDvJKKeXFdJBXSikvpoO8Ukp5MR3klVLKi/0/nZTtvQas8vIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_27_1.png" }, "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAacAAAEWCAYAAADCeVhIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3gc1dWH36NeLK0sS+5l3Y0NNsUYm2KbbhBgakIPhGAgEAKEIhIC8wUCSqGE0AOE0E1vMt2Aaa5gXHGXey9rW7Ktsvf7487aK1lldqXVbLnv8+yzOzP3zvx2dnbO3HvPPUeUUhgMBoPBEE0kuS3AYDAYDIa6GONkMBgMhqjDGCeDwWAwRB3GOBkMBoMh6jDGyWAwGAxRhzFOBoPBYIg6jHGKM0TEEpEXm1F/roiMbkFJCUk4v4OIvCIiZ0ZKU6iIyGgRWeW2jpagNb6LiHQQkfkikh7J4yQKxji1ECJyoYhMF5GdIrJWRD4UkaPd1tUYIvKciNwTvE4pNUgp9aVLkvYiIkpE+ritwwktceMTkcHAEODdllHVujT3oShaCeW3VUqtB74AxkVWVWJgjFMLICI3AQ8B9wIdgO7AY8BYN3VFKyKS0grHSI70MVqYq4CXlJkV3+K0xvUWxEvo39LQXJRS5tWMF+ABdgLnNVLmOeCeoOXRwKqg5TLgFmAWUA48gzZyHwI7gM+AtvXVDap/gv3ZAl4M2vY6sA7wAZOAQfb6cUAVUGnrfz94X0BnYBeQH7SvQ4BNQKq9/GtgPrAV+Bjo0cD39wIKuAJYAUxqrL6tU9nnYifwS+Ay4Js6+1VAn6Bz/Dgwwa53gv1dbrbPqw8YD2Q0oPEy4Fvg33bZn4Hjg7ZfbmvdASwFrrLXZ9vnyW9r3WmfOwt4DXjerjMXGNrINbIUOLrOuiuDjjkPONRefwDwJbDN3u8Zda61x9DXzk77O3VEPzxttb/XIXWundvt/W8F/hs4R+x/nXYG3gQ2AsuA6+31Y9DXUZV9zJ+C/hvPAGuB1cA9QHID399CX6sv2t93NtDP1rYBWAmc1NTvEawbuA197b9Qz3e53v7OXYF04J/oa3M98ASQ2chvOwyYDmy3yz8QtN8UoIIG/gvmFcK91W0Bsf6y/5jVQEojZZ6jaeM0GW2Quth/xh/QxiAdmAjcVV/doPoNGadfAzn2fh4CZjakq559TQSuDNr2D+AJ+/OZwGL0jTIFuAP4roHv70UbkuftP3xmU/UJMjz28mU0bZx8wFHoHoEM+7tMtW8o+eib2dUNaLzM/h1vBFLRBtGHbZyBIqA3IMAo+wYUMBb1/SYWsBs4FUgG7gMmN3DsbPu7FAatOw99Qz/cPmYfoIetbTHwRyANOA59g+4fdB42AYfZ52Ai2pBcauu4B/iizu89B+hmn6NvA9dE8Peyz+kM4E77uL3QRuHk+q47e907wJP292tv/xZXNXAOAufrZPt6eN7W/Sf7O18JLAsq39TvUQ38DX3dZ9b5Ln9G/78K7eWHgPfs758DvA/c18hv+z1wif25DTC8zvZZBD0wmFd4L9Ot13zaAZuUUtXN3M+/lVLrlVKrga+BKUqpH5VSe4C30YYqZJRSzyqldtj7sYAhIuJxWP1l4AIAERHgfHsd6K6L+5RS8+3vfi9wsIj0aGR/llKqXCm1K8z6TfGuUupbpZRfKbXbXvewUmqNUmoL+qZzcCP1NwAPKaWqlFLjgQXomyBKqVKl1BKl+Qr4BDimCT3fKKUmKKVq0E/vQxool2e/7wha9xvg70qpafYxFyullgPD0TfEEqVUpVJqIvAB9u9k87ZSaoZ9Dt4Gdiulnrd1jGf/a+kRpdRK+xz9tc6+AhyOvpn/xT7uUuA/6GtiP0SkA3AKcIP9m28AHmyovM3XSqmP7evhdaDQ/p5VwKuAV0TywNHv4Uc/0O2xrzdbljyANoDHKqU22tf1lcCNSqktSqkd6GuxMZ1VQB8RKVBK7VRKTa6zfQf7flNDmBjj1Hw2AwUt0K+9PujzrnqW24S6QxFJFpESEVkiItvRT8kABQ538QYwQkQ6AyPRT/df29t6AP8SkW0isg3Ygn6K7dLI/lYGfQ6nflOsrGfduqDPFTR+HlcrpYLHfJajW12IyCkiMllEtth6T6Xp81j32BkNXCfb7PecoHXdgCX1lO0MrFRK+evoDD5voV5Lwedt73euQw+gc+D3ss/BH9Gt/foItPLWBpV/Et2Caoi6OjfZBjWwTEC7g99jY9ADSoA8dHf2fUopn72uEMgCZgTp/Mhe3xBXoLscfxaRaSJyWp3tOez7TQ1h0poDhfHK9+juiDPRN/P6KEf/AQJ0bMbxau3LHvhv6I90IdopIzD+4kGPK4i9vdHBd6XUNhH5BPgFuvvtlaCb90rgr0qpl0LQHny8UOvX/d71ncPmOhN0EREJ+o7dgfds1+A30V1j7yqlqkTkHRyex6ZQSpWLyBL0DW+jvXolutuqLmuAbiKSFGSgugMLmyGhW9Dn7vYx6rIS3a3Wt4F91D0HK4E9QEEL9CrUwsHvUZ8e0Nf+xcBrInKWUupbdBfoLvRY7Op66uy3H6XUIuACEUkCzgbeEJF29u+Ygu6C/akZX9GAaTk1G/sJ7E7gURE5U0SyRCTVfrL7u11sJnCqiOTbN9UbmnHIhegn8CIRSUWP1TQ0ryIHfYPYjL6x31tn+3r02EFjvIy+CZzDvi490IPGt4vIIAAR8YjIeSF8j6bq19X2EzBIRA4WkQx0F2VL0x643v79zkMb5AnoMZZ0tOGoFpFTgJPqaG0XQndpfUxAj50EeBq4WUQOE00fu8tzCtpQ32rrHA2cju72CpdrRaSriOSjW0Pj6ykzFdguIreJSKbdKj9QRA63t69Hd7slASil1qK72u4XkVwRSRKR3iIyqp59h0pTv0eDKD1N4iLgbRE5wjbw/wEeFJH2ACLSRURODvpetX5bEblYRArtuoEWUqCFNwwos7tgDc3AGKcWQCn1AHAT2lBsRD81XoceEAY93vATuvXyCfX/+Z0eywf8Fn3zWo2+UTU0D+N5dDfNarRnUt2+8WeAgXZ3xjt1K9u8B/QF1iul9j4NKqXeRg84v2p3Gc5BjzE4/R5N1beA/9nafqGUWgj8Be25uAj4xumxQmAK+rtuQo+9nKuU2myPQ1yP9r7bim6Rvhf0XX4GXgGW2nrr6xZriqeAi+wxEJRSr9saXkaPYbyDds6oBM5An6tNaM+8S20N4fIy+rpcar/uqVvA7l47HT1mt8w+9tPo1jjoMSKAzSLyg/35UrQhCXgCvgF0aobOgJZGfw8H9T9Fe/u9JyKHob36FgOT7WvxM6C/Xba+33YMMFdEdgL/As4P6kK8CP3gZWgmUruL3WBITETkMuA3SinXJk6LyMvAa0qphh4UInHMMvT3/qy1jhmv2C2vr9Cu+nXHuwwhYsacDIYoQSl1odsaDOFjeyQe4LaOeMF06xkMBoMh6jDdegaDwWCIOkzLyWAwGAxRR8yNOSUlJanMzEy3ZRgMBkNMUVFRoZRSMdMgiTnjlJmZSXl5udsyDAaDIaYQkV1Nl4oeYsaKGgwGgyFxMMbJYDAYDFGHMU4Gg8FgiDqMcTIYDAZD1GGMk8FgMBiijogZJxF5VkQ2iMicBraLiDwsIotFZJaIHBopLQaDwWBoHAf37Ivse/UsEflORBpKntkiRLLl9Bw6em9DnIKOAN0XnQDs8QhqMRgMBkPjPEfj9+xlwCil1GDgbnQk/YgRsXlOSqlJIuJtpMhY4Hk7sdtkEckTkU52HpgWZ8G6Hbw7czVXjeyNJys1EocwRCv+Gpj8OOy2k58eeR1keGDZ17Bs0v7lj7kJUjNh8WewYsr+20ffDklJsOBDWP1D7W3JqTDqVv157juwfm7t7WlZcPSN+vOs12FTnRyBmW1hxG/15x9fgq1ltbe3aQ/DrtSfpz8L2+v8XTxd4bBf6c+Tn4CKzbW3e4+GXi2RUilBCVwzI2+GlHRY9CmsnLp/ueP+pN9/LoU1M2tvS0mDkbfoz3Pegg3za29PbwNH/V5//mk8bF6sP+d2hqGXt9x3qUNT92yl1HdBi5OBrhETg7uTcLtQOz30KnvdfsZJRMahW1ekpaWFdbDlm8t57MsljDmwI4Oz8sLahyFGWT8XPrFvFggcdpk2Tiu+h0n/2L/8iGu1cVo2Cb59eP/to4v1+6JPtYEIJjVzn3FaMAFmvVZ7e3bhPuM07x198womv+c+4zRr/P7Gs+OB+4zTjy/ubxy7j9hnnKY/W8f4KVjzgzFOzeGzu2D1DG08UtJh6Zfw/aP7lwsYp4Ufww/P196WnrPPOP38gTZQweR02mec5r6l9wHQdWhzjVOKiEwPWn5KKRVu6+cK4MPmiGmKiAZ+ta3wB0qpA+vZVgrcp5T6xl7+HLhVKTWjsX1mZ2ercCJEzF3jo+jhb3j8okM55aBm5zszxBIrp8EzJ8BFb0LfE9xWY4hlHj8K2nrh/JfcVhIyIlKhlMpuooyXBu7ZQWWORSe5PFoptbmhcs3FzZbTKqBb0HJXYE2kDtY1LwuA1dtiKoKHoSXwV+n3pGR3dRhin5oqSIq5qG8thogMRmdAPiWShgncdSV/D7jU9tobDvgiNd4EkJuZQnZaMqu2GuOUcHQYBJd/CJ0PdluJu3z/GLxzrdsqYht/lR5XTEBEpDvwFnCJUmphU+WbS8QeAUTkFWA0UCAiq4C7gFQApdQTwATgVGAxUAFEbqRP66FL20zWmJZT4pHhgR5Huq3CfdbPhaVfuK0itulxFBT2d1tFRHBwz74TaAc8JiIA1UqpoZHSE0lvvQua2K6AVn2M65KXabr1EhHfKij7BvqeBFn5bqtxj+QU3S1lCJ+xj7itIGI4uGf/BvhNK8lJrAgRXdoa45SQrPkR3r5KG6lEJil13/ibwRDlJJRx6pyXybaKKsr3VLstxdCaBFoLCTpWsJfkVKgx136zeORw+OJet1UkBAllnLrk6Qy6pvWUYPjtG3JSghunNh2gbQ+3VcQ2vtVQaZKdtgYJZZy6tjXGKSGpqdTvyYnrAgzA0TfANd+6rSK28Se2K3lrklDGqUtgrpNxJ08sAt16id5yMjSfmsR1JW9tEso4Feakk5IkpuWUaAwcC1dN0nHpEplZr8GzpxiPvXDx1wDKPOS0EgnVPk1OEjrlZZiWU6KRlZ/YLuQBtq+BFd/pbk7z9B86yg8HngMdBrqtJCFIKOME2inCTMRNMNbMhNXT4dBfJfZNOfDdTcspPJJT4dxnmy5naBESqlsP9LiT6dZLMBZ/BqV/0E++iUygO8pv3MkN0U8CGqcM1m/fTVVNgt+oEgnjSq4JeCuallN47NwIf+28fwoMQ0RIPOPUNhO/gnW+3W5LMbQWNVUgSTpBYCKT3R46H6LPhSF0aiqhqty0wFuJBBxz2pc6o1t+lstqDK2Cv8q0mgAOOE2/DOHhN1MSWpOEe4TqEpiIazz2Eoea6sR2hDC0DIHQT+ZaahUSzjh18mQAJkpEQjHyZrj6a7dVuM/Sr+CJo2HTYreVxCZ7W04J1+HkCgl3ljNSkylok25aTomEmeekqSyHdbOhcofbSmKT9Fw9HSG/l9tKEoKEM06gu/bW+IxxShgWfqzTZRx+hdtK3GXvPCfjSh4Wni5wxsNuq0gYEq5bD6BrXqZpOSUSc96Cbx9yW4X7BLqjTE6n8FBKvwytQkIap855GazetgtlLrTEwHjraUyEiOax/Fv4vzxYNsltJQlBQhqnLnmZ7Kn2s2lnpdtSDK2Bv9oMYgNk5oP3GEjPcVtJbFJjHCJak8Q0Tm33zXUyJADGlVzTYSBc9gF0OdRtJbFJnEcaEZFnRWSDiMxpYPsAEfleRPaIyM2R1pOYxsnOiGsCwCYIJkGcoSUItJziN2nlc8CYRrZvAa4H/tkaYhLaOBmniAThnGfgkrfdVuE+m5fAw4do70VD6MR5hAil1CS0AWpo+wal1DSgVQYt4/YRoDFyM1Nok55iuvUShYxctxVEB0rBlqWw2+e2ktgkvxcMvxayC91WEi4pIjI9aPkppdRTrqlpgoQ0TiJCl7xMVpmWU2Iw/VlITodDLnJbibuYqOTNo+NBMOYgt1U0h2ql1FC3RTglIbv1wJ6Ia1pOicGPL8KcN91W4T578zkZ4xQW1ZWwZ6eZ69RKJKxxCsx1MiQANVXGWw/MPKfmMvNFuK8L7FjntpKEICG79QC6ts3Ct6uK7buryM0wN664xsxz0qRmQr8x4OnmtpLYJM6jkovIK8BooEBEVgF3AakASqknRKQjMB3IBfwicgMwUCm1PRJ6EvYf622n5zot31TBQV09LqsxRBTTctKk58CF491WEbvEeVRypdQFTWxfB3RtJTmJ263nLcgGYNnmcpeVGCKOCV9kaAn2znMy11JrEJ+PAA7oka+NU9kmY5zinmunuq0gOvD74f7+cOTv4Kjr3VYTe8T5PKeIYnmSgDZYPsddgAnbcspMS6ZjbgZlpuUU/6Sk61eik5QE5RthT0SGCOKf7iNg1G1x263X4liel7E8uViebGAesADLc4vT6hE1TiIyRkQWiMhiESmuZ7tHRN4XkZ9EZK6IXB5JPXXxFmSZllMi8OldMO9dt1VEB8mpxlsvXLxHw7F/1Ebe4ISBdkvpTGAC0B24xGnliJ1lEUkGHgVOAQYCF4jIwDrFrgXmKaWGoL1E7heRtEhpqkvPgmzKNle01uEMbjH9WVj+vdsqooOk1H0BTA2hsWsb7FjvtopYIhXLk4o2Tu9i+aoAx5PEIvkIMAxYrJRaqpSqBF4FxtYpo4AcERGgDTquU6v9c3q0y2ZLeSW+XeZJMq6pqYrnYJ2hkZRijFO4fPU3+PdhbquIJZ4EyoBsYBKWpwfguE85kv/YLsDKoOVVwBF1yjwCvAesAXKAXyql/HV3JCLjgHEAaWkt17DyttNOEcs3lzO4a16L7dcQZdRUmkHsAAeeDZ2GuK0iNjEPOaFh+R4GgvPaL8fyHOu0eiTPtNSzrm6T7mRgJnAc0Bv4VES+rjupyw5O+BRAdnZ2i8UO6RlwJ99kjFPcohSoGuP+G+B0k64+bMyUhNCwPB2Ae4HOWL5TsDwDgRHAM06qR7JbbxUQPBW9K7qFFMzlwFtKsxhYBgyIoKZa9AhMxDXjTvGLv1rfUIxxMjQXk7QyVJ4DPgY628sLgRucVo6kcZoG9BWRnraTw/noLrxgVgDHA4hIB6A/sDSCmmqRkZpMJ0+G8diLZ5JT4c5NMNKxB2t88/hR8PY1bquITUzSylApwPK9BuihGstXDdQ4rRyxM62UqhaR69CWMxl4Vik1V0Sutrc/AdwNPCcis9HdgLcppTZFSlN9eNtlmygRhsShphKqTE9BWBx0HvQ4ym0VsUQ5lqcdgeEcyzMccJxMLKKPAUqpCWj/9uB1TwR9XgOcFEkNTeEtyObjuSbKcNyyZwdMuBWGnA+9Rrmtxn2MK3n49D3RbQWxxk3o3rLeWJ5vgULgXKeVE76N6m2Xtded3JNp+pPjjspy+Oll6DrUGCfQ3mZmEm54+FZpB5s8E9W9SSxPMjDKfvVH94wtsOc6OcIYp4J9MfaGdDMee3GHCdZZm6RU3bVnCJ33fw8VW2DcF24riX4sXw2WZyyW70Fgbji7SHjjFHAnL9tsjFNcYoJ11mbgGZDcakFY4guTeiVUvsXyPAKMB/YN7Fu+H5xUTnjj1D1fu5OXbTKDxHFJnCeIC5mjfu+2gtglMC3B4JQj7fe/BK1T6HmtTZLwxikjNZnOHhOdPH5RkJEHKRluC4kOlAJ/jYl0EA41VZCW5baK2MHyOY4GUR/mCkWPOxnjFKcU9ofi5W6riB5eOR+2r4Grv3ZbSexhIkSEhuW5s/71vr/Uu74OxjihA8B+NGet2zIMhshjAr+GzzF/MC3w0Ah+4s8ATgPmO61sjBPQsyCLrRVV+Cqq8GSZJ6O4YuMCmHgPjC6GDoPcVuM+Jp9T+BxwutsKYgvLd3/tZc8/2T9KUIOYrFnsi05uuvbikJ3rYf572gXYYE/CNcYpLNbNga1lbquIGCLyrIhsEJE5DWwXEXnYTh47S0QODfEQWUAvp4VNywnjTh7XmHlOtUlO3efBaAiNVy/QqdrPfsptJZHiOXQao+cb2H4K0Nd+HQE8zv5pkPZheWazLxNFMjpCxN1OxTRpnLzFpUcBFtDDLi+AKispcmwBo51u+VmI6NQZhjgjML5iBrI1fU+E/J5uq4hN4jwquVJqkoh4GykyFnheKaWAySKSJyKdlFINDdifFvS5GlhvB391hJOW0zPAjcAMQogoG0tod/JMkzojHtnbcjKdBAAMOsttBbFL7HvrpYjI9KDlp+xceU6pL4FsF6Ah43QPlu+SWmsszwv7rWtIrIMyvrKSog+d7CyW8RZkmZZTPJKSDp5ukJLptpLooGo3VO+CzLZuK4k9Yj9CRLVSamgz6jtJIBtMbQ8ky5MCOM5z78Q4feEtLv0H8BawJ7CyrKTIUQiKWKFnQTbvzlyDUgqR+n4DQ0zS90S4sd7x3cTki3tg2jPwJzN1ImRMhAgnCWTB8twO/BHIxPIEspoLUImd0dwJToxTYMAr2OI6DkERK/TvkMOO3dWs376Hjh4zl8EQpyQZV/KwGfsotPW6rcJN3gOuE5FX0XbBV+94k+W7D7gPy3Mflu/2cA/WqHHyFpcmA++VlRQ9GO4BYoW+HXIAWLB+hzFO8cTCT2DK43D205Ddzm017pOUosdOlALTQxAag850W0FEEZFXgNFAgYisAu4CUmFvHr4JwKnAYqACuLzeHVmeAVi+n4HXsTz7u5u3RODXspKiGm9x6RlA3BunfrZxWrhuB6P6FbqsxtBi+FbAkokmKkKAwJiJia8XGkrBsq8gvxfkdXdbTURQSl3QxHYFXOtgV38ArgTur2dbiwZ+/c5bXLpf2PN4G3PKz06jMCedBet3uC3F0JKYqOS1SbL/8v4qY5xCoaYSnh8Lx/0ZRt7stproxvJdab9HPPBrs8KexxL9O+SwyBin+GJvPidzIwagx1Fw7B0gyW4riS3MZG7nWJ6zG9/ue8vJbpr8x5aVFDXL+sUSfTu04dWpK/H7FUlJpj8+LjA3ldp0P0K/DKFhklaGQiAIYXt042aivXws8CXa87tJnESIqDfseVlJkaOw57FE/w457KqqYdXWXXRvZ/K2xAVZ+VA4wNxUAlSW6ziDOZ1Mt14omO5h51g+7ShheT4ABmL51trLnYBHne7GSeDX8qBXDTq+kjcksTFCv477PPYMccJhl8G1U8yNOMDsN+ChA2HnOreVxBamezgcvHsNk2Y90M9pZSfderU8LrzFpSGFPY8l+rZvA8DC9Ts4cWAHl9UYDBEg8ORv5jqFRmZbuPA1aH+A20piiS+xPB8Dr6D9FM4HvnBaOZyUGSGFPY8lcjJS6ZKXyULTcoofJj8B/zvDbRXRQ6B707jWh0ZqJvQ7OW7dyCOC5bsOeBIYAhwMPIXl+53T6k7GnJoV9jzW6NehDQvWGeMUN2wtgzUz3VYRPQS6N03LKTR2b4eyr6HLYZDT0W01sYP2zHPkAFEXJx2o+4U9LyspitvHrn4dc/h28WaqavykJptcjDFPTaUZbwpmb8vJGKeQ2LYcXr0QfvECDDQtcUdol/K/ob32xH4pLF+uk+pO/rX3lJUU1Qpx7i0ufaHuunihf4ccKmv8LN9cTp/2OW7LMTSX2E9z0LJ0GAQn36e99QzOMVMSwuHvwOlYvvnhVHbSNKgV9txbXBpS2PNYIxDGaMG6nS4rMbQIcZ4gLmTye8KI30Kb9m4riS1M0spwWB+uYYJGWk7e4tK9Yc+9xaXb2ZfLI6Sw57FGn/ZtENEee0WYp8uYp60XKs0Y4l4qK3QXlacbpLdxW03sYJJWhsN0LM944B2C0i01O0JEWUnRfcB93uLS+8pKisIOex5rZKQm422XbTz24oXRt7mtILpY+xP8dwxc8jb0jrsIZJFjb8vJGKcQyEVHLz8paJ2ipSJEAH/yFpdeDPQsKym621tc2g3oVFZSNLWpiiIyBvgX2svvaaVUST1lRgMPoUOzb1JKjXIiPJL069DGTMQ1xCd75znFrU9TZOg0BC6boMfsDM4IRIoIEydjTo8CI4AL7eWdOAhBISLJdrlTgIHABSIysE6ZPOAx4Ayl1CDgPOfSI0e/DjmUbSpnd1WN21IMzeWDm+D1Zv1H4ovgqOQG52Tmgfco/W5whuXph+X5HMszx14ejOW5w2l1J8bpiLKSomuB3QBlJUVbgTQH9YYBi5VSS5VSlcCrwNg6ZS4E3lJKrQBQSm1wKjyS9OuQg1/B0o3lTRc2RDdbl8G2FW6riB72tpwq3dURa2xbAT+Nh13b3FYSS/wHuB3QT0KWbxY6SoQjnBinKjsjrgLwFpcWAn4H9boAK4OWV9nrgukHtBWRL0Vkhohc6mC/Eae/HWPPjDvFATVVxlsvmCTTrRcWq6bD2+Ngx/5ZyQ0NkoXlqzv84/jCczLm9DDwNtDeW1z6V+BcwEnTrL6cE6rOcsAt/XggE/heRCYrpRbW2pHIOGAcQFqak0Zb8/C2yyY1Wcy4UzzgrzaD2MHkdIAz/g1d43Y2SGQwruThsAnL05vAfd/ynAs4tu6N/mu9xaVJwDLgVrQBEeDMspIiJ77rq4BuQctdgTX1lNmklCoHykVkEjoOUy3jpJR6Ctt9PTs7u66Ba3HSUpLoVWDCGMUFNVU6LppBk+GBQ6OigyK2MK7k4XAt+r49AMuzGm1LLnJaudEzXVZS5PcWl95fVlI0Avg5RGHTgL4i0hNYje5rvLBOmXeBR0QkBT2OdQTwYIjHiQiDOufyzeJNbsswNJcuh0G6ifSxl5oq7U7u6aZbUQZnBMbo4rzl1JSHtYi0BZ4FeqP9EH6tlJpT784s31LgBCxPNpCE5Qvpad/JmNMn3uLSc7zFpSGlhlVKVQPXAR8D84HXlFJzReRqEbnaLjMf+AiYBUxFn4z6v2grc1BXDxt27GGdb7fbUgzN4dS/w/F/dltF9LB7Ozx9PMx7x20lsYU//pMNOvGwRgdmmKmUGgxcijZk9WN52npLXfUAACAASURBVGF5Hga+RqfP+BeWp51TPU7aqDcB2UC1t7h0N3bwvrKSoiaD9ymlJgAT6qx7os7yP4B/OBXcWgzu6gFg1qptdPSYKMSGOMFEJQ+PQWdD18MhM99tJZFkr4c1gIgEPKznBZUZCNwHoJT6WUS8ItJBKbW+nv29CkwCzrGXLwLGAyc4EeMk2WBC9okM7OQhOUmYvdrHSYOMcYpZnj0FOh8MY+5zW0l0YKKSh0d2O/2KbVJEZHrQ8lP2eH6A+jysj6izj5+As4FvRGQY0APtT1CfccrH8gWnV7oHy3OmY7FOCyYamWnJ9G3fhlmrfG5LMTQH30odX8+gMREiwmP1D7DmRzjsMkhKdltNuFQrpYY2st2Jh3UJ8C8RmQnMBn6kYffwL7A85wOv2cvnAqVOxZqERY0wuKuH2at9KBVxB0FDpKipMh5WwZgIEeGx6BMovcltFZGmSQ9rpdR2pdTlSqmD0WNOhWgvvPq4CngZHfR1D7qb7yYszw4sz/amxJh/bSMc1DWP16avYtXWXXTLz3JbjiEc/NVx72EVEiJw7n+h/QFuK4ktaqpAkmK51eSEJj2s7ZBzFXbUn98Ak5RS9Rsay9esISFHLSdvcenR3uLSy+3Phd7i0p7NOWisMLiLdoqYvdp07cUsfhMhYj8OPNsYp1BJgKSVTjysgQOAuSLyM9qr7/cN7tDyXFFnORnLc5dTPU22nLzFpXcBQ4H+wH/R0cNfBI5yepBYZUCnHFKThVmrfJx6kMntFJP0OwU6DnZbRXRR9i1kF0Bhf7eVxA4JkrSyKQ9rpdT3QF+Huzsey3MOcAVQgJ4f9ZVTLU5aTmcBZwDlAGUlRWuAhPDgS09JZkDHXGavNsEeY5azn4RDHE9KTwzGXwxT4zZfaGTwV5kwWKFi+S4E/od2nCgFbsDy3ey0uhPjVFlWUqTYF/g1OxydscpBXT3MWmWcIgxxRHKqmecUKqOKYdwXbquILSxPX3S335tAGXAJlsfx4L0T4/Sat7j0SSDPW1x6JfAZOhR6QjC4i4cdu6sp21zhthRDqPhroKQ7fPdvt5VEF0mp+yIeGJyR3Q7ye7mtItZ4H7gTy3cVMApYhHa6cESTxqmspOifwBto69cfuLOspChh/u0HBUWKMMQYNVWw22daCXVJTjHnJFQWfAgznnNbRawxDMv3GQCWT2H57gdabhKut7j0RuD1spKiT8OWGMP065BDekoSs1f5GHtw3XRUhqgmMJcnAQayQyIp1cxzCpXZr8OamXoSrsEpmVieB4EuWL4xWJ6B6Kzqi5xUdjLClwt87C0u3YKeRPVGWUlRfaEq4pLU5CQGds5llnEnjz0CrYM4dwEOmdP/ZSK1h4pJWhkOz6E9vP9kLy9Ex9Z7xkllJ916/1dWUjQInZujM/CVt7j0s7CkxiiDu3iYu9pHjd84RcQUeyNJGy+rWniPgk7GvT4k/DXGWy90CrB8rxHInG75qoEap5VDCV+0AVgHbAbah1Av5jmoax7llTUs3bjTbSmGUEhOhYMvhoJ+biuJLsq+geXfua0itjCu5OFQbqfICGTCHQ447oJyMuZ0DfBLdAylN4Ary0qK5jVeK77Ylz7DR98OpjskZshsC2c+6raK6OPzuyElDX71vttKYgfTrRcONwHvAb2xPN+ibci5Tis7eRToAdxQVlI0Mzx9sU/vwjZkpSXz06ptnHNYV7flGAzNIznVRCUPlfOeA+V3W0VsYfl+wPKMQnt5C7AAy+fYE6dB4+QtLs0tKynaDvzdXq6VZauspGhLeIpjj+Qk4dDubZm6LGG+cnywYT48fhSc918YONZtNdFDUgpUmwzPIZGZ57aC2ESPM80Np2pjY04v2+8zgOn2+4yg5YRiWM98FqzfwbaKSrelGJxSUwmqRkeTNuzDRIgInWlPw0/j3VaRUDTYciorKTrNfk+ICORNcUTPfJSC6WVbOWFgB7flGJwQ6LoyruS1SUrV3mcG58z4H+R2hiG/dFtJwtDkI6W3uPRzJ+vinSHd8khLTmLKss1uSzE4Ze8kXONlVYsT7oKzHndbRWzhrzbeeqFiefa3E/Wta4DGxpwygCygwFtc2pZ9KXxz0fOdEoqM1GQO7pZnxp1iiUDXVXKauzqiDZMqI3SMt55zLM9e24HlCdt2NPYocBVwg72zGUEH2A4kpH/usJ75PP7VEnbuqaZNunmKinpyOsGwqyDXhJ2qxYopsGMNDDrLbSWxQwIkG2xBWsR2SFOpILzFpb+LpkCv2dnZqry83JVjf71oI5c8M5Xnfz2Mkf0KXdFgMDSbd6+DxZ/DH+a7rSR2eGAQ9BoFZz7mtpKwEZEKpVTrpTyyPL/D8oVtO5p8/C8rKfq3t7j0QGAgkBG0/vlwDxqrHNq9LclJwtRlW4xxigVqqvVYQUo6iDRdPlFINoFfQ+Z3M9xWEHtYvn9jeY4EvATbGsvnyHY4TdM+Gm2cJqDzxn8DJJxxyk5P4cAuHuMUESv8/AG8/iu45jvoMMhtNdFDUqp2szc4JzWj6TKG2lieF4DewEz2xdRTOLQdTgZOzgWGAD+WlRRd7i0u7QA8HYbUuGB4z3z++20Zu6tqyEhNdluOoTH8xpW8XkyEiND55M/QfTgMKHJbSUQRkTHAv4Bk4GmlVEmd7R7gRaA72n78Uyn13wZ2NxQYiOULK2K2k9mJu8pKivxAtbe4NBcdADZhU0IO65lPZY2fmStN8sGox0Qlr5+kFNOtFypT/wMrvndbRUQRkWS0w8Ip6J6yC0RkYJ1i1wLzlFJD0D1q94tIQ+6wc4CO4epx8q+d7i0uzUOnZp8B7ASmhnvAWGdoj3xEYOqyLQzv1c5tOYbGMPmc6ueIq2GwmUwaEonhrTcMWKyUWgogIq8CY4HgQN8KyBERAdoAW4CGmuEFwDwsz1Rgz961lu8MJ2KcOET81v74hLe49CMgt6ykaJaTnccjnqxUBnTMtced+rotx9AYJhNu/eR20i+DM5TSrfDYv45SRCQ49NxTSqmngpa7ACuDllcBR9TZxyPoSONrgBzgl0o1GBHXapbYhjZ4i0sPbWxbWUnRD805cCxzRM98Xp22gspqP2kpJm5b1NJxCBx9E6S1cVtJdLFmJqycAkOvMF2eToifFni1UmpoI9vrc2mtO150MtrB4Ti0s8OnIvK1Umr7fjUt31dYnh5AXyzfZ1ieLPRYliMauzLvb2SbssUlJEf0zOe578qYs8bHod3bui3H0BBdD9MvQ22WTYJP/wwHXwjJJj9ZkwRCF8V+y6kpVgHdgpa7oltIwVwOlCg9QXaxiCwDBlDfUI/luRIYB+SjDVkX4AngeCdiGgv8eqyTHTRGU54fQeUOByajm4hvNPe4kebwnjp7yPdLNhvjFM3s2alTQ2S1M/OcggncZE1kcmekZcGdCTF9ZBrQV0R6AquB84EL65RZgTYuX4tIB3SupqUN7O9a9DjWFAAs3yIsj+Ms6k7mOV1a3/qmJuEGeX6ciLbI00TkPaXUvHrK/Q342Klotylok85BXTx88fMGrj22j9tyDA0x5XGYeA/csVFnfjVoAgFM/cad3LAPpVS1iFyHvhcnA88qpeaKyNX29ieAu4HnRGQ2uhvwNqXUpgZ2uQfLV4mlM4ljeVLYv5uwQZx0OB8e9DkDbTV/oOmJVE48PwB+B7xZ5zhRz7H9C3nki8Vsq6gkL8vc+KKSwFye+O+OCQ3TcgqNXVvh4z/BwReB9yi31UQUpdQEdLCF4HVPBH1eA5zkcHdfYXn+CGRieU4Efgu871SLE2+93wUve4tLPcALDvbdpOeHiHQBzkKPXzVonERkHLrvkrS06DAEowe05+GJi5m0aBNnDEm4IO2xgb8KJNl06dUlMLBv5jo5Y89OmPmSnoQb58aphSkGrgBmo4PBTiCEAA7huOpU4MyH2onnx0PoZmGNNHIDsd0dnwId+NWhzogypGse+dlpfPnzBmOcohWT5qB+DjgdvEfr5HmGpvHHjbde62L5/Oj5sf8Jp7qTMaf32WdUktAzh19zsG8nnh9DgVdtw1QAnCoi1Uqpdxzs31WSk4RR/Qr5cuFGavyK5CTzdB51+KvNDaU+MnL1y+AM0z0cHpbnNPQYVQ+0rRFAYfkcXXxOWk7/DPpcDSwvKyla5aBek54fSqm9KeBF5Dngg1gwTAFG9y/k7R9XM2vVNg4xXnvRR7+TwdPVbRXRx+YlMPdtOOQSyOngtproZ2/LycwJC5GHgLOB2eHE12tyBmlZSdFXZSVFXwE/AvOBCm9xaX5T9ZRS1UDA82M+8FrA8yPg/RHrjOxbSJLAFws2ui3FUB+9RsOIa91WEX1sWgQT74btTp4xDSgFGR5IzXRbSayxEpgTbuBXJ91649BNs12An0DTzEHw16Y8P+qsv6xpudFF2+w0Duneli9+3sBNJ/ZzW46hLjs36NQQpvVUm0BUCBOZ3BkdD4TiFW6riEVuBSZgeb6idmy9B5xUdtJOvQUYVFZS1JAve0Jz3ID2/OPjBWzYsZv2OSbnS1TxyR2wYjLckLChIOtnr7eeMU6GiPJXdKDwDCBkN2snxmkJ2kPPUA+j+xfyj48X8NWCjZw3tFvTFQyth/HWq59k40oeEuvnwld/g9F/hPYD3FYTS+Rj+ZzOidoPJ8bpduA7b3HpFIKaZmUlRdeHe9B4YmCnXDrkpvOlMU7RR2KkOQidwDkx3XrO2LEO5r0Lw3/bdFlDMJ9heU7C8n0STmUnxulJYCJ6IlVDodETFhHh2P7tKZ21lqoaP6nJJkp51FBTbaJu10fng+GWpcad3Ckmo3K4XAvciuXZA1QRAVfy6rKSopuaITDuGd2/Pa9OW8m0si0c2bvAbTmGAKblVD/JqZBtEmU6JhDmyTzohIbla1bIeydn+wvbY+99anfrbWnOgeOJkf0KyExN5oNZa41xiiYOv1JHJTfUpnwzfP8IDDoLOg12W030YyJEhI/l6cK+Sbj2Ot8kJ1WdGKfAxNnbg9Y5ciVPFLLSUjhhYAc+nL2W/ztjkOnaixb6j3FbQXSyext88wAUDjDGyQnJ6ZDbFVKNN25IWJ6/Ab9EB/uusdcqoGWMU1lJUc+myhjgjCGdef+nNXyzeBPH9necssQQSTYt0rP6880lXAvjrRcaA07VL0OonAn0x/LtabJkPUQsn1OiMbJfAbkZKbw/c40xTtHCW1dCVgFcHPX5K1uXJJMyw9AqLAVSCZ6AGwKRzOeUUKSnJDPmwI5MmL2O3VU1ZKQmuy3JUFNt5jnVR7KZhBsSCz6Eqf+Bc5+BTBNDMwQqgJlYns+pHSHC0TSkSOZzSjhOH9KZ16av4oufN3DKQZ3clmPwV5lgnfWRZD84mZaTM7YuhyWf6xh7hlB4z36FRSTzOSUcI3q1o6BNGu/PWmOMUzRgIkTUT0Ye3LHBeJ85xUQlDx3LkwxcguU7IdxdRDKfU8KRkpzEqQd1Yvy0lezYXUVOhvnzu4qZ51Q/IpCS7raK2GHvPCdzLTnG8tVgeSqwPB4sny+cXUQyn1NCcsaQzjz//XI+nbeesw810bBd5eR7IbvQbRXRh1Lw4a3Q+3jjbu+EBIoQISJjgH8BycDTSqmSOttvAS6yF1OAA4BCpVR98153A7OxPJ8C5XvXNnfMyVtc2gfoYOdyCl5/jLe4NL2spGiJkwMkGod2b0tnTwbv/7TGGCe3OeB0txVEJyIw7WlIzzXGyQmZbaGg/76xujhFRJKBR4ET0ZnMp4nIe0qpeYEySql/AP+wy58O3NiAYQIotV9h0VjL6SHgj/Ws32VvM//8ekhKEk4f0plnvlnG5p17aNfGdJ+4xoop0Ka9medUH0mpOteVoWmGXalf8c8wYLFSaimAiLwKjEVPoq2PC4BXGtyb5fsflicT6I7lWxCqmMZCGXjLSor2S4RTVlI0HfCGeqBE4pzDulLtV7w+w/R+usqLZ2sXYMP+JKcaV/LEI0VEpge9xtXZ3gWdvTbAKnvdfohIFjAGeLPBo1me04GZwEf28sFYHsfee40Zp8ZidZh8xY3Qr0MOw7z5vDRlOX6/cT91jZoqE6wzCL9foQLu0MmpxpXcKd89Ai+c7baKlqBaKTU06PVUne1ST52GbmCnA9820qUHYKFbY9v0km8m4LgbozHjNM1bXLpfW9ZbXHoFMMPpARKVi0f0YOWWXXy1aKPbUhIX4623F6UUV704gyufn65XpGbpsSdD02xZCmtnuq2iNVgFBCel6wqsaaDs+TTWpaeprsdTz/HTemOPlTcAb3uLSy9inzEaik63e5bTAyQqYwZ1pKBNGi9NXm7CGbmB3w/Kb9x/bUpnr+XTeevp7LE7RG5qaBjBsB+J85AzDegrIj2B1WgDdGHdQiLiAUYBFzexvzlYnguBZCxPX+B64DunYho0TmUlReuBI73FpccCB9qrS8tKiiY63Xkik5aSxPmHd+fRLxezamsFXdtmuS0psTATJ/eyY3cVf3lfG6ONO/eglEJMq8k5CRIGSylVLSLXAR+jXcmfVUrNFZGr7e1P2EXPAj5RSpU3sKsAvwP+hA5d9LK933uc6hEVYyE5srOzVXl5U+ckOli9bRfH/G0i14zuzS0nD3BbTmLhr4GFH0FBPyhI7IAm//f+XJ77rowzhnTm3ZlrmHnnieR9dx/kdk4UL7Tm8eZvYNV0+H1sd+2JSIVSKrvVDmh5DsHy/RhudZN4KIJ0ycvkuAEdGD9tJXuqa5quYGg5kpJhQFHCG6Y5q33877syLjqiO8cf0AGAjTv26GCmyxyl1TG09UKnIW6riEUewPL8jOW5G8szKNTKxjhFmEtG9GDTzko+mrPObSmJRfUeWPgxbFvZdNk4xe9X3PHOHPKz07jlpAEU2nPuNu7Yo70YjSu5M467A37xP7dVxB6W71hgNLAReArLMxvLc4fT6sY4RZhj+hTQo10WL05e7raUxKJiM7z8C1j8mdtKXOOlqSuYuXIbfzz1ADxZqRTm2MZp5x57Eq5xJTdEGMu3Dsv3MHA1es7TnU6rmtHiCJOUJFwyvAf3lM5nxvKtHNbD5INpFRI8WOfyzeXcN2E+R/cp4KxD9DzKgHHasH2PPQnXGCdHvHc9VO+Gs+tOCzI0iuU5AJ2m/TxgE/Aq8Aen1Y1xagUuGNadx75cwr8nLuK5y4e5LScxSKBgnXWprvFz4/iZJCcJfz938F7PvNyMFNJSknTLKbMtSHzHimsxtiw1XaDh8V/0XKgTsXwNzZdqENOt1wpkp6fwm2N68uWCjfy0cpvbchKDvS2nxHv+enLSUn5YsY27xx5I57x9wVxEhMI26XrM6cLxcMHLLqqMIfzVZkpCOFi+4cDjQD6W50AsT0hPisY4tRKXjvCSl5XKvycucltKYrB3nlNitZzmrPbx4KcLKRrcibEHd95ve/tc2zgZnGOSVoaH5RkFLEJHOn8MWIjlGem0ujFOrUSb9BR+c3RPPpu/gTmrw8q9ZQiFtl649F3oPsJtJa3G7qoabhw/k/zsNP565oH1TrTd23L65kH46HYXVMYgiRMhoqV5ADgJyzcKyzcSOBl40GllY5xakUuP9JKbkcLDn5vWU8RJz4Feo6FN4iQbvPuDeSzasJO/nzuYvKy0essU5qTrMafVM2DJF62sMEbpchh0PthtFbFIaq1UGZZvIeDYyke0I9VBVsWLgNvsxZ3ANUqpnyKpyU1yM1L59dE9eeizRcxbs52BnXPdlhS/7NygJ5n2HJUQBur16St5acoKrhrVi9GNxHIszElnS3klfkkhyXjrOeM0xw/7htpMx/I8A7xgLwfHaW2SiLWcgrIqngIMBC4QkYF1ii0DRimlBgN3A3Hvq3n5kT3JSTetp4izYR68eQVsWui2kogzZ7WPO96Zw4he7bjlpP6Nlg24k+/xJ5t5ToZIcw0wFx3w9ffopIVXO60cyZZTk1kVlVLBEWono0O0xzWerFR+c0wvHvxsIVOWbuaIXu3clhSf1Niuv3E+kL2topJrXppB26w0/n3hIaQkN/68GYgSscufRKZxj3bG0ydC9+Fw0t1uK4ktLN8e9LjTA+FUj+SYk+OsijZXAB/Wt0FExgWyN1ZXx/4fatzIXnTJy+Su9+ZSXeN3W058kgBRyf1+xY3jZ7LOt5vHLj6UAtvwNEag5bQ9OQ9yOkVaYnywbQXsNlNAHGN5xmJ5rg1anoLlWWq/znO6m0gaJ8dZFUXkWLRxuq2+7UqppwLZG1NSYv9mk5mWzJ+KDuDndTt4ZeoKt+XEJwkQIeLeCfP5YsFG7jx9EId2dxZ5JGCcpvT6HVz5eSTlxQ/GWy9UbgWC07GnA4ej4+w57taLpHFylFVRRAYDTwNjlVKbI6gnqjjlwI4c2bsd//xkIVvLK92WE3/E+TynZ75ZxtPfLOOyI71cfER3x/UKgoO/GpyRIPmcWpA0LF9wr9k3WL7NWL4VgOOUHZE0TnuzKopIGjqrYrA1RUS6A28Blyil4n/kOggR4a7TB7FzTzX//GRB0xUModHrWPjNRGjbw20lLc6E2Wu5p3QeJw/qwJ9PGxhS4sCM1GRyM1LoWvYGvHhOBFXGEf6quO4ejgC1m/GW77qgJceusxEzTkqpaiCQVXE+8Fogq2IgsyI6Qm074DERmSki0yOlJxrp3zGHS4b34OWpK8zE3JYmKx+6HgapmU2XjSGmlW3hhvEzOaRbHv86/xCSk0LPaNs+N4P0HSvNPCen9D8FOh7ktopYYgqWZ/8slpbnKmCq052YTLgu46uo4tj7v6Rb20zeuOZIUpvwtjI4ZMPPsHIKHHQepGW5raZFmLdmOxf8ZzLtstN445ojyc+uf6JtU1zw1GTO8j3PL8pfgru2gUnZnhC0WiZcy9MeeAednv0He+1h6LGnM7F8653sxtwJXcaTlcpfxg7ip1U+Hpm42G058UPZ1/D+9VC5020lLcK8Ndu58OnJZKUl879fDwvbMIF2ivAFhjnNXCdDS2P5NmD5jkTPXS2zX3/B8o1wapjApMyICk4b3JmJ8zfwyBeLGd2/kEMcel4ZGqEmflzJ563ZzkVPTyYzNZlXxw2nW37zWoKFOen49ij9aOqvAsI3dHFP1W64vz+Mvh2GO3Y0MwBYvonAxHCrm5ZTlGCNHUTH3AxuHD+T8j2xP5fLdQLeesmxfeOdv1YbpvSUZF65cjg92jW/V6YwJ53V1R5q2h8Iysyza5SaSj3HKUFCPYnIGBFZICKLRaS4gTKjbR+BuSLyVaS0GOMUJeRmpPLAL4awfEsF95TOa7qCoXHiYJ7TDyu2cuF/tGF6ddxwvAUtM1xQ2Cadt/3HsPIXn+gAuYaGSaCklU5CzolIHjr9xRlKqUHoLLcRwRinKOKIXu24amRvXpm6ko/nrnNbTmwT4zeVT+et58L/TCY3M5XxV7WcYYJ9E3E37jRznZoksZJW7g05p5SqRKdVH1unzIXAW0qpFQBKqQ2REmOMU5Rx04n9GNzVw03jZ7Jg3Q635cQuh18Jv50CSbF3ib84eTlXvTCd/h1yePOaI1ukKy+Ywpx0jk36kb7vngHb17bovuOO+JrMnRIIA2e/xtXZ7iTkXD+grYh8KSIzROTSSImNvX9unJOWksRTlwwlOz2FK/43jU3m6TY8sttB+wGtftjV23bx3LfL2FVZE3LdGr/ibx/9zB3vzGF0//a8Mm64o3h5oVKYk04eO8nbOhuqKlp8/3FFSiYcfBG06+O2kpagOhAGzn7VzQLhJORcCtotvAidPPDPItIvAlqNt1400tGTwdO/Gsp5T3zP1S/M4KUrjyA9JdltWbHFskmwcQEM238uYCRY69vFY18s4dVpK6iqUWzfXc31x/d1XH9bRSW/f3UmXy3cyAXDunP32EFNRhgPl/ysNPwBL0YTmbxxstvBmY+5raK1cBJybhWwSSlVDpSLyCRgCNDiEX5MyylKGdw1j/t/MYTpy7dy+1uzibXJ0q4z/32YeE/ED7N62y7uencOo/7+Ja9MXcF5Q7txZO92PPvtMsdel3NW+zj9kW/4bskm7j3rIO4968CIGSaApCQhM8NukZl5ToZ9NBlyDngXOEZEUkQkCzgCHQGoxTEtpyjmtMGdWbKhnAc/W0hnTyZ/OKlfSHHUEpqaqoh66i1av4MnvlrKuzNXA3DOoV257rg+dMvP4ocVWzn7se94acpyxo3s3eA+lFK8Pn0Vf353Dm2z0njtqhGtNsctKzMTdpAwLtJhs242PDUafvECDDjVbTURRSlVLSKBkHPJwLOBkHP29ieUUvNF5CNgFuBHZzifEwk9xjhFOdcf34d123fxyBeLSRK48URjoBwRgTQHSim+X7KZZ79dxmfzN5CZmswlI3rwm2N0fq4Ah3Zvy9F9Cnhq0jIuHeElI3X/LtnNO/fwx7dn8/Hc9Yzo1Y6HLzhkrxdda5CUXcDcXQMZlBJfsQdbnJpK3fUpidHJpJSaAEyos+6JOsv/AP4RaS3GOEU5IsJfzzwIpeDhiYtBhJtOjMj4Y3xRU91i7r+7q2p4d+Zq/vttGT+v20F+dhrXH9+Xy470NhhG6Lrj+nD+U5MZP20lvzrSW2vbFz9v4JY3ZrF9VxV/PHUAVxzdK6wArs1he8Eh/HrL3UxxwWkkpkgsV/KowpzxGCApSbj3LNtAfb4IQbegDI3QAi2nxRt28vKUFbz5wyp8u6oY0DGHv58zmDMO7lxvayiYI3rmc7i3LU9+tYQLhnUnLSWJLeWV3DdhPq/PWEX/Djm8cMUwDuiU2yyN4VKYk86mnZX4/YqkVjaMMUVNXLmSxxTGOMUISUnCfWcfhELxr88XsbWikjtPGxjRgfOYpuh+qA7dDb+ispqP567jlakrmbpsC6nJwkmDOnLxET0Y3ivfcZeqiHDdcX351bNTeeuHVfr3mzCfHburuWpUL248oV+TBi6S9FNlfJRyMzsWZuMZbNg+9wAAFXJJREFUMMo1HVFPnITBikWMcYohkpKEkrMH0zYrjScnLWXZpnIevehQcjPMU91+ZDp3LPD7FVPLtvDmjFVMmL2W8soauudncduYAZw3tGvYc41G9i1gcFcPf3pnDjV+xdAebbnnrAMZ0NGd1lIw7TKS6Ju0mpW+zXjcFhPN5HaBYeMgt5PbShIOY5xijKQk4fZTD6BXYTZ/ensOZz/2Hc/+6nC6t4uPnEUtxk/joWYPHFr/BHalFHPXbOe9n9bwwU9rWOPbTXZaMkWDO3HOoV053Jvf7O4uEeG2MQP48ztzuGpUL847rFvUdKHl5ejrZUf5LpeVRDmF/eHUiI/9G+rBGKcY5ZeHd6d7fjbXvDSDsY9+w9/OGcxJgzq6LSt6+OllqKyoZZyUUsxe7eOjOev4cM46lm0qJyVJGNmvkFvG9OfkQR3JSmvZv8RRfQqYePPoFt1nS5DXxhgnR9RUg6rR3XrGS7ZVMcYphhnRux3v/PYornvlB8a9MIMLhnXjjqKBZKebn1V76+nuzj3VNTzwyULet1tIyUnC8F75XDWyF2MO7EheVuKNJ7S1W047K4xxapR578CbV8C106DQOCG1JuYuFuN4C7J565qjeODThTw5aQnfL9nMg788uFUmc+6prmHjjj109mRGTXfVXvxVkJIBwPPfLefJSUs5fkB7bjqpPycc0D4hDVIw2Tl5fK2GsLbG/fGvqMa4kruGOeNxQFpKEsWnDGB0/0JuGj+Tsx//jguHdefmk/rTthnpvJvi/96fx8tTVpCTnsLAzrkM6uxhUOdcDuiUS5/2bUhLcdGT0F8NSSls313Fo18u5pi+BTxz2eHu6Yk2cjryf5672VlWTfu56zhxYAczubs+4isqeUxhjFMcMbxXOz68YSQPfrqQFyYvp3T2Wm4+qT8XDOve4pM8t1VU8uaMVRzdpwBvQRZz12zn5anL2V2lM6umJgt92udwQMcc+nXMoX/HHPp3yKGTJ6N1boJ2+KKnJy1lW0UVt55sJpvW5W/nDKb4zVmMe2EGI/sVcudpA+nTvo3bsqKLOEhaGatIrAUUzc7OVuXl5W7LiHp+Xredu96dy5RlWxjQMYfrj+/LmEEdW6z77alJS7h3ws98+Ptj9k4kra7xs2xTOfPWbmf+2h3MX7udBet2sG777r31ctJT6NOhDX3bt6Fv+xx6t8+md2EburbNalkDWlnBpp27GfnQVI7t355HLzq05fYdD+z2wWMjqB55K8/vHsWDny1kV2UNFwzrztWje9cKx5TQTHkSPrwVblmqI5THMCJSoZRq2eRgEcQYpzhGKUXp7LU88MlClm4qp3+HHH53fB9OPbBTs4xUjV9x7D+/pKMng9euGtFk+W0VlSxcv5MF67azaMNOFq7fweINO9m0s3JvmbSUJHq2y6ZnQTY9C/V7r4JserTLpqBNWlitLeu9ubwweTmf3DiS3oWmRVCLPTvgvq5w4t1w1PVs2rmHBz5dyOvTda65cw/rxm9H96ZbfoJPUVgxBRZ+CKNug9TYNtjGOEUYY5xCp8av+GDWGh7+fBFLNpbjbZfFxcN7cO5hXcNyDJj483p+/dx0HrnwEE4b3DlsXVvKK1m6cSdLNu5kycZylmzYybLN5azYXEG1f991mZ2WTI922fRol0X3/Cy6BV5tM+nSNrPeXFfbPr6X//t6F+mHnEfJOYPD1hi3VO2Gv3aA4++EY/6wd/Xqbbt44ssljJ+2Er9SnDyoIxcPDy06hiE6McYpwhjjFD41fsWHc9byv+/KmFa2lfSUJMYe3JlfDO3God3bOm5N/erZqcxfu51vi48jNQLhk6pr/Kzauotlm8pZvrmc5VsqWL65grLN5azauovKan+t8h1y0+naNosuedpYdc7L5NRPT+DLqgM48g/j6eSJ7SfeiOCvgb/kw+g/wujb9tu8zrebZ75ZymvTdVzBPu3bcNER3TljSGfaRSA7b9SyZ6cOg5WVH/PznIxxijDGOLUM89Zs54XJy3nnx9XsqqqhS14mpw3pxBlDOjOwU26DT8nLNpVz7D+/5MYT+vH7E5xnem0p/H7Fhh17WG4bKv2qYOXWCtZs281a3y6qahRT03/L6vajOOTa51tdY8xg5cHIm+G4Oxossruqhvd/WsOLU1bw/+3de3hU9Z3H8fc3M5kkkwu5GS7hLgK6cqdERC0grUhVutW60GpxtY/VVbfyrGu1tu5qn6e6z+52V11X11p1u1btSnWl6IqXCuulFVRAAQmgBIkQEgIhhJDrfPeP3wlMMgmEy3BOyPf1POeZM+d3ZvLJZHK+cy7z+63ZVkMoRZg2opDLxg3g63/W99TvOuutn8Pyf4C/q7HidJJZcerl6hpbeH19BYtXb+ftTbtoiSnFuRnMHF3EzNFFTD29oF0HpT9bsp5f/7GMd++YSVF2un/BuxCLKVV1jRQ8PBo5+1uELv2F35GCa9G1MGoOjLmiW6t/uqOW36/ZzuI12ynfc4DUkFAyrIDpo05jxugihhdmnnqH/t64B957EO6u9jvJcbPilGRWnJJn9/4mlq6r4M1PK3l38y4ONLeSFk5hwuBcSoYVMGlIHjc98xHTRxXx0PwJfsc9vPsGwfjvwsX3+53klKOqrNpWw6trK1hWWsnGnXUAFOdmUDI8n5Jh+ZQMK2BIQbTnF6vXfgIrHoefVJyQp6trbGFnbQM7axuorG0kNZTChWcWnZQe6ntacbLvOZmD8jMjzJ8ymPlTBtPQ3Mr7W3azvLSKFWXVPPSHTbRdo7Bg6hB/g3ZHa7N9qz9JRISJg/OYODiPH885k/I99bxVWsV7m3exvLSKFz5yQ9cXZkUYU9yHMQNzGVvch7MG5Jy877mdKLFWSOn6fdQaU2rqm9i9v4nq/Yduq+sa2VXXSHVdE1X7Gqmqa6RqXyP1Ta0Jz5EbTeUvJg/iOyWDGVKQSVNLjIq9DZTvqT94vnVr9X7Kquu5fGIx3z9/eDJ/48CwPSfTLbUNzXxYtofahmYuGzcg+BsYVTel2HhXXXpwIoy8CGbfd8KeUlX5rKqOP32+m9XbavikfC+bKvcd/GCTnRZmZL9sRvbNYnhhFkMLMxla4K6+9HN8qy69fBusXQQ/KmPjzn089V4Z67fXUlPfxJ76ZmobmulqE5oXTaUgK43TstIoynG3hdlp9MtJpygnjb456ezc28DT729l6bqdxFQpyk6jcl9ju+dMDQmD8qMMyY8yd3wx35xQfEy/Sk/bc0pqcRKR2cADQAh4XFXv79AuXvscoB64RlU/OtxzWnEy5gT559EwYhbM/bek/pj6phbWba9lQ8U+NlbsY+NON+2pbz64jgiclpVGcV6Gu+oyN4O+Oen09TbkRdlpFGSlkRkJJfWDUUtrjB17GwiHhEgohYxty/ly02rurfoqb2/aRVo4ha8MzScvM0JeNJXcaIT8aCr5WWkUZEbIi0YozI6QH40c1UCgFXsb+O3KbXyxu57ivAwGetOgvCgDcjNOyBfUu1OcurHNng68BGzxFr2gqvced7jOsiSrOIlICNgIfA0oB1YC81V1fdw6c4BbcMWpBHhAVUsO97xWnMwRtbbAywvhzLlwxiy/0wTXv4yBodPgzx/15cfX1DdRVl1P2a79lFXv58s9B/iyxk07ahpoao0lPCYtnEJBZoT8rAi5GRH6RFPJi6aSk55Kdnoq2enhg1NmJExmmpuikRAZkRDR1FBC0WiNKe9vqWbJxzt4dW0Fu/c3Jfzcouw0vjd1CN8pGUJ+EvurTKYjFadubrOnA7ep6iVJjpvUc05TgM2q+jmAiDwHzAXWx60zF/i1ugr5JxHJFZH+qrojKYmW/6PbRY8XSoUb3nHzb/w9lP5v+/b0XLhuqZt/5XbYsrx9e84AuPpFN//SzVC+sn17wQiY9xs3v+ha2LmufXu/sXD5L938M/Ngz5b27YNK4LIH3fx/Xgp1le3bT5956LDM47PcN//jjb4ELvypm39kmusQNd7YK92XMFsa4T8uIMGka+CcG6F+Nzx5cWL7OX8FkxbA3nJ4+vLE9vNvg7HfhqqN8N9XJ7ZfeDeM/gZsXw0v/iCxffb9cPoM2PpHWHJrYvulD8LgEtj8Biy9yy3TGOzaCPmnW3E6nFAYNrzsLpee8WO37OFOPhuOmwfnLXTjY/1yRmL75Oug5HrYvwue+kZi+7m3wISrYM9WeObKg4tzgfHA+K/+CGZ9Cyo3wPPXQxQ06q68bIkpG8f+LRuypxLasYrz199Fa0xprVVaa5SYKj/nOp5rGMVk1nFv+MmEH7+w+Qes1hHMSFnFneFnEAFBEIEUEW6Xhays78c3U1fwcsaLRAvdZlFVqc4cwWcT7mD6Vyb425HxydGdbfZJk8ziVAxsi7tfjts7OtI6xUByilNWkRvZMl58b8PZ/RPb07IPzfcpTmzPPO3QfO5gaKxt395nUFz7kMTikDv40Hz+MAh3+FSWG/f4ghGJw4/nxPXQUHAGNHfYq8yOG4CwcKQbOC1eVl9vRhJ/Nzj0+6WEOm+P5rvbUKTz9ra84bTO29O9QcJTo523t73+kS7aI173Omk57dv7jYFRnRRTc8i5t8Dny9q/Rzp7jdveI9LVe8Trc66r90jGkd4jue427j0iuONKIWDM8IGMGTIIKuvgQGJvH49NuwAdMJGGL4qQd9bQEovR3Kq0xpSWWIybR4ylIn04faoakK2jXXGLucLWGlMm9uvPgjHjmZUWIX1N+w+HucDp4VUQnpSYu+cJi8gHcfcfU9XH4u53Z5sNMFVE1gDbcXtR6zpZ57gl87Det4GLVPX73v2rgSmqekvcOi8D96nqO979N4HbVfXDDs91PXA9QCQSmdTY2JiUzMYYc6rqxmG97myzc4CYqtZ5p2UeUNWkfBs/mfup5UDcx34G4irt0a6Dqj6mqpNVdXI4bJcHG2NMEhxxe6yqtapa582/AqSKSGEywiSzOK0EzhCRYSISAeYBizussxj4njjnAHuTdr7JGGPM4Rxxmy0i/byrrBGRKbgakpTuM5K2G6KqLSJyM7AUd+j4CVVdJyI3eO2PAq/grtTbjLuU/C+TlccYY0zXurnNvgK4UURagAPAPE3SuSH7Eq4xxvQCPe1LuKf8tZHGGGN6HitOxhhjAseKkzHGmMCx4mSMMSZwetwFESISw10lcizCQMsR1/JHULMFNRdYtmMR1FwQ3GxBzQVHly1DVXvMDkmPK07HQ0Q+UNXJfufoTFCzBTUXWLZjEdRcENxsQc0Fwc52vHpMFTXGGNN7WHEyxhgTOL2tOD125FV8E9RsQc0Flu1YBDUXBDdbUHNBsLMdl151zskYY0zP0Nv2nIwxxvQAVpyMMcYETq8pTiIyW0RKRWSziNzhc5YnRKRSRNbGLcsXkddFZJN3m3e450hSrkEi8paIfCoi60Tkh0HIJiLpIrJCRNZ4ue4JQq4OGUMiskpElgQlm4iUicgnIrK6bQTUIOTycuSKyCIR2eC936YGIZuIjPJer7apVkRuDUi2hd77f62IPOv9X/ieK1l6RXESkRDwMHAxcBYwX0TO8jHSU8DsDsvuAN70RpV807t/srUAf6OqZwLnADd5r5Pf2RqBmao6DhgPzPbG//I7V7wfAp/G3Q9KthmqOj7uuzBByfUA8KqqjgbG4V4737Opaqn3eo0HJuGG8nnR72wiUgz8NTBZVc/GDWkxz+9cSaWqp/wETAWWxt2/E7jT50xDgbVx90uB/t58f6A0AK/bS8DXgpQNiAIfASVByYUbMfRNYCawJCh/T6AMKOywLAi5coAteBdkBSlbhzxfB94NQjagGNgG5ON6hVji5QvUa3Yip16x58ShP2ybcm9ZkPRVbxRg77bIzzAiMhSYALxPALJ5h81WA5XA66oaiFyefwVuB2Jxy4KQTYHXRORDEbk+QLmGA1XAk96h0MdFJDMg2eLNA5715n3NpqpfAv8EfAHswI0a/prfuZKptxQn6WSZXUPfBRHJAn4H3KqqtX7nAVDVVnWHWgYCU0TkbL8zAYjIJUClqn7od5ZOTFPVibjD2TeJyAV+B/KEgYnAI6o6AdhPwA5HecOUXwY873cWAO9c0lxgGDAAyBSRq/xNlVy9pTiVA4Pi7g8EtvuUpSs7RaQ/gHdb6UcIEUnFFabfqOoLQcoGoKo1wDLcObsg5JoGXCYiZcBzwEwReToI2VR1u3dbiTtvMiUIuXD/j+Xe3i/AIlyxCkK2NhcDH6nqTu++39lmAVtUtUpVm4EXgHMDkCtpektxWgmcISLDvE9E84DFPmfqaDGwwJtfgDvfc1KJiAC/Aj5V1V8EJZuInCYiud58Bu4fdYPfuQBU9U5VHaiqQ3Hvqz+o6lV+ZxORTBHJbpvHnZ9Y63cuAFWtALaJyChv0YXA+iBkizOfQ4f0wP9sXwDniEjU+z+9EHcRid+5ksfvk14nawLmABuBz4C7fM7yLO64cTPuU+R1QAHupPom7zbfh1zn4Q53fgys9qY5fmcDxgKrvFxrgbu95b6/Zh1yTufQBRF+v2bDgTXetK7tPe93rrh844EPvL/p/wB5AcoWBaqBPnHLfM8G3IP7ULYW+C8gLQi5kjVZ90XGGGMCp7cc1jPGGNODWHEyxhgTOFacjDHGBI4VJ2OMMYFjxckYY0zgWHEyBhCRVq8X6rUi8ryIRI/isQNEZNFR/rxlIjL5yGsa0ztZcTLGOaCuN+qzgSbghu48SETCqrpdVa9IbjxjehcrTsYkehsY4fWy8ISIrPQ6KJ0LICLXeHtXv8d1rDpUvLG5vDF2nvTGUVolIjO85Rki8pyIfCwivwUyvOUhEXnK22P7REQW+vQ7GxMoYb8DGBMkIhLG9av2KnAXrjuia73uk1aIyBveqlOBsaq62+vBvc1NAKo6RkRG44rXSOBGoF5Vx4rIWNywH+B6Sij29tho66bJmN7O9pyMcTK8ITk+wPVj9itcf3R3eMuXAenAYG/911V1dyfPcx6uaxlUdQOwFRgJXAA87S3/GNdtD8DnwHAReUhEZgOB6AXeGL/ZnpMxzgF1Q3Ic5HWwebmqlnZYXoIb5qEznQ3P0iahrzBV3SMi44CLcHtdVwLXHk1wY05FtudkTNeWArd4RQoRmdCNx/wf8F1v/ZG4Pa3SDsvPxnVmi4gUAimq+jvgp7ihI4zp9WzPyZiu/Qw3yu3HXoEqAy45wmP+HXhURD4BWoBrVLVRRB7Bjfza1uP7Cm/9Ym952wfFO0/w72BMj2S9khtjjAkcO6xnjDEmcKw4GWOMCRwrTsYYYwLHipMxxpjAseJkjDEmcKw4GWOMCRwrTsYYYwLn/wH6zfM8SK7kzgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_27_2.png" }, "needs_background": "light" }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "P \n", " [[0.9 0.1 0. 0. ]\n", " [0. 0.9 0.1 0. ]\n", " [0. 0. 0.9 0.1]\n", " [0.1 0. 0. 0.9]]\n", "Q \n", " [[0.864 0.096 0. 0. ]\n", " [0. 0.864 0.096 0. ]\n", " [0. 0. 0.864 0.096]\n", " [0.096 0. 0. 0.864]]\n", "Govt expenditures in peace1, peace2, war1, war2 = [0.5 0.5 1.2 1.2]\n", "Constant tax collections = 0.6927944572748268\n", "Govt debt in 4 states = [-1. -3.42494226 -6.86027714 -4.43533487]\n", "\n", "Government tax collections minus debt levels in peace1, peace2, war1, war2\n", " T+b in peace1 = 1.6927944572748268\n", " T+b in peace2 = 4.117736720554273\n", " T+b in war1 = 7.553071593533488\n", " T+b in war2 = 5.1281293302540405\n", "\n", "Total government spending in peace1, peace2, war1, war2\n", " peace1 = 1.6927944572748268\n", " peace2 = 4.117736720554273\n", " war1 = 7.553071593533487\n", " war2 = 5.1281293302540405\n", "\n", "Let's see ex-post and ex-ante returns on Arrow securities \n", "\n", "Ex-post returns to purchase of Arrow securities:\n", " π(peace1|peace1) = 1.1574074074074074\n", " π(peace2|peace1) = 10.416666666666666\n", " π(peace2|peace2) = 1.1574074074074074\n", " π(war1|peace2) = 10.416666666666666\n", " π(war1|war1) = 1.1574074074074074\n", " π(war2|war1) = 10.416666666666666\n", " π(peace1|war2) = 10.416666666666666\n", " π(war2|war2) = 1.1574074074074074\n", "\n", "Ex-ante returns to purchase of Arrow securities = 1.0416666666666667\n", "\n", "The Ex-post one-period gross return on the portfolio of government assets\n", "[[0.83836741 2.87135998 0. 0. ]\n", " [0. 0.94670854 1.89628977 0. ]\n", " [0. 0. 1.07983627 0.69814023]\n", " [0.2545741 0. 0. 1.1291214 ]]\n", "\n", "The cumulative return earned from holding 1 unit market portfolio of government bonds\n", "0.02371440178864223\n" ] } ], "source": [ "ts_ex3 = TaxSmoothingExample(g_ex3, P_ex3, b0_ex3, states_ex3, random_state=1)\n", "ts_ex3.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 4\n", "\n", "Here the Markov chain is:\n", "\n", "$$\n", "P =\n", "\\begin{bmatrix}\n", " 1 - \\lambda & \\lambda & 0 & 0 & 0 \\cr\n", " 0 & 1 - \\phi & \\phi & 0 & 0 \\cr\n", " 0 & 0 & 1-\\psi & \\psi & 0 \\cr\n", " 0 & 0 & 0 & 1 - \\theta & \\theta \\cr\n", " 0 & 0 & 0 & 0 & 1\n", "\\end{bmatrix}\n", "$$\n", "\n", "with government expenditure levels for the five states being\n", "$\\begin{bmatrix} g_L & g_L & g_H & g_H & g_L \\end{bmatrix}$ where $g_L < g_H$.\n", "\n", "We ssume that $b_0 = 1$ and $s_0 = 1$." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "g_ex4 = [g_L, g_L, g_H, g_H, g_L]\n", "P_ex4 = np.array([[1-λ, λ, 0, 0, 0],\n", " [0, 1-ϕ, ϕ, 0, 0],\n", " [0, 0, 1-ψ, ψ, 0],\n", " [0, 0, 0, 1-θ, θ],\n", " [0, 0, 0, 0, 1]])\n", "b0_ex4 = 1\n", "states_ex4 = ['peace1', 'peace2', 'war1', 'war2', 'permanent peace']" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEWCAYAAAB2X2wCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3yUVdbA8d+ZSUIqCSXU0KuUJECIiEgVAV3sCogKNsTedpVd3WLZfV3FtayuiGWxIMWGWHbVVRFEFIL0Egw9hBIIIaSRZOa+f8wkpmdCJszkyfn6ycfM3DvzHJKZkzv3ufc8YoxBKaVUw2fzdQBKKaW8QxO6UkpZhCZ0pZSyCE3oSillEZrQlVLKIjShK6WURWhCVw2aiIwUkdRSt/eIyPn1cJwtIjLS28/rbfX171cNgyZ05RERyS715RSRvFK3p/o6Pm8SkXki8kTp+4wxfY0xy3wUUqUqi1M1bgG+DkA1DMaY8OLvRWQPcLMx5n++i0gpVZ6O0FWdiEiiiKwSkUwROSgiL4pIkLttqIgcFZEO7ttx7n69q3iuviLylYhkiMhhEfmD+/4mIvKciKS5v54TkSYexGYTkVkislNEjonIYhFpXqp9mIj84I5pv4hMF5EZwFTgQfenj0/cfUumMqqLp3gKSEQeEJEj7p/JDdXEuExE/k9EVovICRH5uFyM74nIIXfbchHp676/0jjd4kVko/sxi0Qk2P2YliLyqfvfmyEiK0REc4CF6C9T1ZUDuA9oCZwDjAFuBzDG/AC8ArwpIiHA28Ajxpjt5Z9ERCKA/wH/BdoB3YGv3c0PA0OAeCAOSAQe8SC2u4FLgRHu5zwOvOQ+XkfgP8A/gWj3c683xswF5gNPGWPCjTETK3nemuJpA0QC7YGbgJdEpFk1cV4P3OiOsQh4oVTbf4AeQCvgZ3ds1BDn1cB4oAsQC0x33/8AkOr+97YG/gBo7Q8rMcbol37V6gvYA5xfRdu9wEelbgcCa4FNuJK1VPG4KcC6Ktp2AheWuj0O2OP+fiSQWllswDZgTKm2tkAhrqnG35eOs9zx5gFPVPVv9iCePCCgVPsRYEgVx1oGPFnqdh+gALBX0jcKVwKOrCHOa0vdfgqY4/7+MeBjoLuvX0P6VT9fOkJXdSIiPd0f4w+JSBbwN1yjdQCMMYW4Ek8/4BnjziyV6IArUVamHbC31O297vtq0gn4yD3FkIkrwTtwjU6rO15NaornmDGmqNTtXCCcqu0v91yBQEsRsYvIk+4poyxcyRpK/XyrcKiKYz8NpABfisguEZlVw/OoBkYTuqqrl4HtQA9jTFNcH+OluFFE2gN/Bv4NPFPN3Pd+oFsVbWm4knOxju77arIfmGCMiSr1FWyMOVDD8WqahjjdeKrSodxzFQJHgWuAS4DzcU3hdHb3Kf751mq6xBhz0hjzgDGmKzARuF9ExtQhbuVnNKGruooAsoBs98nO24obRERwjc5fxzWXfBB4vIrn+RRoIyL3uk86RojI2e62BcAjIhItIi2BPwHveBDbHOCvItLJHU+0iFzibpsPnC8iV4tIgIi0EJF4d9thoGs1z3u68VTlWhHpIyKhuKZF3jfGOHD9bE8Bx4BQXJ9+SqspzjJE5Dci0t39e8nC9WnFUYe4lZ/RhK7q6re4RpIngVeBRaXa7sY1vfFH91TLDcANInJe+ScxxpwExuIaOR4CfgFGuZufAJKAjbjm4n9231eT54GluKYYTgI/Ame7j7cPuBDXicIMYD2uE5zg+gPUxz1Vs6SS5z3deKryNq4/fIeAYFw/N4C3cE3BHAC2uuMvraY4y+uB68RzNrAK+Jfxs7X1qm6k6ilNpVR9E5FlwDvGmNd8HYtq+HSErpRSFqEJXSmlLEKnXJRSyiJ0hK6UUhbhs+JcLVu2NJ07d/bV4ZVSqkFau3btUWNMdGVtPkvonTt3JikpyVeHV0qpBklE9lbVplMuSillEZrQlVLKIjShK6WURegVi5TyQ4WFhaSmppKfn+/rUJSPBAcHExMTQ2BgoMeP0YSulB9KTU0lIiKCzp0746qlpRoTYwzHjh0jNTWVLl26ePy4GqdcROQN96W0NlfRPtV9uauN7st5xVXWTynlufz8fFq0aKHJvJESEVq0aFHrT2iezKHPw3U5q6rsBkYYY2JxlUadW6sIlFKV0mTeuJ3O77/GKRdjzHIR6VxN+w+lbv4IxNQ6CqU8lJadRnJGcoX7E9smEhYYxv6T+0k5nlKh/Zx25xAcEMyeE3vYfWJ3hfZhMcMItAWyM3Mn+7L2VWgf2WEkIkJyRjJp2WWvZWETGyM6jABg67GtHM45XKY9yB7Eue3PBWBT+iaO5h3FbrOT0DqB0MBQz//xStXA23PoN+G6qG2l3FcqnwHQsWNHLx9aNQaHcw+z4sCKCvf3a9mPsMAwDmQfqLR9YOuBBAcEs+/kvkrbh7QbQqAtkN0ndvND2g8V2kd0GIEg7MzcSdLhshvi7GIvSejJGclsOrqpTHtoQGhJQt96bCvbj7uukR0RFMGAVgM8/JefeUOHDuWHHyr+LHxl3rx5JCUl8eKLL1bZZ9myZQQFBTF06NAzGFlZf/nLXwgPD+e3v/2tR/3/9re/8Yc//MErx/aoOJd7hP6pMaZfNX1GAf8ChhljjtX0nAkJCUZ3iqrGKKcwh9lJs7mwy4UMbjO40j7btm3jrLPOOsOR+TdPEnptk6m3FRUV8cQTT9QqhvDwcLKzsyttq+x1ICJrjTEJlfX3yjp0EYkFXgMu8SSZK3U6Tpw6wZpDa8gqyPJ1KHViE9fbzmH8++pv4eGua0svW7aMkSNHcuWVV9K7d2+mTp1K8UBwzZo1DB06lLi4OBITEzl58iT5+fnccMMN9O/fnwEDBvDtt98CroR86aWXMnHiRLp06cKLL77IP/7xDwYMGMCQIUPIyMgAYOTIkdx7770MHTqUfv36sXr16gqxpaenc8UVVzB48GAGDx7MypUr2bNnD3PmzOHZZ58lPj6eFStWVNqvPE/jevXVVxk8eDBxcXFcccUV5ObmAjB9+nTuv/9+Ro0axUMPPVTmuV999VUmTJhAXl4e77zzDomJicTHx3PrrbficDiYNWsWeXl5xMfHM3Xq1Dr/zuo85SIiHYEPgeuMMTvqHJFSVTiWd4zPd39Oq9BWNA1q6utwTlugLZAxHcfQIaJDzZ2BRz/ZwtY07/4R69OuKX+e2Nfj/uvWrWPLli20a9eOc889l5UrV5KYmMikSZNYtGgRgwcPJisri5CQEJ5//nkANm3axPbt27ngggvYscOVGjZv3sy6devIz8+ne/fu/P3vf2fdunXcd999vPXWW9x7770A5OTk8MMPP7B8+XJuvPFGNm8uu8junnvu4b777mPYsGHs27ePcePGsW3bNmbOnFlmdHzNNddU2q88T+K6/PLLueWWWwB45JFHeP3117nrrrsA2LFjB//73/+w2+385S9/AeDFF1/kyy+/ZMmSJezatYtFixaxcuVKAgMDuf3225k/fz5PPvkkL774IuvXr6/Fb69qNSZ0EVkAjARaikgqriu4BwIYY+bgukBuC+Bf7rOyRVV9HFCqLopHtHax+ziSugmwBTCs/TBfh1EriYmJxMS41jvEx8ezZ88eIiMjadu2LYMHu6aNmjZ1/ZH9/vvvSxJd79696dSpU0lCHzVqFBEREURERBAZGcnEiRMB6N+/Pxs3biw53pQpUwAYPnw4WVlZZGZmlonnf//7H1u3bi25nZWVxcmTJyvEXVW/iIiIMv08iWvz5s088sgjZGZmkp2dzbhx40oef9VVV2G3//q6fPvtt4mJiWHJkiUEBgby9ddfs3bt2pKfVV5eHq1ataruR35aPFnlMqWG9puBm70WkVJVcBon0PATOsDx/OM0sTfxaJVLbUbS9aVJkyYl39vtdoqKijDGVLq0rrrzcqWfx2azldy22WwUFRWVtJV/3vK3nU4nq1atIiQkpNq4Pe3nSVzTp09nyZIlxMXFMW/ePJYtW1bymLCwsDLP169fP9avX1+yMcgYw7Rp0/i///u/auOoK63lohqMIuN6Y9ltDT+hv7T+JVYdXOXrMOqkd+/epKWlsWbNGgBOnjxJUVERw4cPZ/78+YBrKmLfvn306tWrVs+9aNEiwDXaj4yMJDIyskz7BRdcUObkaPGURURERJmRelX9TsfJkydp27YthYWFJf++qgwYMIBXXnmFiy++mLS0NMaMGcP777/PkSNHAMjIyGDvXlcV3MDAQAoLC087rtI0oasGw+l0jdCLTyo2ZHax43D690nRmgQFBbFo0SLuuusu4uLiGDt2LPn5+dx+++04HA769+/PpEmTmDdvXpkRsCeaNWvG0KFDmTlzJq+//nqF9hdeeIGkpCRiY2Pp06cPc+bMAWDixIl89NFHJSdFq+p3Oh5//HHOPvtsxo4dS+/evWvsP2zYMGbPns1FF11Eq1ateOKJJ7jggguIjY1l7NixHDx4EIAZM2YQGxvrlZOiPrumqC5bVLVV4CgguzCbpkFNCbA17DJEf1/9d2KjY5nQZUKl7Y152eLIkSOZPXs2CQl6Kq62yxYb9rtCNSpB9iCa25v7OgyvsIvd75ctqoZHE7pqMNKy09h9YjeJbRIJtHteUtQf2Wy2kpO8qqzSJxtV7TT8yUjVaOw7uY//7ftfycnRhmxMxzH0b9nf12Eoi9ERumowik8iWmHZYly0VplW3qcjdNVgWGVjEcDRvKNk5Gf4OgxlMZrQVYNRPOdshWWLH+z4gC/2fOHrMJTFNPx3hmo0HE4HdrFb4sIPdptdT4qWMn36dN5///1q+8ybN4+0tLRq+9S3kSNH4uly6z179vDuu+/Wc0RlaUJXDcbwmOHcO/BeX4fhFXaxU+Rs+Cd3zyRfJ3SHo3bLTDWhK1WNQHsg4UHhvg7DK+zi/yP0t956i9jYWOLi4rjuuusA2Lt3L2PGjCE2NpYxY8awb5/r6k7Tp0/ntttuY9SoUXTt2pXvvvuOG2+8kbPOOovp06eXPGd4eDgPPPAAAwcOZMyYMaSnp1c47tq1axkxYgSDBg1i3LhxHDx4kPfff5+kpCSmTp1KfHw8eXl5lfYrz9O4brvtNhISEujbty9//vOfS+7v3Lkzjz32GMOGDeO9994rud/pdDJt2jQeeeQRHA4Hv/vd7xg8eDCxsbG88sorAMyaNYsVK1YQHx/Ps88+W6ffhad0lYtqMLZnbOdY3rGSq/80ZHabnYKiAs86/2cWHNpUc7/aaNMfJjxZZfOWLVv461//ysqVK2nZsmVJTfA777yT66+/nmnTpvHGG29w9913s2TJEgCOHz/ON998w9KlS5k4cSIrV67ktddeY/Dgwaxfv574+HhycnIYOHAgzzzzDI899hiPPvpomVorhYWF3HXXXXz88cdER0ezaNEiHn74Yd544w1efPHFkh2k1fUrz5O4/vrXv9K8eXMcDgdjxoxh48aNxMbGAhAcHMz3338PwJw5cygqKmLq1Kn069ePhx9+mLlz5xIZGcmaNWs4deoU5557LhdccAFPPvkks2fP5tNPP/Xar60mmtBVg7Hj+A5SMlMskdDPaXeOX9dy+eabb7jyyitp2bIlAM2bu3borlq1ig8//BCA6667jgcffLDkMRMnTkRE6N+/P61bt6Z/f9c6+759+7Jnzx7i4+Ox2WxMmjQJgGuvvZbLL7+8zHGTk5PZvHkzY8eOBVzTHG3btq0Qn6f9PI1r8eLFzJ07l6KiIg4ePMjWrVtLEnpxvMVuvfVWrr76ah5++GEAvvzySzZu3FhyDuDEiRP88ssvBAUF1fyD9jJN6KrBKD4pagVdI7t63rmakXR9qao0bnml+5QuOVu+HG3p0rhVPb74uH379mXVquorUXraz5O4du/ezezZs1mzZg3NmjVj+vTp5Ofnl/QrXxp36NChfPvttzzwwAMEBwdjjOGf//xnmfro4JsdrzqHrhoMh7FOQj+ad5TUk6m+DqNKY8aMYfHixRw75rqiZPGUy9ChQ1m4cCEA8+fPZ9iw2l2ow+l0loxk33333QqP79WrF+np6SWJurCwkC1btgBlS+NW16+2srKyCAsLIzIyksOHD/Of/1R5nXsAbrrpJi688EKuuuoqioqKGDduHC+//HJJCdwdO3aQk5NToZTvmaAjdNVgOI3TMgl9ReoK9p3cxz0D7/F1KJXq27cvDz/8MCNGjMButzNgwADmzZvHCy+8wI033sjTTz9NdHQ0//73v2v1vGFhYWzZsoVBgwYRGRlZUve8WFBQEO+//z533303J06coKioiHvvvZe+ffsyffp0Zs6cSUhICKtWraqyX23FxcUxYMAA+vbtS9euXTn33Jqn9O6//35OnDjBddddx/z589mzZw8DBw7EGEN0dDRLliwhNjaWgIAA4uLimD59Ovfdd1+tY6utGsvnisgbwG+AI8aYfpW09wb+DQwEHjbGzPbkwFo+V9XWgu0LyDqVxa1xt/o6lDpbunMpKZkp3D/o/krbrVo+t7or3KuK6qN87jzgReCtKtozgLuBSz0PU6nam9RrkmVKztrFXnLBDqW8pcY5dGPMclxJu6r2I8aYNYB3rqGkVBVsYiPQ1rDL5hZrrPXQdXRev87oSVERmSEiSSKSVNmGAqWqsyptFWsOrfF1GF5htzXOhK7q1xlN6MaYucaYBGNMQnR09Jk8tLKALce2sOP4Dl+H4RVx0XFc0eMKX4ehLEZXuagGw+F0WKLSIkCr0Fa0Cm3l6zCUxVjj3aEaBSstW8zIzyA5I9nv67mohqXGhC4iC4BVQC8RSRWRm0RkpojMdLe3EZFU4H7gEXefpvUbtmqMHMY6I/Ttx7azMHlho6i4+Nxzz5Gbm+vrMKpVunzvzTffzNatWwH429/+5suwas2TVS5TjDFtjTGBxpgYY8zrxpg5xpg57vZD7vubGmOi3N9n1X/oqjGyygjdZnO99RrDidGGkNBLe+211+jTpw9wegm9qjIHZ4I1hjuqUbhzwJ1c1uMyX4fhFcV/mPx5yuXxxx+nd+/ejB07lilTpjB7tmvP4Pr16xkyZAixsbFcdtllHD9+nG3btpGYmFjy2D179hAbG8sLL7xAWloao0aNYtSoURWOUVkJ3BMnTtCrVy+Sk5MBmDJlCq+++ipQdfndnTt3Mn78eAYNGsR5553H9u3bAdfI++6772bo0KF07dq1ZBRujOHOO++kT58+XHTRRRw5cqQkpuKLWMyaNYu8vDzi4+OZOnUqe/bsoV+/X/dWzp49m7/85S8lj/nDH/7AiBEjeP7556ss7fvCCy/Qp08fYmNjmTx5sld+T2UYY3zyNWjQIKNUY5V0KMn85Ye/mMz8zErbt27dWub2vM3zKnytPrjaGGNMQVFBpe3rDq8zxhiTU5BToa0ma9asMXFxcSY3N9dkZWWZ7t27m6efftoYY0z//v3NsmXLjDHG/PGPfzT33HOPMcaYuLg4s3PnTmOMMU8++aR5/PHHjTHGdOrUyaSnp1c4RkFBgTnnnHPMkSNHjDHGLFy40Nxwww3GGGO+/PJLM2TIELNgwQIzbty4kscA5p133jHGGPPoo4+aO+64wxhjzOjRo82OHTuMMcb8+OOPZtSoUcYYY6ZNm2auvPJK43A4zJYtW0y3bt2MMcZ88MEH5vzzzzdFRUXmwIEDJjIy0rz33nvGGGNGjBhh1qxZY4wxJiwsrOTYu3fvNn379i25/fTTT5s///nPJY+57bbbavx3tW3b1uTn5xtjjDl+/HiNv4fyrwP3zyDJVJFXdZWLajA+3fUpnZt2pl/LChUoGhx/H6F///33XHLJJYSEhACuErTgKg2bmZnJiBEjAJg2bRpXXXUVAFdffTWLFy9m1qxZLFq0qEKdlvKqK4E7duxY3nvvPe644w42bNhQ8pjKyu9mZ2fzww8/lMQBcOrUqZLvL730Umw2G3369OHw4cMALF++nClTpmC322nXrh2jR48+/R+WW3Fc1f27YmNjmTp1KpdeeimXXur9zfWa0FWDsTF9I0G2IEsk9G5R3ZjWZ5rHV2Ca1ndalW2B9sBq20MDQ6ttr4ypocZTZSZNmsRVV13F5ZdfjojQo0ePGo9RVQlcp9PJtm3bCAkJISMjg5iYmEqfQ0RwOp1ERUWxfv36SvuULplb+t9V22vTBgQElCnXULrELvxaZre6f9dnn33G8uXLWbp0KY8//jhbtmwhIMB7aVjn0FWD4TRO7DZrnBSNCIqgc2Rnvy1lMGzYMD755BPy8/PJzs7ms88+AyAyMpJmzZqxYsUKAN5+++2S0Xq3bt2w2+08/vjjZS4KUVUZ2epK4D777LOcddZZLFiwgBtvvLGkNG1l5XebNm1Kly5dSi4RZ4wpM6qvzPDhw1m4cCEOh4ODBw/y7bffVtovMDCw5NitW7fmyJEjHDt2jFOnTlV5JaKq/l1Op5P9+/czatQonnrqKTIzM71eCkFH6KpBMMZYqh56VkEW+7L20TWyK6GBob4Op4LBgwdz8cUXExcXR6dOnUhISCAyMhKAN998k5kzZ5Kbm0vXrl3LlNCdNGkSv/vd79i9e3fJfTNmzGDChAm0bdu2TOKsqlRuYGAgr732GqtXryYiIoLhw4fzxBNP8Oijj1ZZfnf+/PncdtttPPHEExQWFjJ58mTi4uKq/PdddtllfPPNN/Tv35+ePXuW/FEqb8aMGcTGxjJw4EDmz5/Pn/70J84++2y6dOlC7969K31MVf+unj17cu2113LixAmMMdx3331ERUV5/kvxQI3lc+uLls9VteFwOnjipycY1WEUw2OG+zqcOvvl+C+8u/1dbux3Ix0iOlRo94fyudnZ2YSHh5Obm8vw4cOZO3cuAwcO9GlMja38bn2Uz1XK55zGSUhACEH2M3+dxvpQPHXkrydFwTU63bp1K/n5+UybNs3nyVzVTBO6ahAC7YE8OPjBmjs2EMVTR/68sejdd9/1dQgVNKbR+enQk6JK+UBxCYPqLnLhq+lQ5R9O5/evCV01CLmFuSxOXsyuE7t8HYpX1DRCDw4O5tixY5rUGyljDMeOHSM4OLhWj9MpF9UgnHKcYlvGNno26+nrULyiZUhLbul/C82Cm1XaHhMTQ2pqKnohmMYrODi4yvX3VdGErhqE4pGsVZYtBtmDaBfersr2wMBAunTpcgYjUlagUy6qQSheDVJcpbChO+U4xdrDazmad9TXoSgLsca7Q1lecUIPEGt8qMwvyufTXZ+yL2ufr0NRFqIJXTUYUU2iCLT751b52moIyxZVw+PJFYveEJEjIrK5inYRkRdEJEVENoqI7j5QXtcmrA33DLyHrpFdfR2KVxQvW9SErrzJkxH6PGB8Ne0TgB7urxnAy3UPSylrK9kpWs06dKVqy5NL0C0HMqrpcgnwlrv2+o9AlIi09VaASgEcyD7A21vfJj3XGsv4dMpF1QdvnGFqD+wvdTvVfd/B8h1FZAauUTwdO3b0wqFVY5FdkM2uE7sodBb6OhSvsIudO+LvIDTA/yotqobLGydFK6sSX+n2NmPMXGNMgjEmITo62guHVo1FybJFscZ5fBGhZUhLvyydqxoub7w7UoHS9T9jgDQvPK9SJay2sQhg9cHV7D6xu+aOSnnIGwl9KXC9e7XLEOCEMabCdItSdVGS0C1yxSKAb/Z/Q/LxZF+HoSykxjl0EVkAjARaikgq8GcgEMAYMwf4HLgQSAFygRvqK1jVeDWxN6FVSCsCbNbYWASuTxu6ykV5U43vDmPMlBraDXCH1yJSqhK9m/emd/PKL/nVUNnFrqtclFdZ4wyTUg2QTWya0JVXaUJXDcLG9I28vul1Ch3WWLYIrvMBDqcmdOU91pmQVJZ24tQJUrNTK18k20Dd0PcGS53kVb6nCV01CMXr0K20bDE8KNzXISiL0SkX1SA4jAMbNstsLAJYd2QdG9I3+DoMZSHWeXcoS3MYh6WSObgT+hFN6Mp7rPUOUZYVGRRJh4gONXdsQOxiL5lKUsobdA5dNQiJbRNJbJvo6zC8yiY2CpwFvg5DWYiO0JXyEd1YpLxNE7pqEL7e9zXvbH3H12F4lSZ05W065aIahBOnTnD81HFfh+FVl/e43FLr6pXvaUJXDUKRs8hSa9ABy1zwWvkPnXJRDYLTOC23bHHL0S0s27/M12EoC7HWO0RZlsM4LDdC33ViF2sPr/V1GMpCdMpFNQhtwtpYqjAXQIAtQE+KKq/ShK4ahDEdx/g6BK+ziU2rLSqv0ikXpXxEly0qb/MooYvIeBFJFpEUEZlVSXszEflIRDaKyGoR6ef9UFVjNn/bfD5O+djXYXiVTWwYY3Bd9EupuvPkmqJ24CVgLJAKrBGRpcaYraW6/QFYb4y5TER6u/tb7zOy8pmTBScJEGvNEI7qMIrRHUf7OgxlIZ6M0BOBFGPMLmNMAbAQuKRcnz7A1wDGmO1AZxFp7dVIVaPmMA5sNmvNEIroriLlXZ68Q9oD+0vdTnXfV9oG4HIAEUkEOgEx5Z9IRGaISJKIJKWnp59exKpRcjgdlhuh7zqxi6U7l1pu9Y7yHU8SemXDiPKTfk8CzURkPXAXsA4oqvAgY+YaYxKMMQnR0dG1DlY1Xlash3409yjrjqyj0KkJXXmHJ0OeVKB0IeoYIK10B2NMFnADgLg+R+52fynlFd2jutMmrI2vw/Cq4j9QRabC2Eep0+JJQl8D9BCRLsABYDJwTekOIhIF5Lrn2G8GlruTvFJeMbHbRF+H4HUBNtfbz+nUi1wo76gxoRtjikTkTuALwA68YYzZIiIz3e1zgLOAt0TEAWwFbqrHmJWyhOIRuq5FV97i0VkmY8znwOfl7ptT6vtVQA/vhqbUr2avmc3gNoMZ0WGEr0PxmgBbAE3sTTAVTkkpdXqstWxAWVZuUa7lRrJ9WvShT4s+vg5DWYi1lg0oS3IaJwZTMueslKqcJnTl94pH5lZbtng45zDv73ifo3lHfR2KsghrvUOUJTmNaxWI1eqh5xXlseXYFrILsn0dirIITejK7wnCgFYDaB1qrWoSxX+grHZuQPmOTkoqvxdkD+Libhf7OgyvK65NowldeYuO0JXykQp4/t8AACAASURBVJIRul7kQnmJJnTl947lHeOxVY+xKX2Tr0PxqgBbABFBEZY72at8R6dclN8rXrZotcTXMqQl9w+639dhKAux1jtEWZJVly0q5W36DlF+z6oJPa8oj/nb5rPj+A5fh6IswlrvEGVJxdUIrbYO3RhDSmYKmfmZvg5FWYQmdOX3woLCOLvN2UQFR/k6FK+y23QduvIuPSmq/F7z4OaM7zLe12F4nZbPVd6mI3Tl95zGSaGjEGOsVWa2eAqpuLSBUnWlCV35veSMZP62+m8czj3s61C8yiY2Woa0JNge7OtQlEV4lNBFZLyIJItIiojMqqQ9UkQ+EZENIrJFRG7wfqiqsSoewVptlQvAHfF3kNg20ddhKIuo8R0iInbgJWAC0AeYIiLlq/LfAWw1xsQBI4FnRCTIy7GqRqp4jtlqq1yU8jZPhjyJQIoxZpf7ItALgUvK9TFAhIgIEA5kAHopc+UVVi2fC7Bg+wJWpa3ydRjKIjxJ6O2B/aVup7rvK+1FXBeKTgM2AfcYU/FMj4jMEJEkEUlKT08/zZBVY1OyschmvSmXtOw0vcCF8hpP3iFSyX3llxuMA9YD7YB44EURaVrhQcbMNcYkGGMSoqOjax2sapzahLXhvPbnWfLkoU1suspFeY0n69BTgQ6lbsfgGomXdgPwpHGtK0sRkd1Ab2C1V6JUjVr78Pa0Dy//odAa7GLXhK68xpMR+hqgh4h0cZ/onAwsLddnHzAGQERaA72AXd4MVDVeBY4CcgpzLLcOHVy7RXVjkfKWGhO6MaYIuBP4AtgGLDbGbBGRmSIy093tcWCoiGwCvgYeMsboxKDyih8P/sjspNmYCjN9DV+b0DZENbFWSQPlOx5t/TfGfA58Xu6+OaW+TwMu8G5oSrk4nA7E/Z/VXNHzCl+HoCzEessGlOU4jROb2HCtilVKVUUTuvJ7RabIkmvQAT7Z+Qkfp3zs6zCURWi1ReX3ikfoVnQ8/zhFRvfgKe/QhK78Xq9mvWge3NzXYdQLu81OQVGBr8NQFqEJXfm9rlFd6RrV1ddh1Au72Cly6ghdeYc1P8cqSzlZcJITp074Oox6oTtFlTdpQld+74s9X/D21rd9HUa9aBPWhnbh7XwdhrIInXJRfs9pnJZd5TI8ZrivQ1AWoiN05feKnEUlF1RWSlVNE7rye1YeoX+3/zte2fCKr8NQFqEJXfk9h3FYNqHnOfI4fuq4r8NQFqFz6MrvDWk7xJKFucC1bNHh1GqLyjs0oSu/16t5L1+HUG902aLyJp1yUX4vPTed4/nWnJYIkACcOC1Z612deZrQld97b8d7fLX3K1+HUS9ahrTkrOZn6ShdeYVOuSi/Z+WTon1b9qVvy76+DkNZhI7Qld+zcrVFpbzJo3eJiIwXkWQRSRGRWZW0/05E1ru/NouIQ0SsWR5PnXEO4yDAZs0Pk+uPrOepNU+RU5jj61CUBdSY0EXEDrwETAD6AFNEpE/pPsaYp40x8caYeOD3wHfGmIz6CFg1Pg6nw7IjdIMhryhPKy4qr/Bk2JMIpBhjdgGIyELgEmBrFf2nAAu8E55ScFHXi4hsEunrMOpF8R8qPSmqvMGTYU97YH+p26nu+yoQkVBgPPBBFe0zRCRJRJLS09NrG6tqpPq06EP78Epfcg1e8cleh9HNRaruPEnolV2Zt6pFsxOBlVVNtxhj5hpjEowxCdHR0Z7GqBq5PSf2kJmf6esw6kXxCF13iypv8CShpwIdSt2OAdKq6DsZnW5RXmSM4c2tb7I+fb2vQ6kXUU2iiG0ZSxN7E1+HoizAk4S+BughIl1EJAhX0l5avpOIRAIjAL2EufKa4qkIq65Dbxfejst6XEZUcJSvQ1EWUONJUWNMkYjcCXwB2IE3jDFbRGSmu32Ou+tlwJfGGF1/pbym+GShVRO6Ut7k0eJeY8znwOfl7ptT7vY8YJ63AlMKKFnOZ7NZc9ni/qz9vLn1Ta456xq6RlrzQtjqzLHmu0RZhuVH6OKaVtKTosobrLn9TllGk4AmTO41mVahrXwdSr0IENdbUNehK2/QhK78WqAt0NL10Iuvlarr0JU36JSL8munHKdIzkjmZMFJX4dSL3QduvImTejKr2XmZ7IweSH7T+6vuXMDFBIQQkLrBJqHaC07VXc65aL8mtXXoYcFhnFR14t8HYayCB2hK79m9YRujMHhdOhJUeUVmtCVXytOdFZdh57vyOeJn55g9aHVvg5FWYA13yXKMnw1QjfGkHIku94v3lz873I6dYSu6q7BzaEXffYgJ/esIyo0EKm0EKSykrY4uR4Hrbb/yJkafxgMe4/lcjQrn1Ztm9I0OLDejmXDgBynaPt3QEi9HUf5mTb9YcKTXn/aBpfQd6XnkHH4JKGBdto3C6F5WJAmdgsLwUaXM/hB0mDYfTSHIydPAZBX6KjXhF78ucNZZUVqpTzX4BJ6l+v+yab1aby0LIVdqTl0jQ7j9pHduSS+HYF2nUGymsz8TFKzU+ke1Z3ggOB6PVaRw8mDH2zkw+QD3Dq8K6+u2MWdvbtz/wX1t7FJANuqx3G0Hwodx9TbcVTj0OAyYKDdxhWDYvjqvhG8dM1Aguw2fvveBkbNXsb8n/Zyqkg3aFhJanYqH/zyAdmF2fV6nEKHk3sWrefDnw9w/9iezJrQm9ZNgzmQmV+vxwU4t/25dIroVO/HUdbX4Eboxew24aLYtlzYvw3fbD/CP79J4eGPNvPPr1OYMbwrUxI7EhJkzaVujUlxtcX6PCl6qsjBne+u46uth/n9hN7cOqIbAG0jg0nLzKu34xYb3XF0vR9DNQ4NboRenogw5qzWfHT7UN656Ww6tQjlsU+3Muzv3/CvZSmczC/0dYiqDkqWLUr9vFTzChzc8tZavtp6mEcv7luSzAHaRYVw8ET9J/T8onxOOU7V+3GU9TX4hF5MRBjWoyWLbj2H92aeQ7/2kTz132TOffIb/vHVDjJzC3wdojoN9blsMedUETfMW82KX9J56opYpg3tXKa9fVQIaSfy62XpYvapopLn/deGf/HFni+8fgzV+HiU0EVkvIgki0iKiMyqos9IEVkvIltE5Dvvhlk7gzs3580bE/nkzmEM6dqCF77+hXOf/Ib/+8820k/qSKghKU7o3h6hZ+UXcv0bq1mz5zjPTYrn6sEdKvRpGxlMQZGTYzneHQys3ZvBwMe+4osthwDXHystzqW8ocY5dBGxAy8BY3FdMHqNiCw1xmwt1ScK+Bcw3hizT0T8onh1/5hI5l6fQPKhk7z0bQqvLt/FvJV7mJLYkRnDu9IuStf9+rv+LfvTIaKDV1e4HM8p4Po3VrP9UBYvXTOA8f3aVtqv+PWRlplHy3DvXMT5RG4hdy9YT4HDya6jrqs12sWuW/+VV3gy7EkEUowxu4wxBcBC4JJyfa4BPjTG7AMwxhzxbph106tNBC9MGcDXD4zk4rh2vPPjXkY8/S2zPtjI3mN6CVR/FhYYRvvw9l4boR/NPsWUV38k+fBJ5l6XUGUyh9IJ3TsrXYwxPPTBRg5n5RNgEzKyXSN/u9i1HrryCk/eJe2B0rVLU933ldYTaCYiy0RkrYhcX9kTicgMEUkSkaT09PTTi7gOurQM4+mr4lj2u5FMSezIh+sOMGr2Mu5btJ6UI9ast93QHcg+wNrDa73yXIdO5DPplVXsPZbLv6cPZlTv6j9Ilh6he8M7P+3jv1sO8eD4XrRuGkyG+7yOTWya0JVXeJLQK9uGWf4sUQAwCLgIGAf8UUR6VniQMXONMQnGmITo6OhaB+stMc1CeeySfnz/4ChuGtaF/24+xNhnl3PbO2vZfOCEz+JSFW3P2M7nuz6vuWMNUo/nMmnuKg5nneLNGxM5t3vLGh/TLDSQJgE2ryT0bQezePzTrYzoGc3Nw7rSPCyIDPfcfGLbRGJbxtb5GEp5sg49FSh9xigGSKukz1FjTA6QIyLLgThgh1eirCetmgbz8EV9uG1kd974fjdv/rCH/2w+xKhe0dw5ugeDOjXzdYiNntM46zzdsudoDte8+iPZp4p45+azie8Q5dHjRIT2USEcPFG3KZfcgiLuWrCOyJBAnrk6DptNyiT0Aa0G1On5lSrmyTtlDdBDRLqISBAwGVhars/HwHkiEiAiocDZwDbvhlp/mocF8dtxvfh+1mh+e0FP1u/P5IqXf2DK3B/5IeVovVfcU1VzOB0E2E5//9svh09y9SuryC9ysmDGEI+TebG2UcEcqOMI/dGlW9mZns1zk+JLTq62CAvimHsOPacwh6yCrDodQynwIKEbY4qAO4EvcCXpxcaYLSIyU0RmuvtsA/4LbARWA68ZYzbXX9j1IzIkkDtH9+D7h0bz8IVnkZKezTWv/cQVL//At9uPaGL3AYdxnPYIfWtaFpPm/ogBFs4YQt92kbV+jnaRddtctHRDGouS9nP7yG5lpnlKj9CXpCxhcfLi0z6GUsU8GvoYYz4HPi9335xyt58GnvZeaL4T1iSAW4Z35bpzOvFe0n7mfLeLG+atoW+7ptw5qjvj+rbBZtMKj2eC0zix22q/qWjD/kyuf2M1oUF23r1lCF1ahp3W8dtGhXDk5CkKipwEBdTuD8u+Y7n84cNNDOrUjHvPL3tKqVlYEHmFDvIKXH+wdB268gbL7BStD8GBdq47pzPLfjeSp66MJedUEbfN/5lxzy1nyboDFDl07XB9G9VhFNP6TKvVY9bsyWDqaz/RNCSAxbeec9rJHKB9VDDGwOGs2s2jFxQ5uWvhOmwCz0+Or1AJtEVYEADHck7pOnTlNZrQPRBot3F1Qge+fmAkL0wZgE2EexetZ8w/vmPh6n0UFOmbsb6EB4XTIqSFx/1/SDnK9a+vplXTJrx361A6NA+t0/FPd+niM18ms2F/Jn+/IpaYZhVjaO5O6MdzCnXZovIaTei1YLcJF8e14z/3nMfc6wYRGRLIrA83MfLpb3nzhz3kF+qb0tu2Z2xnQ/oGj/p+m3yE6fPW0KlFKItmnEObyLrvLm0b6UrotVnpsiz5CK8s38W1QzoyoX/lG5dahJcdoWtCV96gCf002GzCBX3b8PEd5/LmjYm0bxbCn5duYdjfv+WV73aSfarI1yFaxvoj6/kx7cca+/138yFmvJVEz9bhLLhlCNER3tmq3y7K9UfB05UuR7LyeWDxBnq1juCRi/pU2a95mCu+jJwC4qLjGBEzou7BqkavwdZD9wciwoie0YzoGc1Pu47xz29S+L//bOfl73Zy47ldmDa0M5Eh9Xf5ssbAYRw1nhT9eP0B7l+8gdiYSObdkOjVn3loUABRoYEeTbk4nYb7Fq8np6CIhdcMITiw6riLp1wycgroGtXVa/Gqxk0Tupec3bUFZ3dtwbp9x3np2xT+8dUO5i7fxfXndOKmYV1o4aXiTo2Nw1n9ssXFSft56IONJHZuzuvTBxPexPsvadfSxZqnXF7+bicrU47x5OX96dE6otq+TYMDCLAJx3IKyC7IJrcol1ahflHTTjVgOuXiZQM6NuO1aYP5/O7zGNEzmpe/28m5f/+Gxz7ZyqE67jhsjJzGWWUt9Ld/3MuD729kWPeWzLshsV6SObimXWoaoa/dm8E/vtrBb2LbMqmSUrzliQjNwoLIyC7gh7QfeG3Ta94KVzVimtDrSZ92TXlp6kC+um8EF/Zvy5ur9jD8qW/5w0eb2J+R6+vwyngvaT9Xv7LKL+vYOIyj0oT+2opd/HHJZs4/qxWvXp9Qr5cbbBcVUm1CLy6J2y4qmL9d3h8Rz/YotAgL4lhOgS5bVF6jCb2edW8Vzj+ujmfZb0dyZUIM7yelMnL2Mh5YvIGd6fV74WNPvb82ldW7M7j0pZW88PUvfrW+fkrvKVze4/Iy9/3z61944rNtXNS/Lf+aOqjauWpvaBsZQlZ+UaUnu40xzPrQVRL3n1MG0jTY8/n75mFBHM8twG5zrXLRnciqrjShnyEdmofyt8v6s/zBUUw7pzOfbUrj/H98xx3v/sy2g76r41HocLIhNZPLB7bnwv5t+cdXO7ji5R9IOeIff2xCA0MJDfx1HffsL5J55qsdXD6gPc9Pjq/17s3TUbzS5WAlo/T5P+3jP5sP8btxvWpdJ6Z4+3/xOQIdpau60oR+hrWJDOZPE/vw/UOjuXV4N75LTmfC8yu4+c01rNt3/IzHsyUti/xCJ2N6t+aFKQN48ZoB7M3I5aIXVvDG97txOn07avzx4I9sPbbVHesJXvw2hUkJHZh9VRwB9jPz8i3eXFR+6eL2Q66SuMN7RnPLebVfqeIq0HWqZEpJE7qqK03oPtIyvAmzJvRm5UOjue/8nqzZc5zL/vUD173+Ez/tOnbG4kjakwFAQmdXqeDfxLbjy3uHc273ljz26VamvvYTqcd9N+e/+uBqkjOSAdh20HURkltHdD2jtXSKE3rplS65BUXc+e46IoIDeeaquNOKp3lYE7Lyi+jctCuXdLvE47l3paqiCd3HIkMDuef8HqycNZpZE3qz7aCrQuDVc1axfEd6vc+r/rzvODHNQmjd9Nddla2aBvP6tAT+fkV/NqZmMv65FSxes98nc7ylqy3+cuQkQXYbHeu4nb+2Wkc0wSZlt/8/9smvJXFPdxNT8zDXfHugaUZ8q/g6lQlWCjSh+43wJgHMHNGN7x8azaMX92X/8Vyuf2M1l7y0ki+3HKqXqQ9jDEl7jpNQyYU8RIRJgzvy33uH07ddUx78YCM3v5nEkZNndumlw/nrxqKUw9l0aRl2xqZaigXYbbRu+mtd9E82pLFwzX5mjujGsB41X/moKsW7RVNPHGdf1j4KnYVeiVc1XprQ/UxwoJ1pQzvz3e9G8eTl/cnMLWTG22u58IUVLN2QhsOLiT31eB5HTp6q9spMHZqHsuCWIfzxN334PuUo455dzuebDnothpqUXraYkp5N99bhZ+zYpbWLCuFgZj77M1wlcQd0jOL+sRWuslgrxbtFt6Qn8+8t/ya7wD9ORKuGSxO6nwoKsDE5sSPfPDCCZyfFUeQ03L1gHWP/8R2Lk/ZT6IWlhUl7XfPngzo1r7afzSbcNKwLn909jA7NQ7l9/s/cs3AdJ3Lrf0RZfAm6/EIH+zJy6R7tm4TeNjKYfRm53LVgHQi8MHlAhZK4tVVcoOtkvut3qQW6VF1pQvdzAXYblw2I4ct7h/Py1IEEB9p58P2NjHx6GW+vqluFx6Q9x4loEkCvNtVvUy/WvVUEH9w2lPvO78lnGw9ywXPf8d2O9NM+viceSHiA0R1Hsys9B2Ogh49G6O2jQjiQmcf6/Zk8eXlsncvywq8j9OKErqtcVF15lNBFZLyIJItIiojMqqR9pIicEJH17q8/eT/Uxs1mEyb0b8tndw/jjekJtGrahD9+vIXhT33Layt2kVtQ+wqPa/ceJ75jFPZarNAItNu45/wefHT7uTQNDmTaG6v5w0ebyKmnCpNB9iACbYH8csS1wqV7K9+N0AGuObsjF8VWXhK3tqJCAhGBrHzXH2VN6KquajytLiJ24CVgLJAKrBGRpcaYreW6rjDG/KYeYlSliAije7dmVK9WrNrpqvD4xGfb+Neyndw0rAvXndPJo92KWfmFJB8+yYR+p5ec+sdE8sldw3jmy2Re+343K1OO8sxVcSR0rn76pjacxsmXe7+kZ1RPdh4pxCbU6epDdTGuXxuOnDzFXaN7eO05A+w2IkMCOZlXRItmOuWi6s6TdVKJQIoxZheAiCwELgHKJ/QzZuWBlWzL2FbmPpvYuLHfjQAs27+MlMyUMu1N7E24rs91AHy19yv2Zu0t0x4eGM7k3pMB+HzX56TlpJVpbx7cvGQL+scpH5OeV3aqoVVoKy7udjEA7+94n8xTmWXa24e3Z0KXCQAs2L6AnMKcMu1dmnZhTKcxALy15S0KnAVl2ns268nwmOEAvL7pdQyuk6NjzoHevXPZsDOCp78oYM53OxgYu4FBnZoRGvTrrzcuOo7BbQaTV5TH/G3z2XU0h8Dm+zkakMJrm8JIaJ1AfKt4sgqyKr1g8TntzqFvi74czTvKkpQlJfe37gjXj8/lq7XNueqVXK49N5L2MVsrrEQ5v+P5dI7szP6T+/lizxcVnn985/HERMSwK3MX3+z/BnCtwknLSSMiMIJfjgTTqUUYTQLqd5t/VdpGhvDg+N5ef97mYUHk54VyVc+raNakGZ/t+oyDOWVPOrcIbsFlPS4D4KNfPuJYftl9Cq1DWzOx20QAFicvJqug7M7jmIgYxnceD8C7294lt6jsvoIukV0Y09H12ntzy5sVVtuUfu1VVkSsb4u+nNPuHAqdhby55c0K7fHR8SS0SSC3MJd3t79boX1wm8HERcdx4tQJ3tvxXoX2oe2G0qdFnwqvvWIjYkbQo1kPDuUc4tNdn1ZoL37t7cvax5d7v6zQPqHLBNqHt2dn5k6+3f9thfZLul1CdGg0yRnJrDiwokL7lT2uJCo4ik3pm/jp0E8V2if3mkx4UDg/H/6Zn4/8THRINJd0v6RCP2/wJKG3B/aXup0KnF1Jv3NEZAOQBvzWGLOlfAcRmQHMAOjYsWPto3ULsgcREhBS5r7SBZyCbBXbm9iblPm+fHvp200CKrYH24OrbS/9/MEBwYQ4qmm3B1f4eB1kD/o1lsAQ7I6yiSvQ9uuoOzQwtMzju0eHcFHPXgRf0IMXv0nm619OkrQrh4TOzRjarSXhwQEljxeEkIAQjmSeREwTurZoTlCArUJ7eQHieqnYxV6hvWerEK66LpH5K/J458cttG9/iMsGtC9zxaDi309ljy/Tbivb3rNZT7pFdeOXI8k+m26pTy3CgjiRI/Rp4boYRmWvzdKvnZCAkIqvzYDgMu3lE3Lp125IQEjJYKCq5w9wlk0LZV6blfzuamoPtAdW31782pPKX3vF7TaxVf7acS9rreq1W9xe/rVV0l7Da7N4w1dN7QG2gErbi/dRBNoCCQkIoUlA/ZXSlpo2i4jIVcA4Y8zN7tvXAYnGmLtK9WkKOI0x2SJyIfC8Mabaz6YJCQkmKSmpzv8AVdEvh0/y0rcpLN2QRoDdxuTBHbh1RDfaR/36Yrvm1R/Jyi/k07vO8+qxv91+hAc/2EhmbgH3jOnBzBHd6rxuvNDh5Kw//pdbhnfloXoYJfvSrW8nsftoDl/ep1csUp4RkbXGmITK2jx5p6UCpQs8x+AahZcwxmQZY7Ld338OBIrI6e+4UHXSo3UEz00ewDcPjOTyAe1ZsHofI576lofe38ieozkUOZys35/JoI5Vrz8/XaN6t+LLe4czrm8bZn+5gyvnrKpzVcm9x3Iochp6WHCE3jysCRk5BTV3VMoDniT0NUAPEekiIkHAZGBp6Q4i0kbcnztEJNH9vGeuIImqVOeWYTx5RSzLfjeKqWd3ZMn6A4x+Zhk3zFtDboGDQV48gVlas7AgXrxmIP+cMoA9x3K48PkV/Hvl6Rf6Kq782KOVZ8srG5IWYUEczy30eRE0ZQ01JnRjTBFwJ/AFsA1YbIzZIiIzRWSmu9uVwGb3HPoLwGSjxZ39RvuoEB69pB8rHhrFLed15ee9x7EJDO7s/RF6aRPjXIW+hnZrwaOfbOXa13/y+GLLpf1y2JXQu7XyzQqX+tQsLAiH03AiT7f9q7rzqBqQexrl83L3zSn1/YvAi94NTXlbq4hgfn/hWcwc0Y3U43m0jax4Asfrx2wazBvTB7NwzX6e+HQr459dzp8m9uHKQTEeVxdMSc+mfVRImVU7VtHCvbnoWE4BzcKCauitVPV0p2gj1CwsiP4xkWfseCLClERXoa+z2jXld+9v5Ja31pJ+8pRHj//lcLYlV7jAr7tFdR5deYMmdHXGdGgeysJbhvDIRWex/Jd0xj23nP/UUOjL4TTsTM+25AlRKJ3QPfvjplR1NKGrM8pmE24+ryuf3TWMdlHB3Db/Z+5btL7KOeQDx/M4VeS07Ai9uEBXRo7Ooau604SufKJH6wg+uv1c7hnTg6Ub0hj37HKWV1Loq7iGi6+KctW3ZqE6Qlfeowld+Uyg3cZ9Y3vy0e1DCQ8O4Po3VvPIkk1lCo0VL1nsHm29JYvgqn8fFmTnmM6hKy/QhK58LjYmik/vGsZNw7ow/6d9XPj8Cta6a7X/ciSb6IgmRIbWXHCsoWoeHqQnRZVXaEJXfiE40M4ff9OHBbcMochpuGrOKp78z3a2H8ry2UUtzhTdLaq8RRO68itDurbgv/cO5+qEDsz5biebD2RZdv68WIuwII5la0JXdacJXfmd8CYBPHlFLG9MT6BX6whG927l65DqVfOwII7nakJXdWe9rXfKMkb3bs3o3q19HUa9axEWxLGcAowxHu+eVaoyOkJXyseahQVRUOQkp0CvWKTqRhO6Uj5WsltU59FVHemUi1I+Vlyg69rXf6JJgI6xGoNJgztw83ldvf68mtCV8rGEzs25clBMmQ1VytpahtfPZeg0oSvlY5Ehgcy+Ks7XYSgL0M93SillER4ldBEZLyLJIpIiIrOq6TdYRBwicqX3QlRKKeWJGhO6iNiBl4AJQB9gioj0qaLf33Fdqk4ppdQZ5skIPRFIMcbsMsYUAAuBSyrpdxfwAXDEi/EppZTykCcJvT2wv9TtVPd9JUSkPXAZMIdqiMgMEUkSkaT09Iq1r5VSSp0+TxJ6ZXuRTbnbzwEPGWOq3epmjJlrjEkwxiRER0d7GqNSSikPeLJsMRXoUOp2DJBWrk8CsNBdh6IlcKGIFBljlnglSqWUUjXyJKGvAXqISBfgADAZuKZ0B2NMl+LvRWQe8Kkmc6WUOrNqTOjGmCIRuRPX6hU78IYxZouIzHS3VztvXpW1a9ceFZG9p/NYXJ8Cjp7mY+ubv8bmr3GBxnY6/DUu8N/Y/DUuqF1snapqEGPKT4f7PxFJMsYk+DqOyvhrbP4aF2hsp8Nf4wL/jc1f4wLvxaY7RZVSyiI0zyn+egAABhNJREFUoSullEU01IQ+19cBVMNfY/PXuEBjOx3+Ghf4b2z+Ghd4KbYGOYeulFKqooY6QldKKVWOJnSllLKIBpfQPS3le4ZieUNEjojI5lL3NReRr0TkF/f/m/kgrg4i8q2IbBORLSJyjz/EJiLBIrJaRDa443rUH+IqF6NdRNaJyKf+EpuI7BGRTSKyXkSS/CUudxxRIvK+iGx3v97O8YfYRKSX++dV/JUlIvf6SWz3uV//m0Vkgft94ZW4GlRC97SU7xk0Dxhf7r5ZwNfGmB7A1+7bZ1oR8IAx5ixgCHCH++fk69hOAaONMXFAPDBeRIb4QVyl3QNsK3XbX2IbZYyJL7VW2V/ieh74rzGmNxCH62fn89iMMcnun1c8MAjIBT7ydWzuQoZ3AwnGmH64NmtO9lpcxpgG8wWcA3xR6vbvgd/7OKbOwOZSt5OBtu7v2wLJfvBz+xgY60+xAaHAz8DZ/hIXrjpFXwOjcZWv8IvfJ7AHaFnuPn+IqymwG/fiCn+KrVw8FwAr/SE2fq1e2xzXTv1P3fF5Ja4GNULHg1K+fqC1MeYggPv/rXwZjIh0BgYAP+EHsbmnNNbjqpv/lTHGL+Jyew54EHCWus8fYjPAlyKyVkRm+FFcXYF04N/uaarXRCTMT2IrbTKwwP29T2MzxhwAZgP7gIPACWPMl96Kq6EldE9K+So3EQnHddGRe40xWb6OB8AY4zCuj8ExQKKI9PN1TAAi8hvgiDFmra9jqcS5xpiBuKYa7xCR4b4OyC0AGAi8bIwZAOTg2+myCkQkCLgYeM/XsQC458YvAboA7YAwEbnWW8/f0BK6J6V8fe2wiLQFcP/fJ1dwEpFAXMl8vjHmQ3+KDcAYkwksw3UOwh/iOhe4WET24Loq12gReccfYjPGpLn/fwTXPHCiP8SF6/2Y6v6UBfA+rgTvD7EVmwD8bIw57L7t69jOB3YbY9KNMYXAh8BQb8XV0BJ6SSlf91/eycBSH8dU3lJgmvv7abjmr88oERHgdWCbMeYf/hKbiESLSJT7+xBcL+7tvo4LwBjze2NMjDGmM67X1TfGmGt9HZuIhIlIRPH3uOZbN/s6LgBjzCFgv4j0ct81BtjqD7GVMoVfp1vA97HtA4aISKj7fToG14lk78Tly5MVp3lS4UJgB7ATeNjHsSzANQ9WiGu0chPQAteJtV/c/2/ug7iG4ZqK2gisd39d6OvYgFhgnTuuzcCf3Pf7/GdWLs6R/HpS1Nc/s67ABvfXluLXvK/jKhVfPJDk/p0uAZr5UWyhwDEgstR9Po8NeBTXQGYz8DbQxFtx6dZ/pZSyiIY25aKUUqoKmtCVUsoiNKErpZRFaEJXSimL0ISulFIWoQldWYqIONzV9TaLyHsiEvr/7d2/a5NRFMbx76MZ7O5kQUQkONSIkwgiOOkgOCguLqWTIg5uijj5Jwjq4o/BQUEnF8UORbcqCOliF9HFsW4WXY7DOXGogTZo2nLzfMbDvcn7LoeTwH3uCHv3SHo+4vctSNqWFw/b5HFDt9asRqbszQC/gEsb2SSpExHfIuL8eB/PbHzc0K1l74ADddryoaT3FSJ1FkDSbE3xL8nwq32qbPvKqH5UOeQfJZ2s+pSkp5L6kp4BU1XfKelx/TJYknRti97ZJlhnqx/AbBwkdcgcj1fATfIo/1xFDyxKmq+lx4BeRKxUMuXAFYCIOCTpINnwu8Bl4EdE9CT1yAhgyBOT0/XLgEHEgdlm8oRurZmqeN4PZG7GAzL/5HrVF4BdwN5a/yYiVoZ8znHyWDYR8Qn4CnSBE8CTqvfJI+8An4H9ku5IOg1si3RLmyye0K01q5HxvH9UCNK5iFheUz9KRr4OMyyqeeCvvIyI+C7pMHCKnO4vAHOjPLjZv/KEbpPgNXC1GjuSjmxgz1vgYq3vkhP98pr6DBk4hqTdwI6IeAHcImNkzTaVJ3SbBLfJ24j61dS/AGfW2XMXuC9pibyjdTYifkq6R97QM0iyXKz101UfDEk3/vM7mK3LaYtmZo3wXy5mZo1wQzcza4QbuplZI9zQzcwa4YZuZtYIN3Qzs0a4oZuZNeI3+9/KWxUE1y4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_30_0.png" }, "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEWCAYAAAB7QRxFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVzU1frA8c8ZGHZEBTQVFTV3RVTMNZfMa4umlWtqmpVp2WL9KtutbLk3771lZaUtqLmVmqUtt9wqlxRU3NNSQc19QdkZmPP7Y4YJZBFlmO8MPO/Xi5czc77LMzA+HM75fp+jtNYIIYTwXCajAxBCCFE2ksiFEMLDSSIXQggPJ4lcCCE8nCRyIYTwcJLIhRDCw0kiF6IMlFKJSqkbS7FdpFJKK6W8XRFXadjjudboOETZSSKvpJRSw5RSm5RSaUqpU/bHDyqllNGxGUUptVYpdZ9B556ilPq8HI9v2HsT5U8SeSWklHoCeAd4C7gGqAmMB7oCPi6Mw216p0J4NK21fFWiLyAESAPuLMV2c4DTQBLwPLZf/L5AMtAq37bhQAZQw/68H5Bg324DEJVv20TgaWAHkAVcC2hgNHAYOAM8l2/7KcCXwOdACrATaAI8A5wCjgD/uCTuT4DjwF/AVMDL3jYGWAdMA84Dh4Cb7W2vAblAJpAKvFfM92WU/ftxFnjO/n5utLeZgMnAAXv7F0B1e1uk/X2OA47Z43vC3nYTkA1Y7OfeXsy5E+3ve489/s8AP3tbNWCF/ed13v44oqT3Zo9nPPCHfZ/3AWVvuxb4Gbhg/5ksMvqzK18l/H81OgD5cvEP3JY0cgDvy2w3B/gaCLYnof3Avfa2T4HX8m37EPCD/XE7e4LtCHjZE3Qi4GtvT8SW5OsC/vkS3Cz78zbYEnxz+/ZT7AmoL+Btj+uQPYmagfuBQ/liWQZ8BAQCNYDNwAP2tjH2ZHm/PbYJ9qSal7zWAveV8D1pYU+E3bH9QvuP/XuZl8gfA34DIuztHwEL7G1573OBPbbW9qR7Y773+fllfiaJwC779646sB6Yam8LBe4EAuw/sy+BZfn2LfTe7PGsAKoC9ezx3GRvW2D/HpsAP6Cb0Z9d+Srhs2F0APLl4h84jAROXPLaBmy95wx7kvKyJ9MW+bZ5AFhrf3wjcDBf23rgbvvjD4BXLzn+PqCH/XEiMDZfW16Ci8j32mZgmP3xFOCnfG397ck0r5cdbN+/KrYhoizAP9/2w4E19sdjgD/ztQXY973G/vxyifxFYGG+54HYetJ5yXgv0Dtfey1svzi8873PZvna/wV8ku99liaRj8/3/BbgQDHbRgPn8z0vLpF3y/f8C2Cy/fEcYGb+n4t8ue+XjJFXPmeBsPzj01rrLlrrqvY2ExCGbaw8Kd9+SUAd++PVgL9SqqNSqj62pPGVva0+8IRSKjnvC1sPsna+Yx0pIq4T+R6nA0H5np/M9zgDOKO1zs33HPv29bH10o/nO/dH2Hrmhc6jtU7Pt29p1M4fu9Y6Ddv3LE994Kt8596LbUijZr5t8r/3JAp+X0qjyP2VUgFKqY+UUklKqYvAL0BVpZTXZY5X3Pf9KUABm5VSu5VSY68wTuFCksgrn43Yeq0DStjmDLaeZP18r9XDNuaM1tqKrfc2HLgLWKG1TrFvdwTbsEvVfF8BWusF+Y5VXiU3j2B7b2H5zl1Fa92ylPtfLq7j2H4pAbbkiW1II//5b77kvftprf/Kt03dfI/rYRvaKc25L7f/E0BToKPWugq2v6zAloyv5Pi2jbU+obW+X2tdG9tfYzPkUkX3JYm8ktFaJwMvY/uPOUgpFaSUMimlorENFWDv7X4BvKaUCrb3uh/HNuGYZz4wFBhhf5xnFjDe3ltXSqlApdStSqlgF7y348CPwL+VUlXs76uRUqpHKQ9xEmhYQvtioJ9SqptSygd4hYL/hz7E9j2rD6CUCldKXfoL8wV777klcA+wKN+5I5VSl/s/+ZBSKkIpVR14Nt/+wdj+Okm2t710he+tAKXUYKVUhP3peWy/CHJL2EUYSBJ5JaS1/he2xPwUtonJk9iGIJ7GNl4O8DC2q1sOYrvSYz62Sc68Y2yyt9cGvs/3ejy2ycT3sCWAP7GNTbvK3diGhfKu7FiMbay6NN4BBimlziulpl/aqLXejW1idz623vl54Ogl+38D/KiUSsE28dnxksP8jO17sgqYprX+0f76l/Z/zyqltpYQ43xsv6wO2r+m2l9/G9tk8Rn7eX+4kvdWhA7AJqVUqv09Paq1PlSK/YQB8mbrhRBuTimViG3CcqXRsQj3Ij1yIYTwcJLIhRDCw8nQihBCeDjpkQshhIczpGhRWFiYjoyMNOLUQgjhsbZs2XJGax1+6euGJPLIyEji4+ONOLUQQngspVRSUa/L0IoQQng4SeRCCOHhJJELIYSHk0QuhBAeThK5EEJ4OEnkQgjh4SSRCyGEh5NVzIUwUvIRSJgHVin1XWm0GQahjZx6SEnkQhhp62z45S3+XshHVHh1O0oiF6Ii0Zkp5FhC0BM2XH5jUSF4h4Y6fUxbErkQBjr/8++c/DoQlvQxOhThInVnzSTo+uudekxJ5EIYyHImBeUF10x9w+hQhIv4Nmni9GNKIhfCQNaMbEy+iqq3DzQ6FOHB5PJDIQxkzcjC5ONldBjCw0kiF8JA1qwcTL6SyEXZSCIXwkC2RC4jnKJsJJELYSBrdi4mPx+jwxAeThK5EAayZlslkYsyk0QuhIGs2RpTgJ/RYQgPJ4lcCKNojdUCXv6SyEXZSCIXwiDakok1R6EC/I0ORXg4SeRCGESnnAMUXoGBRociPJwkciEMYk0+A4AKkEQuykYSuRAGsV5MBsArKNjgSISnk0QuhEGsF88BYJJELspIErkQBsnrkZuCqxgcifB0ksiFMIg19QIApuBqBkciPJ0kciEMYk25CICpSlWDIxGeThK5EAaxpqYAkshF2ZU5kSul6iql1iil9iqldiulHnVGYEJUdNbUVABMIWEGRyI8nTPqZ+YAT2ittyqlgoEtSqmftNZ7nHBsISqs3PQ0AEwhoQZHIjxdmXvkWuvjWuut9scpwF6gTlmPK0RFp9PTUSaNCpCrVkTZOHWMXCkVCbQFNhXRNk4pFa+Uij99+rQzTyuER8pNz8Bk1mCSFYJE2TgtkSulgoAlwGNa64uXtmutZ2qtY7TWMeHh4c46rRAeS2dkYTIbHYWoCJySyJVSZmxJfJ7WeqkzjilERZebkYXJRy4cE2XnjKtWFPAJsFdr/Z+yhyRE5WDNzJZELpzCGZ+irsAo4AalVIL96xYnHFeICs2aZZGFl4VTlPlTpLVeBygnxCJEpWLNzMEcKoPkouzk7zohDGLNzpWFl4VTSCIXwiDWbCsmf0nkouwkkQthEKsFTH6y8LIoO0nkQhjAmp0NVjAFSCIXZSeJXAgDWNPsdVYCAgyORFQEksiFMICjhG2gJHJRdpLIhTCA9cJZAEyBQQZHIioCuRtBeIQcaw77z+/Hqq2O1/y8/Li22rUA/Hn+TzJzMwvsE+AdQMOqDQHYf34/2bnZBdqDzEFEhkQC8Pu538mx5hRoD/EJoW6VugDsObunwLkBqvpWJSI4AoBdZ3YVijnUL5RaQbXIteay99xex+vBPsGEXzgPgClIErkoO0nkwiPM2zuPafHTCrzWrHozvuz/JQDPr3+e3Wd3F2hvV6Mds2+eDcATa58g8WJigfbr61zPjBtnAPDQyoc4lXGqQPtNkTfxVo+3ALj3f/eSakkt0H5n4zuZ0mUKAHd9excaXaB9ZPORPH3d02TlZjH82+GO1xWKpcEPAmAKkhK2ouwkkQuPEFklkiFNhtCjbg/Ha4HmQMfjpzo8VSjRVvH5O0m+2PlFMnIyCrRX8/170eOp3aZisVoKtIf5/71yz7Qe08jVuQXaawbUdDx+r/d7hWKuE2Qry+/j5cP7vd8HID0nnSd/fpIdR7fSHEnkwjkkkQuP0KNujwJJ/FLtarYrcf8O13Qosb1z7c4ltnet07XE9u4R3Ytt8zZ5F2jffmo712z4C5D1OoVzyGSncHt/nv+Tk2knjQ7DaZ6+7mmaYftrwBRc7TJbC3F5ksiF25sWP437frzP6DCcKvWi/aqVEEnkouwkkQu3lpKdwqYTm+hVt5fRoTjV8iO/YVUaFShDK6LsJJELt7bur3XkWHPoVa9iJfJGOpgMH0WK0pffWIjLkEQu3Nrqw6up7ledqLAoo0NxqohcPzJ84Nez240ORVQAksiF28qx5rD+r/X0qtsLrwq20nxIFlh8YPXx34wORVQAcvmhcFveJm+WDVxW6PruikBnZuHrZWXdsQ1Yci2YvWSlIHH1JJELt1YjoIbRIZQLa0YW4V6aZQOWSRIXZSZDK8ItWbWVp395mt8q6NCDNTMbfx8TtYJqGR2KqAA8rkd+3//uIyklqcBrMTVjeOP6NwAY8e2IQjUzutfpzgudXwDg9q9vL3Qrd9/6ffm/Dv8HwE1Lbip0K/bAawfyUPRDZOVm0e+rfoViGt5sOGNbjSU5M5nBKwYXar+31b0MazaMY6nHGP3D6ELtE6MnMuDaARxIPsD4leMLtT/V4Sn61O/DrjO7mLR2UqH2lzq/RLc63Yg7Ecez654t1P7m9W/SvmZ7fj7yM1M3TS3U/k6vd2gR2oIfDv3Av7f8u1D7rD6ziAyJ5Ks/vmLG9hmF2j+/+XNqBtZk3t55xO6OLdS+5LYlVPGpwsc7P2bRvkWF2r+74zvMJjPTt05n+cHlAFitVk5lnOL6iOsLbV8RWDMtmIK8iDsRxysbXylU8OvZ656lV71eJJxK4Mlfniy0/ytdXqFz7c5sOLaBlza8VKh9Wo9ptAlvw6qkVbwZ92ah9vd7v0+Tak1YfmA507dNL9T+Wd/PiAiO4It9XzBr56xC7QtvXUiofyizd8/m872fF2r/esDXBJgD+GD7Byz9Y2mh9p8G/QTAf7b8h+8PfV+gLcA7gK8Hfg3A1N+m8vPRnwu0h/qFsrDfQgCeX/c8m05sKtBeN7gun/b9FIDH1z7OzjM7C7Q3rtrYUWNnwsoJ/Jn8Z4H2NuFtmNbDVtdn9PejOZZ2rEB7p1qdeLXrqwAMWT6E81nnC7TfUPcGnun4DAD9v+pf4Gc7tOlQ7mvt/HsiPC6RR4VHFerFXFv1WsfjtjXaciH7QoH2xtUaOx7H1Iwp9J+mUdVGjsedanUqlMgjq0QCYFImOtXqVCimusG2CnlmL3OR7bWDagPg5+1XZHvNQFvNjgDvgCLb82p+BPsEF9le3a86ACG+IUW2h/iEABDqH1pke7A5GIDwgPAi2/29/R1xFtXu6+ULQERQRJHt3sr2MasXXK/IdoUCoEFIgwLtgeZAetfrXWj7isCalYvJz0wVnyq0q9muUGXFUP9QwFYvpqSfeTXfakW259WZKe5nHmS2VV2sGVD0z9TP27ZyUe2g2kW2+3jZ1hqNCC76Z543OR1ZJbLI9jwNQxoWas/7PAE0qdaErNysAu3BPsGOx02rN0UpVaA9f42cFqEtCtTkyXtPeVqHtS6wPdg+h3mia0RTL7NegfZm1Zs5Hrev2b5QxzCvIifAdddcR7b176qb9YILHstZlNauv441JiZGx8fHu/y8QriL31u1oFp0IDU/jzM6FOFBlFJbtNYxl74uY+RCuJjOyUHnaEz+vpffWIhSkEQuhItZ09MBMPnLwsvCOSSRC+FijkQeIIlcOIckciFczJqWBoApwN/gSERF4ZRErpS6SSm1Tyn1p1JqsjOOKURF9XePPPAyWwpROmVO5EopL+B94GagBTBcKdWirMcVoqKyptouV5OFl4WzOOM68uuAP7XWBwGUUguBAcCe4nbYt28fPXv2LPDakCFDePDBB0lPT+eWW24ptM+YMWMYM2YMZ86cYdCgQYXaJ0yYwNChQzly5AijRo0q1P7EE0/Qv39/9u3bxwMPPFCo/fnnn+fGG28kISGBxx57rFD766+/TpcuXdiwYQPPPlv4ppu3336b6OhoVq5cydSphW+6+eijj2jatCnLly/n3/8ufNPN3LlzqVu3LosWLeKDDz4o1L548WLCwsKIjY0lNja2UPt3331HQEAAM2bM4IsvvijUvnbtWgCmTZvGihUrCrT5+/vz/fe2mzJeffVVVq1aVaA9NDSUJUuWAPDMM8+wcePGAu0RERF8/rntppDHHnuMhISEAu1NmjRh5syZAIwbN479+/cXaI+Ojubtt98GYOTIkRw9erRAe+fOnXnjDdsNX3feeSdnz54t0N67d29eeMF2w9fNN99MRkbBtTn79evH//2f7YavSz934PrPXu75c2QdTsLvnW8wLdwlnz357F31Zy+PM4ZW6gBH8j0/an+tAKXUOKVUvFIq3mKpeEWQhCgtnZNje+DlcffjCTdV5huClFKDgb5a6/vsz0cB12mtHy5uH7khSFRm5z/7gBP/nM61703EfONDRocjPEh53hB0FKib73kEcKyYbYWo9KwpFwEwVZFl3oRzOCORxwGNlVINlFI+wDDgGyccV4gKyZpqT+RBIQZHIiqKMg/Saa1zlFITgf8BXsCnWuvdZY5MiArKmpqCyduK8pOrVoRzOGW2RWv9HfCdM44lREVnTUtDeWswBxgdiqgg5M5OIVzMmpqKl1kSuXAeSeRCuJg1IwPlbQUfSeTCOSSRC+Fi1vQMvLw1mOUWfeEcksiFcDFrRhYms5YeuXAaSeRCuJg1MwuTTHYKJ5JELoSLWTOyMfkosK9rKURZSSIXwsWsWTmYfKXOinAeSeRCuJDWGmt2DiZfs9GhiApEErkQLqQzMkCDyU8SuXAeSeRCuJBjmTc/H4MjERWJRw3UHfztG5IPxNGuXjWjQ/Fsda+DyG5GR1EpyXqdojx4VCI/GbeUzme/gj+MjsTDVW8Ej2w1OopKybFep7+fwZGIisSjEnn7kf/hnR/GMH/TYdrXr8arA1oR4i9jjVdk3X/x2jMHZbWCSUbWXO3vHrlcQy6cx6MS+bl33+Mf8xfwD/vzUx/BKUMj8kwBNYKp//gpCL7G6FAqHUePPFBuzxfO41GJvMott+DbpAkASWfTmPfbYXK1Zvh19bi2htR2Lo2LS+eTuXcfJB+RRF5KF775hrOzPnbKsXJTUwFJ5MK5PCqRB8TEEBBjW66uGhA6PJ3758Qz7EQqL8a04O7O9VFKGRukm7MeP0D6jj/IPf4HXnU7GB2OR0hZswbLsWMEdunilON5BR7Cp3a4U44lBHhYIr9U3eoBLJ7QhccWbuOlb3az/2QKU25ridlLxn6L492gKQCWQ/vwus7gYDyE9WIKPo0aEfHudCccLBdemQ3+wWU/lhB2Hp/xgny9+WhUDA/0aMi8TYcZ/elmktOzjQ7LbZnrNwLAcvigwZF4jtzUFLyCnDR0Z7GNkWOWyw+F83h8IgfwMimeubk5/x7chvjE8wx8fz1/nko1Oiy3ZK5dB4Cc48cNjsRzWC+mYKpSxTkHy85L5HLVinCeCpHI89zZPoIF4zqSkpnD7TPW88v+00aH5Ha8w8PApLCcPGt0KB4jNzUFr2Bn9chtlx/iI5OdwnkqVCIHaF+/Ol9P7Eqdqv7cExtH7PpDaK2NDsttKJMJczV/LGflL5bSsqakYgp2Uo/ckmH7V3rkwokqXCIHiKgWwJIJXejVtAZTlu/huWW7sORajQ7LbZjDq2JJsULmBaNDcXs6Oxudmem8Hnne0Ir0yIUTVchEDhDo683MUe0Z36MR82UStABzrWuwpHvBhaNGh+L2HNd9BznpKpO8oRXpkQsnqrCJHMBkUky+uZlMgl7CHFGfnAwT+vQho0Nxe9aLFwHwquKkRO7okUsiF87j0deRl9ad7SOIDAtg3Jwt3D5jPe/f1Y7uTSrvDRnmyGsBhSVxLz6t+hkdjlvLTbH3yFc/CwefL/sBHT1yGVoRzlMpEjn8PQl63+x47omN48V+lfdOUHNkMwAsiX8iVbFLZk1NAcCLNIi82TkHDagOobbr+c+mZrFy70msMh9fafRoEk7tqs69j6BMiVwp9RbQH8gGDgD3aK2TnRFYecibBH10YUKlvhPUHGG7ltxy7C+DI3F/uRdtidxUox7c/oHTj//at3tZuk1+DpVJ7D0d3CuRAz8Bz2itc5RS/wSeAZ4ue1jlJ28S9F//28eHPx/g0Jk0ZoxoR9WAytM39b7GVizLckJqR16Oo0ce4qTLD/M5k5rFih3HGX5dXR7t3cTpxxfuqWqA80tvlymRa61/zPf0N2BQ2cJxjbxJ0MY1gnhm6U4Gvr+ej0d3qDQVFE2+vngF+2A5c9HoUNyeo0deparTj71g02Gyc63cd31DrgmRhSbE1XPmmMJY4PviGpVS45RS8Uqp+NOn3eOOy7w7QVOzbHeC/lyJ7gQ1h1Uh50I25GQZHYpbs6bkJXLnLi9oybXy+aYkrm8cRqPwytGBEOXnsolcKbVSKbWriK8B+bZ5DsgB5hV3HK31TK11jNY6Jjzcfa4YaV+/Ossest8J+tlmPqskd4Kaa9awXUt+UcZnS5KbmoLJbEUFhDj1uP/bfYKTF7MY0yXSqccVldNlh1a01jeW1K6UGg30A3prD82AeZOgjy1K4OXle9h/MpVXBlTsSVBznTqkbt6NPpeEqt7Q6HDclvVCMiazFfycm8jnbEiibnV/ejat4dTjisqpTJlKKXUTtsnN27TW6c4JyRiBvt58NLI9E3o2YsHmw9z9yWbOp1XcO0HN9RuhrYrcI/uMDsWt5V5Ixsuswdd5iXzPsYtsTjzH3Z0i8TJVvstfhfOVtcv5HhAM/KSUSlBKfeiEmAxjMimevqkZ/xnShi1J5xk4o+LeCWpu2BwAS+IfBkfi3sqjRz57QyL+Zi+GxNR12jFF5VamRK61vlZrXVdrHW3/Gu+swIx0RzvbJGhaVsUth2uuWx8Ay5HDBkfi3nJTLuLlo8HPOZcfnk/LZlnCXwxsW4eQcrgMTVROFXcQuIzyT4KO+WxzhSuHa65VCwDLCVlgoiTWlFSn9sgXxR8hK8fK6C71nXI8IUASeYnyJkFvaFazwpXD9apSBZOvF5ZT540Oxa1Z09LtY+Rl75HnWjVzNybRqWF1ml3j/BuMROUlifwyLi2HW5EmQc2hQViSM8BaMX45OZvWmtz0TEw+VqcMrazae5K/kjMY3Tmy7MEJkY8k8lLIXw63Ik2CmsOrY0k1QZrcql8UnZ4OVm3rkTthaGX2xkRqh/jRp0XNsgcnRD6SyK9A3p2gaRXkTlBz7dpY0rwg+YjRobglx6ISZiv4lK0e+R8nU1j/51lGdKqPdwW+P0EYQz5RV6gi3QlqrtcAq8VE7nG5BLEojkUlAvzAVLb/KnM2JuHjbWL4dfWcEZoQBUgivwp5k6C9m9fk5eV7ePYrz5wENTe01yU/JDcFFcWxqERQ2VbzuZhpYcnWo9zWpjbVAytPlU3hOpVmYQlny7sT9K0f9/HB2gMcOpPKByPaU82D/qN617Pdmm/ZvQG/hPkGR1ME3yrQ7FYwaPEPRwnboLIVtVocf5T07FyZ5BTlRhJ5GeTdCdq4RhCTl+xk4Iz1fDI6hmtrOGl9x3Jmrm1fYOLALlg2weBoijFuLdRua8ipHSVsg68+kVutmjkbE2lXryqtI5xbr0WIPJLIneCOdhHUDw3kgbnx3P7+Bt4b0Y4eHrAmqHd4GMpsJqfF/fDgWKPDKejkHlg4HFJOGBZCXo/cVOXqE/DPf5wm8Ww6k/rIwhGi/Egid5L29aux7CH7mqCfbeaFfi0Y0yXSrdcEVSYT3rVrcXbul5yd+6XR4RRiMl9Dw64HMDc15vx5PXKvkKuvRT5nQyLhwb7c3KqWs8ISohBJ5E7kieVwr3nxRTK2bDU6jEJyTp0gefFSMvf/gbmPMTFYU1LApFFBV7c6UOKZNNbuP82jvRvj4+2+nwHh+SSRO9mlk6CJ9jVB3XUSNKhrV4K6djU6jEIsJ0+RvHgpOcdPGhZDbkoKXmaN8r+6RD5nYxJeSnGXXHIoypl0E8pBZSqHW168w8PABJZTZw2LwXrhnL1g1pXfnp+WlcOX8Ue4pXUtalSR9ThF+ZJEXo5s5XA7VZg7QV1JmUyYg72wnL1gWAy2RSWurvLh0m1/kZKVw2hZyk24gCTycta+fjW+ntiNiGoBHn8nqKuZQ/xsRb0MYr14AdNVVD7UWjNnQyKt64TQrt7VDcsIcSUkkbtAnar+LB7f2ePvBHU179Agci5YDDu/NSUVr6uofLjhwFn+OJXKaDe/aklUHJLIXeTSNUFHfbKpwpTDLS/m8OpY0kDn5Bhy/ty0NFuP3O/KetWxGxKpHuhDvyi55FC4hiRyF8o/Cbo1Kdk+CZpidFhuy3xNTdCKnKMHDTm/NTXd1iO/gqGVI+fSWbX3JMM61MXP7FWO0QnxN0nkBigwCfr+Btbuk3rgRTHXrg0YU9RL5+Rgzcy+4mXePt+UhFKKkZ1kKTfhOpLIDZJ3J2hE9QDGxsbx6TqZBL2Ud0QkADmHXd8jt9prkdsWlShdjzzTksuiuCP8o0VNalf1L8/whChAErmBIqoFsHh8Z25sXpNXVsgk6KXMkY0BsPx12OXndiwq4avAu3TXgX+d8BfJ6Ra55FC4nCRygwX6evPhyPY8KJOghXjVqIfJbMVy/LjLz523qIQpwL9UZXS11sRuSKLZNcF0bFC9vMMTogBJ5G7AZFI8dVMz/ju0DVsPyySoQ0AY5oBcLKfOuPzUeYtKeAWXblGJuMTz7D1+US45FIaQRO5Gbm8bwYL7ZRLUwdsH72CF5Yzr7+50lLANKl1t+dkbE6ni582A6NrlGJUQRZNE7mYcd4LKJCgA5hBfcs6nu/y8jhK2wZef6DxxIZMfdp1gaIe6BPhIHTrhek5J5Eqp/1NKaaVUmDOOV9nl3Qkqk6Bgrh5EbnoO1nTXJnNrir1HHnL5m4HmbUrCqjWjOkWWc1RCFK3MiVwpVRfoA7j+0oIK7NJJ0JEfV85JUHO4bVEHywnXrhSUm2Kb7PS6TCLPysllwebD9G5Wg3qhZVukWYir5Ywe+X+Bp4DK+/d/Ock/CbrtSOWcBKX3WSIAACAASURBVDXXtP2R5+orV6wpqShvjQooeXWgb3cc50xqtlxyKAxVpkSulLoN+Etrvb0U245TSsUrpeJPn5ZyrleiMk+CetsXiM459pdLz5ubcrFUJWxnb0yiUXgg3a6VUUVhnMsmcqXUSqXUriK+BgDPAS+W5kRa65la6xitdUx4uPsvTOxuLp0E/aSSTIKaa9cDNJbDh1x6Xmvy5ReVSDiSzPYjyXLJoTDcZafYtdY3FvW6Uqo10ADYbv8QRwBblVLXaa2NW/q8AsubBH38iwReXbGHP0+l8PJtrSr0epCqSg28/a1Yjrp2CsZ6Mdl+e37xPfLZGxIJ8vXmjnYRLoxMiMKuOgNorXdqrWtorSO11pHAUaCdJPHyFejrzQcj2vNQr0Ys2Hyk4t8JGhhuuyno2DGXnjb34kVMJVQ+PJ2SxYodxxjUPoIgX7nkUBir4nblKjCTSfFk34KToH+crKCToIHheAfkknPKtfMq1tTUEsfIF2w+jCVXc3dnqXIojOe0RG7vmbv+XupK7Pa2ESwc14m0rFzumFFBJ0EDwzAH5mI5k+zSOYHc1HRMPkVXPrTkWpm3KYnuTcJpGB7kspiEKI70yD1cu3rV+Hpi14o7CepfHXNALtqSS+65cy47rTUtw9YjL2Jo5X+7T3DyYhZjukhvXLgHSeQVQP47QV9dsYdnv9pJdk4FuRPUyxtzNduNNpZjrrmW3JqVhc7JtS/zVnhoZfaGROpVD6BnkxouiUeIy5FEXkHk3QlaESdBvUNtydRywkWJ3F7Ctqge+e5jF4hLPM/dnetjMsklh8I9SCKvQPImQd8eGl2h7gQ117Tdd5Djors780rYmvx9wKvgFSmzNyTib/ZicExdl8QiRGnIdVMV0MC2dagXGsC4OVu4/f0NvHtXW3o29dxhAK+wGijvJNcNreTVWQksWDvlfFo2Xycc4872EYT4m6/q2BaLhaNHj5KZmVnmOEXF5efnR0REBGZz6T5nksgrqLxJ0PtmxzM2No7nbm3B2K6eeQeiCqqBOdB1KwU5euRBgQVeXxR/hKwcK6M7R171sY8ePUpwcDCRkZ75sxDlT2vN2bNnOXr0KA0aNCjVPjK0UoFVmEnQwDDMfhYsx11zU5BjUYngvy8tzLVq5m5MolPD6jS9pnSLTRQlMzOT0NBQSeKiWEopQkNDr+ivNknkFVyFmAQNDMM7IIccF93dmZs32Vnl7ytWVu49yV/JGYxxQpVDSeLicq70MyJDK5VA3iRo4xrBPLVkBwPeX88no2NoXPPqe5YuFRiOOTCXnENnOXDTzeV+urxEbgr5u4Tt7A2J1A7x48bmNcv9/EJcKUnklUj+SdA7Zmxg+l1t6eUJk6ABYVSpl0F2+I3g75pysea/luNlT+T7T6aw4cBZnrqpKd5env9HbJcuXdiwYYPRYTjExsYSHx/Pe++9V+w2a9euxcfHhy5durgwsoKmTJlCUFAQ//d//1eq7V9//XWeffbZco7KRhJ5JZM3CXr/7Hju9ZRJ0MBwfKvkUmdMP4gaXP7n0xpene24GWjmLwfx8TYxrEO98j+3C7hTEi+ttWvXEhQUZFgiz8nJueJ9JJGLclWnqj+LJ3Rm0iJbOdzjyRk836+F0WEVL9DeC09zUeGsnEywWsC3ClsPn2fxlqPcf30Dqgf6OPU0Ly/fzZ5jF516zBa1q/BS/5YlbhMUFERqaipr165lypQphIWFsWvXLtq3b8/nn3+OUoq4uDgeffRR0tLS8PX1ZdWqVZjNZiZMmEB8fDze3t785z//oVevXsTGxrJs2TJyc3PZtWsXTzzxBNnZ2cydOxdfX1++++47qlevTs+ePYmOjmbz5s1cvHiRTz/9lOuuu65AbKdPn2b8+PEcPmwrW/z2229Tp04dPvzwQ7y8vPj888959913adasWaHtunbtWuBYpY1r1qxZzJw5k+zsbK699lrmzp1LQEAAY8aMoXr16mzbto127doRHPz3UOSsWbNYunQpS5cuZcmSJUyfPp3s7Gw6duzIjBkzeO6558jIyCA6OpqWLVsyb948Z/x4i+X5fyeKqxLgYyuHO6ZLJB+vO8TsDYlGh1Q8v6qgvCDdRTXZMm3J1eobwotf76JmFV8evbGJa87tYtu2bePtt99mz549HDx4kPXr15Odnc3QoUN555132L59OytXrsTf35/3338fgJ07d7JgwQJGjx7tuLJi165dzJ8/n82bN/Pcc88REBDAtm3b6Ny5M3PmzHGcLy0tjQ0bNjBjxgzGjh1bKJ5HH32USZMmERcXx5IlS7jvvvuIjIxk/PjxTJo0iYSEBK6//voitytKaeK64447iIuLY/v27TRv3pxPPvnEsf/+/ftZuXIl//73vx2vvffeeyxfvpxly5aRmJjIokWLWL9+PQkJCXh5eTFv3jzefPNN/P39SUhIKPckDtIjr9RMJsUL/Vpw9HwGLy/fTb3QAPccMzeZbL1yV/XIMy8AsP5oNrv+usi7w9uWS83xy/WcXeG6664jIsK2MEZ0dDSJiYmEhIRQq1YtOnToAECVKrYyBevWrePhhx8GoFmzZtSvX5/9+/cD0KtXL4KDgwkODiYkJIT+/fsD0Lp1a3bs2OE43/DhwwHo3r07Fy9eJDk5uUA8K1euZM+ePY7nFy9eJCWl8N3JxW2Xv9dc2rh27drF888/T3JyMqmpqfTt29ex/+DBg/Hy8nI8nzt3LhERESxbtgyz2cyqVavYsmWL43uVkZFBjRqu/z8kibyS8zIp3hkWzeAPN/Lw/G0smdClTNdJl5vAcEhzUY88y9YjX7Ajma7XtqVfVC3XnNcAvr6+jsdeXl7k5OSgtS5yzqSkqpr5j2MymRzPTSZTgfHlS4976XOr1crGjRvx9/cvMe7SbleauMaMGcOyZcto06YNsbGxrF271rFPYGDBm8JatWpFQkKC42YdrTWjR4/mjTfeKDGO8iZDK4JAX28+GRNDgI8XY2PjOJ2SZXRIhQWEui6RZ9p6iWdy/Hn5tlbuPRFcDpo1a8axY8eIi4sDICUlhZycHLp37+4YJti/fz+HDx+madOmV3TsRYsWAbbefUhICCEhBatL/uMf/yhw9UpCQgIAwcHBBXrmxW13NVJSUqhVqxYWi+WywyBt27blo48+4rbbbuPYsWP07t2bxYsXc+qUbS2Ac+fOkZSUBIDZbMZisVx1XFdCErkAoFaIP5+M7sDZtCzunxNPpiXX6JAKCgx32dDKwaO2G4/+0bYJ19aofAtH+Pj4sGjRIh5++GHatGlDnz59yMzM5MEHHyQ3N5fWrVszdOhQYmNjC/R4S6NatWp06dKF8ePHFxiLzjN9+nTi4+OJioqiRYsWfPjhhwD079+fr776iujoaH799ddit7sar776Kh07dqRPnz40a9bsstt369aNadOmceutt1KjRg2mTp3KP/7xD6KioujTpw/H7aUkxo0bR1RUFCNGjLjq2EpLGbEIQUxMjI6Pj3f5ecXl/bDrOOM/30q/qFpMH9bWfUq1fj8Ztn0Ozx4t19Pk5FqZ8e8XeCT9PdIn7iQgzLmXHO7du5fmzZs79ZieomfPnkybNo2YmBijQ/EIRX1WlFJbtNaFvoEyRi4KuKlVLZ6+qRn//OF3GoYH8XgfN7laIzAMslNg2pX9KX+lsrNzuScrFRQEBFcv13MJ4SySyEUh43s05NCZVKav+oOGYYEMbFvH6JCg9SC4eAysV35jRmllWKx8t+MYoUE+9OzcCeVb+YZVylP+SUThXJLIRSFKKaYObM3hc+k8tXgHEdX8iYk0uHdaLRL6/adcT/HcFwkszznG/8Z0R8miysKDyGSnKJKPt4kPR7anTjV/xs3dwuGz6UaHVK42HzrH0q1/Ma57QxpKEhceRhK5KFbVAB8+HdOBXKtm7Ow4LmS45lIqV8vJtfLi17uoU9Wfh3pda3Q4QlwxSeSiRA3CAvlwZHuSzqYxcf5WLLkeuDDFZczZmMTvJ1J4oV9zAnxktFF4Hknk4rI6Nwrltdtb8+sfZ5jyze4S7/DzNKcuZvLfn/bTo0k4fVteY3Q4Fc6YMWNYvHhxidvExsZyzEWLhhSnZ8+elPaS6MTERObPn1/OEV0ZSeSiVIbE1GV8j0bM23SYT9cnGh2O07z+3V6ycqxMua1lpbuD010Ynchzc6/s5jd3TORl/jtSKfUwMBHIAb7VWj9V5qiEW3qqb1MOnUnltW/30CAsgBuaefZqOb8dPMuyhGM8fMO1NAgLvPwOzvb9ZDix07nHvKY13PxmiZvMmTOHadOmoZQiKiqKuXPnkpSUxNixYzl9+jTh4eF89tln1KtXjzFjxuDv78/vv/9OUlISn332GbNnz2bjxo107NiR2NhYwFYa94EHHmDNmjVUq1aNhQsXEh4eXuC8W7Zs4fHHHyc1NZWwsDBiY2NZv3498fHxjBgxAn9/fzZu3MiePXsKbVerVsF6N6WNa8KECcTFxZGRkcGgQYN4+eWXAYiMjGTs2LH8+OOPTJw40XFcq9XKPffcQ926dXn55ZeZPHkya9euJSsri4ceeogHHniAyZMns3fvXqKjoxk9ejSTJk0q4w+t7MrUI1dK9QIGAFFa65bANKdEJdySyaT479BoWtSuwsPzt7H3uHNrabuSJd8E54M9K88E5+7du3nttddYvXo127dv55133gFg4sSJ3H333ezYsYMRI0bwyCOPOPY5f/48q1ev5r///S/9+/dn0qRJ7N69m507dzpqnKSlpdGuXTu2bt1Kjx49HAkzj8Vi4eGHH2bx4sVs2bKFsWPH8txzzzFo0CBiYmKYN28eCQkJeHt7F7ldUUoT12uvvUZ8fDw7duzg559/LlCJ0c/Pj3Xr1jFs2DDAtnjEiBEjaNKkCVOnTuWTTz4hJCSEuLg44uLimDVrFocOHeLNN9/k+uuvJyEhwS2SOJS9Rz4BeFNrnQWgtT5V9pCEOwvw8eaT0R0Y8N567o2NY9lDXalRxc/osK7Y7A2J7D+Zyqy7Y/D38br8DuXhMj3n8rB69WoGDRpEWJhtsY7q1W33B2zcuJGlS5cCMGrUKJ566u8/rPv3749SitatW1OzZk1at24NQMuWLUlMTCQ6OhqTycTQoUMBGDlyJHfccUeB8+7bt49du3bRp08fwDaccWkv+0q2K21cX3zxBTNnziQnJ4fjx4+zZ88eoqKiABzx5nnggQcYMmSI4xfHjz/+yI4dOxxj/BcuXOCPP/7Ax8e5C4w4Q1kTeRPgeqXUa0Am8H9a67iiNlRKjQPGAdSrVzGWzKqsalbx4+PRMQz+cCP3z4ln4bjOxiXDq3DSPsF5Q7Ma3NjcDeuvl6PiStReKv82+Uu/XloWtrgl0C49h9aali1bsnHjxsvGV5rtShPXoUOHmDZtGnFxcVSrVo0xY8Y4FsKAwiVqu3Tpwpo1a3jiiSfw8/NDa827775boD45uOcdqpcdWlFKrVRK7SriawC2XwTVgE7Ak8AXqphPidZ6ptY6Rmsdc+nYmfA8reqEMH14W3b8dYEnvkzAavWcK1le+3YvFqvmpf4tKt0EZ+/evfniiy84e/YsYCu7CrYktnDhQgDmzZtHt27drui4VqvV0XOdP39+of2bNm3K6dOnHQnaYrGwe/duoGCJ2pK2u1IXL14kMDCQkJAQTp48yffff1/i9vfeey+33HILgwcPJicnh759+/LBBx84StHu37+ftLS0QiV13cFle+Ra6xuLa1NKTQCWatv1aJuVUlYgDHDRUi7CSH1a1OTZm5vz2nd7+XfYPp7se/kSoEbb8OcZvtl+jEd7N6Z+qAETnAZr2bIlzz33HD169MDLy4u2bdsSGxvL9OnTGTt2LG+99ZZjsvNKBAYGsnv3btq3b09ISIij7ngeHx8fFi9ezCOPPMKFCxfIycnhscceo2XLlowZM4bx48c7JjuL2+5KtWnThrZt29KyZUsaNmxYaE3Pojz++ONcuHCBUaNGMW/ePBITE2nXrh1aa8LDw1m2bBlRUVF4e3vTpk0bxowZ4xbj5GUqY6uUGg/U1lq/qJRqAqwC6unLHFTK2FYcWmue/WonCzYf4d+D23Bn+wijQypWdo6VW6b/SlZOLj9N6oGf2fXDQRW1jG3egs7CeVxZxvZT4FOl1C4gGxh9uSQuKhalFK8MaEXS2XQmL91B3eoBXNfAPcu/frb+EH+eSuWT0TGGJHEhykuZLj/UWmdrrUdqrVtprdtprVc7KzDhOcxeJj4Y0Z661QN4YG48iWfSjA6pkOMXMnhn1R/c2LwmvZt79vXv7kh648aSOzuFU4QEmPl0tG0l8bGz47iQ7l4Ftqau2EuufYJTiIpGErlwmkh7ga0j59KZMG+L2xTY+vWP03y78zgP9ryWutUDjA5HCKeTRC6cqmPDUN68I4oNB87ywrJdhhfYysrJ5aWvd1M/NIAHejQ0NBYhyovU7BROd2f7CA6eSeX9NQdoGB7IuO6NDIvlk3WHOHgmjdh7OsgEp6iwpEcuysUTfZpya+tavPH97/y4+4QhMfyVnMG7q/6kb8ua9Gxaue7gdIW3336b9HT3Xjkqfxnd++67jz179gDw+uuvGxmW00kiF+XCZFJMG9yGqDohPLowgV1/XXB5DK8u34NG80I/meAsD56QyPP7+OOPadHC9lm4mkReXDkCdyCJXJQbfx8vZo2OoVqAmftmx3PiQubld3KStftO8cPuEzx8Q2MiqrnvBOc9P9xT6Gvh77Zb5TNyMopsX/bnMgDOZ54v1FYar776Ks2aNaNPnz4MHz6cadNsRUsTEhLo1KkTUVFR3H777Zw/f569e/dy3XXXOfZNTEwkKiqK6dOnc+zYMXr16kWvXr0KnWPLli306NGD9u3b07dvX44fP86FCxdo2rQp+/btA2D48OHMmjULsN1Q9MQTT9CuXTt69+7N6dO2m8MPHDjATTfdRPv27bn++uv5/fffAVtP+5FHHqFLly40bNjQ0evWWjNx4kRatGjBrbfeyqlTf9fxy1s8YvLkyWRkZBAdHc2IESNITEykVatWju2mTZvGlClTHPs8++yz9OjRg3feeafI9wUwffp0WrRoQVRUlKOaoitJIhflqkawH5+M6UBKpoX75sSRnl3+vZqsnFxeXr6HhmGB3Hd9g3I/nyeJj49nyZIlbNu2jaVLlxZYFefuu+/mn//8Jzt27KB169a8/PLLNG/enOzsbA4ePAjAokWLGDJkCI888gi1a9dmzZo1rFmzpsA5iitZGxISwnvvvceYMWNYuHAh58+f5/777weKL4M7btw43n33XbZs2cK0adN48MEHHec5fvw469atY8WKFUyePBmAr776in379rFz505mzZrFhg0bCn0P3nzzTfz9/UlISGDevHmX/Z4lJyfz888/88gjjxRbYvfNN99k27Zt7Nixgw8//PBKfiROIZOdotw1r1WFd+9qy32z43lsYQIfjmyPyVR+xapm/XKQQ2fSmDP2Ony93XuC87Obiq9p4u/tX2J7Nb9qJbYXZd26dQwYMAB/f3/AVgoWbCVak5OT6dGjBwCjR49m8ODBAAwZMoQvvviCyZMns2jRokJ1VC5VUinaPn368OWXX/LQQw+xfft2xz5FlcFNTU1lw4YNjjgAsrKyHI8HDhyIyWSiRYsWnDx5EoBffvmF4cOH4+XlRe3atbnhhhuu6PtTlLy4SnpfUVFRjBgxgoEDBzJw4MAyn/NKSSIXLnFDs5o8f2sLXlmxh3/+73eeubl86o0cOZfOe2v+5JbW19C9iVTZvNTVXA46dOhQBg8ezB133IFSisaNG1/2HMWVorVarezduxd/f3/OnTtHRETRtXmUUlitVqpWrepYJOJS+UvX5n9fV1rR0tvbG6v173se8pe6hb/L3Zb0vr799lt++eUXvvnmG1599VV2796Nt7fr0qsMrQiXuadrJCM71eOjnw+yKO5wuZzj1RV7UCiev1UmOIvSrVs3li9fTmZmJqmpqXz77bcAhISEUK1aNX799VcA5s6d6+idN2rUCC8vL1599dUCizEUV861pFK0//3vf2nevDkLFixg7NixjhKxRZXBrVKlCg0aNODLL78EbIk0fy++KN27d2fhwoXk5uZy/PjxQsM+ecxms+PcNWvW5NSpU5w9e5asrCxWrFhR5D7FvS+r1cqRI0fo1asX//rXv0hOTnZ5yQLpkQuXUUrxUv+WJJ1N57mvdlGveiCdG4U67fhrfj/Fj3tO8vRNzahd1d9px61IOnTowG233UabNm2oX78+MTExhISEADB79mzGjx9Peno6DRs2LFDKdujQoTz55JMcOnTI8dq4ceO4+eabqVWrVoGEWVzJWrPZzMcff8zmzZsJDg6me/fuTJ06lZdffrnYMrjz5s1jwoQJTJ06FYvFwrBhw2jTpk2x7+/2229n9erVtG7dmiZNmjh+GV1q3LhxREVF0a5dO+bNm8eLL75Ix44dadCgAc2aFV2Oubj31aRJE0aOHMmFCxfQWjNp0iSqVq1a+h+KE5SpjO3VkjK2lduFDAt3frCB0ylZfPVgFxqGB5X5mJmWXPq+/QteJsUPj3bHx9s9/9h0hzK2qampBAUFkZ6eTvfu3Zk5cybt2rUzNCYpg1vYlZSxdc9Pu6jQQvxtBba8TIp7Z8eTnJ5d5mPO/OUgSWfTeeW2Vm6bxN3FuHHjiI6Opl27dtx5552GJ3FRdjK0IgxRLzSAmaPac9esTTwwdwtz7+141Qn4yLl03l/zJ7e2rkW3xmFOjrTimT9/vtEhFCK98bKRroswTExkdf41KIpNh87x3Fc7r7rA1svLd+NlUjzfr+KtvCNEaUiPXBhqYNs6HDyTxvRVf9AgPJAHe157Rfuv3HOSlXtP8ewtzagVIhOconKSRC4MN+nGxhw6k8a/fthHg9BAbm5dq1T7ZVpyeXnFbhrXCOKernIHp6i8ZGhFGE4pxVuDomhbryqTvkhgx9HkUu33wdoDHDmXwcsDWmL2ko+yqLzk0y/cgp/Zi5mjYggN9OW+2fEcv5BR4vZJZ9P44OcD3NamNl0ayQRneQoKKvvloSU5ffo0HTt2pG3bto4bkoqydu1a+vXrV+KxYmNjmThxYqHXk5OTmTFjxhXFdTXVHYs7f3mTRC7cRniwL5+O6UB6di73xsaTllV0gS2tNS8v34OPl4nnbpUJTk+3atUqmjVrxrZt27j++uvL5RyuSuRGkTFy4VaaXhPMe3e1ZWxsHI8u3MZHo2LwuqTA1k97TrL691M8f2tzalbxMyjSsjvx+utk7f3dqcf0bd6Ma559ttj2p59+mvr16zuqCE6ZMoXg4GAeeOABBgwYwPnz57FYLEydOpUBAwYU2Hft2rVMmzbNcQv7xIkTiYmJYcyYMWzZsoXHH3+c1NRUwsLCiI2NdRSUypOUlMTYsWM5ffo04eHhfPbZZ5w7d46nnnrKUVZ248aNjoJeAD/88AOPPfYYYWFhBa53T0tL4+GHH2bnzp3k5OQwZcoUR7xHjhzhpptu4tChQ9x111289NJLTJ48mQMHDhAdHU2fPn14/PHHGTp0KBcvXiQnJ4cPPvigwC+R/GV6w8LCWLNmDQsWLOD1119Ha82tt97KP//5TwA+++wz3njjDWrVqkWTJk0cNWCWL1/O1KlTyc7OJjQ0lHnz5hEeHk7Tpk3ZsGED4eHhWK1WmjRpwm+//UZY2NX/ZSk9cuF2ejatwUv9W7Jy7yne+G5vgbaMbFuJ2qY1gxndJdKYAD3YsGHDClQv/OKLLxg8eDB+fn589dVXbN26lTVr1vDEE0+U+nLQ4srWXmrixIncfffd7NixgxEjRvDII48QHR3NK6+8wtChQ0lISCiQxDMzM7n//vtZvnw5v/76KydO/L3S1GuvvcYNN9xAXFwca9as4cknnyQtLQ2AzZs3M2/ePBISEvjyyy+Jj4/nzTffpFGjRiQkJPDWW28xf/58+vbtS0JCAtu3byc6OrpArJeW6T127BhPP/00q1evJiEhgbi4OJYtW8bx48d56aWXWL9+PT/99JNjBSKw1bX57bff2LZtG8OGDeNf//oXJpOJkSNHOsrnrly5kjZt2pQpiYP0yIWbGt0lkoOnU/l43SEahgdxV8d6AMxY+yd/JWewaFwnj5/gLKnnXF7atm3LqVOnOHbsGKdPn6ZatWrUq1cPi8XCs88+yy+//ILJZOKvv/7i5MmTXHPNNZc9ZknlXfPbuHEjS5cuBWDUqFE89dRTJR73999/p0GDBo5qiyNHjmTmzJkA/Pjjj3zzzTeORTEyMzM5fNhWiK1Pnz6Ehtpq+Nxxxx2sW7euUGnZDh06OIp2DRw4sFAiv1RcXBw9e/YkPNxWUXPEiBH88ssvAAVeHzp0KPv37wfg6NGjDB06lOPHj5OdnU2DBrYrq8aOHcuAAQN47LHH+PTTT7nnntItCFISSeTCbb3QrwVJ59J54etd1KseQJ1q/nz080Fub1uHjg2dV2yrshk0aBCLFy/mxIkTjtVs5s2bx+nTp9myZQtms5nIyMhC5VyLK/daUnnXkpSm3Gxx22itWbJkCU2bNi3w+qZNmwrtU9Qxunfvzi+//MK3337LqFGjePLJJ7n77ruLjaOkv06Ki/Hhhx/m8ccf57bbbmPt2rWOVYfq1q1LzZo1Wb16NZs2bSrV4haX49ldGlGheXuZeHd4WxqFBzJh3hYe/yIBX28Tz9xSdHU6UTrDhg1j4cKFLF68mEGDBgG2hSVq1KiB2WxmzZo1JCUlFdqvfv367Nmzh6ysLC5cuMCqVauAksvW5telSxcWLrQtYzdv3jy6detWYpzNmjXj0KFDHDhwAIAFCxY42vr27cu7777rSLDbtm1ztP3000+cO3eOjIwMli1bRteuXQuV3E1KSqJGjRrcf//93HvvvWzdurXQ+fPv07FjR37++WfOX1ilHgAACUNJREFUnDlDbm4uCxYsoEePHnTs2JG1a9dy9uxZLBaLo+Ru3ve0Tp06gK2yZH733XcfI0eOZMiQIXh5lX3xkzL1yJVS0cCHgB+QAzyotd5c5qiEsAv2M/PJ6A7cPmM92w4n82K/FtQI9twJTnfQsmVLUlJSqFOnjmMIZMSIEfTv35+YmBiio6OLLOVat25dhgwZQlRUFI0bN6Zt27ZA8eVdW7ZsWWD/6dOnM3bsWN566y3HZGdJ/Pz8mDlzJrfeeithYWF069aNXbt2AfDCCy/w2GOPERUVhdaayMhIxyRst27dGDVqFH/++Sd33XUXMTG2YoFdu3alVatW3HzzzbRq1Yq33noLs9lMUFAQc+bMKXT+S8v0vvHGG/Tq1QutNbfccotjcnXKlCl07tyZWrVq0a5dO3Jzcx2vDx48mDp16tCpU6cCJYBvu+027rnnHqcMq0AZy9gqpX4E/qu1/l4pdQvwlNa65+X2kzK24krt+usC/9t9gkd7N8bbg8fG3aGMrTBefHw8kyZNKvG6+SspY1vWMXINVLE/DgGOlfF4QhSpVZ0QWtUJMToMIcrszTff5IMPPnDK2Hiesibyx4D/KaWmYRtv71L2kIQQouKaPHkykydPduoxL5vIlVIrgaKuQXoO6A1M0lovUUoNAT4BbizmOOOAcQD16tW76oCF8HRa6yteIFhULlc65F3WMfILQFWttVa2T+YFrXWVy+0nY+Sisjp06BDBwcGEhoZKMhdF0lpz9uxZUlJSHNee5ymvMfJjQA9gLXAD8EcZjydEhRYREcHRo0c5ffq00aEIN+bn50dERESpty9rIr8feEcp5Q1kYh86EUIUzWw2F+plCVFWZUrkWut1QHsnxSKEEOIqeO4FuUIIIQBJ5EII4fHKdNXKVZ9UqdNA4WIOpRMGnHFiOM7krrG5a1zgvrG5a1zgvrG5a1zgvrFdaVz1tdbhl75oSCIvC6VUfFGX37gDd43NXeMC943NXeMC943NXeMC943NWXHJ0IoQQng4SeRCCOHhPDGRzzQ6gBK4a2zuGhe4b2zuGhe4b2zuGhe4b2xOicvjxsiFEEIU5Ik9ciGEEPlIIhdCCA/nUYlcKXWTUmqfUupPpZRzC/peWRyfKqVOKaV25XutulLqJ6XUH/Z/qxkUW12l1Bql1F6l1G6l1KPuEJ9Syk8ptVkptd0e18vuEFe++LyUUtuUUivcLK5EpdROpVSCUirezWKrqpRarJT63f5562x0bEqppvbvVd7XRaXUY0bHlS++SfbP/y6l1AL7/4syx+YxiVwp5QW8D9wMtACGK6VaGBROLHDTJa9NBlZprRsDq+zPjZADPKG1bg50Ah6yf5+Mji8LuEFr3QaIBm5SSnVyg7jyPArszffcXeIC6KW1js53vbG7xPYO8IPWuhnQBtv3z9DYtNb77N+raGx1oNKBr4yOC0ApVQd4BIjRWrcCvIBhTolNa+0RX0Bn4H/5nj8DPGNgPJHArnzP9wG17I9rAfuM/p7ZY/ka6ONO8QEBwFagozvEBUTY/wPdAKxwp58nkAiEXfKa4bFhW+LxEPYLJtwptnyx/ANY7y5xAXWAI0B1bAULV9hjLHNsHtMj5+9vQp6j9tfcRU2t9XEA+781DI4HpVQk0BbYhBvEZx++SABOAT/9f3t3E2JlGYZx/H/V9DFO0fcinUKlphbTlC6sUKQySER0UYSRoNimkKA2kUhBtI0IgmxRGWRo+EHYpixCaudH1jiVFpXZZKlkEZSU2N3iuU9ONpaTo+/7Hq8fDOfMM+fMXDNz5j7Ped557yciapELeAZ4BPhjyFgdckHZF3eDpK25y1Zdsk0E9gPLc0nqBUldNcnWMg9YmdcrzxUR3wJPAbuB7ygb8WwYjWxNKuTDbafi/508BknnAWuBhyLi56rzAETE4SgvebuBKZJ6q84kaTawLyK2Vp3lGKZGxGTKkuJiSdOrDpQ6gMnAsoiYBPxCtctPfyPpbGAOsLrqLC259j0XmACMBbokzR+Nz92kQj4IXDHk/W7KDkV1sVfS5QB5ua+qIJLOohTxVyNiXd3yRcRPlF2lZtYg11RgjqRdwCrgNkkrapALgIjYk5f7KGu9U2qSbRAYzFdVAGsohb0O2aA88X0QEXvz/Trkuh34KiL2R8QhYB1lw/oTztakQr4ZuFrShHy2nQesrzjTUOuBBXl9AWVt+pSTJMom2J9GxNNDPlRpPkmXSbowr3dSHtQ7qs4VEUsiojsixlMeU+9GxPyqcwFI6pJ0fus6ZT11oA7ZIuJ74BtJ1+TQDOCTOmRL93BkWQXqkWs3cJOkMfl3OoNygPjEs1V1IOJ/HiyYBXwGfAEsrTDHSsoa1yHKzOQ+4BLKAbPP8/LiirJNoyw59QMf5tusqvMBfcC2zDUAPJ7jtfi5ZZZbOHKws/JclHXoj/Lt49Zjvg7ZMscNwJb8nb4OXFSHbJSD6T8AFwwZqzxX5niCMoEZAF4BzhmNbD5F38ys4Zq0tGJmZsNwITczazgXcjOzhnMhNzNrOBdyM7OGcyG3tiHpcHa8G5C0WtKYEdx3rKQ1I/x6GyXVbkNfO/24kFs7ORil810v8Dtw//HcSVJHROyJiLtObjyzk8OF3NrV+8BVeXbkS5I2Z3OnuQCSFuas/Q1KU6rxyv7y2SN6efYB3ybp1hzvlLRKUr+k14DOHD9T0sv5SmC7pIcr+p7tNNVRdQCz0Sapg9Jr401gKeW0+0XZImCTpHfypjcDfRFxIDtFtiwGiIjrJF1LKfQ9wAPArxHRJ6mP0ooXyhmO4/KVAK1WBGanimfk1k46s03uFkpfixcp/UkezfGNwLnAlXn7tyPiwDCfZxrl9GkiYgfwNdADTAdW5Hg/5dR0gC+BiZKelTQTqEW3STt9eEZu7eRglDa5f8nmRHdGxM6jxm+ktF4dznAtk1v+0dMiIn6UdD1wB2U2fzewaCTBzU6EZ+TW7t4CHsyCjqRJx3Gf94B78/Y9lBn8zqPGeymNwJB0KXBGRKwFHqO0czU7ZTwjt3b3JGUHoP4s5ruA2f9xn+eA5yVtp+yBujAifpO0jLIjTquz5Ka8/bgcb02Mlozy92D2r9z90Mys4by0YmbWcC7kZmYN50JuZtZwLuRmZg3nQm5m1nAu5GZmDedCbmbWcH8Ci0AuAs14W1kAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_30_1.png" }, "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAawAAAEWCAYAAAA6maO/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hUZfbA8e+ZTDphQu8QQIqAikqxLtgQjYq66oq99+6uxvW3enUt2bXXxYK9Yi9BUeyKIKBIlWrQ0OuQBEh9f3/cGxhCyk2Z3MnM+TzPPJk7t50pmTPve98ixhiUUkqpSOfzOgCllFLKDU1YSimlmgVNWEoppZoFTVhKKaWaBU1YSimlmgVNWEoppZoFTVgxQEQsEXmlAfvPE5GRjRhSTKrP+yAir4vIieGKqa5EZKSI5HkdR2NoiuciIh1EZIGIJIbzPLFCE1YYicgZIjJDRApEZJWIfCIih3gdV01E5AURuSv0MWPMQGPM1x6FtIOIGBHZw+s43GiML0MR2RvYB/igcaJqWg39oRSp6vLeGmPWAF8Bl4Q3qtigCStMROQG4GHgHqAD0B14EhjjZVyRSkT8TXCOuHCfo5FdCrxqtHd/o2uKz1uIV7HfS9VQxhi9NfINCAAFwKk1bPMCcFfI8kggL2Q5F/gHMBsoBMZjJ75PgHxgMtCqqn1D9j/SuW8Br4SsewtYDQSBb4GBzuOXACVAsRP/R6HHAjoD24DWIcfaF1gPxDvLFwALgE3AJKBHNc8/AzDAhcAfwLc17e/EaZzXogD4G3Ae8H2l4xpgj5DX+H/ARGe/I53n8nfndQ0CbwJJ1cR4HvAD8Jiz7W/AESHrz3dizQeWAZc6j6c6r1O5E2uB89pZwATgJWefecCQGj4jy4BDKj12ccg55wP7OY/vCXwNbHaOe0Klz9qT2J+dAuc5dcT+QbXJeV77Vvrs3OIcfxPwfMVrxO6f087AO8A64HfgGufx0difoxLnnL+G/G+MB1YBK4C7gLhqnr+F/Vl9xXm+c4C+TmxrgT+BUbW9H6FxAzdjf/ZfruK5XOM8565AInA/9mdzDTAOSK7hvR0GzAC2ONs/GHJcP7CVav4X9FaH71avA4jGm/PPWgr4a9jmBWpPWFOxk1QX5x/0Z+wEkQh8Cdxe1b4h+1eXsC4A0pzjPAzMqi6uKo71JXBxyLr7gHHO/ROBJdhfnn7g/4Ap1Tz/DOzk8pLzJZBc2/6EJCNn+TxqT1hB4GDs2oQk57n85HzJtMb+grusmhjPc97H64F47CQZxEnYQCbQGxBghPOlVJFAqnpPLGA7cCwQB9wLTK3m3KnOc2kX8tip2F/yQ51z7gH0cGJbAvwTSAAOx/7S7hfyOqwH9ndegy+xk8s5Thx3AV9Ver/nAt2c1+iHis9E6PNyXtOZwG3OeXthJ4qjq/rcOY+9DzzlPL/2zntxaTWvQcXrdbTzeXjJiftW5zlfDPwesn1t70cp8B/sz31ypefyL+z/r3bO8sPAh87zTwM+Au6t4b39ETjbud8COKDS+tmE/IjQW/1uWiUYHm2A9caY0gYe5zFjzBpjzArgO2CaMeYXY0wR8B528qozY8xzxph85zgWsI+IBFzu/howFkBEBDjdeQzsao97jTELnOd+DzBYRHrUcDzLGFNojNlWz/1r84Ex5gdjTLkxZrvz2KPGmJXGmI3YX0SDa9h/LfCwMabEGPMmsBD7ixFjTI4xZqmxfQN8BhxaSzzfG2MmGmPKsH/l71PNdunO3/yQxy4C/muMme6cc4kxZjlwAPaXZLYxptgY8yXwMc775HjPGDPTeQ3eA7YbY15y4niT3T9Ljxtj/nReo7srHavCUOwv+Dud8y4DnsH+TOxGRDoAxwDXOe/5WuCh6rZ3fGeMmeR8Ht4C2jnPswR4A8gQkXRw9X6UY//IK3I+b05Y8iB2UjzMGLPO+VxfDFxvjNlojMnH/izWFGcJsIeItDXGFBhjplZan8/O91TVkyas8NgAtG2EevI1Ife3VbHcoq4HFJE4EckWkaUisgX71zRAW5eHeBs4UEQ6A3/BLgV856zrATwiIptFZDOwEfvXbpcajvdnyP367F+bP6t4bHXI/a3U/DquMMaEXkNajl06Q0SOEZGpIrLRifdYan8dK587qZrPyWbnb1rIY92ApVVs2xn40xhTXinO0Netrp+l0Ndtx3OupAfQueL9cl6Df2LXClSlojS4KmT7p7BLWtWpHOd6J8lWLFMRu4v3Y13Ij5YK6dhV4fcaY4LOY+2AFGBmSJyfOo9X50Ls6srfRGS6iBxXaX0aO99TVU9NeeExlvyIXZVxIvYXfFUKsf8pKnRswPl2OZbTuKC6f64zsBt+VFzPCWBfpxBnfY0X+I0xm0XkM+A07Kq710O+0P8E7jbGvFqH2EPPV9f9Kz/vql7DhjZY6CIiEvIcuwMfOs2U38GuVvvAGFMiIu/j8nWsjTGmUESWYn8JrnMe/hO7yquylUA3EfGFJK3uwKIGhNAt5H535xyV/YldJdenmmNUfg3+BIqAto1Q+7ALF+9HVfGA/dk/C5ggIicZY37Arj7dhn1td0UV++x2HGPMYmCsiPiAk4G3RaSN8z76satvf23AU1RoCSssnF9qtwFPiMiJIpIiIvHOL8D/OpvNAo4VkdbOF+11DTjlIuxf6pkiEo997ae6fh9p2F8aG7C/7O+ptH4N9rWImryG/cXwV3ZWB4J9YfoWERkIICIBETm1Ds+jtv0rx/YrMFBEBotIEnb1ZmNrD1zjvH+nYifpidjXbBKxk0mpiBwDjKoUa5s6VLVWZSL2tZgKzwJ/F5H9xbaHU106DTt53+TEORI4HrvKrL6uFJGuItIau9T0ZhXb/ARsEZGbRSTZKb0PEpGhzvo12FV2PgBjzCrsaroHRKSliPhEpLeIjKji2HVV2/tRLWN32TgTeE9EhjtJ/xngIRFpDyAiXUTk6JDntct7KyJniUg7Z9+KklRFSXAYkOtU36oG0IQVJsaYB4EbsJPHOuxfl1dhX3QG+/rFr9ilnM+o+gvB7bmCwBXYX2grsL+8qusn8hJ2Fc8K7BZRlevaxwMDnKqQ9yvv7PgQ6AOsMcbs+NVojHkP+6L2G05141zsaxZun0dt+1vAi05spxljFgF3YreYXAx87/ZcdTAN+7mux76Wc4oxZoNzXeMa7FZ/m7BLrh+GPJffgNeBZU68VVWp1eZp4EznmgrGmLecGF7DvibyPnYDkGLgBOzXaj12i8BznBjq6zXsz+Uy53ZX5Q2cqrnjsa8B/u6c+1nsUjvY15wANojIz879c7CTS0ULxLeBTg2IsyKWGt8PF/t/jt3K8EMR2R+7NeESYKrzWZwM9HO2req9HQ3ME5EC4BHg9JDqxzOxf4ypBpJdq+eVUhVE5DzgImOMZ529ReQ1YIIxprofD+E4Zy72857cVOeMVk4J7RvsbgOVr5+pOtJrWEpFMGPMGV7HoOrPaQm5p9dxRAutElRKKdUsaJWgUkqpZkFLWEoppZqFqLiG5fP5THJystdhKKVUs7J161ZjjGk2BZeoSFjJyckUFhZ6HYZSSjUrIrKt9q0iR7PJrEoppWKbJiyllFLNgiYspZRSzYImLKWUUs2CJiyllFLNgiYspZRSVRKR50RkrYjMrWb9mSIy27lNEZHqJiRtFJqwlFJKVecF7JHoq/M7MMIYszfwb+wZBsImKvphKVUvM1+EoDMLy35nQ3p3WDUbFny0+7ZDL4S0jpA3ExZ9uvv6Ay6HlNawfAos/Wr39QdfC4kt7HXLp+y+fsRNEBcPiz6DvOm7rhMfHHaLfX/Bx7Bq13kAF64tpOWB59KpRz8XT1op94wx34pIRg3rQz/MU4Gu4YwnphOWMYYvFqzlsP7tifNJ7Tuo6LFtM3x0jbMg0PtwO2GtnQ/f3rf79nsebyeslT9XvX7wWDth/Tmt6vXDLrET1vIf4Nv7d19/6A12wlr2FUz9367rfHE7E9aiT+GXV3asMkBe2WDy/EM5VxOWqju/iMwIWX7aGFPfUtKFwCeNEFO1omLw29TUVFOfkS6+X7yes8ZPo1e7VK49og/H7d1ZE1esyF8DD/SFzAft0lMztHbLdo5++Fs2bS3hzOHdufukvbwOSTUzIrLVGJNayzYZwMfGmEE1bHMY9sShhxhjNjRqkCFi+hrWQb3b8OSZ+xHv83HtG7M46qFveP+XFZSWlXsdmgq38hL7r695VjIYY7j5ndlsLS5j/6SVxOWv9DokFaNEZG/smabHhDNZQYyXsCqUlxs+nbeaRyYvZuGafDoHkjj3oAxOH9adQHJ8I0aqIkbJdrt6r3Uvu6qvmXl12nJufW8u1vEDOHnyoUxPHckRf3+l9h2VCtHQEpaIdAe+BM6pdD0rLDRhhSgvN3zx21rGf7+Mqcs2kpIQx1/368rpw7oxsHOgESJVquFy1xdyzCPfMSSjFS+eP4wtd/VkeuJwjrr5Ta9DU81MbQlLRF4HRgJtgTXA7UA8gDFmnIg8C/wVWO7sUmqMGRK2eDVhVW3eyiDPfZ/LR7NXUlxazqAuLfnbkG6cMLiLlrqiwbZNsPBTyDgE0rt5HY1rwW0lnPnsVP7YsJXPrh9Bx0ASG//dhxm+vRh167teh6eaGTclrEgS09ewajKwc4AHTtuHn/55BNbxAygrh399MI+hd03mohdn8MGsFRQWlXodpqqvzX/A+5ft1kQ8km3eWszZ46excHU+D58+mI6BJADKfX5MWYnH0SkVfs3zinMTSk9J4LyDe3LuQRnMXbGF92et4OPZK5m8YA1J8T5G9G3HkXt24LD+7WnbItHrcJVbZc6PjbjmUVreVFjMWeOnsXhNAePO2p/D+3fYudLnxxRrwlLRTxOWSyLCXl0D7NU1wK3H7sn03I18PHsVn81fzaR5axCBfbulM7Jfew7eoy37dA3gj9MCbMRqRq0ENxQUceaz01i2vpCnztmfw/q132X99z2v4bXZWxhVbvBptwwVxSL/vzUC+XzC8F5tGN6rDXeOGci8lVuYvGANXyxYy0OTF/Hg54tokejngF6tGd6zDUMyWjGwc4AEvyawiFFWbP9tohKWMQaRuieT7xev5+Z3ZrO+oIhnzxnCX/q2222bdZ2P4KdZCygsLiUtqXmUGJWqD01YDSQiDOoSYFCXANcd2ZeNhcX8uHQDPyxdzw9L1jN5wVoAkuJ9DO6Wzj7d0tm7Szp7dw3QtVVyvb7EVCOouObja9wveGMMa7YUsXBNPgtWbWHeyi3MXxlkxeZt3HhUPy7+Sy9XxyksKuXeTxbwytQ/6NU2lTcuOYB9u7eqcttuxUvZU5aTv10Tlopu2kowzNZu2c6M5ZuYnruRmcs3sWDVFkrK7Ne8VUo8e3ZqyZ6dWtK/Yxr9O7akd/tUUhL0d0TYFeXDxt/tfliJLeq8e2lZOX9u2saydQUsW1fIsvUFLF5TwMI1+eRv39kYp0t6MgM6t6Rgeyk/LtvAo2P35YR9Old73LJyw+fzV3NXzgJWbN7GRYf05MZR/UiKj6t2n42PHcaCtUW0vXIS/Tqm1fm5qNjV3FoJ6jdjmLVvmcSxe3Xi2L06AVBUWsbC1fn8mhdkbl6Q31Zv4dVpy9lesnN0jS7pyfRu34Le7VLJaJNKjzYp9GybSuf0ZOL1uljjSEyDTntXu7q83LC+oIi8zdvI27SNFZu2kbdpK39s3MryDVtZsXkbZeU7f+y1Tk1gj3YtGDO4M307pNGnfRp7dkojPSUBgO0lZZw9fhp/n/ArnQJJDM1ovcv5tpeU8dbMPMZ/t4zcDVvp1S6Vty49kCGVtquKLy4ev2wlf7s2vFDRTUtYEaCs3JC7oZCFq/NZsraApesKWLK2gN/XF7K1uGzHdj6Bji2T6Noqha6tkumUnkTHQDKdWibRMZBE+5aJtElN1PEQXShft4S8mTn8mn4EeduTWZu/nbX5RawObmd1cDtrtmyntHzX/430lHh6tE6he5tUerROoUebFHq1s39YVCSmmmwqLOav/5vCxq3FvHP5QXRrlcK03zfw2bw15MxZxcbCYvbpls6lf+nF0QM7un4ftzx9HEvyVhE84xMO69++9h2UcmgJS9VZnE/o3a4FvdvtWjVljGFdQRHLN2zl9/WF5Dm/8vM2bWPa7xtZvWX7Lr/ywU5qbVok0j4tkTYtEmmbmkCbFgm0Tk2kVUo86SkJO/4GkuMJJMeTFO9rlGtpS9YW8MKU3/lhyQb8PiEpPo5Ev2/H38R4H4l+577fR2J8HAlx9v0Ef8XfOBKc5dB1FcsJfh/xzuPxO5bFvh/nq7WV3B8btvL2zD/ZMv11rJKHOK8ohWWmM6kJcbRvmUTHlkkM79majoEkOgWS6NIqmS7pKXRplUyLxIb9u7RKTeD584dy8pNT+NtTP1JUWk7+9lKS4+MY2a8d5x2UwbCerev8XsT54/FTxhYtYakoF7EJS0RGA48AccCzxphsj0NqciJC+7Qk2qftXoUEdslsQ0ERq4LbWRXcxrr8ItbmF+34u6GwmGXrClhfULRLlWNlCXE+Wib7SUuKJy3JT1qSnxaJflITd/5NTYgjJcFPSkIcKYl+kuPj7FuCj02FJbw8dTnfLFpHgt/um+b3CUWl5RSVlrGtpIzN24opKilne2kZRSXlFJeV71huzEJ+nE92SWD+kPsILFtXiAjc0skPG+HFiw6mdde+pDYwGbnVo00qz5w7hH++O4e9uwYYNaAjh/RpW+M1qtrExScQT9ku186UikYRWSUoInHAIuAoIA+YDow1xsyvavvmXiXYFLYVl7FpazEbC4vZvLWEzduKCW4r2XHbsq2U/O0l5G+3/xYWlVFQVEphcSmFRaU7GopUp11aImcf0IMzhnevUwdqYwyl5Ybi0vIdCa64tHzHcnFZOSXO34rHi8vKKSkzznIZpeWGotJySpxtSsvNzvtlhpJye/sSZ4itk/frSuelE+z5sK6fB4GwzjkXdtt/n8p5z3zHiFEnc/nI3l6Ho5oRrRJsHMOAJcaYZQAi8gYwBqgyYanaJSfEkZyQTOf05HrtX1xaztbiUrYWl7G1uJRtxeVsK7FLTwIc0KtNvfqZiewsEaU25UAh5eFp1u6FxIzhTGcj+xdplaCKbpGasLoAf4Ys5wHDQzcQkUuASwASEmq/4K0axr6OlEB6iteRNJJmNjRTTWTtfI5IXED+9u5eh6JUWEVqG+mqrjrvUidljHnaGDPEGDPE74/UvKsi1uAz4OqfISkKpo2Z+j/u5nG9hqWiXqR+0+cBoXM+dAV0SlXVeJJa2rdoEBfvNLrQKkEV3SK1hDUd6CMiPUUkATgd+NDjmFQ0Wf4jfP8wlFfferLZ8FU0a9cSlopuEZmwjDGlwFXAJGABMMEYM8/bqFRUWfolTL4domEsR58fvzZrVzEgUqsEMcZMBCZ6HYeKUuUldgvBaEhYcX7itEpQxYCITVhKhVV5abOYC8uV/c7l5TV7kL9US1gqukVklaBSYVdWGhVN2gFo05sN7YZRUFRKJA4EoJovEXlORNaKyNxq1vcXkR9FpEhE/h7ueDRhqdhUXhI9Jax1i9g3OBnKS9lWUlb79kq59wIwuob1G4FrgPubIhhNWCo2HXkHXPmT11E0jkWfcOT8W0mkRBteqEZljPkWOylVt36tMWY60CQXUDVhqdiU2AJa7D7dfLPkDC/lp1QbXqi68ovIjJDbJV4HVJMoqRNRqo7mvgP5a+DAK7yOpOGca3Hx2hdL1V2pMWaI10G4pSUsFZsWfAQznvM6isbhXIvTvlgq2mnCUrGprCR6WglWlLBE+2Kp6KZVgio2RVM/rL7HsG7sp6x9fo2WsFSjEpHXgZFAWxHJA24H4gGMMeNEpCMwA2gJlIvIdcAAY8yWcMQTJf+xStVRNJWwUtuQ1GMIxXymJSzVqIwxY2tZvxp7cPImoQlLxaaKoZmiweY/SF38BW0kiQItYakopglLxaaz3oXyKOlku2Yevpzr6JN4j7YSVM2HFfABLbCCrqsPtdGFik1x8RCf5HUUjcOp2gwkiF7DUpHNCryGFWiJFUgF5gMLsQL/cLu7JiwVm75/GGa+4HUUjcOp2myZYPQalop0A5wS1YnYs3F0B852u7MmLBWb5rwFiz7zOorG4ZSw0uLREpaKdPFYgXjshPUBVrAEcD1isyYsFZvKSiAuSi7hOiWsFvGG/CItYamI9hSQC6QC32IFegCur2FFyX+sUnVUVhw9rQQ7DoIrp7Pys/XkryzyOhqlqmcFHwUeDXlkOVbgMLe7a8JSsak8iubDik+Gdn1JTCkif3uh19EoVT0r0AG4B+iMFTwGKzAAOBAY72Z3rRJUMUogLsHrIBrHtk0w5TEyTB7520t0EkcVyV4AJgGdneVFwHVud9aEpWLT9XPghEdr36452LoRPvs/MooXUVJmKCot9zoiparTFis4AbA/pFawFHDdIVITllLNnTMmYqrfLllpS0EVwQqxAm2oaBloBQ4Agm531oSlYtNH18Lcd72OonE41+KS4yoSlrYUVBHrBuBDoDdW4AfgJeBqtztrowsVm2a9BknpMOhkryNpOKe1Y0qcXcuiJSwVkaxAHDDCufUDBFjo9MVyJeISlojcBxwPFANLgfONMZu9jUpFnWgard3pT5bk04SlIpgVLMMKjMEKPgTMq88hIi5hAZ8DtxhjSkXkP8AtwM0ex6SiSXkZYKKnH1ZiAG5YwNZNPvh+plYJqkj2A1bgceBNYGcfDCv4s5udIy5hGWNCx8uZCpziVSwqSpU5X+hRM9KFD1p2pkXpVkBLWCqiHeT8vTPkMQMc7mbnSP+PvQA7E+9GRC4BLgFISIiS/jSqaZSXQnIrSGjhdSSNwxj45j+06jAUgC1awlKRygq6HtWiKp4kLBGZDHSsYtWtxpgPnG1uBUqBV6s6hjHmaeBpgNTUVO0pqdxLbAE353odReMRgW/+Q8rBNwD7aQlLRS4rcFvVjwfvrPLxSjxJWMaYI2taLyLnAscBRxjttq9U7Xzx+EwJqQlxFBRpwlIRK3TssCTs7/kFbneOuCpBERmN3chihDFmq9fxqChUuAE+vhaGXgS9RnodTeOIi4eyUtKS4rXRhYpcVvCBXZcD92P3y3IlEjsOPw6kAZ+LyCwRGed1QCrKFOfDgo8guMLrSBqPzw/lJaQl+bVKUDUaEXlORNaKyNxq1ouIPCoiS0RktojsV8dTpAC93G4ccSUsY8weXsegolyZ84UeLf2wwClhacJSje4F7ELES9WsPwbo49yGA/9z/lbNCsxh54SNcUA74N9ug6k1YWVk5RwMWEAPZ3sBTG52puusqFREKXeqzHwR93ut/q7+GfyJtHjpV4Jbi72ORkUJY8y3IpJRwyZjgJectgZTRSRdRDoZY1ZVs/1xIfdLgTXOALiuuPmPHQ9cD8ykDqPqKhWxdvTDiqISVlJLANKS/ORt1Eu/yjW/iMwIWX7aaYHtVhfgz5DlPOex6hLWXVjBs3d5xAq8vNtj1QXrYptgbnbmJ24OplSz4IuDQLfo6YcF8P3D0KIDLZMGskWrBJV7pcaYIQ3YX6p4rKaW3QN3WbICfmB/tydzk7C+ysjKuQ94F9gx/3ZudqaroTSUijgdBsL1VV5Dbr5+fR3a9iUtbbC2ElRNKQ/oFrLcFVi521ZW4Bbgn0AyVmCL86hgjxnrukTnJmFVXEALzcKuh9JQSjUBXzyUl5KW6KeotJzi0nIS/JHYCFhFmQ+Bq0TkDexcEazy+pUVvBe4FytwL1bwlvqerMaElZGVEwd8mJud+VB9T6BUxFk5C764A46+B9rv6XU0jSPOv6OVIEBBUSmt/TpkmWoYEXkdGAm0FZE84HYgHsAYMw6YCBwLLAG2AudXeSAr0B8r+BvwFlZg96bvjTH4bW52ZllGVs4JgCYsFT0K18HSL6GowOtIGo8v3umHZTckyd9eQutUTViqYYwxY2tZb4ArXRzqRuBi4IEq1jXq4LdTMrJydhsOXq9hqWYr2kZrh5CRLuznpH2xVESxghc7f8M++G2DhoNXKuLs6IcVRc3az/0YfD7Slm4AdMR2FWGsQM1Te1vBd90cptaElZud2aCMqFTEicZ+WD67gYWWsFSEOt752x67EPSls3wY8DV2K/RauRnposrh4HOzM10NB69UxElMg3Z7Qnyy15E0nunPQsE62g+5Hr9PuDtnAdtLyjh+7874fFV1lVGqCVlBuzGGFfgYGIAVXOUsdwKecHsYN+1eC0NuZdhjR2XUKVilIknfo+HKqZDe3etIGs+yr2H+B7RPS+K584aSmujn2jdmceyj3/HFgjXoLD0qQmTsSFa2NUBftzu7qRLcpVVHRlZOnYaDV0o1AaeVIMBf+rbjkD3a8tHslTz4+SIufHEGw3q25tZj92SfbukeB6pi3NdYgUnA69htIU4HvnK7c316FtZpOHilIs689+DZo2DbZq8jaTzOaO0VfD5hzOAuTL5hBP8+cRDL1hUw5okfuPr1X/hjg441qDxiBa8CngL2AQYDT2MFr3a7u5trWA0aDl6piLNlFeT95HUUjcsZ6aKy+DgfZx/Qg5P27cJT3yzlme+WMWnuas4/JIOrDttjR78tpZqM3SLQVSOLytw0a99tOPjc7ExtgqSarzJn+o1oaiWYkAr+pGpXt0j0c+Oofpw5vAf3TVrIU98s452Zefx9VD9OHdKNOG2YoZqC3bz9P9itBcW5GaxgSze7u0lYd+VmZ+4y9HtGVs7LlR9TqtmIxn5Yx/7X1WYdA0k8cNo+nHtQD+78aD5Z787h5anLuXPMQPbv0TrMQSrFf4HjsYIL6rOzm2tYuwwHn5GVU6fh4JWKONE443Ad7d01nbcuO5DHxu7LxsJi/vq/H7lxwq+syy+qfWel6m9NfZMV1FDCysjK2TEcfEZWzhZ2zntSp+HglYo4LTtBt+EgUVQNNudtWPwZnOz+X1NEOH6fzhzevz2Pf7WEZ79bxmfzVnPDqL6cc2CGVhOqcJiBFXgTeJ+Q6arcjnQhtfXPyMjKuTc3O7Pew8E3hdTUVFNYWFj7hkpFqy/utCdxvH1jvQ+xdF0B1ofz+G7xevbqEuArqkgAACAASURBVOCek/Zir66BRgxSRRoR2WqMSW2yE1qB56t41GAFL3Czu5uE5QPOAHrmZmf+OyMrpxvQKTc7M2KaWWnCUjHvq3vhm2y4fXODSo7GGD6evYo7P57PhoIizjkwgxtH9dXWhFGqyRNWA7m5hvUEcCB20gIooA5DaSgVcb65D547xusoGlfFyPNlDRv0tqKacPINIzhzeA9e/DGXUQ99y1e/rW14jEpZgb5YgS+wAnOd5b2xAv/ndnc3CWt4bnbmlcB2gNzszE2ATrSjmq8tebBhiddRNK6KFo/ljTNKeyA5nn+fOIh3Lj+ItCQ/578wneve+IWNhcWNcnwVs54BbgHsD6oVnI092oUrbhJWiTPzsAHIyMppB5TXOcw6EpG/i4gRkbbhPpeKMWWl0ddCMCkAaZ2hvKxRD7tf91Z8fPWhXHdkH3LmrOLIB7/ho19XNuo5VExJwQpWvpzkul+vm4T1KPAe0D4jK+du4HvgHvfx1Z2IdAOOAv4I53lUjCovAV8UTd4IMOR8uHEBJLnqf1knCX4f1x3Zl5xrDqVb6xSufv0Xrnz1ZzYUaBN4VWfrsQK9qRg9yQqcAqyqcY8QNSYsp8HF78BNwL3OgU/Mzc58q77RuvSQc04dYlo1vrKS6CthNYG+HdJ457IDuWl0Pz6fv4ZRD33Lp3Ndf9coBXAl9liC/bECK4DrgMvc7uymleCPudmZBzYoxDoQkROAI4wx14pILjDEGLO+iu0uAS4BSEhI2L+oSH/tKZe+vQ82LYcxj3sdSeNZ9jVMeRxOfBJatA/76RauzufGt2Yxd8UWTt6vC3ecMFBbEjZDbloJisho4BHssWSfNcZkV1rfCngO6I3d1uECY8zcGk9sBVIBH1Ywv07xukhYdwCzgXdzszMbpcQjIpOBjlWsuhW7s/IoY0ywpoQVSpu1q5j36xvw3qVw9c/QpneTnLKkrJzHvlzC418upnN6Mg+eNphhPXV4p+aktoQlInHAIuxLNHnAdGCsMWZ+yDb3AQXGmDtEpD/whDHmiCoPaAXaALcDh2DXoH0P3IkV3OAmXjfXsG4A3gKKMrJytmRk5eQ7I1/UmzHmSGPMoMo3YBnQE/jVSVZdgZ9FpKrkppSqUHFNrooR28MlPs7HDUf15a3LDsInwulP/8h/P/2NkrKwt8lSTWcYsMQYs8wYUwy8AYyptM0A4AsAY8xvQIaIdKjmeG8A64C/Aqc49990G4ybCRzT3B6soYwxc7BH8QXAbQlLqTp5+0K74cVpL3kdSeOpuCbXwH5Y9bF/j1ZMvPZQ/v3RfJ78eilTlm7gsbH70q11SpPHourMLyIzQpafNsaEju/VBfgzZDkPGF7pGL8CJwPfi8gwoAd2YWNNFedrjRUMnZ7qLqzAia6DdbuhUlEjfxU7h8aMEo3cD6uuWiT6+c8pe/OXvu3Ienc2xz7yHfecvBfH79PZk3iUa6XGmCE1rK/qH6XypaFs4BERmQXMAX6h+qbqX2EFTgcmOMunADlug63PjMNNxhiToaUr1ejKSnaODBEtklpCmz6eN9fP3LsTE685lD4dWnD167+Q9c5stpc0bt8w1aTygG4hy12BXTriGWO2GGPON8YMBs7BnuT392qOdynwGvbAt0XYVYQ3YAXysQK1XmqqtdFFc6CNLlSdPH0YpLSBs972OpKoVVJWzkOfL+LJr5fSv2Ma/ztrf3q2bTZD1sUMF40u/NiNLo4AVmA3ujjDGDMvZJt0YKsxplhELgYONcacE454XZWwMrJyDsnIyjnfud8uIyunZziCUapJlGs/rHCLj/Nx0+j+PH/+UFZv2c7xj33PxDnaZ6u5McaUAlcBk4AFwARjzDwRuUxEKvpP7QnME5HfgGOAa6s9oBW4sNJyHFbgdrfx1JqwMrJybgduxh7/CSAeeMXtCZSKOD1H2PNhRZO1C+wBffNm1L5tEzqsX3tyrjmUPdq34IpXf+aOj+ZpK8Jmxhgz0RjT1xjT2xhzt/PYOGPMOOf+j8aYPsaY/saYk40xm2o43BFYgYlYgU5Ygb2AqYDrhn1uSlgnAScAhQC52Zkr63ICpSLO0XfDIdd5HUXjKtkKf0yBwsi75NslPZkJlx7I+Qdn8PwPuZz57DSd2ThWWcEzgBexG2fkANdhBf/udnc3CavY6TBcMfitVkQrFWk8biVYmwS/j9uPH8gjpw9mdt5mjnvsO37+o6Yf4ioqWYE+2FWG7wC5wNlYAdf9H9wkrAkZWTlPAekZWTkXA5Oxh4hXqnl64gD4JMvrKBqXh/2w6mLM4C68c/lBJPh9nP7UVN74Sce3jjEfAbdhBS8FRgCLsRtyuFJrwsrNzrwfeBs7I/YDbsvNznysfrEqFQG2boDS7V5H0bh2lLCabqSL+hrYOcBHVx3C8F6tyXp3DtaH8yjV61qxYhhWcDIAVtBgBR8AGq/jcEZWzvXAW7nZmZ/XO0SlIkk0thJMSIFOg+15sZqB9JQEnj9vKPdM/I3nfvidpesKeHzsfgRSoux9UZUlYwUeArpgBUdjBQZgz2i/2M3ObqoEWwKTMrJyvsvIyrkyIyunujGilGoeykp3lkiiRcvOcOk30PdoryNxzR/n47bjB/Cfv+7F1GUbOOnJH1i2rsDrsFR4vYDdRL6Ts7wIe4oRV9xUCd6Rm505EHsek87ANxlZOZPrHqdSEaI8Cke6aMb+NrQ7r150AJu3lXDSk1OYtszVwN2qeWqLFZxAxaz1VrAUcD0USl2GZloLrAY2EDJArVLNzt6nQed9vY6icW3fAuMOgdkTat82Ag3r2Zr3rziYti0SOHv8T7z/ywqvQ1LhUehMMVIx4/ABQNDtzm6uYV0O/A17fKi3gYtzszPn17yXUhHshChsMyQCq+dA/mqvI6m37m1SePfyg7n0lRlc9+Yslm/YyjVH7IFIlA1UHNtuAD4EemMFfsDOK6e43dlNvUgP4Lrc7MxZ9YtPKRV2Ed4Py61ASjwvXTCcW96dw0OTF5G3aSv3nLwX8XERPU63cssK/owVGIHd4lyAhVhB1x/aahNWRlZOy9zszC3Af53lXaYSzc3O3Fi/iJXyUHEh3NsNjroDDrra62gaz45+WJHfrL02CX4f95+6N11bJfPIF4tZX1DEE2fuR0qCXneMCvZ1q3m1bleFmn62vOb8nQnMcP7ODFlWqvkpKwZTBhJlv9h9cYA0+xJWBRHh+qP6cs9Je/HNonWMfWYaGwp0OKdYV+1PltzszOOcvzoyu4oeFSWQaGvWDtBrJKR39zqKRnXG8O60bZHA1a//winjfuSlC4bpTMYxzM1o7V+4eUypZqGiBBKNzdrPeR/2C8s0RJ4aNbAjr140nI2FxZwybgqL1+R7HZKqLyuwe+6o6rFq1HQNKwlIAdpmZOW0YudUyS2x+2Mp1fxUjLUXl+BtHKpOhmS05s1LD+Ds8T9x2lM/8uIFw9i7a7rXYSm3rMCOfIIVqHc+qamEdSn29ar+7Hr96gPgiXqErJT3ElrA8MugXX+vI2l8zx4JX/zb6yjCpn/Hlrx16YGkJvo545lpTNUOxs1Jo+QTMcbUuEFGVs7VkT7YbWpqqiksLPQ6DKW89UB/2ONIGPO415GE1ergds4aP40/N27lqbP3Z2Q/HcegvkRkqzGm6aaMsgJXYwXrnU9qTVgAGVk5g4ABQFLFY7nZmS/V96SNTROWcq28zG4pGJcIvihrKfjQXpBxMJw0zutIwm5jYTFnj5/G4jUFPHnmfhw5QIc4rY8mT1gAVuAgIIPQS1JW0FU+cdPo4nbgMed2GHa/rBPqEaZS3lv1K9zdERZP8jqSxhfnj/j5sBpL69QEXrvoAPbslMZlr8zkkzmrvA5JuWEFXgbuBw4Bhjq3IW53d9NU6hRgH+CX3OzM853R2p+tR6hKea/cGWczGpu1++Kjph+WG4GUeF6+aDjnPz+dq17/hQfLyhkzuIvXYUUdERkNPALEAc8aY7IrrQ8ArwDdsXPK/caY56s53BBgAFaw9qq9KripE9mWm51ZDpRmZOW0xB4Et1d9TqaU56K5WXuvkfacWDGkZVI8L14wjP17tOL6N2fxwSwdNLcxiUgcdqOIY7AvC40VkQGVNrsSmG+M2QcYCTwgItU1w50LdKxvPG7+a2dkZOWkA89gt+ooAH6q7wndEJGrgauAUiDHGHNTOM+nYkhFlVk0lrCO/a/XEXiiRaKfF84fyvnPT+f6N2cR5xOO21t73jSSYcASY8wyABF5AxgDhA6AboA0sUcpbgFsxP7urkpbYD5W4Cdg59AlVtDVZaZaE1ZuduYVzt1xGVk5nwItc7MzZ7s5eH2IyGHYL8jexpgiEdEmQKrx7ChhRWHCimEpCX6eO28o5z3/E9e+MYs4EY7Zq1PtOyq/iIQOtfe0MebpkOUuwJ8hy3nA8ErHeBx7BPaVQBrwN2NMeTXnsxoUbHUrMrJy9qtpXW525s8NOXENLgeyjTFFAMaYtWE6j4pF6Rlw6I32DL3R5o0zwRgY+1rt20ah1EQ/z58/jHOf+4mrX/+FJ3zC0QPrXfsUK0qNMTU1eqhqbpfK15+OBmYBhwO9gc9F5DtjzJbd9rSC32AFegB9sIKTsQIp2NfGXKmphPVADeuME1w49AUOFZG7ge3A340x0ytvJCKXAJcAJCToqAXKpbZ7wBG3eR1FeBRtgdJir6PwVEX14Nnjf+Kq137m2XOHMqJvO6/Das7ygG4hy12xS1KhzscuZBhgiYj8jt1BePdLR1bgYuzv7dbYya0LMA44wk0wNQ1+e5ibA9SHiEym6gtvtzoxtQIOwG7yOEFEeplKHcacYuvTYPfDClesKsqUbLOnGElu5YxwHkV88VCu/RHTnIYYY5+eyqUvz+ClC4YzrGfr2ndUVZkO9BGRnsAK4HTgjErb/IGdcL4TkQ7Yc10tq+Z4V2JfF5sGgBVcjBVwfdnHzYzDVY6m2ZCOw8aYI6tbJyKXA+86CeonESnHvlC3rr7nU2qHBR/BuxfDVTPt0lY0iYuPmX5YtQkkx/PyhcM47akfueCF6bx28XAde7AejDGlInIVMAm76u45Y8w8EbnMWT8O+DfwgojMwa5CvNkYs76aQxZhBYuxAvaSFfCzexVjtdy0Ehwacj8JO5P+DIRrpIv3sasbvxaRvkACUN2TV6puyqK4WbvPv7OfmaJNi0ReuWg4p477kXOe+4k3LzmQfh3TvA6r2THGTAQmVnpsXMj9lcAol4f7BivwTyAZK3AUcAXwkdtY3LQS3GVa1oysnADwstsT1MNzwHMiMhcoBs6tXB2oVL2VR3Gz9oxDoU2UlRobqFMgmVd3JK1pvHP5QXRtpfNpeSgLuBCYgz0g7kTqMBBFfX5mbgX61GM/V4wxxcBZ4Tq+inFlUdys/YDLvI4gIvVok8rLFw7n1HFTOGf8T7x12YG0aZHodVixyQqWY/fpfaY+u7u5hvURO+sYfdi9nSfU52RKea68YsbhKKwSVNXq1zGN8ecN5axnpznXtA4gNVE/A03OChyHfc2rB3b+EcBgBVu62d3NO3Z/yP1SYHludmZeXeNUKiJ0GwZH3A4JTTtAdZOY+A9Y9ClcN8frSCLS0IzWPH7Gflz2ykwue2Um488dSoI/ykbsj3wPAycDc+oznmCt71ZuduY3udmZ3wC/AAuArRlZOdpGVDVPXfaHQ28AfxRWCZWX2U32VbWOGtCBe0/ai+8Wr+fmd2ajl8eb3J/A3PoOfuumSvAS7CLcNqCciiKcDoCrmqOtG2F7EFplgFTVib8Zi4uHsuqGcFMVThvajTVbtvPA54vo2iqZG0f18zqkWHITMBEr8A27jiX4oJud3VQJ/gMYmJudqU3LVfM39Un49n6wNnsdSePz+e3JKVWtrjp8D/I2beOxL5fQJT2Z04d19zqkWHE39gDqSdhdlurETcJait0yUKnmr6wkOlsIgv28Ymg+rIYQEe46aRCrtmzn1vfn0ik9WYdwahqtsYJu+2ztxk3CugWYkpGVM42QIlxuduY19T2pUp4pL43OPlgAXYfB/ud5HUWzER/n44kz9uXUcT9yxSszeeuygxjQ2VVjNVV/k7ECo7CCn9VnZzcJ6yngS+yOXtUNGa9U81BWEp2jXAD0P9a+KdfSkuJ54fxhnPjED1z04nTev+pg2qcleR1WNLsSuAkrUASUEIZm7aW52Zk3NCBApSJHeUn0lrCMcUqQ/uhrUBJGHQNJPHvuEE4d9yOXvjyT1y8+gKT4KBsYOVJYwQaNjSW1NevMyMq5G1iOPd5TaJXgxoacuDGlpqaawkJtzqtcyP0eNuXCvlE4mMqUx+GzWyHrD0gKeB1Ns/Pp3FVc9srPjBncmYf/NhiJgaQvIluNMU3bKdEKdGFnx2HnseC3bnZ1U8KqGEr+lpDHtFm7ap4yDrFv0aiiMYk2ba+X0YM68Y+j+3HfpIX0ad+Cqw4P2wh0scsK/Af4GzAfqBip2QCNk7ByszN71js4pSLNplz7OlbbKPwyqhhuSlsK1tsVI3uzZG0B93+2iD3apzF6kM5Y3MhOBPphBYtq3bIKnsyHpZRnPr8N1v4GV+0+GWqzt6OEpQmrvkSEe0/ei2XrC7lxwix6tTuYvh10SpJGtAyIJ7TTcB1E4nxYSoVPWWn09sOqaEyiJawGSYqP46mz9ue4x77nkpdm8MGVhxBIidLPTNPbCszCCnzBriNduOomFYnzYSkVPuUl0TtSe4cBcPB1kKh9iRqqYyCJcWftx9hnpnLtm78w/tyhxPmivxFGE/jQudVLxM2HpVRYRfNIF532sW+qUQzJaM0dJwzin+/N4YHPFnLT6P5eh9S8WYE44Gys4JH1PYTOh6ViSzSPdFFWAkX5dgkrWjtHN7EzhndnzoogT369lL27Bhg9qJPXITVfVrAMK7AVKxDACgbrcwidD0vFlkNvABOlA7Ys/QpeOxUu+hK67u91NFHDOmEA81dt4e9vzaZvhzR6tWvhdUhNSkRGA48AccCzxpjsSuv/AZzpLPqBPYF2xpiq+upuB+ZgBT4HdnaedXkNq9qOwxlZOXsAHXKzM3+o9PihwMrc7Mylbk7QFLTjsFLA0i/h5ZPggknQ/QCvo4kqKzZv47hHv6NDyyTeu+JgkhOiYySM2joOi0gcsAg4CsgDpgNjjTHzq9n+eOB6Y8zhVR7QCpxb9ePBF93EW9MEjg8D+VU8vs1Zp1Tzs/IXWLfQ6yjCo6IxiTZrb3Rd0pN5+PR9Wbgmn1vfmxNLEz8OA5YYY5YZY4qBN4AxNWw/Fni92rV2YpoATMUKvrjj5lJNCSsjNztzduUHc7MzZwAZbk+gVER5/wr44k6vowgPbdYeViP6tuPaI/rw7i8reO2nP7wOp7H4RWRGyO2SSuu7YM8SXCHPeWw3IpICjAbeqfZsVuB4YBbwqbM8GCvgutVgTQmrpiGLk92eQKmIEs2tBHVoprC75vA+jOjbjjs+nM/cFfVqNxBpSo0xQ0JuT1daX1Vb/uqKl8cDP1Rz7aqChV1qs2dQtYKzANejKdWUsKZnZOVcXPnBjKycC4GZbk+gVESJ5tHaW3aBw/4P2vT2OpKo5fMJD/1tMK1TE7jqtZ8pKIr6Hwd5QLeQ5a7Aymq2PZ2aqgNtpVW0EHRdv1pTK8HrgPcysnLOZGeCGoI9rfFJbk9QVyIyGBiHXcIrBa4wxkThODrKE9E80kXLTjDiH15HEfVapybwyOmDGfvMVG59b060j+w+HegjIj2BFdhJ6YzKG4lIABgB1DYNwlyswBlAHFagD3ANMMVtMNUmrNzszDXAQRlZOYcBg5yHc3KzM790e/B6+i9whzHmExE51lkeGeZzqlgRzSNdlJVC/ipIbgWJsdX0uqkN79WG647sy4OfL+Lg3m05bWi32ndqhowxpSJyFTAJu1n7c8aYeSJymbN+nLPpScBnxpjammtfDdyKPSzTa85x73IbT63zYTU1EZmE/aK8KSJjgeONMbtl9FDarF25tngytGgXnSNCbFwGj+4LJ46DwWO9jibqlZUbzh4/jZ//2MSHVx3SLAfJbfL5sKzAvljBX+q7e03XsLxyHXCfiPyJ3Wn5lqo2EpFLKlq2lJZGfT2yaix9jozOZAXaSrCJxfmEh/82mNQEP1e99jPbS8pq30k9iBX4DSvwb6zAwLru7EnCEpHJIjK3itsY4HLsjmfdgOuB8VUdwxjzdEXLFr8/Sqt4VONb/DmsX+x1FOGh04s0ufYtk3jgtH1YtKaA7E9+8zqcyGcFD8O+xLMOeBorMAcr8H9ud/ckYRljjjTGDKri9gFwLvCus+lb2E0glWocr58Os17zOorw2FHC0hqHpjSyX3vOPziDF6bk8tXCtV6HE/ms4Gqs4KPAZdh9sm5zu2skVgmuxG5tAnA4EKU/h1WTM8b+Mo/WVoJxOtKFV24e3Z9+HdL4x1u/sr6gXnMTxgYrsCdWwMIKzAMex24h2NXt7pFYl3Yx8IiI+LEHSqzc81qp+qkoeURrP6z4FDj6XuhxkNeRxJyk+DgeHbsvxz/+PTe9PZvx5w6J5qbuDfE8dl+to7CC1fXnqlbElbCMMd8bY/Y3xuxjjBlujNFOyqpxVJQ8onXqjbh4OPAK6DzY60hiUr+OafzzmP58+dtaXpm63OtwIpMVPAD4H9AaKzAIK1CnX48Rl7CUCpuK1nPRWsICWPsb5K/xOoqYde5BGYzo2467Jy5g2boCr8OJPFZgBPZlnieAJ4FFWIG/uN1dE5aKHfEpcM6HMOAEryMJn3EHw7RxtW+nwkJE+O8pe5Poj+PGt36lrDyy+rlGgAeBUVjBEVjBvwBHAw+53VkTloodcfHQawSkd/c6kvDxxWs/LI91aJnEnWMG8ssfm3nq24iZNjBSxGMFd87vYwUXAa6rPKK0Ml+pKhQVwKJPoesQaJXhdTThERevo7VHgBP26cykeat56PNFHNavPXt2aul1SJFiBlZgPPCysxw6Vm2ttISlYkfhWnjnQlj+o9eRhI/PryWsCCAi3HXiXgSSE7hhwq8Ul5Z7HVKkuByYhz3o7bXAfOz+WK5oCUvFjoqSR7T2wwKIS9B+WBGidWoC9568Fxe/NIPHvlzMjaP6eR2S96xgEfZ1rAfrs7smLBU7drQSjOKP/eh77HmxVEQ4akAHTt6vC09+vZSjB3ZkUJeA1yF5wwqMAbpiBZ9wlqcB7Zy1N2MF33JzGK0SVLFjRz+sKC5hDfordD/A6yhUiNuOG0CrlARuens2JWUxWzV4E/BhyHIiMBR7XEHXVYKasFTsiPaRLgBWz43ewX2bqfSUBO46cRDzV23h6W+XeR2OVxKwgn+GLH+PFdyAFfwDcD29iSYsFTva9YeLv4RuUTye8rsXw2TL6yhUJaMHdSRz7048Mnkxi9fkex2OF1rtsmQFrwpZaodLmrBU7EhsAV32h+R0ryMJH59fR2uPUHecMJDUxDj+8fbsWOxQPA0rcPFuj1qBS4Gf3B4kiq8+K1VJMA+WTIZ+mfasw9EoLl5bCUaoti0SsU4YyLVvzOKFKblceEhPr0NqStcD72MFzgB+dh7bH/ta1oluD6IJS8WONfPgo2uhw6DoTVg60kVEO2Gfzrz/ywoe+Gwhowd1pEt6stchNQ0ruBY4CCtwOFAx03AOVvDLuhxGE5aKHWUx0KxdR7qIaCLCnWMGMeqhb7n9g7k8c06MTUNiJ6g6JalQeg1LxY6KkkdcgrdxhNPILDjsn15HoWrQrXUKNxzVl8kL1vLp3NVeh1MrERktIgtFZImIZFWzzUgRmSUi80Tkm3DFoglLxY5YGOki4xDoeajXUahanH9wBgM7t+T2D+exZXvkVuGKSBz2VCDHAAOAsSIyoNI26dhThZxgjBkInBqueDRhqdgRCyNdrJ4Df0z1OgpVC3+cj3tP3ov1BUX899PfvA6nJsOAJcaYZcaYYuANYEylbc4A3jXG/AFgjFkbrmA0YanY0T8Trvwpuocu+vY++PAar6NQLuzdNZ3zDurJq9P+4Oc/NnkVhl9EZoTcLqm0vgsQ2uE3z3ksVF+glYh8LSIzReSccAWrCUvFjqQAtOsH/ii+hqWtBJuVG0b1pUNaEv96f65XfbNKjTFDQm5PV1pfVYuQyoH6sZuoZ2JPyPgvEekbhlg1YakYsvIX+PEJKNnudSTho60Em5UWiX7+77g9mbdyC69OW+51OFXJA7qFLHcFVlaxzafGmEJjzHrgW2CfcASjCUvFjtzvYdI/oazY60jCR+fDanYy9+rEIXu05b5JC1mXX+R1OJVNB/qISE8RSQBOZ9dBbAE+AA4VEb+IpADDgQXhCEYTloodsTBau4500eyICHeMGcj2kjKyP4msBhjGmFLgKmASdhKaYIyZJyKXichlzjYLgE+B2djDLD1rjJkbjniiuLmUUpXEwmjtwy6BgSd5HYWqo97tWnDxob148uulnD6sG0MzWnsd0g7GmInAxEqPjau0fB9wX7hj8aSEJSKnOh3MykVkSKV1tzgd1BaKyNFexKei1I6RLuK8jSOc2u8JPf/idRSqHq46fA+6pCfzr/fnUhq782bVyKsqwbnAydgX53ZwOqSdjj3W1GjgSafjmlINV15il66ieSictb/B/A+8jkLVQ0qCn38dtye/rc7ntZ/+8DqciORJwjLGLDDGLKxi1RjgDWNMkTHmd2AJdsc1pRrukBvg2l+9jiK85r4NE871OgpVT0cP7MjBe7Thgc8WsakwihsH1VOkNbpw00lNqfpJagmBKP84+eIBA+VlXkei6kFEuO24gRQUlfLQ5EVehxNxwpawRGSyiMyt4lZ5WI9ddqvisSp704nIJRW9s0tLtd+JcmHhpzDlMa+jCK84px2VthRstvp1TOOs4d15Zepyflu9xetwIkrYEpYx5khjzKAqbjVVsLvppFZx/Kcremf7/drYUbmwMAemFAe+5QAADT1JREFUPO51FOFV0QJS+2I1a9cf1ZeWyfHc8eF8jIm52YmrFWlVgh8Cp4tIooj0BPpQh+mTlapRWWl098GCnc+vXGsdmrP0lARuPKovPy7bwKR5a7wOJ2J41az9JBHJAw4EckRkEoAxZh4wAZiP3RHtSmOMVsarxlFeEt0jtQMMOBEu/BwSWngdiWqgscO6079jGndPnE9RqX4NgnetBN8zxnQ1xiQaYzoYY44OWXe3Maa3MaafMeYTL+JTUaq8NPoTVstO0G1Y9JckY4A/zse/jhvAnxu38eKUXK/DiQiRViWoVPiUlUT/F/nG3+GXV6Ao3+tIVCM4eI+2HN6/PY99uYSN2sxdE5aKIX8dDxd+5nUU4ZU3HT64EgrCNoeeamK3HNOfwqJSHv1isdeheE4Tlood8UmQmOZ1FOFVUeUZzSPSx5g+HdI4fZjdzH3ZugKvw/GUJiwVO6Y/a9+iWUWVp/bDiirXH9mXRL+P/3waWaO5NzVNWCp2zHkH5r3vdRThpf2wolK7tEQuH9mbSfPWMG3ZBq/D8YwmLBU7YqFZ+46RLrQfVrS58JBedAokcc/EBTHbmVgTloodsdBKsNtwuHwKdNzL60hUI0tOiOP6o/rya16QT+au9jocT2jCUrGjvDS6J28Eu1FJh4GQkOJ1JCoM/rpfV/q0b8H9kxbG5JxZmrBU7Cgr2VllFq0K1sLUcbAp1+tIVBjE+YR/HN2PZesLeWtmntfhNDlNWCp2XDkNTnnB6yjCa8sK+PRmWDPf60hUmBw1oAP792jFw5MXsa04toZs0oSlYocI+KL8I6+tBKOeiHDz6P6s2VLEC00wZJOIjBaRhSKyRESyqlg/UkSCIjLLud0Wrlii/L9XqRCTboXZE7yOIry0H1ZMGNazNYf3b8//vl5CcGv43msRiQOeAI4BBgBjRWRAFZt+Z4wZ7NzuDFc8UV6h78LPL8OPVcyRdN5ESG0D056CGc/tvv7ir+wL298/BL++UWmlwJVT7btf3QPzK00BlpAKF39p3590KyyZvOv61HZw3sf2/Y+vh+VTdl2f3gPOdL54370UVs3adX37PeHUF+z7b54F6ysN6dJlfzjxSfv+K3+FYKW68IxDIfN++/5zx8C2jbuu7zMKRv3bvv/UCCjdvuv6gSfByP9v795jrCjPOI5/f+wi7C4udykXEancDAIqLm4hVsFyi7e0VPHSaik2GqpoWxuIvcSYtGliGk1bMUTEVhtoRNoqaVCrtTVNrOINliL1RpWKYrWVilRFnv7xvsed3XOWS2WddzjPJzmZmfeZs/z27Jx9d2YO77sI9uyBJc2UmXAhTL4yjHd36+nl9aZL4aT54X7Mz88sr09eCBMuCOPmrZhbXj91Ucjw+kZYNa+1/Z/PwYmXwLhzy59zqCh9bH/dcjhuTli/ez68tqHtfgPGwpxlYX3lhfDm823rRzbBWXGyy1+cA//Z1rY+/FSY9aOwvmw6/PfttvVRs+H074f1JVPKz/jGzoHPXhM61lumlH8fJ3wZmheEr7tsenl90mUw8SuwYxvccU55fco3YPx58OYLsPKC8vrU78CYM2Hbelh9aXl9xg/gmGnw8qNw78Ly+hk3wlHN8MJDsHZxef3zS2HgeNi0Bh66vrx+3p3QbwSsvwseuaG8ftHqMDv2E7fDo0vK6/PWcs2MUSz96Q+5+Y9DWTxrTPk+B0cT8LyZvQggaSVwNmFGjU+cd1j1faD/qPL20qWjhn6V6yrVj6hQz0yc3GNAeb1r5hNcjYPK63W9W9d7DimvHz6wdb3XUNi9q22911Gt672HtWbNPqekz/DQgWZlp5Hvd0z5L6PGQZn6SPjwvbb1HgNa1yu9dj2OCEt1qVyv7xuWXWor1+v6hGVtt8r17r1ivXvbev/Rh3ZnBeFnf9J8qOmWaRtaPlRT73bHSJeatvWemXlU+34auje2rWePgb4j4P12g+1mj9H+I8vn5zp8H8dIQ/+w3NcxUtO1g2MkvodqDuvgGOkZll3rKtdLQ3gd1lC5XnrPdGusXC+9x7v3rFyvjT+ful6V66Uz5fq+Hfz+qWHMwEYmjh7O7p515fX9VytpXWZ7qZktzWwPBl7JbG8FJlX4Os2SniFMuPutOFXUQadD4T+gNTQ02M6dO/OO4ZxzhSLpXTNr2Ev9i8AMM5sft78ENJnZFZl9GoE9ZvaOpNnATWY2ojPy+j0s55xzHdkKZE63GUI4i/qIme0ws3fi+u+ArpL6dUYY77Ccc8515HFghKSjJR0GzAXuye4g6VOSFNebCP1Kpwx46PewnHPOVWRmuyV9HbgPqAFuM7ONki6L9VuAOcDlknYDu4C51kn3mvwelnPOVal93cNKjV8SdM45VwjeYTnnnCsE77Ccc84VgndYzjnnCuGQ+NCFpD2ET6f8v2qBFKdoTTUXpJst1VyQbrZUc0G62VLNBQeWrc7MCnPickh0WB+XpHVmNjHvHO2lmgvSzZZqLkg3W6q5IN1sqeaCtLN9XIXpWZ1zzlU377Ccc84VgndYwdJ975KLVHNButlSzQXpZks1F6SbLdVckHa2j8XvYTnnnCsEP8NyzjlXCN5hOeecK4Sq7rAkzZS0WdLzkhblnOU2SdsltWTa+kh6QNJzcdl7b1+jk3IdKekPkjZJ2ihpYQrZJHWX9JikZ2Ku61LI1S5jjaSnJK1JKZukLZI2SHq6NNtsCtkk9ZK0StKz8XhrTiTXqPhalR47JF2VSLar4/HfImlFfF/knquzVG2HJakG+BkwCzgWOF/SsTlGuh2Y2a5tEfBgnL3zwbj9SdsNfNPMxgAnAwvi65R3tveAqWY2HpgAzJR0cgK5shYCmzLbKWU7zcwmZP6/TgrZbgLWmtloYDzhtcs9l5ltjq/VBOBE4F3g13lnkzQYuBKYaGZjCdN/zM07V6cys6p8AM3AfZntxcDinDMNA1oy25uBgXF9ILA5gdftt8DnUsoG1ANPApNSyUWYmfVBYCqwJqWfJ7AF6NeuLddsQCPwEvGDYKnkqpBzOvDnFLIBg4FXgD6E0S3WxHxJvWYH81G1Z1i0/rBLtsa2lAwws20AcXlEnmEkDQOOB/5CAtniJbenge3AA2aWRK7oRuDbwJ5MWyrZDLhf0hOSvpZItuHAG8DyeBn1VkkNCeRqby6wIq7nms3M/gHcALwMbAPeNrP7887Vmaq5w1KFNv+Mfwck9QDuBq4ysx155wEwsw8tXKYZAjRJGpt3JgBJZwDbzeyJvLN0YLKZnUC4HL5A0il5ByKcIZwALDGz44GdJHYpK04RfxZwV95ZAOK9qbOBo4FBQIOki/JN1bmqucPaChyZ2R4CvJpTlo68LmkgQFxuzyOEpK6EzuqXZrY6pWwAZvZv4GHCPcAUck0GzpK0BVgJTJV0ZyLZMLNX43I74V5MUwLZtgJb41kywCpCB5Z3rqxZwJNm9nrczjvb6cBLZvaGmX0ArAY+k0CuTlPNHdbjwAhJR8e/nOYC9+Scqb17gIvj+sWE+0efKEkClgGbzOzHqWST1F9Sr7heR3jzPpt3LgAzW2xmQ8xsGOG4esjMLkohm6QGSYeX1gn3PFryzmZmrwGvSBoVm6YBf807Vzvn03o5EPLP9jJwsqT6+D6dRvigSt65Ok/eN9HyfACzgb8BLwDX5pxlBeE69AeEvza/CvQl3Lh/Li775JBrCuFS6Xrg6fiYnXc2YBzwVMzVAnwvtuf+mrXLeSqtH7rIPRvhXtEz8bGxdNwnkm0CsC7+TH8D9E4hV8xWD7wJ9My05Z4NuI7wh1oLcAfQLYVcnfXwoZmcc84VQjVfEnTOOVcg3mE555wrBO+wnHPOFYJ3WM455wrBOyznnHOF4B2Wc3sh6cM4QneLpLsk1R/AcwdJWnWA/97Dkibue0/nqo93WM7t3S4LI3WPBd4HLtufJ0mqNbNXzWxO58Zzrnp4h+Xc/nsEOCaOFnGbpMfjQK1nA0i6JJ6F3UsYXHaY4vxmcZ6i5XEeqqcknRbb6yStlLRe0q+AutheI+n2eGa3QdLVOX3PziWjNu8AzhWBpFrCWHJrgWsJwy3Ni8NDPSbp93HXZmCcmb0VR7cvWQBgZsdJGk3o0EYClwPvmtk4SeMI06RAGPVhcDyzozQMlXPVzM+wnNu7ujiFyTrC2G3LCOPvLYrtDwPdgaFx/wfM7K0KX2cKYegczOxZ4O/ASOAU4M7Yvp4wLBHAi8BwST+RNBNIYoR85/LkZ1jO7d0uC1OYfCQONPoFM9vcrn0SYVqMSipNZ1NSNj6amf1L0nhgBuHs7Fxg3oEEd+5Q42dYzh24+4ArYseFpOP34zl/Ai6M+48knJFtbtc+ljCoL5L6AV3M7G7gu4SpNpyran6G5dyBu54wo/D62GltAc7Yx3NuBm6RtAHYDVxiZu9JWkKYZbc0Gv5jcf/Bsb30R+Xig/w9OFc4Plq7c865QvBLgs455wrBOyznnHOF4B2Wc865QvAOyznnXCF4h+Wcc64QvMNyzjlXCN5hOeecK4T/AXoiY38ksQDPAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_30_2.png" }, "needs_background": "light" }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "P \n", " [[0.9 0.1 0. 0. 0. ]\n", " [0. 0.9 0.1 0. 0. ]\n", " [0. 0. 0.9 0.1 0. ]\n", " [0. 0. 0. 0.9 0.1]\n", " [0. 0. 0. 0. 1. ]]\n", "Q \n", " [[0.864 0.096 0. 0. 0. ]\n", " [0. 0.864 0.096 0. 0. ]\n", " [0. 0. 0.864 0.096 0. ]\n", " [0. 0. 0. 0.864 0.096]\n", " [0. 0. 0. 0. 0.96 ]]\n", "Govt expenditures in peace1, peace2, war1, war2, permanent peace = [0.5 0.5 1.2 1.2 0.5]\n", "Constant tax collections = 0.6349979047185738\n", "Govt debt in 5 states = [-1. -2.82289484 -5.4053292 -1.77211121 3.37494762]\n", "\n", "Government tax collections minus debt levels in peace1, peace2, war1, war2, permanent peace\n", " T+b in peace1 = 1.6349979047185736\n", " T+b in peace2 = 3.4578927455370505\n", " T+b in war1 = 6.040327103363229\n", " T+b in war2 = 2.407109110283644\n", " T+b in permanent peace = -2.739949713245767\n", "\n", "Total government spending in peace1, peace2, war1, war2, permanent peace\n", " peace1 = 1.6349979047185736\n", " peace2 = 3.457892745537051\n", " war1 = 6.040327103363228\n", " war2 = 2.407109110283644\n", " permanent peace = -2.739949713245767\n", "\n", "Let's see ex-post and ex-ante returns on Arrow securities \n", "\n", "Ex-post returns to purchase of Arrow securities:\n", " π(peace1|peace1) = 1.1574074074074074\n", " π(peace2|peace1) = 10.416666666666666\n", " π(peace2|peace2) = 1.1574074074074074\n", " π(war1|peace2) = 10.416666666666666\n", " π(war1|war1) = 1.1574074074074074\n", " π(war2|war1) = 10.416666666666666\n", " π(war2|war2) = 1.1574074074074074\n", " π(permanent peace|war2) = 10.416666666666666\n", " π(permanent peace|permanent peace) = 1.0416666666666667\n", "\n", "Ex-ante returns to purchase of Arrow securities = 1.0416666666666667\n", "\n", "The Ex-post one-period gross return on the portfolio of government assets\n", "[[ 0.8810589 2.48713661 0. 0. 0. ]\n", " [ 0. 0.95436011 1.82742569 0. 0. ]\n", " [ 0. 0. 1.11672808 0.36611394 0. ]\n", " [ 0. 0. 0. 1.46806216 -2.79589276]\n", " [ 0. 0. 0. 0. 1.04166667]]\n", "\n", "The cumulative return earned from holding 1 unit market portfolio of government bonds\n", "-11.132109773063592\n" ] } ], "source": [ "ts_ex4 = TaxSmoothingExample(g_ex4, P_ex4, b0_ex4, states_ex4, random_state=1)\n", "ts_ex4.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 5\n", "\n", "The example captures a case when the system follows a deterministic path from peace to war, and back to peace again.\n", "\n", "Since there is no randomness, the outcomes in complete markets setting should be the same as in incomplete markets setting.\n", "\n", "The Markov chain is:\n", "\n", "$$\n", "P =\n", "\\begin{bmatrix}\n", " 0 & 1 & 0 & 0 & 0 & 0 & 0 \\cr\n", " 0 & 0 & 1 & 0 & 0 & 0 & 0 \\cr\n", " 0 & 0 & 0 & 1 & 0 & 0 & 0 \\cr\n", " 0 & 0 & 0 & 0 & 1 & 0 & 0 \\cr\n", " 0 & 0 & 0 & 0 & 0 & 1 & 0 \\cr\n", " 0 & 0 & 0 & 0 & 0 & 0 & 1 \\cr\n", " 0 & 0 & 0 & 0 & 0 & 0 & 1 \\cr\n", "\\end{bmatrix}\n", "$$\n", "\n", "with government expenditure levels for the seven states being\n", "$\\begin{bmatrix} g_L & g_L & g_H & g_H & g_H & g_H & g_L \\end{bmatrix}$ where\n", "$g_L < g_H$. Assume $b_0 = 1$ and $s_0 = 1$." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "g_ex5 = [g_L, g_L, g_H, g_H, g_H, g_H, g_L]\n", "P_ex5 = np.array([[0, 1, 0, 0, 0, 0, 0],\n", " [0, 0, 1, 0, 0, 0, 0],\n", " [0, 0, 0, 1, 0, 0, 0],\n", " [0, 0, 0, 0, 1, 0, 0],\n", " [0, 0, 0, 0, 0, 1, 0],\n", " [0, 0, 0, 0, 0, 0, 1],\n", " [0, 0, 0, 0, 0, 0, 1]])\n", "b0_ex5 = 1\n", "states_ex5 = ['peace1', 'peace2', 'war1', 'war2', 'war3', 'permanent peace']" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEWCAYAAAB2X2wCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxU5dn/8c+VjYQsQ4CwhAAJyg5JWFW0LFJEa6naulG0oq0U696VX7W1VtvHVlpbH9pSF0q1qLi0LrWLj1UKLi2LIBIQCmZIQoCwhOz7XL8/ZpJmTwhJzizX+/XKy8zcZ875ToJXztznPvctqooxxpjAF+Z0AGOMMd3DCroxxgQJK+jGGBMkrKAbY0yQsIJujDFBwgq6McYECSvoJqCJyFwRyWv02C0in+6B42SJyNzu3m9366n3bwKDFXTTKSJS2ujLIyIVjR4vcTpfdxKRtSLyYOPnVHWiqm5wKFKrWstpQluE0wFMYFDVuPrvRcQNfEVV33QukTGmOTtDN2dERGaKyPsickpEDovIKhGJ8rXNEpHjIjLc9zjDt924NvY1UUT+T0ROishREfmu7/k+IvILEcn3ff1CRPp0IluYiKwQkQMickJEnheR/o3aLxCR93yZckVkqYgsA5YA3/Z9+njNt21DV0Z7eeq7gETkGyJS4PuZ3NhOxg0i8j8isllEikTklWYZXxCRI762jSIy0fd8qzl9MkVkp+8160Uk2veagSLyZ9/7PSkim0TEakAQsV+mOVN1wN3AQOA8YD7wNQBVfQ/4LfB7EYkBngbuVdWPm+9EROKBN4G/AcnA2cA/fM33AOcCmUAGMBO4txPZ7gAuB+b49lkI/Mp3vBHAX4H/BZJ8+96hqo8B64Cfqmqcqi5qZb8d5RkCuIBhwJeBX4lIYjs5vwTc5MtYCzzaqO2vwGhgEPCBLxsd5LwauBhIA9KBpb7nvwHk+d7vYOC7gM39EUxU1b7s67S+ADfw6Tba7gL+1OhxJLAN+AhvsZY2XrcY2N5G2wHgM40eLwTcvu/nAnmtZQP2APMbtQ0FavB2Nf6/xjmbHW8t8GBb77kTeSqAiEbtBcC5bRxrA/BQo8cTgGogvJVt++EtwK4Ocl7X6PFPgdW+738IvAKc7fS/IfvqmS87QzdnRETG+D7GHxGRYuDHeM/WAVDVGryFZxLwM/VVllYMx1soW5MMHGz0+KDvuY6MBP7k62I4hbfA1+E9O23veB3pKM8JVa1t9LgciKNtuc32FQkMFJFwEXnI12VUjLdYQ6OfbxuOtHHsh4H9wBsi8omIrOhgPybAWEE3Z+o3wMfAaFVNwPsxXuobRWQYcB/wO+Bn7fR95wJntdGWj7c41xvhe64jucAlqtqv0Ve0qh7q4HgddUN0NU9bhjfbVw1wHPgicBnwabxdOKm+bep/vqfVXaKqJar6DVUdBSwCvi4i888gt/EzVtDNmYoHioFS38XOW+obRETwnp0/ibcv+TDwQBv7+TMwRETu8l10jBeRc3xtzwL3ikiSiAwEvg/8oRPZVgM/EpGRvjxJInKZr20d8GkRuVpEIkRkgIhk+tqOAqPa2W9X87TlOhGZICJ98XaLvKiqdXh/tlXACaAv3k8/jXWUswkR+ayInO37vRTj/bRSdwa5jZ+xgm7O1DfxnkmWAI8D6xu13YG3e+N7vq6WG4EbReRTzXeiqiXAArxnjkeA/wDzfM0PAluBnXj74j/wPdeRXwKv4u1iKAH+BZzjO14O8Bm8FwpPAjvwXuAE7x+gCb6umpdb2W9X87Tlabx/+I4A0Xh/bgBP4e2COQTs9uVvrKOczY3Ge+G5FHgf+LX62dh6c2ak7S5NY0xPE5ENwB9U9Qmns5jAZ2foxhgTJKygG2NMkLAuF2OMCRJ2hm6MMUHCscm5Bg4cqKmpqU4d3hhjAtK2bduOq2pSa22OFfTU1FS2bt3q1OGNMSYgicjBttqsy8UYY4KEFXRjjAkSVtCNMSZIWEE3xpggYQXdGGOCRIcFXUTW+JbS2tVG+xLfclc7fct5ZbS2nTHGmJ7VmTP0tXiXs2pLNjBHVdPxTo36WDfkMsYYc5o6HIeuqhtFJLWd9vcaPfwXkHLmsUyg2XtyL/mlLdd4mDN8DmES1mp7mIQxZ/gcAHaf2M3RsqNN2iPDI7lg2AUA7Dq+i2Plx5q0R0dEc17yeQDsKNhBYWVhk/a4qDhmDJkBwLaj2yiuKm7SntAngWmDpwGw+fBmymrKmrT3j+lPRpL3A+d7+e9RVVvVpH1Q30FMHDgRgE15m6j11DZpHxI7hPEDxgOwIXcDzafZSIlPYXTiaOo8dWzM20hzIxNGMqrfKKrrqnn30Lst2kf1G8XIhJGU15Tz78P/btE+OnE0KfEplFaXsuXIlhbt4weMZ0jsEIqqivjg6Act2icNnERS3yROVJxg57GdLdrTk9IZEDOAgvICso5ntWifOngqrj4uDpce5uOTLZaRZebQmcRGxpJbksv+wv0t2s9NPpeYiBjcRW6yi7Ibfh6mbd19Y9GX8S5q2yrfSuXLAEaMGNHNhzZOyivJ4538d5D/LlYEwOyU2SBw4NQBth5teiNZuIQ3FPS9J/fy0fGPmrT3jejbUNB3n9jdoij069OvoaB/dPwjsouym7QP6juooaDvKNjBodJDTdpT4lMaCvq2o9s4VtH0D8ZZ/c5qKOibD2+muLrpH4TxA8Y3FPT38t+jqq5pwc8clNlQ0N859A4e9TRpnzl0JqMTR+PBw6ZDm2hOUUb1G0WNp6bV9sjwSEYmjKSqrqrV9rioOG9Brylttb1/TH+GxA6huKq41fYhsUNI6ptEYWVhq+0jE0YyIGYAxyqOtdp+duLZuPq4OFJ+pNX2iQMnEhsZy6HSQ622Tx08lZiIGHJKcth4aCPxx+K5e+rdeNfnMK3p1ORcvjP0P6vqpHa2mQf8GrhAVU90tM/p06er3SlqjOmMbUe38edP/sytmbcyMKajJVWDm4hsU9XprbV1yygXEUkHngAu60wxN8GltLq0xdmnMd0pNSEVAHeR29Ec/u6MC7qIjAD+CFyvqvvOPJIJNH/8zx9Zm7XW6RgmiPWP7k9CVALuYrfTUfxah33oIvIsMBcYKCJ5eFdwjwRQ1dV4F8gdAPza17dV29bHARN8ajw15JTkNPRVG9MTRIQl45fQr08/p6P4tc6MclncQftXgK90WyITUPJK8qjTuoaPxMb0lEF9Bzkdwe/ZnaLmjLiL3AjCyISRTkcxQc6jHt7KeYvdJ3Y7HcVvWUE3ZyS7OJvkuGSiI6KdjmKCXJiEsev4rlbHxBsvxxa4MMHhwuEXUqd1TscwISLNlcbuE7vxqIcwsfPR5uwnYs5IqiuVs/qd5XQMEyLSXGlU1lVypOyI01H8khV002X7C/fbuGDTq2w8evusoJsuezv3bTbkbnA6hgkhcVFxDIsb1mKaBeNlfeimSypqKzhcdtg7V4sxvejLk75s87m0wc7QTZfkFOegKGmuNKejmBBTX8w7Mw9VqLGCbrokuzibCIlgWNwwp6OYEFPrqeW3H/621RkaQ50VdNMlh0oOMSJhBBFh1mtnelf9v7nm0yUb60M3XXTjpBspryl3OoYJUamuVLYc2UKNp4bIsEin4/gNO0M3XRImYcRFxTkdw4SoNFcadVpHbkmu01H8ihV0c9o25W3iHzn/cDqGCWEjE0YSRpiNR2/GulzMafvw2If0j+7vdAwTwvqE92HWsFl2Ub4ZK+jmtBRXF3Oi8gRTB091OooJcfNHzHc6gt+xLhdzWuo/4o5y2errxnmnKk9RVFXkdAy/YQXdnJbsomyiw6MZ3Hew01FMiKvx1LBqxyo2H9nsdBS/YQXdnJboiGgmDJhgt14bx0WGRZISl2IXRhuxPnRzWhamLnQ6gjEN0lxp/DPvn1TUVhATEeN0HMd1eIYuImtEpEBEdrXRPk5E3heRKhH5ZvdHNP6ixlNj82cYv5LqSkVRcopznI7iFzrT5bIWuLid9pPAHcDK7ghk/NdrB17jyV1POh3DmAbD4oYRIRE2DYBPh10uqrpRRFLbaS8ACkTk0m7MZfyMquIuctti0MavRIRFsHjcYpL6JjkdxS/0ah+6iCwDlgGMGDGiNw9tztCJyhOU1JSQ6kp1OooxTYzqZ0No6/XqKBdVfUxVp6vq9KQk+4saSOo/0tr858bf1Hhq2Hx4s/WjY8MWTSdlF2WTEJVAYp9Ep6MY00S4hPNW7lvsPL7T6SiOs2GLplMykjIYkzjGxp8bvxMmYYxMGGnj0elEQReRZ4G5wEARyQPuAyIBVHW1iAwBtgIJgEdE7gImqGpxj6U2vW5s/7FORzCmTakJqewr3EdRVRGuPi6n4zimM6NcFnfQfgRI6bZExu8cKTsCwJDYIQ4nMaZ19dd23MVuMpIyHE7jHOtDNx16O/dtXtj3gtMxjGnT4L6DiY2IpbCy0OkojrI+dNMuj3o4WHyQiQMmOh3FmDaJCHdOuzPkl6OzM3TTrsNlh6mqq7Lpco3fC/ViDlbQTQfqRw7YHaLG31XUVvD07qf58NiHTkdxjBV00y53sZtBMYNsQWjj96LDoykoL2B/4X6nozjG+tBNu64ccyXFVTYC1fg/ESE1IRV3sRtVDcl7JuwM3bSrT3gfm/jIBIw0VxqlNaUcrzjudBRHWEE3bdp5bCeb8jbZHOgmYDQejx6KrKCbNm0v2M6ek3tC8qOrCUz9+vRj4oCJxEbGOh3FEdaHblpV46khtySXc4ae43QUYzpNRLhyzJVOx3CMnaGbVuWW5FKndaQmpDodxZjTVlVXRWVtpdMxep0VdNOq7KJswghjRIItRGICS1lNGT/d/FO2F2x3Okqvs4JuWlXjqWFkwkj6hPdxOooxpyU2MpZ+0f1C8sKo9aGbVl2cerGNbjEBK82Vxq7ju/CohzAJnfPW0HmnptPqC7mNbjGBKi0hjaq6Kg6XHXY6Sq+ygm5a+EfOP1iza42doZuAVb+Yef1auKHCulxMC58UfUKf8D52hm4CVmxkLJeddRnD44c7HaVX2Rm6aaK8ppwjZUdsuKIJeJmDMhkQM8DpGL3KCrpp4mDxQRRtuIXamEBVU1fDruO7QmpeFyvopgl3sZvIsEiS45KdjmLMGanVWv74nz+SdTzL6Si9psOCLiJrRKRARHa10S4i8qiI7BeRnSIytftjmt4yPH445yefT0SYXV4xgS0mIoahsUNDajx6Z87Q1wIXt9N+CTDa97UM+M2ZxzJOmTRwEnOGz3E6hjHdItWVSm5JLjV1NU5H6RUdFnRV3QicbGeTy4Cn1OtfQD8RGdpdAU3vOVV5iuJqW8zCBI/UhFTqtI7cklyno/SK7uhDHwY0/mnl+Z5rQUSWichWEdl67Nixbji06U6bDm3i1zt+jUc9TkcxpluMSBhBGGEcKj3kdJRe0R0dpa0NVm71jhRVfQx4DGD69Ol214qfcRe7GZkwMqRulTbBrU94H+6cdifxkfFOR+kV3fF/bh7QePR+CpDfDfs1vaioqoiTlSdt/LkJOglRCSFzk1x3FPRXgS/5RrucCxSpamhNoBAE6kcC2PhzE2xKqkt4ad9LITENQIddLiLyLDAXGCgiecB9QCSAqq4G/gJ8BtgPlAM39lRY03PcRW5iImIY3Hew01GM6VbREdHsObmH+Kj4oD9h6bCgq+riDtoVuLXbEhlHzB0+l8lJk0Pmo6kJHZFhkQyPHx4SZ+h29csA4OrjYpRrlNMxjOkRqQmpHC0/SnlNudNRepQVdMMnRZ+w9chW6jx1TkcxpkekudJQlIPFB52O0qOsoBu2H93OxryNNlzRBK3kuGSSY5PR1kdUBw2bsCPEqSruYjdprjTrPzdBKyIsgpvTb3Y6Ro+zU7IQd7ziOKU1pUF/9d8YAI96qPXUOh2jx1hBD3H148/thiIT7E5UnOCnW37Kxyc/djpKj7GCHuJOVp4ksU8iidGJTkcxpkclRiciSFAPX7Q+9BC3MHUhF4640OkYxvS4MAljRMKIoJ4f3c7QDZFhkU5HMKZXpLnSOFl5kqKqIqej9Agr6CFs65GtrNuzjhpPaEz+b0z9taJgPUu3gh7C9hXuo7Cy0M7QTcgY3Hcwc1PmMjQ2ONfgsT70EOVRDzklOUwaOMnpKMb0GhEJ6iUWraCHqPzSfKrqqkhLaDn+vKamhry8PCorKx1IZvxBdHQ0KSkpREYG36e3Wk8tOSU5DIoZRFxUnNNxupUV9BBVP3Qr1ZXaoi0vL4/4+HhSU1Pt7tEQpKqcOHGCvLw80tKC74azU1WneHr303x21GeZNnia03G6lfWhh6iEPgmkD0wnNjK2RVtlZSUDBgywYh6iRIQBAwYE7Se0AdEDiI+Mx13kdjpKt7Mz9BCVkZRBRlJGm+1WzENbMP/+RYQ0VxqfFH2CqgbVe7Uz9BBUUVtBdV210zGMcUyqK5XSmlKOVxx3Okq3soIegv59+N88vOVhvy7qs2bNcjpCE2vXruW2225rd5sNGzbw3nvv9VKi1v3gBz9g5cqVnd7+xz/+cQ+m8V/BOh7dCnoIche5GdR3EFHhUU5HaZPThbErnC7otbWnP4tgqBb0xOhEbp58c2heFBWRi0Vkr4jsF5EVrbQnisifRGSniGwWERvc7Kdq6mrIK83z++ly4+K8w8k2bNjA3LlzufLKKxk3bhxLlizBu4wtbNmyhVmzZpGRkcHMmTMpKSmhsrKSG2+8kcmTJzNlyhTefvttwHuGffnll7No0SLS0tJYtWoVP//5z5kyZQrnnnsuJ0+eBGDu3LncddddzJo1i0mTJrF58+YW2Y4dO8YXvvAFZsyYwYwZM3j33Xdxu92sXr2aRx55hMzMTDZt2tTqds11Ntfjjz/OjBkzyMjI4Atf+ALl5d6l1JYuXcrXv/515s2bx3e+850m+3788ce55JJLqKio4A9/+AMzZ84kMzOTr371q9TV1bFixQoqKirIzMxkyZIl3fSbCxzJcclBt6hLhxdFRSQc+BWwAMgDtojIq6q6u9Fm3wV2qOoVIjLOt/38nghszkxuSS51Wtfp6XLvfy2L3fnF3ZphQnIC9y2a2Ontt2/fTlZWFsnJyZx//vm8++67zJw5k2uuuYb169czY8YMiouLiYmJ4Ze//CUAH330ER9//DEXXXQR+/btA2DXrl1s376dyspKzj77bH7yk5+wfft27r77bp566inuuusuAMrKynjvvffYuHEjN910E7t27WqS58477+Tuu+/mggsuICcnh4ULF7Jnzx6WL19OXFwc3/zmNwH44he/2Op2zXUm1+c//3luvtm7QMO9997Lk08+ye233w7Avn37ePPNNwkPD+cHP/gBAKtWreKNN97g5Zdf5pNPPmH9+vW8++67REZG8rWvfY1169bx0EMPsWrVKnbs2HEav73gUVRVxPuH32faoGkk9U1yOk636Mwol5nAflX9BEBEngMuAxoX9AnA/wCo6scikioig1X1aHcHNmcmuyibMLyzzgWKmTNnkpKSAkBmZiZutxuXy8XQoUOZMWMGAAkJCQC88847DYVu3LhxjBw5sqGgz5s3j/j4eOLj43G5XCxatAiAyZMns3PnzobjLV68GIDZs2dTXFzMqVOnmuR588032b37v//8i4uLKSkpaZG7re3i4+ObbNeZXLt27eLee+/l1KlTlJaWsnDhwobXX3XVVYSHhzc8fvrpp0lJSeHll18mMjKSf/zjH2zbtq3hZ1VRUcGgQYPa+5GHBBHh34f/TUJUQkgV9GFAbqPHecA5zbb5EPg88I6IzARGAilAk4IuIsuAZQAjRgROQQkmk5MmM7DvwE73n5/OmXRP6dOnT8P34eHh1NbWtjncrL47pqP9hIWFNTwOCwtr0v/cfL/NH3s8Ht5//31iYmLazd3Z7TqTa+nSpbz88stkZGSwdu1aNmzY0PCa2Nim9xJMmjSJHTt2NNwYpKrccMMN/M///E+7OUJNQlQCA6IHkF2Uzaxk/7oI31Wd6UBqbZBm8/9rHgISRWQHcDuwHWhxhUZVH1PV6ao6PSkpOP4iBppBfQe1O/48UIwbN478/Hy2bNkCQElJCbW1tcyePZt169YB3q6InJwcxo4de1r7Xr9+PeA923e5XLhcribtF110EatWrWp4XN9lER8f3+RMva3tuqKkpIShQ4dSU1PT8P7aMmXKFH7729/yuc99jvz8fObPn8+LL75IQUEBACdPnuTgwYMAREZGUlMTurNtprnSyCnOoc5T53SUbtGZgp4HDG/0OAXIb7yBqhar6o2qmgl8CUgCgndZkAB1tOwoe07sCYo1FaOioli/fj233347GRkZLFiwgMrKSr72ta9RV1fH5MmTueaaa1i7dm2TM+DOSExMZNasWSxfvpwnn3yyRfujjz7K1q1bSU9PZ8KECaxevRqARYsW8ac//anhomhb23XFAw88wDnnnMOCBQsYN25ch9tfcMEFrFy5kksvvZRBgwbx4IMPctFFF5Gens6CBQs4fPgwAMuWLSM9PT0kL4qCdzx6taea/LL8jjcOANLeR1QAEYkA9uG9yHkI2AJ8UVWzGm3TDyhX1WoRuRn4lKp+qb39Tp8+Xbdu3Xqm+c1p+Lv772w5soXvzPxOu1Pm7tmzh/Hjx/diMv8xd+5cVq5cyfTp052O4rhQ+HdQVlPG6g9X85m0zzB+QGC8VxHZpqqt/gPtsA9dVWtF5Dbg70A4sEZVs0Rkua99NTAeeEpE6vBeLP1yt6U33cZd5GZE/Aib/9wYn9jIWL4+7etBc/t/p+ZyUdW/AH9p9tzqRt+/D4zu3mimO5XXlHOk/Ajzhs9zOopfa3yx0YSG+mIeDPO6BNeoetOm+lucW5v/3JhQdqTsCL/84JccLD7odJQzZgU9ROSX5hMVFkVyXLLTUYzxK64+LoqqioJiXhcr6CFi/oj53DrlVsLDwjve2JgQEhMRQ3JccsOiL4HMCnqIEBESohKcjmGMX0pNSOVQ6SG/noG0M6ygh4C9J/fy8v6XqaitcDqKX1q6dCkvvvhiu9usXbuW/HxnxyrPnTuXzg71dbvdPPPMMz2cKHikJqRSp3XkluR2vLEfs4IeAvYV7mPvyb30CT+9G2zMfzld0OvqTu9ORivop2dEwgimDpra6pKMgcQKegjILspmZMLIgJoq9KmnniI9PZ2MjAyuv/56AA4ePMj8+fNJT09n/vz55OTkAN4z7FtuuYV58+YxatQo/vnPf3LTTTcxfvx4li5d2rDPuLg4vvGNbzB16lTmz5/PsWPHWhx327ZtzJkzh2nTprFw4UIOHz7Miy++yNatW1myZAmZmZlUVFS0ul1znc11yy23MH36dCZOnMh9993X8Hxqaio//OEPueCCC3jhhRcanvd4PNxwww3ce++91NXV8a1vfYsZM2aQnp7Ob3/7WwBWrFjBpk2byMzM5JFHHjmj30UoiAqPYtFZixgSO8TpKGfE1hQNcqcqT1FYVcg5Q5vPp9ZJf10BRz7q3lBDJsMlD7XZnJWVxY9+9CPeffddBg4c2DAn+G233caXvvQlbrjhBtasWcMdd9zByy+/DEBhYSFvvfUWr776KosWLeLdd9/liSeeYMaMGezYsYPMzEzKysqYOnUqP/vZz/jhD3/I/fff32SulZqaGm6//XZeeeUVkpKSWL9+Pffccw9r1qxh1apVDXeQtrddc53J9aMf/Yj+/ftTV1fH/Pnz2blzJ+np6QBER0fzzjvvALB69Wpqa2tZsmQJkyZN4p577uGxxx7D5XKxZcsWqqqqOP/887nooot46KGHWLlyJX/+85+77dcW7FSVgvICEqMT/Xrxl/ZYQQ9y9UOxOjv/uT946623uPLKKxk4cCAA/fv3B+D999/nj3/8IwDXX3893/72txtes2jRIkSEyZMnM3jwYCZPngzAxIkTcbvdZGZmEhYWxjXXXAPAddddx+c///kmx927dy+7du1iwYIFgLebY+jQoS3ydXa7zuZ6/vnneeyxx6itreXw4cPs3r27oaDX56331a9+lauvvpp77rkHgDfeeIOdO3c2XAMoKiriP//5D1FRgVmQnHSw+CC/3/17rh17LWP7n96Ebv7CCnoISIlLYVDfLs5/3c6ZdE/p7B17jbdpPOVs8+lo21qarfkxVJWJEyfy/vvvd5ivM9t1Jld2djYrV65ky5YtJCYmsnTpUiorKxu2az417qxZs3j77bf5xje+QXR0NKrK//7v/zaZHx3sjteuGBY/jAiJwF3sDtiCHjidqqZLMgdl8uXJXw6oW5rnz5/P888/z4kTJwAaulxmzZrFc889B8C6deu44IILTmu/Ho+n4Uz2mWeeafH6sWPHcuzYsYZCXVNTQ1aWdw66xlPjtrfd6SouLiY2NhaXy8XRo0f561//2u72X/7yl/nMZz7DVVddRW1tLQsXLuQ3v/lNwxS4+/bto6ysrMVUvqZjkWGRDI8fHtDj0e0MPYjVemoJl/CAKubg7Y645557mDNnDuHh4UyZMoW1a9fy6KOPctNNN/Hwww+TlJTE7373u9Pab2xsLFlZWUybNg2Xy9Uw73m9qKgoXnzxRe644w6Kioqora3lrrvuYuLEiSxdupTly5cTExPD+++/3+Z2pysjI4MpU6YwceJERo0axfnnn9/ha77+9a9TVFTE9ddfz7p163C73UydOhVVJSkpiZdffpn09HQiIiLIyMhg6dKl3H333aedLRSlulJ5O/dtymvK6RvZ1+k4p63D6XN7ik2f2/O2HtnKW7lv8bWMrxEXFdfp1wXrtKlxcXGUlpY6HSNgBOu/g/bkluSyZtcarhpzFRMGTHA6TqvOaPpcE7jcxW4iwiICfmytMb0lOTaZa8deS6or1ekoXWIFPUipKu4iN2f1Oyvgulx6ip2dm46Eh4UH7AVRsIuiQetYxTHKastIc9l0ucacjqKqIjbmbaS0OvBOAKygB6n6K/WBNP7cGH9QXlPO27lv80nRJ05HOW1W0IPU8PjhzBs+j37R/ZyOYkxAGRw7mOjw6ICcH9360INUclyyLWZhTBeESRipCam4i9xORzltnTpDF5GLRWSviOwXkRWttMMYAcYAABkfSURBVLtE5DUR+VBEskTkxu6PajqrqKqIg8UHqfOc3gx9wegXv/gF5eXlTsdoV+Ppe7/yla+we/duAH784x87GSukpbnSKKwq5FTlKaejnJYOC7qIhAO/Ai4BJgCLRaT5AM1bgd2qmgHMBX4mIjaZhEOyjmexNmst5bX+Xch6QyAU9MaeeOIJJkzw/u/VlYLe1jQH5vSkulKJkAiOVbSckdOfdeYMfSawX1U/UdVq4DngsmbbKBAv3vFxccBJwP5lOSS7OJukmCTio+KdjtJlDzzwAOPGjWPBggUsXryYlStXArBjxw7OPfdc0tPTueKKKygsLGTPnj3MnDmz4bVut5v09HQeffRR8vPzmTdvHvPmzWtxjNamwC0qKmLs2LHs3bsXgMWLF/P4448DbU+/e+DAAS6++GKmTZvGpz71KT7++GPAe+Z9xx13MGvWLEaNGtVwFq6q3HbbbUyYMIFLL72UgoKChkz1i1isWLGCiooKMjMzWbJkCW63m0mTJjVst3LlSn7wgx80vOa73/0uc+bM4Ze//GWbU/s++uijTJgwgfT0dK699tpu+T0Fq6SYJL4989uMThztdJTTo6rtfgFXAk80enw9sKrZNvHA28BhoBS4tI19LQO2AltHjBihpvvV1tXqj//1Y339wOtd3sfu3bubPF67a22Lr82HN6uqanVtdavt249uV1XVsuqyFm0d2bJli2ZkZGh5ebkWFxfr2WefrQ8//LCqqk6ePFk3bNigqqrf+9739M4771RV1YyMDD1w4ICqqj700EP6wAMPqKrqyJEj9dixYy2OUV1dreedd54WFBSoqupzzz2nN954o6qqvvHGG3ruuefqs88+qwsXLmx4DaB/+MMfVFX1/vvv11tvvVVVVS+88ELdt2+fqqr+61//0nnz5qmq6g033KBXXnml1tXVaVZWlp511lmqqvrSSy/ppz/9aa2trdVDhw6py+XSF154QVVV58yZo1u2bFFV1djY2IZjZ2dn68SJExseP/zww3rfffc1vOaWW27p8H0NHTpUKysrVVW1sLCww99D838Hxj8AW7WNet2Zi6Kt3ZXSfL6AhcAO4ELgLOD/RGSTqhY3++PxGPAYeG/978SxzWnKL82n2lMdsHe6AbzzzjtcdtllxMTEAN4paME7NeypU6eYM2cOADfccANXXXUVAFdffTXPP/88K1asYP369S3maWmuvSlwFyxYwAsvvMCtt97Khx9+2PCa1qbfLS0t5b333mvIAVBVVdXw/eWXX05YWBgTJkzg6NGjAGzcuJHFixcTHh5OcnIyF154Ydd/WD71udp7X+np6SxZsoTLL7+cyy+//IyPGezySvL4m/tvXHH2FQyIGeB0nE7pTEHPA4Y3epwCNF+L60bgId9fj/0ikg2MAzZ3S0rTaT0x//kNE29osy0yPLLd9r6Rfdttb412YX6ha665hquuuorPf/7ziAijR7f/UVnbmQLX4/GwZ88eYmJiOHnyJCkpKa3uQ0TweDz069ePHTt2tLpN4ylzG7+v0717NyIiAo/H0/C48RS78N9pdtt7X6+//jobN27k1Vdf5YEHHiArK4uICBvo1paYiBgOlR4iuyg7YAp6Z/rQtwCjRSTNd6HzWuDVZtvkAPMBRGQwMBYIvFH5QeC85PO4efLNATlTXL0LLriA1157jcrKSkpLS3n99dcBcLlcJCYmsmnTJgCefvrphrP1s846i/DwcB544IEmi0K0NY1se1PgPvLII4wfP55nn32Wm266qWFq2tam301ISCAtLa1hiThVbXJW35rZs2fz3HPPUVdXx+HDh3n77bdb3S4yMrLh2IMHD6agoIATJ05QVVXV5kpEbb0vj8dDbm4u8+bN46c//SmnTp2yqRA60D+6P/FR8QE1Hr3DP8+qWisitwF/B8KBNaqaJSLLfe2rgQeAtSLyEd4umu+o6vEezG3aEBEWEfDjz2fMmMHnPvc5MjIyGDlyJNOnT8flcgHw+9//nuXLl1NeXs6oUaOaTKF7zTXX8K1vfYvs7P/OZ71s2TIuueQShg4d2qRwtjVVbmRkJE888QSbN28mPj6e2bNn8+CDD3L//fe3Of3uunXruOWWW3jwwQepqanh2muvJSMjo833d8UVV/DWW28xefJkxowZ0/BHqblly5aRnp7O1KlTWbduHd///vc555xzSEtLY9y4ca2+pq33NWbMGK677jqKiopQVe6++2769bObztojIqQlpHHg1IFOL7riNJs+N4jkl+aTdSKLWcmzzmiGRX+YNrW0tJS4uDjKy8uZPXs2jz32GFOnTnU0U6hNv+sP/w6ctqNgB68ceIXl6csZHDvY6ThA+9Pn2q3/QWTvyb28n/8+4RLudJQztmzZMjIzM5k6dSpf+MIXHC/mJjSludIYmzgWbTEOxD/ZFZEgkl2cTXJcMtER0U5HOWPPPPOM0xFaCKWzc+Pl6uPi2nGBM2bfztCDRHVdNYdKDpGW0D3T5TrVFWf8g/3+myqpLsGjno43dJgV9CCRU5yDB0+3zH8eHR3NiRMn7H/qEKWqnDhxgujowP+k1x32ntzLz7f9nCNlR5yO0iHrcgkSZbVlxEXGMTx+eMcbdyAlJYW8vLyGW9tN6ImOjm5z/H2oqR815i5y+/0IMivoQSIjKYP0gendMrQqMjKStDRb6cgYgPioeJJiksguzmbWsFlOx2mXdbkEgfqukUAYJ2tMIEpNSCWnOMfvp6S2gh4E9hXuY9X2VZyoOOF0FGOCUporjWpPNfmlzWc98S9W0INAdnE2RVVFuPq4nI5iTFBKdaVy2VmX+f2cLtaHHgTcRW6Gxw8nIsx+ncb0hJiIGDIHZTodo0N2hh7gymrKOFp+tFuGKxpj2lZSXcLWI1up8dQ4HaVNVtAD3MHigwABPf+5MYEgvzSf17NfJ68kz+kobbKCHuDio+KZMmgKybH+PT7WmECX6koljDCyi7I73tgh1uka4IbHD++Wm4mMMe3rE96HoXFD/Xp+dDtDD2CVtZUcrzhut+gb00vSEtI4VHKI6rpqp6O0ygp6ANtXuI9f7fgVR8uPOh3FmJCQ5krDg4fDZYedjtIq63IJYO5iN9Hh0Qzu6x8T7xsT7EYkjOCb0795RgvI9CQr6AEsuyibNFea3fJvTC+JCIvw6/s9rMslQBVWFnKq6hSpCalORzEmpOSW5PLMnmeoqK1wOkoLnSroInKxiOwVkf0isqKV9m+JyA7f1y4RqROR/t0f19Srv9Ju48+N6V0e9fCfU/8hpzjH6SgtdPjZQUTCgV8BC4A8YIuIvKqqu+u3UdWHgYd92y8C7lbVkz0T2QCM6z+OmIgYkmKSnI5iTEgZFjeMCIkguzibsf3HOh2nic6coc8E9qvqJ6paDTwHXNbO9ouBZ7sjnGlbTEQM4/qPs/5zY3pZRFgEIxJG+OUNRp0p6MOA3EaP83zPtSAifYGLgZfaaF8mIltFZKuthtN1pypP8e6hdymttkWLjXFCakIqBeUFlNWUOR2lic4U9NZOAdu6k2UR8G5b3S2q+piqTlfV6UlJ1lXQVf859R/ezHmTqroqp6MYE5JG9RvF8PjhflfQOzP+Jg9ofG95CtDWLO/XYt0tPS67KJuEqAT6R9t1Z2OcMCxuGDdNusnpGC105gx9CzBaRNJEJApv0X61+UYi4gLmAK90b0TTmKpysPigjT83xg/421S6HRZ0Va0FbgP+DuwBnlfVLBFZLiLLG216BfCGqvrXZ5Agc7T8KOW15Tb+3BiH7Tq+i59s/gnF1cVOR2nQqVueVPUvwF+aPbe62eO1wNruCmZad6LiBOESbgtaGOOwgTEDqdM63EVu0pPSnY4D2K3/AWfiwImMSRxDZHik01GMCWmD+w4mOjya7KJsvynodut/ALJibozzRIQ0V5pfzY9uBT2A5Jfms2bXGgrKC5yOYozBOx79VNUpCisLnY4CWJdLQMkuyia3JJe+EX2djmKMAUYnjqbGU0NkmH98araCHkDcxW4GxQwiLirO6SjGGCAxOpHzh53vdIwG1uUSIGo9tRwsPmizKxrjZypqK9h7cq9fLAVpBT1A5JfmU+OpsfHnxviZ3Sd289ze5zhRecLpKFbQA4WIcHa/sxmZMNLpKMaYRurvCfGH2RetoAeI4fHDWTJ+CX0j7YKoMf4ksU8iriiXFXTTObWeWspryp2OYYxphYiQ6krFXex2vB/dCnoAyCnJ4eGtD+MucjsdxRjTijRXGhW1FRwtP+poDhu2GADcRW7CCGNo3FCnoxhjWjEmcQy3Zt7KgOgBjuawgh4AsouySY5Lpk94H6ejGGNaERMRQ0xEjNMxrMvF31XVVZFfmm/jz43xc7klubx24DU86nEsgxV0P5dTnIMHj02Xa4yfK64q5oOCDzhcdtixDFbQ/dyQ2CFcmnYpw+OGd7yxMcYx9feIODl80Qq6n4uPimf6kOk2Za4xfi4uKo5BMYMcHY1mBd2PVdRWsKNgh41BNyZApLpSySnJodZT68jxraD7sYPFB3nlwCscrzjudBRjTCekudKIj4p3bJ1RG7box7KLsokMiyQ5LtnpKMaYThibOJZx/cc5dvxOnaGLyMUisldE9ovIija2mSsiO0QkS0T+2b0xQ5O7yM2I+BFEhNnfXWMCgYgAODYFQIcFXUTCgV8BlwATgMUiMqHZNv2AXwOfU9WJwFU9kDWklFaXUlBRYOPPjQkwHx77kEc+eIQaT02vH7szZ+gzgf2q+omqVgPPAZc12+aLwB9VNQdAVW3RyzN0qPQQgI0/NybA9I3oS0l1Cbklub1+7M4U9GFA42R5vucaGwMkisgGEdkmIl9qbUciskxEtorI1mPHjnUtcYgY238sd0+7m6GxNn+LMYFkRMIIwghzZDx6Zwq6tPJc8w6iCGAacCmwEPieiIxp8SLVx1R1uqpOT0pKOu2woSYhKoEwsYFIxgSSPuF9SI5LdmQ8emeqRR7Q+DbFFCC/lW3+pqplqnoc2AhkdE/E0FNUVcT6j9dzpOyI01GMMV2Q5kojvzSfqrqqXj1uZwr6FmC0iKSJSBRwLfBqs21eAT4lIhEi0hc4B9jTvVFDh7vYzceFHzsdwxjTRWP7j+Wcoef0+g1GHY6HU9VaEbkN+DsQDqxR1SwRWe5rX62qe0Tkb8BOwAM8oaq7ejJ4MMsuyiYmIobBfQc7HcUY0wXD4oYxLK75pcae16kBzqr6F+AvzZ5b3ezxw8DD3RctNKkq7iI3qQmpDWNajTGBp9ZTy7HyY726MI1dcfMzhVWFFFUX2XBFYwLce/nv8fhHj/fqXExW0P1MRW0FybHJVtCNCXCpCakoysHig712TCvofmZY3DBuTr+ZgTEDnY5ijDkDyXHJRIZF4i5299oxraD7EVV1bNpNY0z3igiLYGTCyF69wcgKuh85XnGcn2z+CfsK9zkdxRjTDVITUjlWcYzS6tJeOV7ATeP3r1/fTPyp4BzinhVVy7G+NZzY8DpZHvtba0ygixAP54cp2W+/QVijm+5L+o3n3K893v3H6/Y9mi7Lj6gjziPEe2y4ojHBIE7DiKvrveMFXEHvib9q/kBVeX3rw8xIHMuks5tPZmmMCVT5pfkcOHWAT6V8qsePZZ/r/cTR8qNU1FbYcEVjgkxOSQ5v5b5FUVVRjx/LCrqfiImIYd7weVbQjQkyqQmpAL0yfNEKup9w9XExO2U28VHxTkcxxnSjwX0HExMR0yvDF62g+wGPethXuK/Xp9o0xvQ8ESE1IZXsouweX2vUCrofyC/N59mPn2V/4X6noxhjekCaK43qumrKasp69DgBN8olGNX3rdmC0MYEpymDpjBt8LQeX4HMCrofyC7KZlDfQcRGxjodxRjTAyLCeqfUWpeLw2o9teQU59joFmOC3I6CHfxu1+96tB/dCrrD8kvzqdVa0hKsoBsTzBQlpySH4xXHe+wYVtAdNjx+OF9N/6qdoRsT5HpjPLoVdIeJCENihxAVHuV0FGNMD0qMTqRfn349Oh69UwVdRC4Wkb0isl9EVrTSPldEikRkh+/r+90fNfjU1NXw2oHXOFJ2xOkoxphekOZKw13s7rF+9A4vvYpIOPArYAGQB2wRkVdVdXezTTep6md7IGPQyi3J5YOCDxjffzzYABdjgt7YxLHUeeqoqqsiOiK62/ffmbE0M4H9qvoJgIg8B1wGNC/ovWZj3kZ2Hd/V5LlwCeerGV8F4B8H/8Hewr1N2qMjorlp0k0A/DX7ry0+9iREJXDdhOsAePXAq+SV5DVpHxgzkKvHXg3AS/te4mj50SbtQ2OHcsXoKwB49uNnKawsbNI+PH44i85aBMBTWU9RWlNKRW0FYYQxImHE6f0AjDEBaWz/sYztP7bH9t+Zgj4MyG30OA84p5XtzhORD4F84JuqmtV8AxFZBiwDGDGi60UsLjKuxZqb4RLe8H18VHyL9sZ/DV1RrhbtcZFxDd/369OPytrKJu39+vT77/fR/ajTppMcu/q4Gr5PjE5skqd5e/+Y/g15UuJSrP/cGNMtpKO+HBG5Clioql/xPb4emKmqtzfaJgHwqGqpiHwG+KWqjm5vv9OnT9etW7ee8RswxphQIiLbVHV6a22duSiaBwxv9DgF71l4A1UtVtVS3/d/ASJFxJatN8aYXtSZgr4FGC0iaSISBVwLvNp4AxEZIiLi+36mb78nujusMcaYtnXYh66qtSJyG/B3IBxYo6pZIrLc174auBK4RURqgQrgWu3peSKNMcY00WEfek+xPnRjjDl9Z9qHbowxJgBYQTfGmCBhBd0YY4KEFXRjjAkSjl0UFZFjwMEuvnwg0HOTCvcuey/+KVjeS7C8D7D3Um+kqia11uBYQT8TIrK1rau8gcbei38KlvcSLO8D7L10hnW5GGNMkLCCbowxQSJQC/pjTgfoRvZe/FOwvJdgeR9g76VDAdmHbowxpqVAPUM3xhjTjBV0Y4wJEgFX0DtasDpQiMgaESkQkV0db+2/RGS4iLwtIntEJEtE7nQ6U1eJSLSIbBaRD33v5X6nM50pEQkXke0i8mens5wJEXGLyEe+RegDdlY/EeknIi+KyMe+/2fO69b9B1Ifum/B6n00WrAaWNzKgtV+T0RmA6XAU6o6yek8XSUiQ4GhqvqBiMQD24DLA/R3IkCsb+WtSOAd4E5V/ZfD0bpMRL4OTAcSAnkRdxFxA9NVNaBvLBKR3wObVPUJ3/oSfVX1VHftP9DO0BsWrFbVaqB+weqAo6obgZNO5zhTqnpYVT/wfV8C7MG7Dm3AUa9S38NI31fgnPE0IyIpwKXAE05nMQ1Ldc4GngRQ1eruLOYQeAW9tQWrA7J4BCMRSQWmAP92NknX+boodgAFwP+pasC+F+AXwLcBj9NBuoECb4jINt9i84FoFHAM+J2vG+wJEYntzgMEWkGXVp4L2DOoYCIiccBLwF2qWux0nq5S1TpVzcS7du5MEQnI7jAR+SxQoKrbnM7STc5X1anAJcCtvi7LQBMBTAV+o6pTgDKgW68DBlpB73DBatP7fP3NLwHrVPWPTufpDr6PwhuAix2O0lXnA5/z9T0/B1woIn9wNlLXqWq+778FwJ/wdr8Gmjwgr9GnvhfxFvhuE2gFvcMFq03v8l1IfBLYo6o/dzrPmRCRJBHp5/s+Bvg08LGzqbpGVf+fqqaoaire/0/eUtXrHI7VJSIS67vgjq+L4iIg4EaHqeoRIFdExvqemg906+CBDheJ9idtLVjtcKwuEZFngbnAQBHJA+5T1SedTdUl5wPXAx/5+p4Bvquqf3EwU1cNBX7vG00VBjyvqgE93C9IDAb+5D13IAJ4RlX/5mykLrsdWOc7If0EuLE7dx5QwxaNMca0LdC6XIwxxrTBCroxxgQJK+jGGBMkrKAbY0yQsIJujDFBwgq6CSoiUuebkW+XiLwgIn1P47XJIvLiaR5vg4gExcLFJvBZQTfBpkJVM30zWFYDyzvzIhGJUNV8Vb2yZ+MZ03OsoJtgtgk423en4RoR2eKbFOkyABFZ6juLfw3vxE+p9fPT++ZG/51vDu7tIjLP93yMiDwnIjtFZD0Q43s+XETW+j4ZfCQidzv0nk0IC6g7RY3pLBGJwDuR09+Ae/De+n6T79b+zSLypm/T84B0VT3pmy2y3q0AqjpZRMbhLfhjgFuAclVNF5F04APf9pnAsPq57eunEDCmN9kZugk2Mb4pCLYCOXjnmbkIWOF7fgMQDYzwbf9/qtravPQXAE8DqOrHwEFgDN75rP/ge34nsNO3/SfAKBH5XxG5GAjYGSdN4LIzdBNsKnzT3zbwTSD2BVXd2+z5c/BOYdqa1qZqrtdivgxVLRSRDGAh3rP7q4GbTie4MWfKztBNKPg7cLuvsCMiUzrxmo3AEt/2Y/Ce0e9t9vwkIN33/UAgTFVfAr5HN0+Lakxn2Bm6CQUP4F29Z6evqLuBjtbX/DWwWkQ+AmqBpapaJSK/wbvizE5gB7DZt/0w3/P1J0n/r5vfgzEdstkWjTEmSFiXizHGBAkr6MYYEySsoBtjTJCwgm6MMUHCCroxxgQJK+jGGBMkrKAbY0yQ+P8isC+oacPJXgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_33_0.png" }, "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEWCAYAAABliCz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVhU5f//8efNvoiAgIqCaLnvu5AtmqllaX1LUysTd9xTW7XFcmmzcl8gjdwqs/Jjm5mmZQoKKu6pqWziAsq+z8z9+2NGfxCo7GdG7sd1zeXM3Oec+z0DvrjnzDn3EVJKFEVRlLufldYFKIqiKFVDBb6iKEo1oQJfURSlmlCBryiKUk2owFcURakmVOAriqJUEyrwFaUKCCGihRCPlGC5hkIIKYSwqYq6SsJUT2Ot61DKTwW+cltCiCFCiP1CiEwhxFXT/QlCCKF1bVoRQuwWQozWqO/ZQoj1lbh9zV6bUvlU4Cu3JISYASwCPgbqAnWAIKA7YFeFdZjNaFdRLJqUUt3UrcgNcAUygWdKsNxaIBGIAd7EOJCwB1KA1gWW9QKygdqmx08AUabl9gFtCywbDbwGHAVygcaABIYDsUASMKvA8rOBb4H1QDpwDGgKvAFcBeKAPv+pezVwCbgIzAWsTW2BwN/AAiAZuAA8ZmqbB+iBHCADWHqL92WY6f24BswyvZ5HTG1WwOvAOVP7JqCWqa2h6XWOBRJM9c0wtT0K5AH5pr6P3KLvaNPrPmmq/wvAwdTmDvxk+nklm+773O61meoJAs6a1lkGCFNbY+BPINX0M/lG699ddbvN/1etC1A387yZwkUH2NxhubXA/wAXU1idAUaZ2tYA8wosOxHYZrrf0RTE3QBrU5BHA/am9miMfwx8AccCQRhietwO4x+CFqblZ5uCqi9gY6rrgilsbYExwIUCtWwBVgHOQG3gADDO1BZoCtUxptrGm8L3RsjtBkbf5j1paQrMBzH+4fvU9F7eCPyXgHDAx9S+CvjK1HbjdX5lqq2NKZwfKfA619/hZxINHDe9d7WAvcBcU5sH8AzgZPqZfQtsKbBukddmqucnwA1oYKrnUVPbV6b32ApwAO7X+ndX3W7zu6F1AepmnjfgBeDyf57bh3E0nm0KM2tT6LYssMw4YLfp/iPA+QJte4EXTfdXAHP+s/3TwEOm+9HAyAJtN4LQp8BzB4Ahpvuzgd8LtPU3he6NUbuLaX03jLumcgHHAssPBXaZ7gcC/xZoczKtW9f0+E6B/zbwdYHHzhhH5jdC+xTQq0C7N8Y/MDYFXmfzAu0fAasLvM6SBH5Qgcf9gHO3WLY9kFzg8a0C//4CjzcBr5vurwWCC/5c1M18b2ofvnIr1wDPgvvPpZT3SSndTG1WgCfGffkxBdaLAeqb7v8BOAohugkh/DCGyw+mNj9ghhAi5cYN44i0XoFtxRVT1+UC97OAGgUeXylwPxtIklLqCzzGtLwfxlH/pQJ9r8I40i/Sj5Qyq8C6JVGvYO1SykyM79kNfsAPBfo+hXFXSp0CyxR87TEUfl9Kotj1hRBOQohVQogYIUQa8BfgJoSwvsP2bvW+vwoI4IAQ4oQQYmQp61SqkAp85VbCMI6Cn7zNMkkYR6Z+BZ5rgHGfOFJKA8bR4FDgOeAnKWW6abk4jLt73ArcnKSUXxXYVmVN5RqH8bV5Fui7ppSyVQnXv1NdlzD+8QKMIYtxV0rB/h/7z2t3kFJeLLCMb4H7DTDuUipJ33dafwbQDOgmpayJ8ZMaGEO7NNs3LizlZSnlGCllPYyf7parQzjNlwp8pVhSyhTgXYz/gQcKIWoIIayEEO0x7qLANHreBMwTQriYRvHTMX5xesNGYDDwvOn+DSFAkGn0L4QQzkKIx4UQLlXw2i4B24FPhBA1Ta/rXiHEQyXcxBXgntu0bwaeEELcL4SwA96j8P+1lRjfMz8AIYSXEOK/f1jfMo3GWwEjgG8K9N1QCHGn/7sThRA+QohawMwC67tg/LSTYmp7p5SvrRAhxCAhhI/pYTLGPxj626yiaEgFvnJLUsqPMAb4qxi/YL2CcdfHaxj35wNMxng0z3mMR7ZsxPhl7Y1t7De11wN+LfB8JMYvRZdiDIp/Me47ryovYtwddeNIls0Y96WXxCJgoBAiWQix+L+NUsoTGL+g3ohxtJ8MxP9n/a3AdiFEOsYvcLv9ZzN/YnxPdgILpJTbTc9/a/r3mhDi0G1q3Ijxj9p5022u6fmFGL/0TjL1u600r60YXYD9QogM02uaKqW8UIL1FA3cOOpAUZS7hBAiGuMXrzu0rkUxL2qEryiKUk2owFcURakm1C4dRVGUakKN8BVFUaoJs56UytPTUzZs2FDrMhRFUSzGwYMHk6SUXsW1mXXgN2zYkMjISK3LUBRFsRhCiJhbtVXILh0hxBrTXOnHb9HeQwiRKoSIMt3eroh+FUVRlJKrqBF+KMYTaNbeZpk9UsonKqg/RVEUpZQqZIQvpfwLuF4R21IURVEqR1UepRMghDgihPjVND9IsYQQY4UQkUKIyMTExCosT1EU5e5WVYF/CPCTUrYDlmC8+ESxpJTBUsrOUsrOXl7FftGsKIqilEGVBL6UMk1KmWG6/wtgK4TwrIq+FUVRFKMqCXwhRF0hhDDd72rq99rt11IURVEqUoUcpSOE+ArogfEKSfEY59i2BZBSrgQGAuOFEDqMc3EPkWpOB0VRlCL+idhByum/8X9hdoVvu0ICX0o59A7tSzEetqkoiqLcwtmoPdT/6QVqWLmRkTaVGjXdK3T7ai4dRVEUM3D++H68tgwhQ9TAZsSPFR72oAJfURRFczH/HMJt80DysMPw4o/UbdCkUvox67l0FEVRSkJKSe7p08icHK1LKbWr8eex3TaDXGzI7fsxddJyyT5+AsfWtzxdqcxU4CuKYtGkwcDl2e+SsmmT1qWUg4Pxnx1vEQ1Ye3rS9O89Fd6LCnxFUSyWNBi4/M47pHy7mVqBgTh3v0/rkkosJeky+m2zcCSH1O6z8G7U8mabsLWtlD5V4CuKYpGkwcClt94i9bvv8ZwwHs/JkzGd7mP2ki7HIv8Yi0fdNBKe/JqmHXtUSb/qS1tFUSyONBi49OaNsJ9gUWGfnHiJjODH8TBcI67fl1UW9qACX1EUCyP1ei7NepPU77/Hc9IkvKZYTtinXk/k2srHqau/xPnen9OiW98q7V8FvqIoFkPq9VyaOYvUH37Ac/IkvCZN1LqkEktPvc6V5f1ooIvhTI+VtL5/QJXXoPbhK4piEaReT8Ibb5C29Ue8pk7Bc/x4rUsqsayMVOKXPkHj/HMc776YDj0HalKHGuErimL2pF5PwuumsH9pqkWFfU5WBueXDKBp3kmOdvuYDn1e0KwWFfiKopg1qdOR8NrrpP34I17TpuEZFKR1SSWWm5PF6cVP0TLnCIc6zqdTv1Ga1qN26SiKYrakTkfCq6+R9ssveM2YjueYMVqXVGL5ebmcXDyQDjkRHGjzDl2fnKB1SSrwFUUxT1Kn4+Irr5D+6zZqv/IyHqO0HR2Xhl6n4+iSwXTK2sv+5q/TbeB0rUsC1C4dRVHMkMzP5+LLN8L+FYsKe4Nez6Elz9EpfRfh906l25A3tC7pJjXCV6pEji6HQ1cP0dS9KZ6OniTnJHPi2okiy7XyaIW7gztJ2Un8c/2fIu1tPNvgau/KlcwrnE05W6S9Q+0OONs6k5CRwPnU80XaO9XphKONI3FpccSkxxRp71a3G7bWtkSnRhOfEV+k/b5692ElrDiXco5LmZcKtQkE3et3B+BM8hmuZl0t1G5jZYO/tz8Ap66d4lpO4Yu+2Vvb06VuFwCOJx0nJTelULuTjRMd63QE4EjiEdLz0gu1u9i50M6rHQCHrhwiS5dVqN3N3o3Wnq0BiLgcQa4+t1C7h4MHLTxaABB+KRydQVeo3cvRi2a1mgGw9+JeJIWvYeTt7M29bvdikAb2Jezjv3xq+NDQtSH5+nz2X95fpN3PxQ/fmr5kZ6dzeup47P86SGbQIE492hQu/s09rvdQr0Y9MvMzOXz1cJH1G7s1pq5z3SLPVyVpMBCxLJBuqb8R5hdEwLD3NK3nv1TgK5UuMz+TsdvHcjTpKJ889Al9Gvbh1LVTjN9R9EiLlY+spHv97kRdjWLa7mlF2tc9to72tdsTfimcN/e+WaR9c//NNKvVjN1xu3n/wPtF2n99+ld8XHz4LeY3Fh1aVKT9r8F/4W7tzv/O/Y/Pj31epP3gCwexs7Zj0+lNbPxnY6E2GysbDg8zBtHaE2v537n/FWqvaVeTvUP3AhByLITfY34v1O7t7M32gdsBWHJ4SZHQbOzWmB+e/AGAjyM+5kjikULtbb3asqHfBgDm7p/L2eTCfxADvAMI7hMMwFt73+JixsVC7b0a9GJhz4UAvPLnK0X+4Ay4dwDz7p8HwOQ/JpNvyC/UPqTZEGb5z0Jv0Bf7sx3VehQvdXqJLF1Wse1TOkxhdItA4qfPwP6vg4T2suIX9x9gh/E1v971dZ5v8TwJGQnFrv/efe/xf03+r8jzVUUaDOxfMRb/61sJqzcc/+FFf/+0Jsz5SoOdO3eWkZGRWpehlENWvvE/95HEI7wd8DYP+z6Mm4MbaXlpXEi9UGT5Rq6NqGlXk9TcVKLToou0N3ZrjLOtM9dzrhOXHlekvYlbE5xsnUjKTioSaADNazXH3tqeK5lXuJx1uUh7S4+W2FrZcinjElezrxZpb+PZBithxcWMiyRlJxVqEwjaerUFIC4tjuu51wu1WwvrmyPs6NRoUvNSC7XbWtnS0sM4gdb5lPOk5xcewTtYO9wcYZ9NPltkBO9k40QTd+M86qevnyZHX3iqYBdbF+5xuwcwfsLIM+QVaq9pV5NGro0AOJF0Ap0sPMJ3t3enQc0GABxNPFpkhO/h4IGPiw8GaeBY0jH+q7ZjbbxreKMz6Ir9dFfH1gPdWx+S/vsOdFNexDCoX6H2es718HLyIluXzZnkM0XW96nhg4ejB3Hpcfi6+BZpr0zSYCA8ZDIBl9YTXmcI3catQFhps8dcCHFQStm52DYV+EplydHlMOmPSURcjuDDBz7k0UaPal2SYqZkXh7x06aTsXMndWbNotawsh2rfjTxKMO3DWd6p+kMazmsgqu8tbDVLxMQF8J+j6foOvELzcIebh/46ktbpdIkZScRnRrNnO5zVNgrtyTz8oh/aZox7N96s8xhD8ZPaD19e/JRxEdsOl018+OHfTmLgLgQDrj1o8uENZqG/Z2offhKhdMZdFgLa3xcfNj61FacbJ20LkkxU4a8PC5OfYmMXbuo8/Zb1HruuXJtz8bKhg8f+JA8fR5zwudgZ23HU42fqqBqiwrfOIeAC0uJrPkInSatw8rautL6qgjm+6dIsUh6g56Ze2byUcRHSClV2Cu3ZMjL4+LkKWTs2kXdd94ud9jfYGttyyc9PiHAO4B39r3D8aTjFbLd/9q/6WP8zyzgkPODtJ/8FdY25j9+VoGvVBiDNPD2vrf5NfpXvJy8LGbKWqXqGXJziZ88mYw//6Tu7Nm4Dx1aodu3t7Zn0cOLmNl1Jq08Kv7asAd+WEK3k3OJcvSn9ZRvsbG1q/A+KoMKfKVCSCmZFz6Pree2MqHdBEa2Hql1SYqZuhH2mX/+Rd333sV9yOBK6cfRxpHBzQcjhCA6NZq9F/dWyHYjfwqmU9RbHLPvSPMp32Nn71Ah260KKvCVCvHpwU/ZdGYTo1qPIqid5UxupVQtQ24u8RMnkfnXHurOeQ/3Z5+tkn4XRC5gyh9TCEsIK9d2Dv/2Je0jXuO0fWsaT9mKg6NzBVVYNVTgKxWiQ+0OBLYKZGrHqWpXjlIsQ04O8RMmkrl3L97z5uI+aFCV9T23+1waujZkyh9TiLxctkO9j/zxNa32TeNf22Y0mPQjjs4uFVxl5VOBr5TL+RTj9AUPN3iYGZ1nqLBXinUz7Pftw3vuXNyeeaZK+3dzcCO4dzD1atRj4s6JRF2NKtX6x/76H83/nESMTSO8J/5EjZrulVRp5VKBr5TZ6mOreXrr08XOa6IoNxiys4mfMIHMsDC858/H7ZmnNanDw9GDkD4heDp6Enw0uMTrnQz7lcY7R5NgXR+v8T/j6u5ZiVVWrgo5jkgIsQZ4ArgqpWxdTLsAFgH9gCwgUEp5qCL6VrSx/uR6Fh5ayGMNH6OtZ1uty1HMlCE7m7jxE8javx/v9+fj9lTlHRNfErWdarOm7xpc7Eq2O+afiB34bQvkqnVtao77GTdPbSdnK6+KGuGHArc7lfIxoInpNhZYUUH9KhrYdHoTH0Z8SK8GvZj3wDysrcz7ZBNFG4asLOKCxpN14AD1PvxA87C/oY5zHZxsncjMz2TG7hk3d0v+19moPdT7eRjJVm44jf4Zjzo+VVxpxauQwJdS/gVcv80iTwJrpVE44CaE8K6IvpWqdSLpBHPC5/BA/Qf4+MGPsbWy1bokxQzdDPuICOp9+AGuAwZoXVIR17Ovc/DKQUZvH01sWmyhtvPH9+O1ZQiZOGMz4ie86jXUpsgKVlX78OsDBac2jDc9V4QQYqwQIlIIEZmYmFglxSkl19KjJXO6z+Gznp9ha63CXinKkJlJ3NhxZEVGUu+jj3Dt31/rkorlW9OXkD4h5BvyGb19NAkZCQDE/HMIt80DycMOw4v/o26DJhpXWnGqKvCLO3Sj2Gk6pZTBUsrOUsrOXl5elVyWUlK743bzb/K/CCF4qvFT2Fvba12SYoYMmZnEjhtH1qFD1Pv4I1yfeFzrkm6riXsTgnsHk5GfwajfRhF14i+cvn4aA1bkPPcD9e+p+LN0tVRVgR8PFJyg2gdIqKK+lXL6K/4vpu2exmeHPtO6FMWM6TMyiR07juzDUdRf8DGuj5t32N/QwqMFqx5ZhTBI8reMwgYd6c9upkHT9lqXVuGqKvC3Ai8KI38gVUp56U4rKdoLvxTOtF3TaOLWhPcfML8r+CjmQZ+RSdzYsWRHRVH/kwXU7NfvziuZkTp5NVh58jzN8jNJeupr6jS5u0b2N1RI4AshvgLCgGZCiHghxCghRJAQ4sY59r8A54F/gRBgQkX0q1Sug1cOMnnnZPxc/QjuHUxNu5pal6SYIX1GBnFjxpB99Cj1P/2Umo9a1rUPki7HkbP6cWoZ0rj0xHp+1B8gcFsgqbmpd17ZwlTIcfhSyttOdSeNl9WaWBF9KVVn7Ym1eNfwJrh3MG4OblqXo5ghfXo6caPHkH3iBPU//YSaffpoXVKpJCdeIj34cerok4jpt44WnR8m8aId606uY8KOCazqvYoadjW0LrPCqEscKreUo8shIz8DT0fLPbNQqTz69HRiR48m58RJ6n/2KTV799a6pFJJvZ5I4rK++Ohi+bf3Glrf//8PHd0Zu5MZu2fQzqsdKx5ZYVHXdVCXOFRK7GzyWSbunEhaXhoONg4q7JVi6dPSiB01mpyTp/BZtNDiwj499TqXlz9OA100Z3qsLBT2AL0a9OKDBz4gKjGK6bunY84D49Iw/0u0KFXmQuoFRm8fjY2wITU3Ve2zV4p1M+z/+QefRQtxefhhrUsqlayMVOKXPkGT/LMc676EDj0HFrvco40eJd+Qj5Ot010zKaAKfAWAuLQ4Rv82GoCQviH4uvjeYQ2lOtKnphrD/vRpfBYtwuXhnlqXVCo5WRmcXzKAFnknieq6gE59bn/B9P73/v+Txg5fPUxrz9YWfXa52qWjcCnjEqO2jyLXkEtInxDucb1H65IUM6RPSSF2xEhyT5/GZ7HlhX1uThanFz9Fy5wjHOowj06Pjy7xujFpMYzYNoKZe2aiN+grscrKpQJfQSd11LSrSXDvYJq6N9W6HMUM6VNSiBk5ktyzZ/FZugSXnpYV9vl5uZxcPJB2ORFEtH6LLk+V7qBBv5p+TO04lW3R23h739sYpKGSKq1capdONZael46zrTO+Lr5s6r8JK6H+/itF6ZKTiR05irxz5/BZtpQaDz6odUmlotfpOLpkMJ2y9hLe7DX8B80o03ZGtB5Brj6XZVHLsLO2423/ty1u3776H15NpeSkMHzbcD6K+AhAhb1SLF1yMrEjRlps2Bv0eg4teY5O6bsIv3cq/kNnlmt749qOY3Sb0Ww+s5ldcbsqqMqqo0b41VBaXhrjdowjJjWGV7u8qnU5ipnSJScTGziCvOhofJYvp8b93bUuqVSkwUDEskC6pf5GWINxBAx7r9zbFEIwpcMUOtbuyP3176+AKquWGtZVM5n5mYzfMZ4zyWf4rOdn+Hv7a12SYoZ0168TOzzQFPbLLDLs968YS7frWwmr9yL+gR9U2LaFEDzg8wBCCM6lnOPLE19W2LYrmxrhVyNSSqbtmsaJpBN88tAnPOhjWR/Plaqhu3bNOLKPjcV3xXKc77tP65JKRRoMhIdMJiDxW8JrD8Z/9CKEVeWMbb87+x3rTq5DZ9Axqs2oSumjIqnAr0aEEAxvNZynmzxNL79eWpejmCFj2AeSFxeP78oVOAcEaF1SqYV/8SoBl9az3+MpugWtrLSwB5jRaQZJ2UksPLQQe2t7Xmh5++P6taYCvxrI1+dz8OpB/L396V7fsj6aK1VHl5RETGAg+fEX8V25Emf/blqXVGphX84iIC6ECLfH6DJhTaWGPYC1lTXz759Pvj6fDyM+xM7ajmebPVupfZaH2od/l9MZdLz616uM+30cF1IvaF2OYqZ0iYnEDA8k/2ICvqtWWWTYh2+cQ8CFpUS69KLjpPVYWVtXSb82VjZ89OBHPOjzIL/H/G7Wx+irEf5dTG/QM/PvmeyI3cFrXV6jkWsjrUtSzFD+1avEBo4g/9IlfFetxLlrV61LKrX933yA/5kFHHJ+gHaTv8Lapmqjzdbalk97fIqUEithhUEazPJQZ/OrSKkQBmlgdthsfr3wKy91fMns9y0q2si/epXY4YHkX75Mg+BVFhn24V/Np9up94lyCqD1lM3Y2mlzvWV7a3scbBxIy0tjxLYR7IzZqUkdt6MC/y61J34PW/7dwoR2Eyzi6AGl6uVfvkzsi8PRXblCg5BgnLp00bqkUgv/ah7+pz/ksNN9tJy6BTt7B61LwlpYo5M6Xv7rZf6K/0vrcgpRF0C5i0VcjqBznc4Wd/q3Uvny4uKIDRyBPiUF35BgnDp21LqkUgvfOAf/Mws47Hw/raZ8ZxZhf0NaXhqjfxvNuZRzLO21lIB6VXe0k7oASjUhpST4aDAnr50EoEvdLirslSJyz58n5vkXMGRk0CA01DLDfsN7N/fZt576vVmFPXBzMkI/Vz+m/DGFQ1cOaV0SoAL/rrLy6EqWHF7CL+d/0boUxUzlnDpFzAvDkAYDDdauxbFNa61LKrXw9bPxP/sJh5wfpM3U7zTbZ38nbg5uhPQOoVOdTng5emldDqAC/66x5vgalkctZ8C9A5jeebrW5ShmKPvIEWKGByLs7fFbtxaHZpY3FXb4urfx//czDtV4iDZTtfuCtqQ8HD1Y2XslvjV9kVKSkJGgaT0q8O8CG05t4LODn/Fow0d57773zPJwMEVbmfsPEDtiJNZubjRcvw77RpZ3iG742rfwP7eIgzV60NYCwv6/lkUt49mfnuVM8hnNalDJYOEM0sC+hH087Psw8x+Yj7VV1ZxsoliOjD17iBs7Fpt63vitW4dt/fpal1RqYV/Owv/8Yg66PEy7qd9iY2undUml9uS9T2JvZc+Y7WM4n3pekxrUUToWTG/QY21lTZ4+DwA7a8v7T6BUrrTt27k442XsmzSmweefY1OrltYllVp46Ez8o5cR6dKL9lO+tsiwv+FC6gVGbBuBtbAm9NFQfGtW/LWj1VE6d6FtF7bxwi8vkJKTgp21nQp7pYjUrVu5OG06jq1a4RcaapFhHxb6ujHsaz5i8WEP0Mi1ESF9Qsgz5DF+53jyDflV2r+aWsEC7Yzdyet7XqedVzsV9Eqxkr/ZxOXZs3Hq2hXf5cuwcnbWuqRSC/viNQJiVhJZszcdpnxd5dMlVJYm7k0I7h3M9Zzr2FrZVmnfd8c7WI3sid/Dy3++TCuPVizrtQwnWyetS1LMzLXQUK5+8CE1HnqI+osWYuVgXseol0TYmlcIiA0mwrUPHTWYG6eytfBocfP+zpidtKvdDk9Hz0rvV+3SsSARlyOYtnsaTdyasPyR5dSwq6F1SYoZkVKSuHw5Vz/4EJe+ffFZstgyw371y6awf/SuDPuCknOSmfn3TMZsH0NyTnKl96cC34L41PChe73urOq9Cld7V63LUcyIlJLETz4hafESXJ96ivqfLEDYWdbuPmkwELZ6BgFxIRxw60fHyRvu6rAHcHdwZ9HDi4hNi2Xc7+NIy0ur1P4qJPCFEI8KIU4LIf4VQrxeTHsPIUSqECLKdHu7IvqtLmLTYtEb9HjX8GbRw4twd3DXuiTFjEiDgStz5nLt89W4DR2C9/x5CAsLSmkwEL5mBgFxn3PArR+dJ6+/68P+Bn9vfxb2XMjZlLOM/308mfmZldZXuQNfCGENLAMeA1oCQ4UQLYtZdI+Usr3pVv7Lx1cTp66dYsjPQ1h8eLHWpShmSOp0XJr1JskbN1Jr1Ejqvv12pV/lqaJJg4Hw1dMIiF/DAfcn6Dy56i5eYi4e8HmABQ8u4MS1E/wW/Vul9VMRf0K7Av9KKc8DCCG+Bp4ETlbAtsvk3+R/mbV3VpHnp3SYQvf63TmedJw54XOKtL/W5TU61ulIxOUIFkQuKNL+TsA7tPRoyZ74PSyNWlqk/f0H3uce13v4PeZ3Pj/2eZH2hT0W4l3Dm63ntrLh1IYi7SsfWYm7gzubTm/iu7PfAcbRvYudC4ObDS7Ra1eqD5mXx8VXXyN92zY8J0/Cc8IEi5ssTxoMhH8+lYCEtRyo1Z/OE7+sdmF/Qy+/Xnw34Dvudbu30vqoiMCvD8QVeBwPFHd9tAAhxBEgAXhZSnmiuI0JIcYCYwEaNGhQpoJsrGyK/cbb3tp4KratlW2x7TcOcbSztiu2/cYhVA42DsW3C9ub/RTXfmPKA0cbxxK3N3BpwJQOU6hXo14xr1Sprgy5uVyc+hIZu3dT+9VX8Rg5QuuSSk0aDISHTCXg0lr2ezxJlwlfVH4m0DYAACAASURBVNuwv6Eywx4q4ExbIcQgoK+UcrTp8TCgq5RycoFlagIGKWWGEKIfsEhK2eRO21Zn2ipKUYbMTOImTiJr/37qvvMO7kMs79OfNBjYHzwJ/8sb2O/xFF0mrKn2YV9RKvtM23ig4PnBPhhH8TdJKdOklBmm+78AtkKIyj/oVFHuMvq0NGJHjyHrwAHqffC+5Yb9qgnGsPd8mq4T1ci+qlRE4EcATYQQjYQQdsAQYGvBBYQQdYVp56IQoqup32sV0LeiVBu65GRiA0eQffw49T/7DNcnn9S6pFK7GfZXvmK/5zN0nbDa4r5ktmTl3ocvpdQJISYBvwHWwBop5QkhRJCpfSUwEBgvhNAB2cAQac6ztimKmcm/epXYkSPJj4vHd9lSajz4oNYllZo0GNi/Mgj/q9+w32sgXceHqLCvYmq2TEUxc/kXLxIzYiS6pCR8V6zAuVtXrUsqNWkwsH/FWPwTvyW89rN0C1qlwr6S3G4ffvU4s0FRLFRedDQxI0ZiyMzEb81qHNu317qkUpMGAwdWjME/cTPhtQfTLWilCnuNqMBXFDOVc+YMsSNHgV6P35ehOLRoceeVzIw0GDiwfBTdkr4nvM5Quo1brsJeQ+qdVxQzlH38BLHDXkQIgd/6dRYZ9ga9ngPLRhjDvu7zKuzNgHr3FcXMZB06RGxgIFbOzvhtWI/9vZV7Mk5lMOj1RCwfSbdrW4xhP3apCnszoH4CimJGMsPCiB01GhtPT/w2rMeujGeba8mg1xOxLJBu17YQ5v2iCnszon4KimIm0v/YRdy4IOx8ffFbvw5bb2+tSyo1g15P5LLhdLu+lbB6w/Efs0iFvRlRPwlFMQNpv/5K/JQp2Ddrht/aL7HxtLwT0Q16PZFLh9H1+o+E1R+B/+iFKuzNjPppKIrGUr77noszXsaxfTsafLEGazc3rUsqNYNeT+SSF+ia/DNhPiPxH/WpCnszpH4iiqKh6xs2cGnWLJwDAmgQEoJ1Dcu7bKVep+PgkufpmvILYb6j8R/5iQp7M6WOw1cUjSSFhJD4yafU6NWL+p99ipWFXZIQjGF/aMnzdEndRliDsQSM/FjrkpTbUIGvKFVMSkni4sVcW7GSmo8/Tr0P3kfY2mpdVqkZw34oXVK3E9ZgHAEjP9K6JOUOVOArShWSUnL1gw+5/uWXuA0aSN3ZsxEWODWwXqfj8OIhdEn7nTC/IAJGfKh1SUoJqMBXlCoi9Xouz36XlG+/xf3FYdR54w2LuyQhgC4/j6glQ+mctoOwhuMJCPxA65KUElKBryhVQOp0JLwxk7Qff8QjaBxeU6dabtgvHkLn9J2ENZpIwPD5WpeklIIKfEWpZIa8PBJmzCD99x14TZuG57ixWpdUJrr8PI4sfpbO6bsIu2cKAS/O0bokpZRU4CtKJTJkZxM/eQqZf/9NnVmzqDXsBa1LKhNdfh5HFg2iU8ZuwlXYWywV+IpSSfQZmcQHBZF18CDe8+bi9swzWpdUJvl5uRxbPIhOGX8S3vgl/F94V+uSlDJSga8olUCfkkLs2HHknDxJvQUf4/r441qXVCb5ebkcWzSQjpl/Ed5kOv7Pv6N1SUo5qMBXlAqmu3aN2JGjyDt/Hp/Fi3B5+GGtSyoTY9g/Q8fMPYQ3mYH/829rXZJSTirwFaUC5V+5QmzgCPIvX8Zn5QpqdO+udUllkpebw4nFz9Ax82/Cm76C/3Nval2SUgFU4CtKBcmLjyc2cAT65GQafB6CU6dOWpdUJnm5OZxY9H90yNpHeLPX8B86U+uSlAqiAl9RKkDu+fPEjhiJzMmhQWgojm1aa11SmeTmZHFq8dN0yApjf4s38B/8utYlKRVIBb6ilFPOP/8YLzZuZUWDtWtxaNZU65LKJDcni1OL/o/22eHsbzGTboNf07okpYKpOUwVpRyyjxwh5sXhCHt7/NZZdtj/s+gpY9i3nKXC/i6lAl9RyijzwAFiR4zE2s2NhuvXYd+okdYllUlOdib/LHqSdtn72d/qLbo9+6rWJSmVRAW+opRBxp49xI0Zi009b/zWrcO2fn2tSyqTnOxMzix6knbZBzjQ+h26DXpZ65KUSqQCX1FKKe3334mbMBG7e+/Bb+1abOvU1rqkMsnJyuDMogG0zYngQJvZdB04XeuSlEqmAl9RSiFl82YuTn0Jx1at8AsNxaZWLa1LKpOMtGTOLXyM1tkHiWj7Hl2fmaZ1SUoVqJDAF0I8KoQ4LYT4VwhR5DguYbTY1H5UCNGxIvpVlKoipSQpJIRLb76F83330WDNaqxr1tS6rDJJvZ7IxcV9aZZ7nEOdP6TL01O1LkmpIuU+LFMIYQ0sA3oD8UCEEGKrlPJkgcUeA5qYbt2AFaZ/FcXsSYOBqx99zPXQUGo+8QT15s9DWOD1ZwGuXYknJfgJGuniONZ9CZ37WObsnUrZCCll+TYgRAAwW0rZ1/T4DQAp5fsFllkF7JZSfmV6fBroIaW8dLttu7i4yE7/OVvx2WefZcKECWRlZdGvX78i6wQGBhIYGEhSUhIDBw4s0j5+/HgGDx5MXFwcw4YNK9I+Y8YM+vfvz+nTpxk3blyR9jfffJNHHnmEqKgoXnrppSLt8+fP57777mPfvn3MnFn0DMWFCxfSvn17duzYwdy5c4u0r1q1imbNmvHjjz/yySefFGlft24dvr6+fPPNN6xYsaJI++bNm/H09CQ0NJTQ0NAi7b/88gtOTk4sX76cTZs2FWnfvXs3AAsWLOCnn34q1Obo6Mivv/4KwJw5c9i5c2ehdg8PD7777jsA3njjDcLCwgq1+/j4sH79egBeeukloqKiCrU3bdqU4OBgAMaOHcuZM2cKtbdv356FCxcC8MILLxAfH1+oPSAggPffN/7aPfPMM1y7dq1Qe69evXjrrbcAeOyxx8jOzi7U/sQTT/Dyy8YvLXv06GF8UkryLlxAl5TE0488wmtbtpCdk2ORv3tvz3yFe8Nf5fjZeGYf88HZzatQu/rdM7PfvQJKk3teXl4HpZSdiyxExezSqQ/EFXgcb3qutMsAIIQYK4SIFEJE5ufnV0B5ilJGBgO5Z8+iS0rC1scHl759EVaW+bVXXk4Wuu8n4KG/xuUurxUJe6V6qIgR/iCgr5RytOnxMKCrlHJygWV+Bt6XUv5terwTeFVKefB22+7cubOMjIwsV32KUhb61FTigsaTfeQIdd95B/fBz2pdUpnFnonCYeP/YU8uVwZspGnHHlqXpFQiIcQtR/gVMbVCPOBb4LEPkFCGZRTFLORfuULc6DHkRUdT/7PPqNm3j9Ylldn54/tx3TwIgGsDf6Bpa/XVWXVWEZ9PI4AmQohGQgg7YAiw9T/LbAVeNB2t4w+k3mn/vaJoIffCBWKGPkf+xYv4hgRbdNifObQbj83/hx5rMp/byj0q7Ku9co/wpZQ6IcQk4DfAGlgjpTwhhAgyta8EfgH6Af8CWcCI8varKBUt+/gJ4sYaLzDeYO1aHFu30riisjsZ9isNto0g1aom4sWtNGjUXOuSFDNQIbNlSil/wRjqBZ9bWeC+BCZWRF+KUhkyw8OJnzARazc3fFd/brHz4gAc3f0dTXYFcdW6No6jfqJ2fct9LUrFssxDDhSlAqVt+424MWOxrV8fv6++suiwP7x9Pc13jSXBxoca435TYa8UogJfqdaSv/6Gi9Om4dCmDX7r11nsvDgAkT8F02bvZC7Y3ovnxO141PHRuiTFzKgLoCjVkpSSaytXkrhoMTUeeoj6Cz/DytFR67LK7MB3n9H56Lucsm+N36QfqVHTXeuSFDOkAl+pdqTBwJX575O8fj2uTw7Ae+5chK2t1mWVWfjGufif+Zijjl1oMvkHHJ1dtC5JMVMq8JVqReblkfDGTNJ+/plagYHUfvUViz17FiA8dCb+0cs45PwArSZvwt7BSeuSFDOmAl+pNgxZWcRPmUrm33/jNWM6HqNHI4TQuqwykQYD4Z+/REDCl0TW7E37yRuxsbXMCd2UqqMCX6kWdMnJxAUFkXPsON5z5+BWzORmlsKg1xOxciwBiZvZ7/EkXSZ8gZW1tdZlKRZABb5y18u/dInY0WPIj4vDZ/EiXB55ROuSykyv03Fw6TC6pfxCeJ2hdBu33KJ3SSlVSwW+clfLPX+e2FGjMaSn4/t5CM5du2pdUpnl5+VydMlguqbvIsx3NP4jPlZhr5SKCnzlrpV99ChxY8eBjQ1+69bi0KKF1iWVWU52Jv8seYZOWWGE3zuVgGHvaV2SYoHU8EC5K2Xs3UtM4AisXFxouHGDRYd9VkYqZxc+TvusMPa3mIm/CnuljFTgK3edtF9+IS5oPHa+vvhtWI9dgwZal1RmaSnXiFn0KC1zoohoP49ug1/TuiTFgqldOspd5fqGDVyZOw/HTh3xXb7cYi80DpCSdJnEFY/TWHeBqG6f0aWfmmRWKR8V+MpdQUpJ0tJlJC1bRo2HH6b+p59g5eCgdVlllnQ5lvTgJ2igT+DkQ8vp9PAQrUtS7gIq8BWLJ/V6rsybR/LGr3B9+mm833sXYWO5v9qXY8+S/8UA6hiucbb3GtrdP0DrkpS7hOX+r1AUwJCXR8Jrr5H+6zY8Ro/Ca8YMiz17FiD+3+PYrH8KN5lB7OMbaN21t9YlKXcRFfiKxdJnZHJxymQy94VR+5VX8Bg1UuuSyiXm1EGcvnkGG3RceXozzdvdr3VJyl1GBb5ikXTXrxM3Loickyfxfv993P7vKa1LKpd/j/yNxw9D0WNF6uAtNG7RWeuSlLuQCnzF4uRfvGicKiEhAZ8lS3B5uKfWJZXLPxE7qPfzMLJwRvfCFho2bq11ScpdSgW+YlFyz54ldvQYDFlZNFizGqdOnbQuqVyO/72Ve34fzXWrWtiM+BGfBk20Lkm5i6kTrxSLkXX4MNEvDAODAb/16yw+7I/88TVNfh/JVes6OIz5jboq7JVKpgJfsQgZf/1F7MhRWLu54vfVRhyaNdO6pHI59OsXtPhzArE2frhN+B3Pen5al6RUAyrwFbOX+uOPxE2YiF2jhjTcsAE7H8u+OHfElmW0C5/GObtm1Jm8HTfPulqXpFQTKvAVs3Z97VoSXnkVp44d8Vu7FhtPT61LKpf9mz6iS9RMTjq0x2/qNmq6eWhdklKNqC9tFbMkpSRx0SKurVyFS+9HqLdgAVb29lqXVS7h69/B/9+FRDkF0Hzydzg4OmtdklLNqMBXzI7U67k8+11Svv0Wt0GDqDv7HYQFX8JPGgyEf/EqAXEhHHTpSdvJ32BrZ9l/vBTLpAJfMSuG3FwSXn6F9N9/x2PcOLxemmrRUyVIg4H9qyYQcOUrDrj1o9OkdVhb8Dw/imVTv3mK2dBnZBA/cRJZ+/dT543XqTV8uNYllYtBrydi+Uj8r21hv+czdBkfUuKLjefn5xMfH09OTk4lV6lYKgcHB3x8fLC1tS3xOirwFbOgS0oiduxYcs+cpd7HH+Hav7/WJZWLLj+Pw0ufp1vqdsK8X8R/zKJSXX82Pj4eFxcXGjZsaNGfcJTKIaXk2rVrxMfH06hRoxKvV67AF0LUAr4BGgLRwLNSyuRilosG0gE9oJNSqolClJvy4uOJHTUK3ZWr+C5fRo0HH9S6pHLJy83h+OJBdMn8i7CG4/F/cX6pLzaek5Ojwl65JSEEHh4eJCYmlmq98h6W+TqwU0rZBNhpenwrPaWU7VXYKwXlnD5DzNDn0Kek0uCLNRYf9jlZGZz67Ak6Zv5FeNOXCQj8oNRhf4MKe+V2yvL7Ud7AfxL40nT/S8CypyxUqlTWwYPEDBsGVlY0XL8Opw4dtC6pXDLSkjm38DHaZEdyoPU7+D/3ltYlKUoh5Q38OlLKSwCmf2vfYjkJbBdCHBRCjL3dBoUQY4UQkUKIyNJ+XFEsR/ofu4gdOQqbWrVouHED9k0sex6Z1OuJXFz8KM1yj3Oo0wd0HThd65LK7b777tO6hEJCQ0OZNGnSbZfZvXs3+/btq6KKijd79mwWLFhQ4uXnz59fidUUdsfAF0LsEEIcL+b2ZCn66S6l7Ag8BkwUQtzyc7uUMlhK2VlK2dnLy6sUXSiWIuWHLcRPnox9kyb4bdyAbf36WpdULtevXiRpWR8a5f/L0fsW03lAkNYlVQitg7MstA58nU5X6nWqMvDv+KWtlPKRW7UJIa4IIbyllJeEEN7A1VtsI8H071UhxA9AV+CvMtasWLBra77g6kcf4RTgj8+SpVjXsOyzTa9evED26v7U11/mn57BdOzxTIX38e6PJziZkFah22xZrybv9G9122Vq1KhBRkYGu3fvZvbs2Xh6enL8+HE6derE+vXrEUIQERHB1KlTyczMxN7enp07d2Jra8v48eOJjIzExsaGTz/9lJ49exIaGsqWLVvQ6/UcP36cGTNmkJeXx7p167C3t+eXX36hVq1a9OjRg/bt23PgwAHS0tJYs2YNXbt2LVRbYmIiQUFBxMbGArBw4ULq16/PypUrsba2Zv369SxZsoTmzZsXWa579+6FtlXSukJCQggODiYvL4/GjRuzbt06nJycCAwMpFatWhw+fJiOHTvi4uJyc9shISF8//33fP/993z33XcsXryYvLw8unXrxvLly5k1axbZ2dm0b9+eVq1asWHDhor48d5SeXfpbAVuHCw9HPjffxcQQjgLIVxu3Af6AMfL2a9iYaSUXF2wgKsffYRL3774rlpl8WGfEH2a/M/74qlP5FzftbSthLA3F4cPH2bhwoWcPHmS8+fPs3fvXvLy8hg8eDCLFi3iyJEj7NixA0dHR5YtWwbAsWPH+Oqrrxg+fPjN8wmOHz/Oxo0bOXDgALNmzcLJyYnDhw8TEBDA2rVrb/aXmZnJvn37WL58OSNHFr105dSpU5k2bRoRERF89913jB49moYNGxIUFMS0adOIiorigQceKHa54pSkrqeffpqIiAiOHDlCixYtWL169c31z5w5w44dO/jkk09uPrd06VJ+/PFHtmzZQnR0NN988w179+4lKioKa2trNmzYwAcffICjoyNRUVGVHvZQ/uPwPwA2CSFGAbHAIAAhRD3gcyllP6AO8IPpG2UbYKOUcls5+1UsiMzL49Lb75C6ZQtuQwZT9623LHqqBIDYM1HYb3waR3K4+OQ3tOrYo9L6utNIvCp07doVH9Mspe3btyc6OhpXV1e8vb3p0qULADVr1gTg77//ZvLkyQA0b94cPz8/zpw5A0DPnj1xcXHBxcUFV1dX+pvOt2jTpg1Hjx692d/QoUMBePDBB0lLSyMlJaVQPTt27ODkyZM3H6elpZGenl6k7lstV3AUXtK6jh8/zptvvklKSgoZGRn07dv35vqDBg3CusDv9Lp16/Dx8WHLli3Y2tqyc+dODh48ePO9ys7OpnbtW33lWXnKFfhSymtAr2KeTwD6me6fB9qVpx/FcukzMrg4ZQqZ+8LwnDQJz4kTLP5wwwsn9lPz20EIJInPfE/TNv5al1Tp7AtMXGdtbY1Op0NKWezPUkpZou1YWVndfGxlZVVo//d/t/vfxwaDgbCwMBwdHW9bd0mXK0ldgYGBbNmyhXbt2hEaGsru3btvruPsXPjTauvWrYmKirp5YpSUkuHDh/P+++/fto7KpqZHVipN/pUrxDz/ApkHIvCeNw+vSRMtPuz/2b8dj2//Dz3WpA/9kXurQdjfSvPmzUlISCAiIgKA9PR0dDodDz744M3dE2fOnCE2NpZmpbxgzTfffAMYPy24urri6upaqL1Pnz4sXbr05uOoqCgAXFxcCo30b7VcWaSnp+Pt7U1+fv4dd7906NCBVatWMWDAABISEujVqxebN2/m6lXj15zXr18nJiYGAFtbW/Lz88tcV2mowFcqRc7pM0QPHkJ+XBy+K1fi9szTWpdUbkf++Bq/X54nVbiiC9yGX7P2WpekKTs7O7755hsmT55Mu3bt6N27Nzk5OUyYMAG9Xk+bNm0YPHgwoaGhhUbQJeHu7s59991HUFBQoX3lNyxevJjIyEjatm1Ly5YtWblyJQD9+/fnhx9+oH379uzZs+eWy5XFnDlz6NatG71796Z58+Z3XP7+++9nwYIFPP7449SuXZu5c+fSp08f2rZtS+/evbl06RIAY8eOpW3btjz//PNlrq2kxO0+fmmtc+fOMjIyUusylFLKDA8nftJkrBwd8Q1ehUOLFlqXVG4R/1tOh0OziLZphPvYrXjUqdyrbp06dYoWd8H7VhY9evRgwYIFdO6sTsq/k+J+T4QQB281o4Ea4SsVKnXrVmLHjMXWuy4Nv/n6rgj78A3v0eXwG/zj0JY6U3ZUetgrSmVRs2UqFUJKybVVwSQuXIhT1674LF2CtemoDUslDQbCP59KQMJaDtV4kFaTvsHewUnrsu56Bb8MVSqWCnyl3KROx+X35pCyaRM1+/fHe95crOzstC6rXHT5eRxaHkhA8s/s93iSzuPXqAuXKBZP/QYr5WLIzCR++nQy//wLj7FjjVeoKuPskOYiJzuTU0sG0TVrL+E+o+g2coHFvyZFARX4SjnoEhOJCxpPzqlT1J39Du5DhmhdUrmlpVwjbvmTdMg7Rniz1/AfOlPrkhSlwqjAV8ok9/x54saMRXf9Oj7LluLSs6fWJZVb0uU4UkMG0FQXQ2SXj/F/4rYTuyqKxVGfU5VSyzp4kOihz2HIycFv7Zd3RdhfPH+KnFWP4K27yKkewXRWYV+lAgMD2bx5822XCQ0NJSEhoYoqKl6PHj0o6aHi0dHRbNy4sZIrKh0V+EqppG3bRuyIkdi4u9Pw669wbNNG65LK7fzx/divfZQaMoO4/l/TtudArUtSiqF14Ov1+lItb46Br3bpKCUipeR66Jdc/fBDHDt2xGfZUmzc3bUuq9xOhm/DZ9sIsnEkc/D3NGvRSeuSivr1dbh8rGK3WbcNPPbBbRdZu3YtCxYsQAhB27ZtWbduHTExMYwcOZLExES8vLz44osvaNCgAYGBgTg6OvLPP/8QExPDF198wZdffklYWBjdunUjNDQUME65PG7cOHbt2oW7uztff/01/73uxcGDB5k+fToZGRl4enoSGhrK3r17iYyM5Pnnn8fR0ZGwsDBOnjxZZDlvb+9C2yppXePHjyciIoLs7GwGDhzIu+++C0DDhg0ZOXIk27dvL3TxFYPBwIgRI/D19eXdd9/l9ddfZ/fu3eTm5jJx4kTGjRvH66+/zqlTp2jfvj3Dhw9n2rRp5fyhlZ8a4St3JPV6rsx/n6sffohLnz40WLP6rgj7qN83cs+vL5Bi5Y4c+Rt+5hj2Gjlx4gTz5s3jjz/+4MiRIyxatAiASZMm8eKLL3L06FGef/55pkyZcnOd5ORk/vjjDz777DP69+/PtGnTOHHiBMeOHbs5h01mZiYdO3bk0KFDPPTQQzeD9Yb8/HwmT57M5s2bOXjwICNHjmTWrFkMHDiQzp07s2HDBqKiorCxsSl2ueKUpK558+YRGRnJ0aNH+fPPPwvN3Ong4MDff//NENNBCTqdjueff56mTZsyd+5cVq9ejaurKxEREURERBASEsKFCxf44IMPeOCBB4iKijKLsAc1wlfuwJCTQ8Irr5D++w5qDR9O7ddevSsOUTzwwxI6Rr3NedvGeI3biruX951X0sodRuKV4Y8//mDgwIF4enoCUKtWLQDCwsL4/vvvARg2bBivvvrqzXX69++PEII2bdpQp04d2ph297Vq1Yro6Gjat2+PlZUVgwcPBuCFF17g6acLz7F0+vRpjh8/Tu/evQHjbpT/jtpLs1xJ69q0aRPBwcHodDouXbrEyZMnadu2LcDNem8YN24czz777M0/MNu3b+fo0aM3v4NITU3l7Nmz2JnhuSgq8JVb0iUnEx80nuyjR6kz8w1qvfii1iVViPB1b+N/bhHHHDpyz6QfcHZx07oks3OrqY//q+AyBacU/u90w7e69N9/+5BS0qpVK8LCwu5YX0mWK0ldFy5cYMGCBURERODu7k5gYODNC7ZA0amP77vvPnbt2sWMGTNwcHBASsmSJUsKzY8P5nnGsOUP1ZRKkRcTQ/SQIeT88w/1Fy68K8JeGgyEr5yA/7lFHHTpSdNpP6uwv4VevXqxadMmrl27Bhin8wVj2H399dcAbNiwgfvvv79U2zUYDDdHwhs3biyyfrNmzUhMTLwZ5Pn5+Zw4cQIoPPXx7ZYrrbS0NJydnXF1deXKlSv8+uuvt11+1KhR9OvXj0GDBqHT6ejbty8rVqy4OcXxmTNnyMzMLDJVszlQI3yliOwjR4gLGg9S0uCLL3Dq2EHrkspNl5/H4aXD8E/dxn7Pp+kcFKKmSriNVq1aMWvWLB566CGsra3p0KEDoaGhLF68mJEjR/Lxxx/f/NK2NJydnTlx4gSdOnXC1dX15rz3N9jZ2bF582amTJlCamoqOp2Ol156iVatWhEYGEhQUNDNL21vtVxptWvXjg4dOtCqVSvuueeeIte8Lc706dNJTU1l2LBhbNiwgejoaDp27IiUEi8vL7Zs2ULbtm2xsbGhXbt2BAYGmsV+fDU9slJI+s6dXJzxMjZeXvgGr8K+USOtSyq3nKwM/lk6kPZZYYQ1GIt/4Idm/z3E3To98o0LoysVo7TTI6shjnLT9Q0buDJvPg6tWuG7cgU2Hh5al1RuqclJJCwfQNu8k+xvOZOAwa9pXZKiaEYFvoI0GEj89FOufb6aGj17Uv+TBVg5Wf40wEkJMaR/PoB79XEc7vYJ3fqN0rqkak+N7rWlAr+aM+Tlcen1N0j75Rfchg6h7ptvIqyttS6r3OL/PY7VhqepY0jhdK8v6PTgk1qXpCiaU4FfjelTU4mfOImsyEi8ZkzHY/Roi7/IOMC/R/bi/sNQrJDEP/ktbTo+pHVJimIWVOBXU/kXLxI7dhz5sbHUW7AA1yce17qkCnFi78/4bR9FhqhB7tDNNK3mFxpXlIJU4FdDX35seAAAG+BJREFU2SdOEBcUhMzNw3f15zh37ap1SRXi0G/raLVvGpes6+I48n/4+dyrdUmKYlbM+9g0pcJl7NlDzLAXETa2NNyw/q4J+wPffUa7fZOJtr0X94k7qaPC3mwsXLiQrKwsrcu4rYLTM48ePZqTJ08CMH/+fC3LqnAq8KuRlM2biQsaj52fHw2//hr7Jk20LqncpMFA2Jcz6XpsNiccO+P70nZcPepoXZZSgCUEfkGff/45LVu2BMoW+LeaRsIcqF061YCUkqQlS0havgLn+++n/sKFWNdwvvOKZs6g13MgeAIBV74msuYjtJu0EVs7+zuvaIFGbBtR5Lm+DfsypPkQsnXZTNgxoUj7k42f5KnGT5Gck8z03dMLtX3x6J3PkJ0zZw4bNmzA19cXT09POnXqxMsvv0xUVBRBQUFkZWVx7733smbNGi5fvszw4cM5cOAAYJwLfsCAAYwePZqEhAR69uyJp6cnu3btKtRHcVMhOzk50bVrV7Zu3UqzZs0YOnQoDz/8MGPGjLnl9Mrnzp1j4sSJJCYm4uTkREhICM2bNycwMJCaNWsSGRnJ/2vvzuOqrvIGjn8OcNlkVZBduOACLriMazo+2lRWlprjVoKWr2SmcsvXU1k9FaWVms00aunjOJg55L6Wz9iUS+SYG1puqKmAoOwIAgoXuOf5416vIIuy6IXLeb9evuT+7u/e+z0s39/5nd/5fU96ejoLFy5kzJgxSCmZPn06e/bsQavVUvEG1CFDhrBo0SI2bdrEzZs36dGjB126dOHDDz/kqaee4tSpUwAsWrSIwsJCoqOjGTJkCA899BD/+c9/GDFiBEOGDKm2dPPixYtZvnw5NjY2dO7c2VSm4kFRPXwLJ3U60t58i+wvluH6x9EELPvCIpJ9qa6EY38bT/+MdRxsO45eMzdYbLI3h6NHj7J582aOHz/Oli1bKq3yNGnSJBYsWMCJEyfo1q0b77//PmFhYeh0Oi5dugTA+vXrGTduHDNmzMDX15e9e/dWSfY1lUJ2dXVl6dKlPP/886xbt45r164xdepUoObyylFRUSxZsoT4+HgWLVrEyy/fPgCmpaWxf/9+vv32W+bMmQPA1q1bOXfuHCdPnuTvf/87Bw4cqPI9mD9/Pg4ODvzyyy/Exsbe9XuWl5fHjz/+yIwZM2os3Tx//nyOHz/OiRMnWL58eV1+JI2iQT18IcRYIBoIA/pKKautgyCEeBz4G2ANrJRSPvh6ry1QeWEhV2bMoOjAz3hMn4bHyy9bxLTLm0UFnF86mt43D3Mw6BX6TZrX5EslNFRtPXIHG4dan3e3d7+nHn1F+/fvZ+TIkTg4OACGEsNgKP2bl5fHf/2XYarr5MmTGTt2LADjxo1jw4YNzJkzh/Xr11epk3On2kocP/roo2zcuJFXXnmFX3/91fSa6sorFxYWcuDAAVMcACUlJaavR40ahZWVFZ07dyYjIwOAuLg4nn32WaytrfH19eXhhx+u0/enOrfiqq1d4eHhTJw4kVGjRjFq1KgGf2ZdNXRI5xQwGvjfmnYQQlgDnwOPAqnAESHEDinlmQZ+tlKL0owMUqL+RMnFi/h89BFuo58xd0iNIj8ng7Tlo+iqS+Bwt/foP2b23V+k1Fl9amyNHz+esWPHMnr0aIQQdLjLNaLaShzr9XoSEhJwcHAgNzcXf3//at9DCIFer8fNzc20mMmdKpZErtiuunZ+bGxs0Ov1pscVSyjD7TLKtbVr586dxMXFsWPHDubOncvp06exeYBF/BrULZJSJkgpz91lt77ABSnlJSmlDlgH3NfbHo/9axUJh74jJyMVWeEH1FIUnztP0vgJlKamErB8ucUk+8wriVz7/BGCdec58dDf6KuS/X0zaNAgvvnmG4qLiyksLGTnzp0AuLq64u7uzk8//QTAmjVrTL39kJAQrK2tmTt3bqVFQ2oqE1xbieO//vWvhIWFsXbtWqZMmWIqPVxdeWUXFxe0Wi0bN24EDAm34llBdQYPHsy6desoLy8nLS2tynDTLRqNxvTZXl5eZGZmkpOTQ0lJCd9++221r6mpXXq9npSUFIYOHcrChQvJy8t74KUmHsShxQ9IqfA4FehX085CiCggCqBdu3Z1/rDysjK6HHwNO2H4IV3HkXQbf647BlLqHoJt2w64BXTGJ7gLjk6udX7/pq7o4EFSp03HytGRwH+uwd5CKi6m/PYrmtg/4iELOf/Yl/Qc+LS5Q7Joffr0YcSIEXTv3p3AwEB69+6Nq6vh72X16tWmi7bBwcGVSiSPHz+e1157jcTERNO2qKgonnjiCXx8fCol1ppKIWs0GlauXMnhw4dxdnZm8ODBzJs3j/fff7/G8sqxsbG89NJLzJs3j9LSUiZMmED37t1rbN8zzzzDnj176NatGx07djQdtO4UFRVFeHg4vXr1IjY2lnfffZd+/fqh1WoJDQ2t9jU1tatjx45ERESQn5+PlJJXX30VN7cHux7DXcsjCyF+ALyreeptKeV24z77gP+ubgzfOM4/TEr5ovFxJIbx/ul3C64+5ZGlXs/VpHPkJJ/mRtpZRO5FHAsS8SxJwZvsSvtm0ppMu3YUOQUhW4fg4BNKm3ad8Q7siI2m6S1Pdjf527dz9X/ewS4okIAVK9DUsORbc/Pb8Tg8tk9EArnPrKV997otutEcNYXyyIWFhTg5OXHjxg0GDx7MihUr6NWrl1ljUuWVK2v08shSykcaGFMqEFDhsT9wtYHvWSNhZYVfcBh+wVX/WG4WFZCWeIa8lDOUZJzD5tolXIqSCc35HtecbfCbYT+dtCbZ2odc+3aUuGix8uyAk28obbVdaNPWv8ldIJRSkvO/K8j67DMc+/XDf8lirF1czB1Wozj103a0P0SRb+VC+cQttG/fzdwhtRhRUVGcOXOG4uJiJk+ebPZkrzTcgxjSOQJ0EEJogSvABOC5+/mB5Xl5WLm6Vrko49DKmeCu/aBr5RElqddzLSeDjMRTXL+SQHnWb9jlJ9L6ZjI+RUewSy+Fk4Z9C6QD6Rp/8h0DKXULRuPVETf/MLy1XXBycb+fzaqWLCsj/YO55G3YgMvTT+Pz4TysmuDiyfVx7F+r6Hrwv7li7YfTizvw9Q0yd0gtytdff23uEKpQvfuGaei0zGeAJYAnsFMI8YuUcpgQwhfD9MsnpZRlQohpwHcYpmXGSCnrt/jkPZBScuHRx0CvxzYo6PY/rdb09Z3z0IWVFe6ePrh7+mCYTHRbeVkZV1MvkpN8mqKrZxE5F3AoTMLv+q945e/G6rI0HNIwDBFl2fpT6BSEbNMee+9OtGkXhndg6H2ZI64vKiJ19myKfoyjTVQUnq/OsohplwCHNnxCn9Mfcs42DN+XduDa2tPcISlKs2dxSxzKsjKurV+PLikZXWIiuqQkSq9cgQrttPH0rPZAYBvgj9Bo7vmzim8UkpaUQF7KGYrTDUNEzkXJeJWm4M7tWQml0pp0Ky9y7NtR7KJFeNweIvLwblevIaKyrCxS/vwSxQkJeL/7Lu4Txt/9Rc2A1Os5uPpNBiQv5xeH/nSatgmHVs7mDuuBawpj+ErT1+KXOBQ2NrSeOLHSNn1JCaWXL1OSlIQuKQldouH/gt27Kc/Nvb2jtTW2/v5VDwbaIGzatq3Se7Z3dELbuQ907lMljrzsdNKTTlOQmkBZ1m/Y5V/C7cZlQtPjsc8oBeM5TpG0J83Gj3zHQHRuIWjadsDVPwzv4K44u7auto0lly6RMjWKstxc/D9fivPQoQ36njUV+vJyjiybyoDszRxxHUaPV9aou2cVpRFZXMKvjpWdHXYdOlRbLKw8P99wEEhKoiQx0XBmkJRE0aFDyAo3VghHR2yDArELCsI2SIut9vZwkbVz1R6om4c3bh7e0PsPlbbry8tJv3KJrKQz3EhLQGZfwLEgCZ/C03hf34tVioR4w77ZuJFpG0CBkxbZpgMOvmG4F1pzc+4ChEZD4FercehmGRcxdSXFnFj6HP0KdnPQ61n6Rn2OlQWsvKUoTYnFDek0FqnXU5aRccfBIAldUjKlqalQ4YYuaw8PbIMCsQ0Kwq7SEFEAog4XUItvFpGRdJbclASK089hnXsB56IkvEtTcec61y/bc/WgOzatyhFDHchrq6XULQQbr064teuCT3BXWjk/2Hm9jaGoII+Ln48mvDiegyEz6R/5gblDMrvmOKRzv6dMZmVl8dRTT6HT6Vi8eDG///3vq91v3759LFq0qMYbowC+/PJLjh49ytKlSyttz8vL4+uvv65Ui+duPvvsM6KionCswzrQNX1+XbX4IZ3GIqys0Pj4oPHxodWAAZWe0+t0lKakGIeHEk1DRYV795G/afPtHa2s0Pj7V3swsPHyqjJ2b+/QisCw3xEY9rtK26WUpC5dQsG6ZZQFepP/eHvsdJfxKjqHT8GPWKfePitIx4Msu3bccAkGj4608gvDKzi83tcK7re87HQylo+gS+l5DveYS/9nZpg7JKWJ2r17N6Ghoaxevfq+fUZeXh5ffPFFnRN+REREnRK+uaiEXw9WtrbYhYRgF1J1kY3y69fRJd++YKxLSqIkKYkbR+ORFWqCCwcHbAMDTdcI7CrMKLJ2vX0HsCwvJ2P+AgrWrMF52DB8F8zHyt7e9HxJ8Q1SExPIvXyKkrRzWF/7DdeiJLSZO3HK2gQJhv0KpQNpGn/yHYMobd0eO+9QWgd2xUfbGTt78/yipqdcoGTVKILK0zkxcCl9H4swSxxNXfpHH1GScLZR39MuLBTvt96q8fk33niDwMBAU+KLjo7G2dmZP/3pT4wcOZJr165RWlrKvHnzGDmycqWUO3vY06ZNo3fv3jz//PPVlkP2ueMGweTkZKZMmUJWVhaenp6sWrWK3NxcXn/9dVO54p9//tlU2A1g165dzJo1Cw8Pj0r3CxQVFTF9+nROnjxJWVkZ0dHRpnhTUlJ4/PHHSUxM5LnnnuO9995jzpw5XLx4kR49evDoo48ye/Zsxo8fz/Xr1ykrK2PZsmWVziwWL15cpfzz2rVr+eijj5BSMnz4cBYsWADAqlWr+Pjjj/Hx8aFjx46mGj/ffPMN8+bNQ6fT0aZNG2JjY/H09KRTp04cOHAAT09P9Ho9HTt25ODBg3h4eNT5532LSviNzNrFBYdu3aqMrUspKcvMNF4wTjRdOC5OOEPB999Defnt92jd2pT8yzIzKdq/n9aTJ9P2jder9NLt7B2rPyvQ68lKv0zGpRMUXUmA7PM4FCTif/0XvK9/D0nAQSiXglQrb7LtAyl2DcHKswPO/p3xDg43TlO9P5LPHsN+3RhayxtcfHwNPQc8cd8+S6m7CRMmMGvWLFPC37BhA7t27cLe3p6tW7fi4uJCdnY2/fv3Z8SIEfc0HfhWOeTt27fj6enJ+vXrefvtt4mJiam037Rp05g0aRKTJ08mJiaGGTNmsG3bNj744INqh0GKi4uZOnUqe/bsoX379pXq+Hz44Yc8/PDDxMTEkJeXR9++fXnkEcO9pIcPH+bUqVM4OjrSp08fhg8fzvz58zl16pSpENunn37KsGHDePvttykvL6+ykMuMGTP4y1/+wt69e/Hw8ODq1au88cYbxMfH4+7uzmOPPca2bdvo168f7733HvHx8bi6ujJ06FB69uwJGOoWHTx4ECEEK1euZOHChXz66adEREQQGxvLrFmz+OGHH+jevXuDkj2ohP/ACCHQeHmh8fKiVf87bvzS6dClXql0INAlJlL4Uxz6/Ot4vfUmrSdNqtvnWVnh6RuEp28QMKLSczcK87l68RR5KacpzTiH7bULuN9IIjQtHvsKN5ldw5l0jeGisb5NB+x9wvAI7Nrg0hPnj+3Dc0cE5ViTOWYbnbv1r/d7tQS19cTvl549e5KZmcnVq1fJysrC3d2ddu3aUVpayltvvUVcXBxWVlZcuXKFjIwMvL2rq75SWW1lgyv6+eef2bJlCwCRkZG8/vrrtb7v2bNn0Wq1puqcERERrFixAoB///vf7Nixg0WLFgGGg8Ply5cBQwnmNm3aADB69Gj2799fpWRxnz59TMXbRo0aRY8ePWqN5ciRIwwZMgRPT8N9IxMnTiQuLg6g0vbx48dz/vx5AFJTUxk/fjxpaWnodDq0Wi0AU6ZMYeTIkcyaNYuYmBheeKHqIjh1pRJ+EyBsbbEL1mIXrK3ynNTrG33s3dHJlfbdB0L3gZW2l5eVcTXlAtlJp7iRloDI+Q2ngksEX/sPHtd2wgXgJ9BJG5Ksfch1CKLELQSbtp1wDeiCT0i3GqeS3nLyxy2E7Pkz16zcIHIrIcFdGrVtSuMZM2YMmzZtIj09nQkTJgCGImVZWVnEx8ej0WgICgqqUia4pjLCtZUNrs29nD3UtI+Uks2bN9OpU6dK2w8dOlTlNdW9x+DBg4mLi2Pnzp1ERkby2muvMamWzldtk2BqinH69OnMnj2bESNGsG/fPqKjowEICAjAy8uLPXv2cOjQoXtahOVuVMJv4h7khVZrGxt8taH4aqtWAczPzSLt0gmup5yhPPM89vkXaHMzEd/CA2iulMNxw36mgnTOwcg2HWjlG4qnthtt/YI5tiuG8MNvkGLTDtepO/Dwrns1VOXBmTBhAlOnTiU7O5sff/wRMCyA0rZtWzQaDXv37iU5ObnK6wIDAzlz5gwlJSUUFxeze/duBg0aVKls8IABAygtLeX8+fN06VL5oP/QQw+xbt06IiMjiY2NZdCg2ovlhYaGkpiYyMWLFwkJCWHt2rWm54YNG8aSJUtYsmQJQgiOHz9uGkr5/vvvyc3NxcHBgW3bthETE1OllHNycjJ+fn5MnTqVoqIijh07ViXh33qNh4cH/fr1Y+bMmWRnZ+Pu7s7atWuZPn06ffv2ZebMmeTk5ODi4sLGjRtN1Tzz8/Px8/MDqHJB+sUXXyQiIoLIyEisG2Gaskr4yj1xbe2Ja+s/VLmvoFRXwuWkBHKSThnuNs79DZfCRMKyv8MlewucA/bCDWlHL3ScteuK/8vbcXFrY56GKPesS5cuFBQU4OfnZxp6mThxIk8//TS9e/emR48e1ZYIDggIYNy4cYSHh9OhQwdTgq2pbPCdCX/x4sVMmTKFTz75xHTRtjb29vasWLGC4cOH4+HhwaBBg0zrzr7zzjvMmjWL8PBwpJQEBQWZLiYPGjSIyMhILly4wHPPPUfv3oaZjAMHDqRr16488cQTdO3alU8++QSNRoOTkxNfffVVlc+/s/zzxx9/zNChQ5FS8uSTT5ouEkdHRzNgwAB8fHzo1asX5cbrdtHR0YwdOxY/Pz/69+9fqbT0iBEjeOGFFxplOAfUPHzlPpF6PTmZV8i4dJLCKwnI7PNIazt6RnyEvaOTucNr8prjPHyl8R09epRXX33VtODMndQ8fKVJEFZWeHgH4OEdADxp7nAUpdmZP38+y5Yta5Sx+1ua3p04iqIoCnPmzCE5Ofmu1zDqQiV8RWmimvJwq2J+9fn9UAlfUZoge3t7cnJyVNJXqiWlJCcnB/sKd93fCzWGryhNkL+/P6mpqWRlZZk7FKWJsre3x9/fv06vUQlfUZogjUZjuuNSURqLGtJRFEVpIVTCVxRFaSFUwlcURWkhmvSdtkKILKBqsY574wFkN2I45mQpbbGUdoBqS1NkKe2AhrUlUErpWd0TTTrhN4QQ4mhNtxc3N5bSFktpB6i2NEWW0g64f21RQzqKoigthEr4iqIoLYQlJ/wV5g6gEVlKWyylHaDa0hRZSjvgPrXFYsfwFUVRlMosuYevKIqiVKASvqIoSgthcQlfCPG4EOKcEOKCEGKOueOpLyFEjBAiUwhxytyxNJQQIkAIsVcIkSCEOC2EmGnumOpLCGEvhDgshPjV2Jb3zR1TQwghrIUQx4UQ35o7loYQQiQJIU4KIX4RQjTrZfKEEG5CiE1CiLPGv5kBjfbeljSGL4SwBs4DjwKpwBHgWSnlGbMGVg9CiMFAIfCVlLKrueNpCCGED+AjpTwmhHAG4oFRzfTnIoBWUspCIYQG2A/MlFIeNHNo9SKEmA30BlyklE+ZO576EkIkAb2llM3+xishxGrgJynlSiGELeAopcxrjPe2tB5+X+CClPKSlFIHrANGmjmmepFSxgG55o6jMUgp06SUx4xfFwAJgJ95o6ofaVBofKgx/muWvSYhhD8wHFhp7lgUAyGECzAY+AeAlFLXWMkeLC/h+wEpFR6n0kwTi6USQgQBPYFD5o2k/ozDIL8AmcD3Usrm2pbPgNcBvbkDaQQS+LcQIl4IEWXuYBogGMgCVhmH2lYKIVo11ptbWsIX1Wxrlr0vSySEcAI2A7OklNfNHU99SSnLpZQ9AH+grxCi2Q25CSGeAjKllPHmjqWRDJRS9gKeAF4xDok2RzZAL2CZlLInUAQ02rVIS0v4qUBAhcf+wFUzxaJUYBzv3gzESim3mDuexmA81d4HPG7mUOpjIDDCOPa9DnhYCPFP84ZUf1LKq8b/M4GtGIZ3m6NUILXCWeMmDAeARmFpCf8I0EEIoTVe7JgA7DBzTC2e8ULnP4AEKeVfzB1PQwghPIUQbsavHYBHgLPmjarupJRvSin9pZRBGP5O9kgpI8wcVr0IIVoZJwNgHP54DGiWs9uklOlAihCik3HTH4BGm9xgUUscSinLhBDTgO8AayBGSnnazGHVixBiLTAE8BBCpALvSSn/Yd6o6m0gEAmcNI59A7wlpfw/M8ZUXz7AauOMMCtgg5SyWU9ptABewFZDvwIb4Gsp5S7zhtQg04FYY6f1EvBCY72xRU3LVBRFUWpmaUM6iqIoSg1UwlcURWkhVMJXFEVpIVTCVxRFaSFUwlcURWkhVMJXWhwhRLmxquIpIcRGIYRjHV7rK4TYVMfP2yeEsIjFtZXmTSV8pSW6KaXsYaxCqgP+fC8vEkLYSCmvSinH3N/wFOX+UAlfael+Atob79aMEUIcMRatGgkghHjeeBbwDYbiXEG31igw1sZfZazDflwIMdS43UEIsU4IcUIIsR5wMG63FkJ8aTyzOCmEeNVMbVZaKIu601ZR6kIIYYOh2NYu4G0M5QWmGEsnHBZC/GDcdQAQLqXMNVb7vOUVACllNyFEKIYDQkfgJeCGlDJcCBEOHDPu3wPwu7W+wa0SDYryoKgevtISORhLPBwFLmOo8/MYMMe4fR9gD7Qz7v+9lLK6tQkGAWsApJRngWSgI4Z65v80bj8BnDDufwkIFkIsEUI8DjTbiqFK86R6+EpLdNNY3tjEWODtj1LKc3ds74ehRG11qivHfUuVmiVSymtCiO7AMAxnB+OAKXUJXFEaQvXwFcXgO2C6MfEjhOh5D6+JAyYa9++I4Yzg3B3buwLhxq89ACsp5WbgHRqx7K2i3AvVw1cUg7kYVoA6YUz6ScDd1nj9AlguhDgJlAHPSylLhBDLMKxYdAL4BThs3N/PuP1WR+vNRm6DotRKVctUFEVpIdSQjqIoSguhEr6iKEoLoRK+oihKC6ESvqIoSguhEr6iKEoLoRK+oihKC6ESvqIoSgvx/xNUQByqDixJAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_33_1.png" }, "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa0AAAEWCAYAAADVW8iBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hUVfrA8e+bBiHAUEJvE7qAIF1Bih2MvfeO5adiWzX2u+pq1oLoqmuXZV0LKigaUOxBkd47SIYuoU4gISHl/P44NzKElJsyuZPM+TzPPJm59Z2SeeeeKkopDMMwDKMmiHA7AMMwDMNwyiQtwzAMo8YwScswDMOoMUzSMgzDMGoMk7QMwzCMGsMkLcMwDKPGMEkrTIiIJSIfVGL/FSIysgpDCksVeR9E5CMROS9YMZWXiIwUkS1ux1EVquO5iEgLEVklInWCeZ5wYZJWkInIFSIyX0QOiMh2EZkuIie6HVdpRGSCiDwduEwp1VMp9bNLIf1FRJSIdHY7Dieq4gtRRHoDfYAvqyaq6lXZH0uhqjzvrVJqB/ATcHNwowoPJmkFkYjcC4wHngFaAO2B14Fz3YwrVIlIVDWcIzLY56hitwD/U2YUgCpXHZ+3AP9Dv5dGZSmlzC0IN8ADHAAuLmWbCcDTAY9HAlsCHvuA+4GlQCbwLjr5TQf2A98DjYvbN2D/U+37FvBBwLpPgT8BP5AK9LSX3wzkAofs+L8KPBbQGjgINAk4Vl9gFxBtP74BWAXsBb4FOpTw/L2AAm4ENgGppe1vx6ns1+IAcClwHfBrkeMqoHPAa/xvYJq936n2c/mb/br6gU+AuiXEeB3wG/Ave9vVwCkB66+3Y90PbABusZfH2a9TgR3rAfu1s4BJwER7nxXAgFI+IxuAE4ssGxNwzpVAP3v5McDPwD77uOcU+ay9jv7sHLCfU0v0j6q99vPqW+Sz85B9/L3A+4WvEUd/TlsDnwM7gTRgrL18FPpzlGufc0nA/8a7wHZgK/A0EFnC87fQn9UP7Oe7DOhqx5YObAZOL+v9CIwbeBD92f9vMc9lrP2c2wJ1gBfQn80dwBtAbCnv7SBgPpBhbz8u4LhRQBYl/C+YWzm+W90OoLbe7H/YPCCqlG0mUHbSmo1OVG3sf9KF6CRRB/gReKK4fQP2Lylp3QA0sI8zHlhcUlzFHOtHYEzAuueBN+z75wHr0V+gUcCjwKwSnr8XnWAm2l8EsWXtT0BCsh9fR9lJyw8MRZcs1LWfy1z7i6YJ+kvu1hJivM5+H+8BotGJ0o+dtIFEoBMgwAj7i6kwiRT3nlhANnAmEAk8C8wu4dxx9nNpFrDsYvQX/UD7nJ2BDnZs64GHgRjgZPQXd7eA12EX0N9+DX5EJ5hr7DieBn4q8n4vB9rZr9FvhZ+JwOdlv6YLgMft83ZEJ4szivvc2cu+AN60n19z+724pYTXoPD1OsP+PEy0437Efs5jgLSA7ct6P/KAf6I/97FFnstj6P+vZvbj8cBU+/k3AL4Cni3lvf0duNq+Xx84vsj6pQT8kDC3it1M8WDwNAV2KaXyKnmcfymldiiltgIzgTlKqUVKqRxgCjqBlZtS6j2l1H77OBbQR0Q8Dnf/ELgcQEQEuMxeBroI5Fml1Cr7uT8DHCciHUo5nqWUylRKHazg/mX5Uin1m1KqQCmVbS97RSm1TSm1B/1ldFwp+6cD45VSuUqpT4A16C9HlFIpSqk/lPYLMAMYVkY8vyqlpiml8tG/9vuUsF0j++/+gGU3Ac8ppebZ51yvlNoIHI/+okxWSh1SSv0IfI39PtmmKKUW2K/BFCBbKTXRjuMTjv4svaqU2my/Rv8ocqxCA9Ff8k/a590AvI3+TBxFRFoAo4G77fc8HXippO1tM5VS39qfh0+BZvbzzAU+Brwi0ggcvR8F6B96OfbnzQ5LxqET40lKqZ3253oMcI9Sao9Saj/6s1hanLlAZxGJV0odUErNLrJ+P4ffU6OCTNIKnt1AfBWUm+8IuH+wmMf1y3tAEYkUkWQR+UNEMtC/qgHiHR7iM+AEEWkNDEdfDcy013UAXhaRfSKyD9iD/tXbppTjbQ64X5H9y7K5mGV/BtzPovTXcatSKrBOaSP6Kg0RGS0is0Vkjx3vmZT9OhY9d90SPif77L8NApa1A/4oZtvWwGalVEGROANft/J+lgJft7+ecxEdgNaF75f9GjyMLh0oTuFV4faA7d9EX3GVpGicu+xEW/iYwtgdvB87A364FGqELhZ/Vinlt5c1A+oBCwLi/MZeXpIb0UWXq0VknoicVWR9Aw6/p0YFVWdFZLj5HV2scR76S744meh/jEItK3G+I45lNzgo6R/sCnRjkML6HQ+63kLs9aVW+iul9onIDOASdDHeRwFf6puBfyil/leO2APPV979iz7v4l7DyjZiaCMiEvAc2wNT7SbMn6OL2L5USuWKyBc4fB3LopTKFJE/0F+EO+3Fm9HFX0VtA9qJSERA4moPrK1ECO0C7re3z1HUZnTxXJcSjlH0NdgM5ADxVVAKcQQH70dx8YD+7F8FTBKR85VSv6GLUg+i63q3FrPPUcdRSq0DLheRCOAC4DMRaWq/j1HootwllXiKBuZKK2jsX2yPA6+JyHkiUk9Eou1fgs/Zmy0GzhSRJvaX7d2VOOVa9C/2RBGJRtcFldQvpAH6i2M3+gv/mSLrd6DrJkrzIfrL4UIOFw2Crqx+SER6AoiIR0QuLsfzKGv/orEtAXqKyHEiUhdd1FnVmgNj7ffvYnSinoauw6mDTih5IjIaOL1IrE3LUexanGnouplC7wB/E5H+onW2i07noBP4A3acI4Gz0cVnFXW7iLQVkSboq6dPitlmLpAhIg+KSKx9Fd9LRAba63egi+8iAJRS29FFdi+KSEMRiRCRTiIyophjl1dZ70eJlO7OcSUwRUQG24n/beAlEWkOICJtROSMgOd1xHsrIleJSDN738IrqsIrwkGAzy7KNSrBJK0gUkqNA+5FJ5Cd6F+Zd6ArokHXZyxBX+3MoPgvBafn8gP/h/5S24r+AiupH8lEdHHPVnRLqaJl7+8CPexikS+K7mybCnQBdiil/vr1qJSagq7o/tguelyOrsNw+jzK2t8C/mPHdolSai3wJLol5TrgV6fnKoc56Oe6C123c5FSarddzzEW3RpwL/oKdmrAc1kNfARssOMtrnitLG8BV9p1LCilPrVj+BBdR/IFulHIIeAc9Gu1C91S8Bo7hor6EP253GDfni66gV1Mdza6TjDNPvc76Kt30HVQALtFZKF9/xp0gilsmfgZ0KoScRbGUur74WD/79CtD6eKSH90K8P1wGz7s/g90M3etrj3dhSwQkQOAC8DlwUURV6J/kFmVJIcWVRvGEYgEbkOuEkp5VqHcBH5EJiklCrpB0QwzulDP+/vq+uctZV9pfYLuktB0fo0o5xMnZZhhDil1BVux2BUnN1C8hi346gtTPGgYRiGUWOY4kHDMAyjxjBXWoZhGEaNUavqtCIiIlRsbKzbYRiGYdQYWVlZSilVYy5galXSio2NJTMz0+0wDMMwagwROVj2VqGjxmRXwzAMwzBJyzAMw6gxTNIyDMMwagyTtAzDMIwawyQtwzAMo8YwScswDMMolYi8JyLpIrK8hPVXishS+zZLREqa2LTSTNIyDMMwyjIBPYp9SdKAEUqp3sBT6NkJgqJW9dMyapG9G2Hxh3DERLxAt9HQph9kbIP57x+9X8/zoEVP2JOm9y+q9yUQ3wV2roFlxczN2fcqaNwB/lwGK4uZ1WLgjdCgJWxdAGu+OXr98bdBvSaw8Xf448ej1w8dC3UawIafwffb0euH3w9RMbDuO9g898h1InDSw/r+6hTYtvjI9VExen+A5ZMhfdWR6+vUh6F36ftLPoHd649cX68pHH+rvr9wIuwrMuFzg5b6+QPMfRsOpB+5vnEH/foB/P46HNx75Pr4rtDbnhrt1/FwqEifyhY99fsH8MtzkJ975PrWfaH7mVBQAD8/y1HaD4bOp0JuNsx88ej1CcMhYRhkZ8Csf0Fdj36/IiKP3rYGme/bw4KNe7llRHFzg1YNpVSqiHhLWT8r4OFsoG2wYjFJywhNu9fBvLcha8+Ryz1tdNLavx1Snz96v2bd9Jffvk3Fr287QCet3euLX99xpP7yTV9V/PpjztJf3tsWF7++z2U6aW2ZW/z6gTfppLVxVvHrT7wbiIE/foLZrx+5LjBprf1WJ5ZAdRoeTlqrv9aJK1CDVoeT1vLPYd2MI9fHdzmctJZ8rGMM1Lrv4aS1cKJO7IEShh1OWvPegT0bjlzf7czDSWv260cnvWMvPpy0fh0PuVlHrh9wvU5aUPxrN+ROnbTyc4pfHxGlYzx0AFLteVhb9IBOJx+9bQ2Ql1/Aqz+t55Uf1tGuST2uOr4DcXUq9JUeJSLzAx6/pZSqzJXSjcD0Suxfqlo1YG5cXJwyI2IYhlGmnAPwzw4wZCyc+oTb0ZTb5j1Z3PPJYuZv3MsFfdvw93N70qBudIWOJSJZSqk4B9t5ga+VUr1K2eYk9ASkJyqldlcooDKYKy0j9BzKhPxDENvY7UiM2qpOfWjTH9JS3Y6k3KYu2cYjk5ehgPGXHsd5fdu4HRIAItIbPWv16GAlLDANMYxQtOor+GcC7FzrdiRGbZYwHLYtgpz9bkfiyIGcPO6dtJixHy2iS4v6TL9rWCglrPbAZOBqpVRQ/3HNlZYRetJSIbYRNO3sdiRGbTbwJuh/na5jDHGLN+/jro8XsXlPFmNP6cLYkzsTFVl91xwi8hEwEogXkS3AE0A0gFLqDeBxoCnwuogA5CmlBgQlFlOnZYQUpWD8sbrS/9L/uh2NYbgqv0Dxxi9/8NJ3a2nRsC7jLzuOgd4mVXoOp3VaocJcaRmhZa8P/JsPt3IzjGBaMx18v8IZ/3A7kqNs23eQez5ZzJy0PST2bsUz5x+LJ7ZijS1qE5O0jNBSWDGeMNzdOIzw8Ody+P01GHaf7qoQIqYv207S5GXk5hfw/EW9uah/W+xit7BnGmIYoaXTSXDWeN0R1TCCLWEYoPTVVgjIOpTHQ5OXctv/FtKhaT1Sxg7j4gHtTMIKYK60jNDSqL3uRGoY1aF1P4iO01f4Pc5xNZTlW/2M/XgRabsyuW1kJ+45tSsxUea6oiiTtIzQ4d+ihzbqNhrqNnQ7GiMcRMVAhxPAN9O1EAoKFO/+msZz366maVwd/nfTYIZ0inctnlBn0rgROtZMhyk3Q1bQ+iUaxtESRkBkDOQerPZTp2dkc+37c/nHtFWc3L050+8aZhJWGUyTdyN0fHIVbFsCdy/V4+wZRnVQypXP2/crd/DA50vJOpTH42f15PJB7tRdmSbvhlERBQW6MrxboklYRvUq/LxVU/LKzs3nmWmrmPj7Rnq0asgrl/elc/P6QT9vbWGSlhEadizXU1kkDHM7EiMc/fxPWDUVbitmupgqtGp7Bnd9vIi1Ow4wZlgCfzujG3WiavbUKNXNJC0jNGxdoP96TdIyXFC3of7htG+TbsFaxZRSTJjl49npq2lYN5qJNwxieNdmVX6ecGCSlhEaBlwPXc+Ahq3djsQIR4Wd2dNmQt8rq/TQuw7kcP+nS/hpzU5O7t6c5y7qTXz9OlV6jnAStNaDIvKeiKSLyPIS1l8pIkvt2ywR6ROwziciy0RkcZHJyYzazCQswy3NjoF68VU+VcnPa9IZNX4mv/2xmyfP7cm71w4wCauSgtnkfQIwqpT1acAIpVRv4Cmg6EyZJymljgvWSMFGCNm2GCZdc/RMt4ZRXSIiwHui7q9VBS2qc/LyefKrlVz3/jyaxsXw1R0ncs0JXjOyRRUIWvGgUirVnumypPWBc3nPBtoGKxYjxP3xA6z8Es580e1IjHDW+1Jo1h3yc3Wn4wpat2M/Yz9ezKrtGVw3xEvS6O7UjTaNLapKqNRp3QhMD3isgBkiooA3lVJFr8L+IiI3AzcDxMRU/INmuChtJjTvAfVNxbThou5n6lsFKaX4cO4mnvp6JfVionjvugGc3L1FFQZoQAgkLRE5CZ20TgxYPFQptU1EmgPfichqpVSxhc12QnsLdOfioAdsVK28HNg0G/pf63YkhgE5B2BvGrQ8tly77ck8xIOfL+W7lTsY1iWeFy/pQ/MGdYMUZHhzNWmJSG/gHWC0UuqvsXuUUtvsv+kiMgUYBFRtDakRGrbMh7yDZioSIzSk3Afrv4f71zvuaPzb+l3cO2kxezNzeTTxGG4YmkBEhKm7ChbXxh4UkfbAZOBqpdTagOVxItKg8D5wOlBsC0SjFsg7CC17Q4chbkdiGLpze9YuSF9V5qaH8gp4dvoqrnp3DvXrRDHl9iHcNKyjSVhBFrQrLRH5CBgJxIvIFuAJIBpAKfUG8DjQFHjdblGTZ7cUbAFMsZdFAR8qpb4JVpyGyzqfqm+GEQoKr/h9M6FFjxI327DzAHd9vJhlW/1cMbg9jyX2IDbGNLaoDmbAXMM9+XmAgkgzhbgRQsb31nVal/3vqFVKKT6dvwXrqxXEREWQfEFvRvVq6UKQVcfJgLki8h5wFpCulOpVzPruwPtAP+ARpdQLQQkWMzWJ4SZfKiR3gK0L3Y7EMA5LGK6vtAryj1jsz8rljg8X8cDnS+nTthHf3DW8xiescphA6f1u9wBjgaAlq0Kutx40wljaTMjPgfiubkdiGIcNuRMG3gQcrpuas2E393yymPT9OTw4qjs3D+9IZBjVXTnod5sOpItIYrBjMUnLcE9aKrTpD3XMtAxGCGnW7a+7ufkFvPLDOl77aT3tm9Tj89uG0KddIxeDC4qoIsPlvVVa31i3maRluCM7A7YtgmH3uh2JYRztjx/Zs3ElN67uy6JN+7i4f1usc3oSV6dWfmXm1aTh8mrlO2DUAJt+B5VvpiIxQtKGmZ/QMm0KPnmfV6/oy1m9zWDOocIkLcMdTTvDiAeh3SC3IzGMv2Rk5/L4F8vJXtuSN2Jy+PaSBjTvYRJWKDFN3g3DMIAFG/dy9yeL2LYvm6ThzRgz+1Q4+VEYfr/boQWVwybvf/W7BXZQpN+tiLQE5gMNgQLgANBDKZVR5fGapGVUu2w/bJkH7YdATD23ozHCXH6B4rWf1vPyD+to3agu4y/tS/8OjeHfJ0K9xnDtV26HGFROklYoMf20jOq34Rf44EL4c5nbkRhhbuu+g1z+1mzGfbeWs3u3YtrYYTphge6v5d8CBQXuBmkcwdRpGdUvLRWi46BNP7cjMcLY10u38dDkZSgFL13ah/P7FpnS75TH4Yx/OB4416gAyxMB1MfyOy5GNEnLqH5pqdDhBDN8k+EK/8Fc/v7VCiYv3Erf9o14+dK+tG9aTDF1tJlaJCgsz4fArUA+sADwYHnGYfmfd7K7KR40qtf+HbBrjZmKxHDFb+t3MXp8Kl8u3sbYU7ow6ZYTik9YhX55DiZdU30Bhoce9pXVecA0oD1wtdOdTdIyqpdvpv5r+mcZ1Sg7Nx9r6gqufGcOdWMimXzbEO49rSvRkWV8BeZmweoUPTmkUVWisTzR6KT1JZY/Fz1bvSOmeNCoXj3Ph6ad9BxahlENlmzex72TFvPHzkyuG+LlwVHdnU8j4h0Gv74Em2ebKXSqzpuAD1gCpGJ5OgCO67RMk3fDMGql3PwCXv1xPa/+tJ7mDerwwsV9GNo5vnwHOZSpZyI44f/gtCeDE6jLQqLJu+WJwvLnOdnUXGkZ1ce/FX4dB8f/n77aMowgWZ9+gHsnLWbpFj8X9G3DE+f0xBNbgYY/MXHQdqBuPGRUDcvTAngGaI3lH43l6QGcALzrZHdTp2VUn7RfYN47kJftdiRGLVVQoHjv1zQSX5nJ5j1Z/PvKfoy79LiKJaxCx14IbQdBLSqVctkE4FugcHystcDdTnc2V1pG9UlLhXrx0OwYtyMxaqGt+w5y/6dLmPXHbk7p3pxnLzyW5g2qoNn6wJsqfwwjUDyWfxKW5yEALH8elie/jH3+YpKWUT2U0kkrYRhEmAt8o+oopZi8cCvW1BUUKMU/LzyWSwa0Q6qyU3BBPhxIh4atqu6Y4SsTy9OUwhaDlud4wO90Z5O0jOqxZwNkbDVN3Y0qtftADo9MWc43K/5kkLcJL1zcp/R+VxX1ydWwbyPc9lvVHzv83AtMBTpheX4DmgEXOd3ZJC2jevi3QIPWkDDC7UiMWuK7lTt4aPJSMg7m8fCZ3bnxxI5ERgRpyKU2/WBNCmTuhrimwTlHOLA8kcAI+9YNEGCN3VfLEdPk3ag+hZ81M5abUQn7s3N56uuVTJq/hWNaNWT8pcfRrWWD4J508zx491S4+D/Q87zgnquaVXuTd8vzM5Z/ZEV3N1daRvCZZGVUkTkbdnPfp0vYtu8gt5/UibtO6UpMVDXUkbbuCzENdL1sLUtaLvgNy/Mq8Alw+CrD8i90srNJWkbw7VytpyK54G3wDnU7GqMGys7N58UZa3jn1zQ6NKnHp7cOOTyFSHWIjNKDPJv+WlVhiP03sLe2Ak52srNJWkbwpaXqRhietmVvaxhFLN/q595Ji1m74wBXHd+eh888hnoxLnx1Db0b8g7qkgNTalBxlv+kyuxukpYRfGmp0KgDNO7gdiRGDZKXX8CbqRsY//1aGteLYcL1AxnZrbl7AZlSgqpheR4vfrnf0ThZQSsMFpH3RCRdRJaXsP5KEVlq32aJSJ+AdaNEZI2IrBeRpGDFaFSDgnw9sruZisQoh7RdmVz85u88/+0aRvVqxYx7hrubsAptnqtHfTcqIzPglg+MBrxOdw7mldYE4FVgYgnr04ARSqm9IjIaeAsYLCKRwGvAacAWYJ6ITFVKrQxirEaw/LkMsv2mqbvhiFKKD2Zv5Jlpq4mJiuCVy/tyTp/WZe9YXX57WX+muye6HUnNZflfPPKx5wV0vy1HgnalpZRKBfaUsn6WUmqv/XA2UFjhMQhYr5TaoJQ6BHwMnBusOI0gi4mDATfqkTAMoxR/+rO55r25PPblCgYmNOHbu4eHVsIC/eNr30bY63M7kmrloORMROQVu3RsqYj0K8fh6wEdnW4cKnVaNwLT7fttgM0B67YAg0vaUURuBm4GiImJCVZ8RkXFd4GzxrkdhRHivly8lce+WE5uvuLp83px5eD2VTsMU1Up/PGVNhMae10NpZpNoPSSs9FAF/s2GPg3JX1vW55lHJ70MRI9IsZTTgMpM2l5k1KGAhbQwd5eAOVLTnScGUsjIiehk9aJhYuK2azEHtBKqbfQRYvExcXVnp7StUF+LuxYAS2PhQiHk+4ZYWVv5iEe+3I5Xy/dTt/2jRh3yXEkxLs7tVOpmnWHuGa6cVE/xzPE13hKqVQR8ZayybnARKVHq5gtIo1EpJVSansx254VcD8P2OF0Li1wdqX1LnAPsABdaVZlRKQ38A4wWim12168BWgXsFlbYFtVnteoJtsWwbunwSUToYcp4TWO9NOadB78bCl7sw5x/xnduGV4R6IiQ3wwZRHdqGjrArcjqUpRIjI/4PFb9sVAeRRXQtYGKC5pPY3lPzLjW57/HrWspGAdbOP3JSdOL3uz8hGR9sBk4Gql1NqAVfOALiKSAGwFLgOuqOrzG9WgsCNmhxNL384IK5k5eTwzbRX/m7OJbi0a8P71A+nZ2uN2WM6Nfg7q1qB4y5anlBpQyWOUp4Ss5xGPLE8U0N/piZwkrZ+8SSnPoxNMTuFCX3JiqUNuiMhHwEggXkS2AE8A0QBKqTeAx4GmwOt22XWeUmqAUipPRO5ATxIWCbynlFrh9AkZISQtFVr0MgOMGn9ZsHEP905awqY9Wdw8vCP3ntaVutE1rOg4Lt7tCEJR2SVkev6sh4FYLE+GvVSAQ9hVPE44SVqFlWmBmbjMITeUUpeXsf4moNjZ1ZRS04BpDmIzQlVeDmyeAwNucDsSIwQcyivgpe/X8uYvf9C6USwfjzmewR1r8I+ZmeMgJwNOtdyOJFRMBe4QkY/ROcN/VH2W5X8WeBbL8yyW/6GKnqjUpOVNSokEpvqSE1+q6AmMMLVlHuRlm07FBqv/zOCeT5awansGlw5ox2Nn96B+nVBpuFxBu9bCuhlw8uNhMampg5KzacCZwHogC7j+qINYnu5Y/tXAp1ieo5vEV8WAub7kxHxvUso5gElaRvm07gtXfg7tS+ytYNRy+QWKt2duYNyMtTSMjeKdawZwao8WbodVNRKGw5KPIH0ltOzldjRB56DkTAG3l3GY+4AxwIvFrHM8YG6Z82l5k1L+AXgoMox8WXVabjDzaRlGaNi0O4v7Pl3MPN9eRvVsyT/O70XT+nXcDqvq7NsM43vBqGQ4/ja3o6mUap9Pq5KcXKNXahh5IwwdyoTfXoHel0DTTm5HY1QjpRSfzNvMU1+vJEKEcZf04fy+bUKzo3BlNGoHjRN0Y6ManrSqjeW5oPT1/slODlNm0vIlJ1ZqGHkjDG2aDb8kQ7tBJmmFkfT92SR9vowfV6czpFNTnr+4D20axbodVvD0OAcO7i17O6PQ2fbf5uiLoR/txycBP6NbqJfJyYgYxQ4j70tOdDSMvBGG0lIhIhraH+92JEY1mbZsO49MWUbWoXyeOLsH157gJSKill1dFXWa+QosF8uvG2dYnq+BHlj+7fbjVuhB0h1xUjwYWElUFz0ExyqnJzDCUFoqtB2gB8s1ajX/wVysqSuYsmgrvdt6GHfJcXRuXt/tsKpX7kGIrsVXlFXP+1fC0nYAXZ3u7KR48IiWHt6klHINI2+EmWw/bF8Mw+93OxIjyH5dt4v7P1tC+v4c7j61C7ef1JnoUB+Gqap9cBGoArjaUcmWof2M5fkW+AjdPuIy4CenO1eks0S5hpE3wszOtRBVF7xmKpLa6uChfP75zWomzPLRqVkcU/5vCL3bNnI7LHc0SYBFH0DeIYgys0w4YvnvsBtlFH5JvIXln+J0dyd1WpUaRt4IM+0GwoMbQcLsF3eYWLx5H/dOWsyGnZlcP9TLg6O617xhmKqSdxjMfQu2LTR1uOWhWwpW6PLUyZXWUcPI+5ITHQ8jb4Qh84uz1snOzeflH9bxVuoGWjSow4c3DWZIZzMGH94TAdH1uCZpOaOvsv6JbkUo9u4honUAACAASURBVE1h+Rs62d1J0nral5x4xJDx3qSU/xZdZhhk7oYPzodT/w6dTE+J2mLhpr088NlS1qcf4JIBbXkksQee2Gi3wwoN9Zro+eLSUmHEA25HU1M8B5yN5a9Qgz4nSeuIYeS9SSnlGkbeCCO+mbB9iWk1WEtk5+Yz7ru1vDNzAy0b1uU/NwxiRNdmbocVek68h1LmqTWOtqOiCQtKSVrepJS/hpH3JqVkcHi+lHINI2+EkbRUiKmvxx00arT5vj088NlSNuzK5PJB7Xn4zO40qGuurorVq/SBHoyjzMfyfAJ8QcB0V5UeEcOXnPgs8Kw3KeVZX3JihYeRN8KIbya0PwEizZdbTXXwUD7Pf7uG92el0doTy/9uGsxQU3dVtp1rIGe/7p9olKUheiT40wOWKapqRAzgEW9SylVAgi858SlvUko7oJUvOXFuuUM1aq+M7Xq6hr6mqrOmmrNhNw98vpSNu7O45oQOPDCqe82fQqS6fHm7bjF74wy3Iwl9hSNjVJCTdsmvASdweMr7A5RjyA0jTORmQY9zoZMZR7mmyczJ44kvl3PpW7NRCj4aczxPntvLJKzy8A6DrQv01ZZROsvTFcvzA5Znuf24N5bnUae7O0lag33JibcD2QC+5MS9gGnTbBypaSe4ZGJYzC1Um8xav4szxqcycfZGrh/q5Zu7h3FCpxo8o7BbEoZDQZ4eLNooy9vAQ0AuAJZ/KXpUDEecJK1cewZjBeBNSmkGFJQ7TKN2y9jmdgRGOezPzuXhKcu44p05REdGMOmWE3ji7J7UizFXVxXSbjBExujGSEZZ6mH5i1YvOe776+QT+gowBWhuTwh5EeD4Us4IA3t98HIfOPc16HuV29EYZUhdu5OHJi9jm/8gY4YlcO9p3YiNCeNRLapCTD1oO1A3RjLKsgvL04nCfgKW5yJge6l7BCg1aXmTUiKANOAB4BR0s/fzfMmJZpR347A0+x+1jem+F8oysnP5x9er+GT+Zjo1i+OzW4fQv0Njt8OqPc5+GeJMS0sHbkd3m+qO5dmKzjFXOt1ZlCq9U5w3KeV3X3LiCZUKsZrExcWpzMzMsjc0qtbkm+GPH+Fv66C2zVBbS/y0Jp2HJy9jR0Y2Nw/vxN2ndgnvMQONv4hIllKq1BEBRGQU8DJ6/Nl3lFLJRdY3Bt4DOqHbP9yglFpe6oktTxwQgeUvV+sVJ8WDM7xJKRcCk33Jiabbt3EkpXQ5vneYSVghyJ+Vy5Nfr+TzhVvo2qI+b1w1lD7twnRE9uow+9+6bmvgjW5HUmVEJBLdYvw0YAswT0SmKqVWBmz2MLBYKXW+iHS3tz+l2ANanqbAE8CJgMLy/Ao8ieXf7SQeJ0nrXiAOyPMmpWRjD27oS050NLihUcvtXg/7t+vWU0ZI+W7lDh6ZsozdmYe48+TO3HFyZ+pEmauroFr7LRzYUauSFjAIWK+U2gAgIh8D5wKBSasH8CyAUmq1iHhFpIVSakcxx/sYSAUutB9fCXwCnOokGCeTQDZwciAjTMU1g/PfNEkrhOzNPMTfv1rBF4u30b1lA967biC92njcDis8JAyHH/4OB9KhfnO3o3EqSkTmBzx+SykVOFRfG2BzwOMtwOAix1gCXAD8KiKDgA5AW/SsxEU1wfIHTm/1NJbnPMfBOt3QMIoV2wj6OO5iYQTZN8u38+gXK9iXdYi7T+3C/43sTEyUmdus2iSM0H99M6HXhaVvGzrylFKljT9VXLl/0aqiZOBlEVkMLAMWUXIz9p+wPJcBk+zHFwEpToM1ScuouIICWDgBOp8Gjdq5HU1Y230ghyemruDrpdvp2bohE28YRI/WpgS/2rXqAzENdIvampO0yrIFCPwHbwsc0TFTKZUBXA8gIoJuEZhWwvFuQVc7/dd+HAlkYnnuxcG8WkFLWiLyHnoCyXSl1FHDJNiVde8D/YBHlFIvBKzzAfuBfMr+FWC4JX0lfH0PnPdvOO6Ksrc3giJl6XYe/3I5Gdm53HdaV24d2YnoSHN15YrIKD2XXF5O2dvWHPOALiKSAGxFj15xxD+8iDQCspRSh4CbgFQ7kR3N8leqyslR0vImpZwIdPElJ75vj4hR35ecWFIWLTQBeBWYWML6PcBYoKSyzJOUUrucxGe4pLAjpXeYu3GEqZ37c3j8y+VMX/4nvdt6+PCi4+nW0lRBu+6SibWqJa1SKk9E7gC+RV8VvaeUWiEit9rr3wCOASaKSD66gUbJLVEsz41Y/ncDHkcCj2L5/+4knjKTljcp5QlgANANfWUUDXwADC1tP6VUqoh4S1mfDqSLSKKTQI0QlJYKjRNM0WA1U0oxdck2rKkryDyUz4OjujNmWAJR5uoqNBQmLKVqTfJSSk0DphVZ9kbA/d+BLg4PdwqW50J0YotH9+/6xWksTj7l5wPnAJkAvuTEbUCwf84pYIaILBCRm0vbUERuFpH5IjI/L8/x8FVGZRXkg+8302qwmqVnZDNm4gLu+ngx3vg4po09kdtGdjIJK9R8eCl8NdbtKEKT5b8C+A+6wUYKcDeW/29Od3fyST9kdyouHDC3OuZSH6qU6geMBm4XkRK/GZVSbymlBiilBkRFmXYl1WbXWsjJMEmrmiil+HzBFk4d9wsz1+3kkTOP4bNbh9C5uSkODEmRMfDHT/pqyziS5ekC3AV8DviAq7E89Zzu7iRpTfImpbwJNPImpYwBvkcPLR80Sqlt9t909GC9g4J5PqMCmh8DD2yAbme6HUmt96c/mxsmzOO+T5fQtUUDpt81jDHDOxIZUTuKnmqlhOHg3wx7y6r6D0tfAY9j+W8BRgDr0I09HHHSufgFb1LKaUAGul7rcV9y4ncVDLZMIhIHRCil9tv3TweeDNb5jEqo18TtCGo1pRSfzt/CUykryc0v4PGzenDtEK9JVjVBYQlE2kxo0tHdWELPICy/bllo+RXwIpZnqtOdnTTEuAf4tLyJSkQ+AkYC8SKyBT3WVDToCjwRaQnMBxoCBSJyN3ookHhgim7qTxTwoVLqm/Kc2wiyvEMw6WoYfIuZqThItu47yEOTl5G6dieDEprw3IW98cZXR8m8USXiu0L9FrqxUv9r3Y4m1MRieV4C2mD5R2F5egAnoK+4yuSkEqgh8K03KWUPesyoz3zJicUNzXEEpdTlZaz/E91JragMoI+DuAy3bFsIa7+B4xzPJmA4pJTio7mbeWbaKgqU4slze3LV4A5EmKurmkUEhtwJdc3wWcWYgG6J/oj9eC167MF3S9ohUJl1Wr7kxL/7khN7oudAaQ384k1K+b5CoRq1Q1oqIOA90e1IapXNe7K46t05PDxlGb3bevj27uFcc4LXJKyaasid0O8at6MIRfFY/klAAQCWPw89kIQj5Wlulw78CewGasxIkEYQpKVCy2NNnVYVKShQfDBnI8nTVxMhwjPnH8vlg9ohtaSPT1g7sFO3sm3aye1IQkmmPT1J4czFxwN+pzs7qdO6DbgUaAZ8BozxJSeuLH0vo9bKPQib58KgMW5HUits3J3JA58tZU7aHoZ1iSf5wt60aRTrdlhGVXnnZD0e4aUfuB1JKLkXmAp0wvL8hs4tFznd2cmVVgfgbl9y4uKKxWfUKpk7oe1APb6aUWEFBYoJs3w8/+0aoiKE5y7szcUD2pqrq9rGOxzWpOjBpSNMB3AALP9CLM8IdGt0AdZg+XOd7i6qhM5v3qSUhr7kxAxvUkqxZUC+5MQ9FYk3mOLi4lRmZqbbYRhGqdJ2ZfLAZ0uY59vLSd2a8cwFx9LKY66uaqUlH8OUW+CWmdCqt9vRFEtEspRSNaZpamlXWh+iR2lfgC57DPwJqADT+SAc5WZDdF23o6iR8gsU7/2axgsz1lAnKoIXL+7DBf3amKur2qxwMOm01JBNWjVNiVdaNZG50gqynP3wfBc4/SlTp1VO69MPcP9nS1i0aR+nHtOCf5zfixYNTfIPC//qD007wxWfuB1JsWralVaZhazepJQfnCwzwsCm2ZB3UP8DGo7k5hfw+s/rOfOVmaTtyuTly47j7Wv6m4QVTs55FUY963YUocPyHJ0/iltWghKLB71JKXWBekC8NymlMYeLBxui+2sZ4SbtFz0QaLvBbkdSIyzZvI+kyctYtT2DUT1b8tR5vWjWoI7bYRnVrcMJbkcQGizPXzkFy1PhnFJandYtwN32wRYEnCADeK288Rq1QNpMaDsIYhwPyByWMnPyeGHGGv4zy0ezBnV48+r+nNGzpdthGW5RChb/D2KbQPewHmC6SnJKmXVa3qSUO33Jif+qYJDVytRpBdHBvfDPBBiZpG9GsX5cvYPHvljBNv9BrhrcgftHdaNh3Wi3wzLc9voQqN8MrvnS7UiOUu11WpbnTix/hXOKo4YY3qSUXujBbP8qiPclJ06s6EmDxSStIDq4FxZ9oAfIbdHT7WhCTvr+bP7+1UpSlm6na4v6PHvBsfTvYEYMMWzTH4QF/4GkjRAVWkXErjTEsDxDAC+BpX2W31FOcTIixhPo0dp7oKdbHg38CoRc0jKCKLaxHkvNOIJSiknzN/OPlFVk5xZw32lduWVEJ2KiTEdSI0DCcJjzBmyZD96hbkfjLsvzX6ATsJjDYw4qHOYUJyNiXIQedX2RLznxem9SSgvgnQqEatRk676D1v0grqnbkYSMDTsP8NDkZcxJ28OghCY8e8GxdGpW3+2wjFDUYShIhO6vVQOTloiMAl4GIoF3lFLJRdZ7gA+A9ui88oJS6v0SDjcA6GHPpVVuTn4OHvQlJxYAed6klIbogXNNx+JwcmAn/O8iWPgftyMJCYfyCvjXD+sY9fJMVm3PIPmCY/l4zPEmYRkli22kxyDct9HtSMpNRCLRDSVGo0vcLheRHkU2ux1YqZTqgy6Ze1FEYko45HKgwi2TnFxpzfcmpTQC3ka3+DgAzK3oCY0ayDdT/00Y4W4cIWDBxr08NHkpa3ccILF3K544uwfNG5g+V4YD10+H6Bo5XNcgYL1SagOAiHwMnAsEDpyugAaih3epD+wB8ko4XjywEsszF8j5a6nlP8dJMGUmLV9y4v/Zd9/wJqV8AzT0JScudXJwo5ZIS4U6DfUvxTC1PzuX579dw39nb6RVw7q8e+0ATjmmhdthGTVJ6CasKBGZH/D4LaXUWwGP2wCbAx5vAYp21nwVPXL7NqABcKlSqqCE81mVCrakFd6klH6lrfMlJy6szImNGiQtFToMgcjyTL9We8xY8SePf7mCHfuzufYEL387oxv164Tna2FUglIw6RpofRwMu8/taALlKaUGlLK+uMExi9ZHnYFuWHEyupHFdyIyUymVcdSelv8XLE8HoAuW/3ssTz10XZkjpf3nvVjKOmUHZ9R2Gdtgzx8w8Ea3I6l2OzKyeeLLFXyz4k+6t2zAG1f357h2jdwOy6ipRODADlgzPdSSVlm2AO0CHrdFX1EFuh5IVroP1XoRSQO6U1xVkuUZA9wMNEEnuDbAG8ApToIpMWn5khPNhEkGNGgFdy6Euh63I6k2BQWKD+du4p/TV3Mov4AHRnVjzLCOREeaZuxGJXmHwa8vQXYG1G3odjROzQO6iEgCsBW4DLiiyDab0Elnpoi0QM+VtaGE492OriebA4DlX4flae40GCf9tK4pbnkodi42gkAkrKYKX7djPw9NXsb8jXsZ0qkpz5x/LN74GjMAthHqEobDzBdg0+/Q9Qy3o3FEKZUnIncA36KL8d5TSq0QkVvt9W8ATwETRGQZujjxQaXUrhIOmYPlP4Rl/xC2PFEcXdxYIicF8wMD7tdFZ9OFmM7FtZ9Suid/90ToWLtbDubk5fP6T3/w+s/riasTxQsX9+FCM9eVUdXaDYLIOrqeuIYkLQCl1DT04BKBy94IuL8NON3h4X7B8jwMxGJ5TgP+D/jKaSxOWg8eMQyCNynFA/zX6QmMGmyvD+a+CfFdanXSmpu2h4cmL+WPnZmcd1xrHj2rB/H1Q2uoHaOWiI6FftdAY6/bkbgpCbgRWIYeRHca5RiwoiJNoLKALhXYz6hp0lL134Th7sYRJP6DuSRPX81HczfRtnEsE64fyMhujovWDaNiEl9wOwJ3Wf4CdL/ftyuyu5M6ra84XN4Yge4RPakiJzNqmLRUqN8C4ru6HUmVUkoxffmfPDF1BbsP5DBmWAL3nNaVejGmGbtRTXKzITcL6oXhoMqW5yx0HVgHdA4SQGH5HbVMcfJfGvizIA/Y6EtO3FLeOI0aRik9EkbCcN0Yo5bYtu8gj3+5gu9X7aBn64a8f91AerUJn5aRRggoyIdxx8CxF8GZz7sdjRvGAxcAyyoy/qCTOq1fAOxxB6Ps+018yYl7ynsyowbJ2g11G9WaosH8AsUHszfy3DeryVeKR848huuHeokyzdiN6hYRCa37Hi5+Dz+bgeUVHTDXSfHgzehLuYNAAYWXcmUMmisi7wFnAelKqV7FrO8OvA/0Ax5RSr0QsK7UEYWNahAXD3fM1VdcNdzqPzNI+nwZizfvY1iXeJ45/1jaNTGzLxsuShgO3z8BB9KhftjVoz4ATMPy/MKRYw+Oc7Kzk+LB+4GevuTEktrcl2QCejyqkprG7wHGAucFLgwYUfg0dE/seSIyVSm18uhDGEGjlC4WrMFFg9m5+fzrx3W8+csGGsZGM/7S4zj3uNamGbvhvsISjLRUXUwYXv6BHni9LlDSSPAlcpK0/kC3GCwXpVSqiHhLWZ8OpItIYpFVTkYUNoKpoAD+1Q8G3wrH3+p2NBUy649dPDJlOWm7MrmwX1seTTyGxnHl/v8wjOBo1QfqeMI1aTXB8jvt03UUJ0nrIWCWNyllDgGXcr7kxLEVPWkZnIwo/BcRuRk9jhUxMeZLqUqkr4C9aXoOoBpmX9Yhnpm2iknzt9C+ST0+uHEwJ3aJdzsswzhSRCSc8zI0CcupCb/H8pyO5Z9RkZ2dJK03gR/RHcFKGmq+KjkZUfjwCj2E/lsAcXFxNb8CJhQUVhB7h7kbRzkopfhq6Xae/GoFe7NyuW1kJ8ae3IXYGMeDRxtG9ep5vtsRuOV24AEsTw6QSxCavOf5khPvrUSA5eVkRGEjmNJSoUkn8LRxOxJHtuzN4tEvlvPzmp30aeth4g2D6dG6xgxGaoSrgnxY+63uC9m2v9vRVB/L36AyuztJWj/ZLQi/4sjiwWA1eXcyorARLPl5sHEW9LrQ7UjKlJdfwIRZPl6csRYRePysHlw7xEtkhGloYdQEAlPvgC6nh1fSArA8bTjcudhe5nfUB8BJ0ipMGA8FLHPS5P0jYCQQLyJbgCeAaNADLYpIS2A+0BAoEJG7gR5KqYziRhR28mSMKpB3EAbcAB1Huh1JqVZs85P0+TKWbfVzUrdmPHVeL9o2Ns3YjRokIkIXwaelHm6tGw4szz+BS9GN6/LtpQpwlLRE1YJ+OIXi4uJUZmam22EYQXTwUD7jf1jLOzPTaFwvBuucHiQe28o0YzdqpnnvQMp9es46l6YAEpEspVT1zb9jedYAvbH8OWVuWwwzn5ZxpD+XQdMuEF3X7UiOMnPdTh6ZspxNe7K4bGA7Hhp9DJ560W6HZRgVl2DPnpCWGk7z1m1Al7oFJ2lh5tMKH3mH4J3ToP91MDp0BiHZk3mIp79eyeRFW+kYH8dHY47nhE5N3Q7LMCqvaWc9O/jW+TDgerejqS5ZwGIszw8cOSKGo25UZj4t47Ct83WdlvdEtyMBdDP2KYu28tTXK9mfncedJ3fm9pM6UzfaNGM3agkRGPOjTlzhY6p9qxAzn5ZxWFoqIOAd6nYkbNydyaNfLGfmul30a9+IZy/oTbeWlWopaxihqWFrtyOoPpYnErgay39qRQ9h5tMyDkubqYeXiW3sWgjZufm8+csGXvt5PTGRETx5bk+uGtyBCNOM3ait8nJ0YwzvMOhzqdvRBJflz8fyZGF5PFh+f0UOYebTMrRDWbBlLgy+xbUQUtfu5PEvl+PbncVZvVvxaGIPWnpCr0GIYVSpqDq6lOPg3pBNWmXNvCEi9wNX2g+jgGOAZkqp4vrzZgPLsDzfAYebe1e2TsublNIZaFE4n1bA8mHepJQ6vuTEP5ycwKghourAdSlQr/obOPzpz+apr1eSsmw7CfFx/PfGQQzr0qza4zAM1yQMg1Vf61EyIkKrztbJzBtKqeeB5+3tzwbuKSFhAaTYtwop7UprPPBwMcsP2uvOruhJjRAUEQntBlXrKXPzC/jPLB8vfbeWvALFfad15eYRHakTFVr/tIYRdAkjYNEHustJ6+Pcjqao8s68cTnwUYlHs/z/wfLEAu2x/GvKG0xp07Z6fcmJS4su9CUnzge85T2REeJ+fw02/l5tp5vv28PZ//qVp1NWMSihCd/dM4I7T+liEpYRngoHp/bNdOPsUSIyP+B2c5H1xc28UezApCJSDxgFfF7i2SzP2cBi4Bv78XFYHsetCUu70iqtMiHW6QmMGiA7A2Y8BifeAx1OCOqpdh/IIXn6aj5dsIXWnrq8eXV/Tu/RwoxoYYS3hq2g0ykQ4Upn+Tyl1IBS1pdn5o2zgd9KKRoEsNBXbz/rR/7FWJ6EssPUSrvSmudNShlTdKE3KeVGYIHTExg1wKbfQeUfnk01CAoKFB/O2cTJL/7ClEVbuXVEJ76/bwRn9GxpEpZhAFw9OVQnXS3PzBuXUVrRoJZXTMtBx+MJlnaldTcwxZuUciWHk9QA9PTIYTsRTK2UlgqRdYJWp7V8q59Hv1jO4s37GJzQhKfP60WXFqbPlWEcRSndBD60hlFzNPOGiHiAEcBVZRxvOZbnCiASy9MFGAvMchpMiUnLl5y4AxjiTUo5CehlL07xJSf+6PTgRg2RlqoTVnTVlvpmZOcybsZaJv7uo0lcDC9d2ofzjmtjrqwMoziHsuDlPrrbyfC/uR3NX5RSecXNvCEit9rr37A3PR+YoZQqa9TyO4FH0EM4fWgf92mn8ZhR3sNd7kEY3xsGjYERD1TJIZVSTF2yjadTVrHrQA5XH9+B+07vhifWDG5rGKX691Dd7eTaCo9yVG4ujPLeF8u/qKK7V2QYJ6M2iY6F+9ZAfoUGXD7K+vT9PPbFCn7fsJvebT28e+0AerdtVCXHNoxaL2E4zH9PFxFG1XE7mmAZh+VpBXwKfIzlL9d8ieZKy6gSBw/l868f1/H2zA3ERkfywKjuXD6ovZlF2DDKY810+Ogy3dG/mgaurvYrLQDL0xK4BD0ZZEPgEyy/oyLC0loPGuHgfxfD7DfK3q4U363cwanjfuH1n//gnD5t+PFvI7nq+A4mYRlGeXUYAhJhD15di1n+P7H8rwC3ovtsPe50V1M8GM7274B1M6BDxUZ137wni79/tYLvV6XTtUV9Prn5eAZ3NPNcGUaF1fXAaU9Cm9K6TdVwlucY9BXWxcAu4GPgPqe7m6QVzgp735ezf1ZOXj7vzEzjXz+uI0KEh8/szvVDE4iONBfuhlFpQ+4se5ua7X10X67TsPwl9fcqkUla4SwtFep49HQkDv22fhePfbmcDTszGd2rJY+d1YPWjcwAKYZRZQryYesCiIuHJh3djqbqWf7jsTwxQFcsTxNgDZY/1+nu5qdxOEtL1RM+OhhVOj0jm7EfLeLKd+aQl694//qB/Puq/iZhGUZVy8uG98+EBf9xO5LgsDwjgHXokeNfB9ZieRwX95grrXCVd0gnrA6lt1DKyy/gv7M3Mm7GWnLyCrjrlC7cNrKTmfLeMIIlJg7aDqjNjTHGAaf/NcK75emKLi7s72Rnk7TCVVQMnPtaqZss3LSXR6csZ+X2DIZ1iefJc3uREF+9LWMNIywlDIfU5yHbrxtn1C7RR0xJYvnXYnkcjzxgkla42v8n1G8BxQyptDfzEM99u5qP5m6mZcO6vH5lP0b3MgPbGka18Q6DX/4JG2dBt9FuR1PV5mN53gX+az8OHN+2TCZphSOl4O2ToeNJcN7hq62CAsVnC7eQPH01/oO5jBmWwF2ndqV+HfMxMYxq1XYgRNWFtJm1MWndBtyOHihXgFR03ZYj5tsoHO3ZABlboU2/vxat2p7BY18sZ/7GvQzo0Jinz+9F95YNXQzSMMJYdF24cQbEd3M7kqpn+XPQ9VrjKrJ70JKWiLwHnAWkK6V6FbNegJeBM4Es4Dql1EJ7nQ/YD+RT9gRlRnkVVvAmDOdATh4vfbeWCbN8eGKjef6i3lzYry0RZjQLw3BXObqi1AiW51ygLZb/NfvxHKCZvfZBLP+nTg4TzCutCcCrwMQS1o8Guti3wcC/7b+FTlJK7QpifOErLRXVoBUpW+vxVMrPpO/P4bKB7XlwVDca1YtxOzrDMEDPKP7rS9BxJHQc4XY0VeEB9FxcheoAA4E4dIdjd5OWUipVRLylbHIuMFHpEXtni0gjEWmllNoerJgMQCnyNqQyW/pwx0eL6dm6If++qj/92jd2OzLDMAJFx8Lct3QLwtqRtGKw/JsDHv+K5d8N7MbyOG6W7GadVhsg8AlssZdtR0+9PENEFPCmUuqtkg4iIjcDNwPExJirhNJk5+bz7x/XsHb/dWRENsI6uwdXHd+BKDP8kmGEnshoPYBu7emvdeQvY8t/R8CjZjjkZtIqrtKkcJ6UoUqpbSLSHPhORFYrpYp95+yE9hboqUmCE2rN99PqdB6fupzNew5y7nFn8dKZx9C8YUhN6W0YRlHeYXpQ64zt0LCV29FU1hwszxgs/9tHLLU8twBznR7EzaS1BWgX8LgtsA1AKVX4N11EpgCD0M0ijXLauu8gT361gm9X7KBjszi+PW0P3Xq0A5OwDCP0FQ5m7ZsJvS9xN5bKuwf4AstzBbDQXtYfXbd1ntODuJm0pgJ3iMjH6AYYfqXUdhGJAyKUUvvt+6cDT7oYZ42Um1/Au7+m8fL361Ao7j+jG2OGdiBmXGc4cDac+6rbIRqGUZaWx0KjDnBwr9uRVJ7lTweGmd6EkQAAEAlJREFUYHlOBnraS1Ow/D+W5zDBbPL+ETASiBeRLcATQDSAUuoNYBq6uft6dJP36+1dWwBT7NEXooAPlVLfBCvO2mjOht08+sVy1qUf4LQeLXj8rB60a1IPti2G7H3lnorEMAyXRETCXUuKHbmmxtJJqlyJKlAwWw9eXsZ6he4VXXT5BqCWdVCoHun7s0mevprJC7fStnEs71wzgFN7tDi8QWGFrneYOwEahlF+hQlLKdeSl4iMQverjQTeUUolF7PNSGA8+uJkl1IqKE0ezYgYtcChvAImzErjlR/Wk5OXz+0ndeKOk7oQG1NkJHbfTGjapTZU6BpG+DiwE/5zlp4csu9V1X56EYlETyNyGrotwjwRmaqUWhmwTSP0UEyjlFKb7EZ0QWGSVg3385p0nvxqJRt2ZXJy9+Y8dlaP4kdiLyjQE8v1cFzfaRhGKIiLh6zduqTEhaSFbgi33i4Fw26HcC6wMmCbK4DJSqlNoBvRBSsYk7RqKN+uTJ5OWcn3q9JJiI/jvesGcHL3FiXvEBEB96yAQ5nVF6RhGJUnoov001KDVUQYJSLzAx6/VaRvbHF9agNHLwLoCkSLyM9AA+BlpVRJoyFVLthgHNQInsycPF79aT3vzkwjOlJ4aHR3rh+aQEyUgw7C0bH6ZhhGzZIwHFZMht3rIb5LVR+9rPFdS+tTWygK3Xz9FCAW+F1EZiul1lZRjEecyKgBlFJ8uXgbz05fxY6MHC7o14akUd2ddxCe/iA07QyDxgQ3UMMwql5hi9+01GAkrbKU2Ke2yDa7lFKZQKaIpKIb1JmkFY6WbfFjfbWCBRv30rutp/xjBeZmw4IJMOCGoMVoGEYQNekIA2/SPzyr3zygi4gkAFvRg95eUWSbL4FXRSQKiEEXH74UjGBM0gphuw/k8MKMNXw8bzNN6v1/e3ceZUV55nH8+6MXelFoEBRsQBoElCCy2YTRaTUJi2AwM3EcPIQZY3KMRpyYOepozEQzTnSSHDMaM6BEMeASHSXOoBBQx7A4GlaRrUEJi7QgqBDWZunuZ/6oImGgsbtvd93quv18zrmnb9Vbt+p5obueeqve+765/OSr/bl6cArThlQsgapD/v0s55JKgjEPxnJoM6uSNBGYS9DlfaqZrZF0Y1j+qJmVS5oDrARqCLrFr44iHgVfl8oMhYWFduBA8jsaHK2u4am3t/Dvr79H5ZFq/v4vuvMPX+xF2/yc1Hb4u/thwU/hnzZDXtsmjdU5lyZmwQSueW2DHoVNRNJBM6v3KOtx85ZWM/O/Gz7h3plreH/nfv6yVwfu+XJfzj3z9MbtdNMC6DzAE5ZzSbZ3GzwyCEY+AMO+HXc0sfGk1Uxs3XWQH80qZ86aj+jaPp8pEwYzvO9ZqLHdW82Cq7JOPsiIc4nWthjalQSDBHjScnGpPFLN5HkbeGzBRlpJ3D6yD9+4pIS8nKy6P1wfEvzt002zL+dcvErKYM1LUF0FWS3z9N0ya90MmBmzVm3n/lnlbNtziLEXns1do8+jc9sm/h5V1WHIbt20+3TOxaOkDJZPg4/eheLBcUcTC09aMSjfvpd7Z65h0aZd9O3chofGDaS0pH00B3tydNBN9q8fi2b/zrn0OTbY9aaFnrRc9HYfOMLPXnuPZxZtoW1+Dj/6q36Mu6gbWQ3twl5fh/bAtuXQ8wvR7N85l16nnwXXPg9dPmsAi8zmSSsNqmuMZxd/wIOvrmdv5VEmfP4cvju8N0UFudEeeMtbYDX+/SznMkmfUXFHECtPWhFbtPFT7n15LeXb9zKsxxncM7Yv53Vqk56Db1oA2XnQ5aL0HM85F73K3bDi2eAOypnnxx1N2nnSisi2P1Zy/+xyXlm5neKifCaNH8QV/To1vgt7Q2xaCF2HQk49xyd0zjV/ZjD3brj8bk9arvEOHa1myoKNTJq3ATO49Uu9+FZZz5MnZIyaGQz9FhRE1MHDORePgvbQqR9smg+X3h53NGnnSauJmBlz1+zgX2etpWJ3JaMv6MT3Rp9Pl3YF8QQkwaAJ8RzbORetkkth8S/haGWLm26oHpMwubq8v2MfE55YzI1PL6MgN4tnvzmUSeMHx5ewAD5YBLs2xXd851x0Ssqg+jBsXRx3JGnnLa1G2FN5lIdff59pb2+mMDeLH479HOOHdiM7qxlcC8ycCEXnwNdejDsS51xT6zYMslrDJ+9Bj0vjjiatPGmloLrGeGHpVn46dz27Dh7h2tJu3DaiD+0LI+7CXl/7Pgp+mQf67UHnMlJeG7hzS4u7NQietBps2ZZd3DtzLas+3MNF3dsx7cul9CtuZqOnb1oY/PTvZzmXuVpgwgJPWvW2Y+8h/u2363jpnQ/p1CaPh8cNYOyFZ6e3C3t9bZoPeUXQ6YK4I3HORWX3Fvivb0PZbdDz8rijSRtPWnU4XFXN1Dc388gb71NVbUy8/Fxuuqwnha2b8T/d5jeh+yXQKs3d7J1z6VPYEbYugj+84UnLBd5Yt4N/eXktmz89yPC+Z/H9MedzzhkJmODzG6/C4X1xR+Gci1JuAXQtDebXakE8adXiDx/v575X1jJv/cf07FjI9OtLKevdMe6w6u+0M4OXcy6zlZTB/B8HQzvlt4s7mrSIrG+2pKmSdkpafYpySfq5pA2SVkoadFzZKEnrw7I7o4rxRPsOHeWB2eWMemgByzbv5vtjzmfOrWXJSlhvT4LlT8UdhXMuHUrKgkGxt7wV6WHqOidLukzSHkkrwtcPooolypbWr4BfANNPUX4F0Ct8DQUmA0MlZQH/AQwHKoAlkmaa2dqoAq2pMX7zzof8eM46Pt53mGuGdOH2kefR8fSETZ5oBm/9PPgOh4+G4VzmKx4CvUZATnQDGTTgnLzQzK6MLJBQZEnLzBZI6v4Zm1wFTDczA34vqUhSZ6A7sMHMNgJIei7cNpKktefgUX7wy+e5+dP7mZGTxZmdWpO3IytItcPvg94joGIp/PfNJ394zINBh4eN8+G3d5xc/pXJUDwI1s+B1+85ufya6dCxD6yeAfN/cnL5+BegqFvQcnr7FyeXXzcbCs+ARY/B0qnBFde+7d7V3bmWIjs3OE9Eq5Q0npPrEuczrWJg63HLFeG62tYPPdVOJN0A3ACQm9vwL/e2yc+mQ7u2FOR9juKifP5fD/a8cAqRnPwguZwoN+yU0fq02suPXf3ktam9PDtsyeUV1V6eFdanoH3t5a3Cu7uFHf5cXjwY+l518rbOOVe7bElLj1ueYmZTjluu7zl5mKR3gW3AbWa2pulDBQUNnWiELa1XzKxfLWWzgAfM7M1w+X+AO4AewEgz+2a4fgJQama31HW8wsJCO3DgQNNVwDnnMpykg2Z2ym7Rkv6GOs7JktoANWa2X9Jo4GEz6xVFvHEOklcBdD1uuQtBhj7Veuecc+lX5znZzPaa2f7w/WwgR1KHKIKJM2nNBP4u7EX4eWCPmW0HlgC9JJVIygXGhds655xLvzrPyZI6KRweSFIpQW75NIpgInumJenXwGVAB0kVwD1ADoCZPQrMBkYDG4CDwNfDsipJE4G5QBYwNap7o8455z7bqc7Jkm4Myx8FrgZuklQFVALjLKJnT5E+00o3f6blnHMNU9czreamGUz85JxzztWPJy3nnHOJ4UnLOedcYnjScs45lxgZ1RFDUg1Bz5VUZANVTRhOnDKlLplSD/C6NEeZUg9oXF3yzSwxDZiMSlqNIWmpmQ2JO46mkCl1yZR6gNelOcqUekBm1aUuicmuzjnnnCct55xzieFJ68+m1L1JYmRKXTKlHuB1aY4ypR6QWXX5TP5MyznnXGJ4S8s551xieNJyzjmXGC0+aUkaJWm9pA2S7ow7nlRJmippp6TVccfSWJK6SvqdpHJJayR9J+6YUiUpT9JiSe+Gdflh3DE1hqQsSe9IeiXuWBpD0mZJqyStOGHW3sSRVCTpRUnrwr+ZYXHHFKUW/UxLUhbwHjCcYKKzJcC1ZrY21sBSIKkM2A9Mr22m6CSR1BnobGbLJZ0OLAO+ktD/FwGF4YyuOcCbwHfM7Pcxh5YSSf8IDAHamNmVcceTKkmbgSFm9kncsTSWpGnAQjN7PJzvqsDM/hh3XFFp6S2tUmCDmW00syPAc8BVMceUEjNbAOyKO46mYGbbzWx5+H4fUA4UxxtVaiywP1zMCV+JvFKU1AUYAzwedywuEE5zXwY8AWBmRzI5YYEnrWJg63HLFST05JipJHUHBgKL4o0kdeEttRXATuA1M0tqXR4C7gBq4g6kCRjwqqRlkm6IO5hG6AF8DDwZ3rZ9XFJi5sZKRUtPWqplXSKvgjORpNOAGcCtZrY37nhSZWbVZjYA6AKUSkrc7VtJVwI7zWxZ3LE0kYvNbBBwBXBzeHs9ibKBQcBkMxsIHAAS+2y+Plp60qoAuh633AXYFlMs7jjh858ZwDNm9pu442kK4W2becComENJxcXA2PBZ0HPAFyQ9HW9IqTOzbeHPncBLBI8KkqgCqDiu9f4iQRLLWC09aS0BekkqCR9gjgNmxhxTixd2XngCKDezn8UdT2NI6iipKHyfD3wJWBdvVA1nZneZWRcz607wd/KGmX0t5rBSIqkw7OBDeCttBJDIXrdm9hGwVVKfcNUXgcR1WGqI7LgDiJOZVUmaCMwFsoCpZrYm5rBSIunXwGVAB0kVwD1m9kS8UaXsYmACsCp8FgTwPTObHWNMqeoMTAt7qrYC/tPMEt1dPAOcBbwUXBuRDTxrZnPiDalRbgGeCS+8NwJfjzmeSLXoLu/OOeeSpaXfHnTOOZcgnrScc84lhict55xzieFJyznnXGJ40nLOOZcYnrScq4Ok6nA08NWSXpBU0IDPni3pxQYeb56kIQ2P1LnM50nLubpVmtmAcPT8I8CN9fmQpGwz22ZmV0cbnnMthyct5xpmIXBuOKrCVElLwoFKrwKQdF3YGnuZYEDW7sfmOAvn1noynMfpHUmXh+vzJT0naaWk54H8cH2WpF+FLbxVkr4bU52dazZa9IgYzjWEpGyCAVbnAHcTDGV0fThM02JJr4ebDgP6m9mucJT6Y24GMLMLJJ1HkNR6AzcBB82sv6T+wPJw+wFA8bH50Y4NB+VcS+YtLefqlh8OJ7UU+IBgXMQRwJ3h+nlAHtAt3P41M6ttbrNLgKcAzGwdsAXoTTAf0tPh+pXAynD7jUAPSY9IGgUkdqR755qKt7Scq1tlOLXIn4SD+n7VzNafsH4owfQQtaltKpxjThpPzcx2S7oQGEnQSrsGuL4hgTuXabyl5Vxq5gK3hMkLSQPr8ZkFwPhw+94ELbP1J6zvB/QP33cAWpnZDOCfyfApJ5yrD29pOZea+whm8l0ZJq7NwJV1fGYS8KikVUAVcJ2ZHZY0mWDm2ZXACmBxuH1xuP7YxeVdTVwH5xLHR3l3zjmXGH570DnnXGJ40nLOOZcYnrScc84lhict55xzieFJyznnXGJ40nLOOZcYnrScc84lxv8BvXxWuQSPdD8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/Users/matthewmckay/repos-collab/phd-macro-theory-book/_build/jupyter_execute/smoothing_tax_33_2.png" }, "needs_background": "light" }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "P \n", " [[0 1 0 0 0 0 0]\n", " [0 0 1 0 0 0 0]\n", " [0 0 0 1 0 0 0]\n", " [0 0 0 0 1 0 0]\n", " [0 0 0 0 0 1 0]\n", " [0 0 0 0 0 0 1]\n", " [0 0 0 0 0 0 1]]\n", "Q \n", " [[0. 0.96 0. 0. 0. 0. 0. ]\n", " [0. 0. 0.96 0. 0. 0. 0. ]\n", " [0. 0. 0. 0.96 0. 0. 0. ]\n", " [0. 0. 0. 0. 0.96 0. 0. ]\n", " [0. 0. 0. 0. 0. 0.96 0. ]\n", " [0. 0. 0. 0. 0. 0. 0.96]\n", " [0. 0. 0. 0. 0. 0. 0.96]]\n", "Govt expenditures in peace1, peace2, war1, war2, war3, permanent peace = [0.5 0.5 1.2 1.2 1.2 1.2 0.5]\n", "Constant tax collections = 0.5571895472128002\n", "Govt debt in 6 states = [-1. -1.10123911 -1.20669652 -0.58738132 0.05773868 0.72973868\n", " 1.42973868]\n", "\n", "Government tax collections minus debt levels in peace1, peace2, war1, war2, war3, permanent peace\n", " T+b in peace1 = 1.5571895472128001\n", " T+b in peace2 = 1.6584286588928006\n", " T+b in war1 = 1.7638860668928005\n", " T+b in war2 = 1.1445708668928007\n", " T+b in war3 = 0.499450866892801\n", " T+b in permanent peace = -0.1725491331071991\n", "\n", "Total government spending in peace1, peace2, war1, war2, war3, permanent peace\n", " peace1 = 1.5571895472128003\n", " peace2 = 1.6584286588928003\n", " war1 = 1.7638860668928005\n", " war2 = 1.1445708668928007\n", " war3 = 0.4994508668928006\n", " permanent peace = -0.17254913310719933\n", "\n", "Let's see ex-post and ex-ante returns on Arrow securities \n", "\n", "Ex-post returns to purchase of Arrow securities:\n", " π(peace2|peace1) = 1.0416666666666667\n", " π(war1|peace2) = 1.0416666666666667\n", " π(war2|war1) = 1.0416666666666667\n", " π(war3|war2) = 1.0416666666666667\n", " π(permanent peace|war3) = 1.0416666666666667\n", "\n", "Ex-ante returns to purchase of Arrow securities = 1.0416666666666667\n", "\n", "The Ex-post one-period gross return on the portfolio of government assets\n", "[[0. 1.04166667 0. 0. 0. 0.\n", " 0. ]\n", " [0. 0. 1.04166667 0. 0. 0.\n", " 0. ]\n", " [0. 0. 0. 1.04166667 0. 0.\n", " 0. ]\n", " [0. 0. 0. 0. 1.04166667 0.\n", " 0. ]\n", " [0. 0. 0. 0. 0. 1.04166667\n", " 0. ]\n", " [0. 0. 0. 0. 0. 0.\n", " 1.04166667]\n", " [0. 0. 0. 0. 0. 0.\n", " 1.04166667]]\n", "\n", "The cumulative return earned from holding 1 unit market portfolio of government bonds\n", "1.2775343959060064\n" ] } ], "source": [ "ts_ex5 = TaxSmoothingExample(g_ex5, P_ex5, b0_ex5, states_ex5, N_simul=7, random_state=1)\n", "ts_ex5.display()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Continuous-State Gaussian Model\n", "\n", "To construct a tax-smoothing version of the complete markets consumption-smoothing model with a continuous state space that we presented in\n", "the lecture {doc}`consumption smoothing with complete and incomplete markets `, we simply relabel variables.\n", "\n", "Thus, a government faces a sequence of budget constraints\n", "\n", "$$\n", "T_t + b_t = g_t + \\beta \\mathbb E_t b_{t+1}, \\quad t \\geq 0\n", "$$\n", "\n", "where $T_t$ is tax revenues, $b_t$ are receipts at $t$ from contingent claims that the government had *purchased* at time $t-1$,\n", "and\n", "\n", "$$\n", "\\beta \\mathbb E_t b_{t+1} \\equiv \\int q_{t+1}(x_{t+1} | x_t) b_{t+1}(x_{t+1}) d x_{t+1}\n", "$$\n", "\n", "is the value of time $t+1$ state-contingent claims purchased by the government at time $t$.\n", "\n", "As above with the consumption-smoothing model, we can solve the time $t$ budget constraint forward to obtain\n", "\n", "$$\n", "b_t = \\mathbb E_t \\sum_{j=0}^\\infty \\beta^j (g_{t+j} - T_{t+j} )\n", "$$\n", "\n", "which can be rearranged to become\n", "\n", "$$\n", "\\mathbb E_t \\sum_{j=0}^\\infty \\beta^j g_{t+j} = b_t + \\mathbb E_t \\sum_{j=0}^\\infty \\beta^j T_{t+j}\n", "$$\n", "\n", "which states that the present value of government purchases equals the value of government assets at $t$ plus the present value of tax\n", "receipts.\n", "\n", "With these relabelings, examples presented in {doc}`consumption smoothing with complete and incomplete markets ` can be\n", "interpreted as tax-smoothing models.\n", "\n", "**Returns:** In the continuous state version of our incomplete markets model, the ex post one-period gross rate of return on the government portfolio equals\n", "\n", "$$\n", "R(x_{t+1} | x_t) = \\frac{b(x_{t+1})}{\\beta E b(x_{t+1})| x_t}\n", "$$\n", "\n", "#### Related Lectures\n", "\n", "Throughout this lecture, we have taken one-period interest rates and Arrow security prices as exogenous objects determined outside the model\n", "and specified them in ways designed to align our models closely with the consumption smoothing model of Barro {cite}`Barro1979`.\n", "\n", "Other lectures make these objects endogenous and describe how a government optimally manipulates prices of government debt, albeit indirectly via effects distorting\n", "taxes have on equilibrium prices and allocations.\n", "\n", "In [optimal taxation in an LQ economy](https://python-advanced.quantecon.org/lqramsey.html) and [opt_tax_recur](https://python-advanced.quantecon.org/opt_tax_recur.html), we study **complete-markets**\n", "models in which the government recognizes that it can manipulate Arrow securities prices.\n", "\n", "Linear-quadratic versions of the Lucas-Stokey tax-smoothing model are described in [lqramsey](https://python-advanced.quantecon.org/lqramsey.html).\n", "\n", "That lecture is a warm-up for the non-linear-quadratic model of tax smoothing described in [opt_tax_recur](https://python-advanced.quantecon.org/opt_tax_recur.html).\n", "\n", "In both [lqramsey](https://python-advanced.quantecon.org/lqramsey.html) and [opt_tax_recur](https://python-advanced.quantecon.org/opt_tax_recur.html), the government recognizes that its decisions affect prices.\n", "\n", "In [optimal taxation with incomplete markets](https://python-advanced.quantecon.org/amss.html), we study an **incomplete-markets** model in which the\n", "government also manipulates prices of government debt." ] } ], "metadata": { "jupytext": { "text_representation": { "extension": ".md", "format_name": "myst" } }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" }, "source_map": [ 10, 32, 37, 96, 102, 113, 234, 245, 272, 287, 307, 379, 410, 433, 503, 548, 659, 663, 673, 700, 709, 714, 719, 740, 749, 752, 776, 786, 789, 811, 822, 825, 852, 865, 868 ] }, "nbformat": 4, "nbformat_minor": 4 }